WO2021211621A1 - Wireless-power transmitting device for creating a uniform near-field charging area - Google Patents

Wireless-power transmitting device for creating a uniform near-field charging area Download PDF

Info

Publication number
WO2021211621A1
WO2021211621A1 PCT/US2021/027140 US2021027140W WO2021211621A1 WO 2021211621 A1 WO2021211621 A1 WO 2021211621A1 US 2021027140 W US2021027140 W US 2021027140W WO 2021211621 A1 WO2021211621 A1 WO 2021211621A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
charging
radiating
power
housing
Prior art date
Application number
PCT/US2021/027140
Other languages
French (fr)
Inventor
Sohini Sengupta
Yunhong Liu
Tuomo Katajamaki
Original Assignee
Energous Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energous Corporation filed Critical Energous Corporation
Priority to CN202180022816.2A priority Critical patent/CN115336138A/en
Priority to EP21787881.8A priority patent/EP4136738A4/en
Publication of WO2021211621A1 publication Critical patent/WO2021211621A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present disclosure relates generally to wireless power transmission, and more particularly to radiating antennas (e.g., non-inductive, resonant near-field antennas coupled with a feed line) paired with non-radiating elements (e.g., elements not coupled with a feed line) for increasing the locations at which a receiver device can harness usable power on a charging surface.
  • radiating antennas e.g., non-inductive, resonant near-field antennas coupled with a feed line
  • non-radiating elements e.g., elements not coupled with a feed line
  • Portable electronic devices such as smartphones, tablets, notebooks, audio output devices and other electronic devices have become a necessity for communicating and interacting with others.
  • the frequent use of portable electronic devices requires a significant amount of power, which quickly depletes the batteries attached to these devices.
  • Inductive charging pads and corresponding inductive coils in portable devices allow users to wirelessly charge a device by placing the device at a particular position on an inductive pad to allow for a contact-based charging of the device.
  • inductive charging requires a relatively large receiver coil to be placed within a device to be charged, which is less than ideal for devices where internal space is at a premium.
  • systems and methods described herein are capable of increasing the usable charging area on a charging surface, which allows users more flexibility to place their devices to be charged at various positions on the charging surface.
  • the usable charging area on the charging surface is improved by placing a non radiating element between a charging surface and a radiating antenna.
  • a near-field charging system comprising a housing.
  • the housing includes a charging surface and at least one other surface, a radiating antenna, and a non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
  • the radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, and the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing.
  • the non-radiating element is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution
  • the second electromagnetic field distribution is configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
  • the second portion can be at least 10% percent greater than the first portion.
  • the second electromagnetic field distribution is configured to provide at least 220 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
  • the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
  • the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
  • the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
  • the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 12% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
  • the second reflection coefficient varies between -13dB and -16dB.
  • the second reflection coefficient is less than -lOdB.
  • the second electromagnetic field distribution is configured to provide more than 200 Milliwatts of usable power to the wireless-power receiver at fewer locations on the charging surface of the housing relative to the first electromagnetic field distribution.
  • the charging surface has a depression configured to receive and partially house an audio output device.
  • the wireless-power receiver can be coupled to the audio output device, and the wireless power receiver is configured to provide the at least 200 Milliwatts of usable power to the audio output device for charging or powering purposes.
  • the audio output device is a single in-ear audio output device.
  • the radiating antenna has a shape, and the radiating antenna is oriented to have a first orientation within the housing; and the non-radiating element has the shape and the first orientation within the housing.
  • the radiating antenna has a shape and the radiating antenna is oriented to have a first orientation within the housing; the non-radiating element has: the same shape; and a second orientation within the housing that is different from the first orientation.
  • the radiating antenna is connected to a power feed line, and the non-radiating element is not connected to a power feed line.
  • a non conducting material is placed between the radiating antenna and the non-radiating element, wherein the non-conducting material electrically isolates the radiating antenna from the non radiating element.
  • the radiating antenna and the non-radiating element both have a same radiating antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
  • the non radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
  • a method of constructing a near-field charging system that increases usable wireless charging area available to a wireless-power receiver, the method comprising: providing a housing that includes a charging surface and at least one other surface a radiating antenna; placing a radiating antenna within the housing, the radiating antenna configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; placing a non-radiating element in a position above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, wherein placing the non-radiating element in the position above the radiating antenna within the housing changes a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution is configured to provide at least 200
  • Figures 1 shows a diagram of an example embodiment of a near field charging system for charging a pair of headphones or hearing aids.
  • Figures 2 shows a diagram of an exploded view of a near field charging system for charging a pair of headphones or hearing aids, in accordance with some embodiments.
  • Figure 3 A shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
  • Figure 3B shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
  • Figure 4A shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a first orientation.
  • Figure 4B shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a second orientation, in accordance with some embodiments.
  • Figures 5A-1 and 5A-2 show plots of the return loss when a non-radiating element is not added to the charging system, in accordance with some embodiments.
  • Figures 5B-1 and 5B-2 show plots of the return loss when a non-radiating element is added to the charging system, in accordance with some embodiments.
  • Figure 6 is a block diagram of an RF wireless-power transmission system, in accordance with some embodiments.
  • Figure 7 is a block diagram showing components of an example RF power transmission system that includes an RF power transmitter integrated circuit and antenna coverage areas, in accordance with some embodiments.
  • Figure 8 is a flow diagram showing a method of constructing a near-field charging system, in accordance with some embodiments.
  • Figure 1 shows an illustration of a representative near-field charging system
  • a near-field charging system 100 that is configured to charge an electronic device (e.g., headphones, cellphones, tablets, and/or other electronic devices) or a pair of associated electronic devices (e.g., a pair of earbuds, a pair of hearing aids, etc.).
  • an electronic device e.g., headphones, cellphones, tablets, and/or other electronic devices
  • a pair of associated electronic devices e.g., a pair of earbuds, a pair of hearing aids, etc.
  • the design of a near-field charging system 100 is illustrated in a particular way for ease of illustration and one skilled in the art will appreciate that other designs are possible.
  • the overall size of the charging system 100 can be varied to be appropriate for the device(s) that is being charged.
  • wireless audio output devices 102 A and 102B which in some embodiments are hearing aids, or earbuds
  • Traditional methods have required specialized charging cases that require electronic devices to be oriented in a specific manner and placed at a specific position to receive power and get charged.
  • Having a charging surface that can charge wireless devices without regard to the orientation of the wireless devices on the charging surface similar to the near-field charging system 100 shown in Figure 1, is highly convenient.
  • Such an approach does not involve specialized cases, the user can simply place the devices they wish to be charged on the charging surface at any position and/or orientation, and not perform any additional action (e.g., the user could just drop the earbuds down on the charging surface).
  • Figure 1 shows a representative near-field charging system that has a charging surface that can charge wireless devices (e.g., audio output devices 102A and 102B such as wireless earphones) without regard to the orientation of the wireless devices on the charging surface.
  • Near-field charging system 100 in Figure 1 includes a housing 104 that has multiple charging surfaces (e.g., charging surfaces 106A and 106B) disposed upon a top surface 105 of the housing 104.
  • charging surfaces 106A and 106B are indicated to the user by depressions 108 A and 108B, respectively.
  • the components under the charging surface are configured to output enough Radio Frequency (RF) energy that when the RF energy is rectified by a receiving device (specific receiving device that is configured to receive 200mW from the charging system), the receiving device receives 200mW of usable power.
  • RF Radio Frequency
  • 200mW is just one configuration to charge audio output devices 102A and 102B (e.g., headphones, earbuds, hearing aids, etc.,) and the usable power may be adjusted based on the different power-consumption demands of other electronic devices (e.g., 500mW of usable power may be sufficient to charge a cellphone).
  • usable power is the power required to concurrently power or charge an electronic device that is in an active state (e.g., the electronic device is operating in a powered on state, and the device fully charges in a reasonable amount of time (e.g., 1 to 2 hours)).
  • an active state e.g., the electronic device is operating in a powered on state, and the device fully charges in a reasonable amount of time (e.g., 1 to 2 hours)).
  • a reasonable amount of time e.g. 1 to 2 hours
  • charging surfaces 106A and 106B can overlap or be perfectly adjacent to each other to make a continuous charging surface.
  • Figure 1 also shows two reduced-charging-areas 110A and 110B and two increased-charging-areas 112A and 112B. These two reduced-charging-areas 110A and 110B illustrate the reduced charging surface area that results if the housing 104 includes a radiating antenna and does not include a non-radiating element within the housing as well.
  • the two increased-charging- areas 112A and 112B illustrate the increased charging surface area that results when a non radiating elements 202 A and 202B in Figure 2 (which are analogous to elements 711-A - 711-N in Figure 7) are placed between radiating antennas 204A and 204B in Figure 2 (which are analogous to Antennas 710-A - 710-N in Figure 7) and charging surfaces 106A and 106B, respectively.
  • Figure 1 also shows a bottom surface 114 of the housing 104, which helps contain the components described in Figure 2. .
  • the shaded regions 107A and 107B show the locations at which usable power is available as a result of adding the non-radiating elements. As illustrated by the shaded regions 107A and 107B, by positioning the non-radiating element 202A and 202B above the radiating elements 204A and 204B, the shaded regions (e.g., dead zones) now become a usable area for charging an electronic device, thereby making the overall charging area more uniform across the entirety of the charging surfaces 106.
  • FIG. 2 shows an exploded view 200 of a near-field charging system 100.
  • the inventive near-field charging system 100 produces a uniform charging surface with minimal dead spots.
  • this is achieved by causing a change to a radiating antenna’s electromagnetic field (i.e., electric field distribution, magnetic field distribution, or current distribution) by placing a non-radiating element (e.g., a PIFA antenna design, a patch antenna design, and a dipole antenna design that are all electrically isolated from a power source) above the radiating antenna.
  • a non-radiating element e.g., a PIFA antenna design, a patch antenna design, and a dipole antenna design that are all electrically isolated from a power source
  • the non-radiating element can change a distribution characteristic of the radiating element’s electromagnetic field distribution to produce another electromagnetic field distribution that produces a uniform charging area across the charging surface.
  • Figure 2 shows components of a near-field charging system 100 capable of charging wireless audio output devices 102A and 102B.
  • a housing 104 has charging surfaces 106A and 106B. Beneath each of charging surfaces 106A and 106B is a non radiating element (e.g., an element that is not connected to a power feed line or a ground line).
  • the non-radiating elements are shown in Figure 2 as 202A and 202B, and these non radiating elements are placed below charging surfaces 106A and 106B, respectively, within the housing 104.
  • the non-radiating elements 202A and 202B can be printed on a top surface of a circuit board 206.
  • circuit board 206 can be made of a non-conducting material (e.g., a dielectric substrate or plastic) that electrically isolates non-radiating elements 202A and 202B from power sources and ground.
  • the circuit board 206 should have a thickness of at least 1 millimeter to 5 millimeters.
  • Figure 2 also shows two radiating antennas 204A and 204B placed (e.g., in some embodiments, printed) on the bottom side (i.e., opposite) of the circuit board 206 to electrically isolate radiating antennas 204A and 204B, which in some embodiments have a direct connection to the power source(s) and ground(s), from the non-radiating elements 202 A and 202B.
  • non-radiating elements 202 A and 202B have the same design, size, and orientation in the housing (housing 104) as radiating antennas 204 A and 204B.
  • Radiating antennas 204A and 204B are also connected to power feed lines 210A and 210B, respectively, and grounds 208A and 208B, respectively.
  • the radiating antennas 204A and 204B each produce a first electromagnetic field distribution when there is no non-radiating element positioned above the radiating antennas.
  • This electromagnetic field distribution is shown in Figure 3 A, which shows a electric field distribution plot 300A on a two dimensional plane that is coplanar with charging surfaces 106A and 106B.
  • the electromagnetic field plot 300A shows the electromagnetic field output by the radiating antennas 204A and 204B without having a non-radiating elements 202A and 202B placed in-between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B.
  • cold zones are present on the charging surfaces (e.g., for purposes of this disclosure, cold zones are areas on the charging surface at which a device to-be-charged would receive an insufficient amount of usable power to power the device or to provide enough power to charge a power source/battery of the device).
  • Cold zones 302-1 and 303-1 indicate positions at which usable power can be improved. Due to presence of these cold zones, the usable charging area on the charging surfaces 106 A and 106B can be said to be non-uniform.
  • non-radiating elements 202A and 202B are placed between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B, respectively Placement of the non-radiating elements 202A and 202B above the radiating elements 204A and 204B, respectively, causes a change in the electromagnetic field distributions produced, thereby causing the radiating elements to each produce a second (different) electromagnetic field distribution rather than the first electromagnetic field distribution discussed above.
  • the resulting electric field distribution plot 300B (which corresponds to the second electromagnetic field distribution produced by each of the radiating elements) is shown in Figure 3B.
  • cold zones now occupy a far smaller area of each of the charging surfaces.
  • cold zone 307-1 is significantly smaller than cold zone 302-1
  • cold zone 309-1 is significantly smaller than cold zone 303-1.
  • each cold zones is reduced in size by approximately 80-90%.
  • Figure 4 A shows the same resulting electromagnetic field plot 300B as shown in Figure 3B.
  • This electromagnetic field plot 300B shows that adding non-radiating elements 202A and 202B between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B can increase the locations on charging surfaces 106A and 106B that have sufficient usable power (stated another way, and as discussed above, the size of a cold zone on each charging surface is reduced significantly). While one orientation of non-radiating elements 202A and 202B within the housing 104 is shown in Figures 2 and 4A, other possible orientations of non-radiating elements 202A and 202B within the housing 104 are possible. Changes in orientation of the non-radiating elements 202A and 202B can change the resulting electromagnetic field distribution produced by the corresponding radiating elements in the presence of the non-radiating elements.
  • Figure 4B shows another possible orientation of non-radiating elements, one in which non-radiating elements 202A and 202B are flipped about horizontal axis 406 (stated another way, the non-radiating elements are rotated 180 degrees relative to the orientation of the non-radiating elements in Figure 4A).
  • These flipped/rotated non radiating elements are shown in Figure 4B as flipped-non-radiating elements 202A-1 and 202B-1.
  • Figure 4B also shows the resulting electromagnetic field plot 402 produced by this combination of flipped-non-radiating elements 202 A- 1 and 202B-1 and radiating elements 204A and 204B, which illustrates how the electromagnetic field distributions produced by the radiating elements are altered in response to flipping of the orientations of the non-radiating elements 202 A and 202B.
  • one of the reasons why the non-radiating elements results in a more uniform charging surface is that the non-radiating elements stabilize the return loss for the charging system 100 and additionally keeps the return loss lower.
  • a low and stable return loss ensures that maximum power is transmitted via the charging system 100 and made available at the charging surfaces 106 A and 106B.
  • the radiating antennas 204A and 204B would have a return loss that fluctuates as the location of the audio output devices 102 A and 102B changes on the charging surfaces. In some embodiments, when the return loss is high, not enough power is available for charging the electronic devices.
  • Figures 5A-1, 5A-2, 5B-1, and 5B-2 show plots of return losses, which show that adding non-radiating elements 202A and 202B between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B can reduce the amount of irregular variation in return loss at the near-field charging system 100 as the location of the audio output devices 102A and 102B is varied.
  • Figures 5A-1 and 5A-2 illustrate the wireless charger transmitter system without the non-radiating elements 202A and 202B (e.g., parasitic elements).
  • Figures 5A-1 and 5A-2 show a large variation in the reflection coefficient.
  • FIGs 5A-1 and 5A-2 “SI 1” and “S22” indicated by 501 and 502, respectively, indicate the reflection coefficients corresponding to the two radiating elements.
  • the plots in Figures 5A-1 and 5A-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces.
  • Figure 5B-1 and 5B-2 illustrate the wireless charger transmitter system with the non-radiating elements 202A and 202B (e.g., parasitic elements).
  • Figures 5B-1 and 5B-2 show a small variation in the reflection coefficient.
  • “SI 1” and “S22” indicated by 503 and 504, respectively, indicate the reflection coefficients corresponding to the two radiating elements.
  • the plots in Figures 5B-1 and 5B-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces.
  • a transmitter can determine the present SAR value of RF energy at one or more particular locations of the transmission field using one or more sampling or measurement techniques.
  • the SAR values within the transmission field are measured and pre-determined by SAR value measurement equipment.
  • the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which distance ranges in the transmission field are likely to exceed to a pre-stored SAR threshold value.
  • the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which radiation profiles within the transmission field are likely to exceed to a pre-stored SAR threshold value.
  • a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the transmitter receiving a number of power waves (P) having a particular frequency (F).
  • V volume of space
  • D distance
  • P power waves
  • F frequency
  • a transmitter may apply the SAR values identified for particular locations in various ways when generating, transmitting, or adjusting the radiation profile.
  • SAR value at or below 1.6 W/kg is in compliance with the FCC (Federal Communications Commission) SAR requirement in the United States.
  • a SAR value at or below 2 W/kg is in compliance with the IEC (International Electrotechnical Commission) SAR requirement in the European Union.
  • the SAR values may be measured and used by the transmitter to maintain a constant energy level throughout the transmission field, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery.
  • the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values.
  • the transmitter may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the transmitter may actively monitor the transmission field to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold.
  • the transmitter may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations throughout the transmission field (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
  • control systems of transmitters adhere to electromagnetic field (EMF) exposure protection standards for human subjects.
  • Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
  • FCC Federal Communications Commission
  • Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
  • power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2).
  • the wireless-power transmission systems disclosed herein comply with FCC Part ⁇ 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.”
  • the wireless-power transmission systems disclosed herein comply with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.”
  • ITU International Telecommunication Union
  • the wireless-power transmission systems disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
  • the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits.
  • One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits.
  • a second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits.
  • these safety methods are programmed into a memory of the transmitter (e.g., memory 706) to allow the transmitter to execute such programs and implement these safety methods.
  • the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
  • FIG. 6 is a block diagram of an RF wireless-power transmission system 650 in accordance with some embodiments.
  • the RF wireless-power transmission system 650 includes an RF power transmitter 100 (also referred to herein as a near-field (NF) charging system 100), NF power transmitter 100, RF power transmitter 100).
  • the RF power transmitter 100 includes an RF power transmitter integrated circuit 660 (described in more detail below).
  • the RF power transmitter 100 includes one or more communications components 704 (e.g., wireless communication components, such as WI-FI or BLUETOOTH radios).
  • the RF power transmitter 100 also connects to one or more power amplifier units 608-1, ...
  • antennas 710-1 to 710-n are placed near elements 711-A to 711-n (also referred to as non-radiating elements 202A and 202B, and/or flipped-non-radiating elements 202A-1 and 202B-1 depending on the circumstances and desired radiation distributions to be produced by the corresponding radiating elements), respectively.
  • a single power amplifier, e.g. 608-1 is controlling one antenna 710-1.
  • RF power is controlled and modulated at the RF power transmitter 100 via switch circuitry as to enable the RF wireless- power transmission system to send RF power to one or more wireless receiving devices via the TX antenna array 710.
  • a single power amplifier e.g. 608-n is controlling multiple antennas 710-m to 710-n through multiple splitters (610-1 to 610-n) and multiple switches (612-1 to 612-n).
  • the communication component(s) 704 enable communication between the RF power transmitter 100 and one or more communication networks.
  • the communication component(s) 704 are capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6L0WPAN, Thread, Z-Wave, Bluetooth Smart, ISAlOO.lla, WirelessHART, MiWi, etc.) custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
  • custom or standard wireless protocols e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6L0WPAN, Thread, Z-Wave, Bluetooth Smart, ISAlOO.lla, WirelessHART, MiWi, etc.
  • custom or standard wired protocols e.g., Ethernet, HomePlug, etc.
  • the communication component s) 704 are not able to communicate with wireless-power receivers for various reasons, e.g., because there is no power available for the communication component(s) to use for the transmission of data signals or because the wireless-power receiver itself does not actually include any communication component of its own.
  • near-field power transmitters described herein are still able to uniquely identify different types of devices and, when a wireless-power receiver is detected, figure out if that wireless-power receiver is authorized to receive wireless-power.
  • a signature-signal receiving/generating circuits are used in identifying the receivers.
  • the RF IC 660 includes a CPU subsystem 670, an external device control interface, an RF subsection for DC to RF power conversion, and analog and digital control interfaces interconnected via an interconnection component, such as a bus or interconnection fabric block 671.
  • the CPU subsystem 670 includes a microprocessor unit (CPU) 702 with related Read-Only-Memory (ROM) 672 for device program booting via a digital control interface, e.g. an I2C port, to an external FLASH containing the CPU executable code to be loaded into the CPU Subsystem Random Access Memory (RAM) 674 or executed directly from FLASH.
  • the CPU subsystem 670 also includes an encryption module or block 676 to authenticate and secure communication exchanges with external devices, such as wireless-power receivers that attempt to receive wirelessly delivered power from the RF power transmitter 100.
  • the RF IC 660 also includes (or is in communication with) a power amplifier controller IC 661 A (PA IC) that is responsible for controlling and managing operations of a power amplifier, including for reading measurements of impedance at various measurement points within the power amplifier.
  • PA IC power amplifier controller IC 661 A
  • the PA IC 661 A may be on the same integrated circuit at the RF IC 660, or may be on its own integrated circuit that is separate from (but still in communication with) the RF IC 660.
  • the PA IC 661 A is on the same chip with one or more of the Power Amplifiers (PAs) 608.
  • the PA IC 661 A is on its own chip that is a separate chip from the Power Amplifiers (PAs) 608.
  • executable instructions running on the CPU are used to manage operation of the RF power transmitter 100 and to control external devices through a control interface, e.g., SPI control interface 675, and the other analog and digital interfaces included in the RF power transmitter integrated circuit 660.
  • the CPU subsystem 670 also manages operation of the RF subsection of the RF power transmitter integrated circuit 660, which includes an RF local oscillator (LO) 677 and an RF transmitter (TX) 678.
  • LO local oscillator
  • TX RF transmitter
  • the RF LO 677 is adjusted based on instructions from the CPU subsystem 670 and is thereby set to different desired frequencies of operation, while the RF TX converts, amplifies, modulates the RF output as desired to generate a viable RF power level.
  • the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use any beam-forming capabilities (e.g., bypasses/ disables a beam-forming IC and/or any associated algorithms if phase-shifting is not required, such as when only a single antenna 710 is used to transmit power transmission signals to a wireless-power receiver).
  • the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
  • the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use a beam-forming IC.
  • the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use a beam-forming IC.
  • the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
  • the components of the near-field charging system 100 are also used to ensure that power is transmitted safely. For example, Specific Absorption Rate (SAR) values and Electromagnetic Field (EMF) values can be used to help ensure safe transmission of wireless power.
  • the system 100 can determine the present SAR value of RF energy at one or more particular locations near the charging surfaces described herein using one or more sampling or measurement techniques.
  • the SAR values near the charging surfaces are measured and pre-determined by SAR value measurement equipment.
  • the system 100 may be preloaded with values, tables, and/or algorithms that indicate for the system 100 which distance ranges are likely to exceed a pre-stored SAR threshold value.
  • the system may be preloaded with values, tables, and/or algorithms that indicate for the system which radiation profiles near the charging surface are likely to exceed to a pre-stored SAR threshold value.
  • a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the system receiving a number of power waves (P) having a particular frequency (F).
  • a SAR value at or below 1.6 W/kg, is in compliance with the FCC (Federal
  • the SAR values may be measured and used by the system to maintain a constant energy level throughout the charging surfaces, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery.
  • the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values.
  • the system may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the system may actively monitor the charging surfaces to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold.
  • the system may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations near the charging surfaces (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
  • the system 100 described herein also adheres to electromagnetic field (EMF) exposure protection standards for human subjects.
  • EMF electromagnetic field
  • Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
  • FCC Federal Communications Commission
  • Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
  • power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2)
  • the system disclosed herein complies with FCC Part ⁇ 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.”
  • the system disclosed herein complies with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.”
  • the system 100 disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
  • the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits.
  • One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits.
  • a second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits.
  • these safety methods are programmed into a memory of the transmitter (not shown) to allow the transmitter to execute such programs and implement these safety methods.
  • the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
  • Figure 8 shows a flow diagram of a method of constructing a near-field charging system, in accordance with some embodiments.
  • the method of Figure 8 is performed by a manufacturer of near-field charging systems, or by a manufacturer of components such systems.
  • Figure 8 shows a method 800 of constructing (802) a near-field charging system for increasing a usable wireless charging area available to a wireless-power receiver.
  • the method 800 includes providing a housing of the near-field charging system (804).
  • the housing that is provided in operation 804 includes a charging surface and at least one other surface (806).
  • the charging surface is a top surface of the housing, such as top surface of the housing 104 depicted in Figures 1 and 2.
  • the top surface includes one or more charging surfaces (e.g., charging surfaces 106A and 106B, Figures 1 and 2) at which a wireless-power receiver is placed to allow that receiver to receive electromagnetic energy that it can then convert into usable power for charging or powering of an electronic device coupled to the wireless-power receiver.
  • the other surfaces can be surfaces that allow for encasing the radiating antenna (e.g., radiating antennas 204A and 204B) and the non-radiating elements (e.g., parasitic element) 202A, 202B, 202A-1, and 202B-1, but these other surfaces are not configured to allow for the wireless-power receiver to receive the electromagnetic energy.
  • the radiating elements 204A and 204B and parasitic element 202 A, 202B, 202A-1, and 202B-1 in some embodiments, produce electromagnetic energy that is enhanced on the charging surface, and is not configured to be available on the other surfaces).
  • the housing that is provided in operation 804 also includes a radiating antenna (806).
  • the radiating antenna is made from a conductive material such as copper, or any other suitable radiative material.
  • the radiating antenna is coupled to a feed line that provides an RF signal to the radiating antenna.
  • a non radiating element also referred to as a parasitic element, and discussed below is not coupled to a feeding line.
  • the housing also includes the non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (806) (e.g., the non-radiating element is a parasitic element such as a conductive metal patch, an example of which is depicted in Figures 2, 4A, and 4B (e.g., non-radiating element 202A), and which is depicted as positioned on top of the radiating antenna 204A.
  • the parasitic element has a same shape as the radiating antenna, as is shown in Figures 2, 4A, and 4B).
  • the radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface (e.g., charging surfaces 106A and 106B in Figures 2, 4A, and 4B, which can be surfaces of the housing (e.g., housing 104) on which receiving devices may be placed.
  • the first electromagnetic field distribution can be configured to provide at least 200 and/or a minimum of milliwatts of usable power (e.g., usable power is energy that is rectified and converted to the correct requirements for whatever type of device is receiving power or charge from the wireless-power receiver) to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing (808).
  • the non-radiating element when placed in a position above the radiating element, is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution (which is distinct from the first electromagnetic field distribution), the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing (810).
  • examples of the change to the distribution characteristic include, as non-limiting examples, changes to e-field distribution to lower peaks and/or valleys.
  • FIGs 3 A and 3B A comparison of the electric field distribution plots shown in Figures 3A (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is not present, i.e., the first electromagnetic field distribution) and Figure 3B (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is present, i.e., the second electromagnetic field distribution) shows this change in the distribution characteristics that occurs when the non-radiating element is used to alter the electromagnetic field distribution of the radiating antenna.
  • the second portion can be at least 10% percent greater in size than the first portion (812).
  • the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 110A and 110B each represent approximately 70% of the surface area of the charging surface), and the second portion of the charging surface of the housing covers an area that includes at least 80% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 112A and 112B each represent approximately 80% of the surface area of the charging surface).
  • the second portion covers an area of the charging surface that is at least 10% percent larger in size than the first portion.
  • the percentage can be any integer or fractional value falling between the range of 10% to 30% (e.g., 11%, 11.5%, 18%, 19.1%, 20.5, 25, etc.)
  • the second electromagnetic field distribution is configured to provide at least 220 milliwatts of usable power to the wireless- power receiver when the wireless-power receiver is placed at any position across the second portion of the charging surface of the housing.
  • amount of usable power available across the second portion of the charging surface can be increased from 200 to 220 milliwatts in order to provide an amount of usable power to a receiving device with a higher power requirement.
  • 220 milliwatts provides enough power to charge one or more wireless earbuds or hearing aids.
  • the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
  • amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 1 watt in order to provide an amount of usable power to a receiving device with a higher power requirement.
  • 1 watt provides enough power to charge a wearable electronic device such as a smartwatch.
  • the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
  • amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 5 watts in order to provide an amount of usable power to a receiving device with a higher power requirement.
  • 5 watts provides enough power to charge a small electronic device such as a smartphone.
  • the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
  • Figure 3B, 4A, and 4B show charging surfaces that cover 70% of the charging surface.
  • the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 75% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
  • the second reflection coefficient is up to 20% less than the first reflection coefficient.
  • the addition of the non-radiating element results in a reflection coefficient of the near field charging system’s radiating antennas becoming more stable and far less sensitive to the relative placement and/or location of the receiver device (e.g., where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud)). Therefore, as the receiver is moved over the surface of the transmitter antenna, the reflection coefficient does not vary as much, the return loss at the radiating antenna feed can be greatly reduced, and the power transferred to the radiating antenna is uniform and stable. This is not, however, the case for the radiating antennas without non-radiating elements placed proximate thereto.
  • the non-radiating element e.g., the parasitic element
  • reflection coefficient varies between -5 dB to -18 dB as the position of the receiver is varied within the charging area. This, in turn, leads to poor coupling of power in some areas where the reflection coefficient (and return loss) is high.
  • the reflection coefficient varies between - 13 dB to -16 dB as the position of the receiver is varied within the charging area. In most circumstances, this is a desired result because the reflection coefficient (and return loss) is always low at the antenna feed. In some embodiments, reflection coefficient is (and in some embodiments always) less than -10 dB. Therefore, the power transferred into the radiating antenna can be uniform and stable, and is not dependent on the location of the receiver antenna.
  • the second electromagnetic field distribution of the near-field charging system is configured to provide more than 200 milliwatts. In some embodiments, this amount of usable power is adjusted based on the requirements of the receiving device (i.e., the electronic device that is coupled to the wireless-power receiver). In some embodiments, 1 watt emitted by the system 100 can be an appropriate amount of power to charge a single wireless headphone. In some embodiments, 200 watts emitted by the near-field charging system may be an appropriate amount of power to charge a laptop device.
  • placement of the parasitic element above the radiating antenna within the housing thus causes a flattening of the resulting electromagnetic field distribution (the referenced second electromagnetic field distribution referred to herein) produced by the radiating antennas of the near-field charging system 100, such that more usable charging locations are available to the wireless-power receiver on the charging surface (e.g., locations at which the receiver is able to receive at least 200 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power), but the locations at which more than 250 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power could be received by the wireless-power receiver are reduced.
  • the charging surface of the near-field charging system has a depression (e.g., depressions 106A-1 and 106B-1 in Figure 1) that is configured to receive and partially surround an audio output device, and where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud), and the wireless power receiver is configured to provide at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
  • the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud), and the wireless power receiver is configured to provide at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
  • the audio output device is a single in-ear audio output device (e.g., a wireless earbud or audio output device (indicated by 102 A and 102B in Figure 1), or a hearing aid, etc.).
  • a single in-ear audio output device e.g., a wireless earbud or audio output device (indicated by 102 A and 102B in Figure 1), or a hearing aid, etc.).
  • the radiating antenna has a shape (e.g., a PIFA antenna with a radiator substantially in the shape of the letter ‘c,’ similar to the shape depicted for radiating elements in Figures 2, 4A, and 4B), and the radiating antenna is oriented to have a first orientation within the housing.
  • a shape e.g., a PIFA antenna with a radiator substantially in the shape of the letter ‘c,’ similar to the shape depicted for radiating elements in Figures 2, 4A, and 4B
  • the radiating antenna is oriented to have a first orientation within the housing.
  • the first orientation can be such that the largest surface of the radiating antenna is substantially coplanar with (e.g., within +/- 5 degrees of coplanar with) the largest surface of the charging surface, similar to the orientation shown in Figure 2 and Figure 4A.); and the non-radiating element has the shape (e.g., a substantially identical shape as the radiating antenna, as shown in Figures 2 and 4A) and the first orientation within the housing.
  • the non-radiating element has a surface area that varies by approximately 10% relative to a surface area of the radiating antenna (e.g., the non-radiating element is either larger or smaller than the radiating antenna by 10% of its surface area).
  • the radiating antenna has a shape (e.g., a PIFA antenna with a radiator having a ‘c’ shaped design, similar to the shape shown by radiating elements in Figures 2, 4A, and 4B) and the radiating antenna is oriented to have the first orientation (described above) within the housing; and the non-radiating element has: the same shape (e.g., an identical shape as the radiating antenna, as shown in Figure 4A); and a second orientation within the housing that is different from the first orientation (as shown in Figure 4B). .
  • a shape e.g., a PIFA antenna with a radiator having a ‘c’ shaped design, similar to the shape shown by radiating elements in Figures 2, 4A, and 4B
  • the radiating antenna is oriented to have the first orientation (described above) within the housing
  • the non-radiating element has: the same shape (e.g., an identical shape as the radiating antenna, as shown in Figure 4A); and a second orientation within the housing that is different
  • the radiating antenna is connected to a power feed line
  • the non-radiating element e.g., the non-radiating element is a parasitic element
  • the non-radiating element is not connected to a power feed line (as shown Figure 2).
  • a non-conducting material is placed between the radiating antenna and the non-radiating element, and the non-conducting material electrically isolates the radiating antenna from the non-radiating element (as shown by circuit board 206 in Figure 2, 4A, and 4B).
  • a dielectric can be utilized as the non-conducting material, and the radiating antennas and non-radiating elements can be in the form of stamped metal components (instead of being printed elements on a circuit board).
  • the radiating antenna and the non-radiating element both have a same antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
  • the non-radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (e.g., as shown in Figure 1 where the circuit board 206 is 1 millimeter thick). In some embodiments, the non-radiating element is positioned at least 1.5 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. In some embodiments, the non-radiating elements are floating exactly on top of the radiating element with a one-millimeter layer of dielectric in between. In some embodiments, there is no conductive material connecting the non-radiating elements with the radiating antennas; in other words, there is no electrical connection between the radiating antennas and the non radiating elements.
  • the storage medium can include, but is not limited to, high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • Memory optionally includes one or more storage devices remotely located from the CPU(s) (e.g., processor(s)). Memory, or alternatively the non-volatile memory device(s) within the memory, comprises a non-transitory computer readable storage medium.
  • features of the present invention can be incorporated in software and/or firmware for controlling the hardware of a processing system (such as the components associated with the transmitters 100 and/or receivers 104), and for enabling a processing system to interact with other mechanisms utilizing the results of the present invention.
  • software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An example near-field charging system includes a housing that includes a charging surface and at least one other surface, a radiating antenna, and a non -radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. The radiating antenna produces a first electromagnetic-field distribution that is received by a receiver, the first electromagnetic-field provides usable power when the receiver is placed at any position on a first portion of the charging surface. The non-radiating element changes a distribution characteristic of the first electromagnetic-field distribution to produce a second electromagnetic-field distribution, the second electromagnetic-field distribution providing usable power to the receiver when the receiver is placed at any position across a second portion of the charging surface of the housing, and the second portion is at least 10% percent greater than the first portion.

Description

WIRELESS-POWER TRANSMITTING DEVICE FOR CREATING A UNIFORM NEAR-FIELD CHARGING AREA
RELATED APPLICATIONS
[0001] This application is a continuation of U.S. Utility Patent Application No.
17/228,621, filed April 12, 2021, and also claims priority from U.S. Provisional Application Serial No. 63/009,361, filed April 13, 2020.
TECHNICAL FIELD
[0002] The present disclosure relates generally to wireless power transmission, and more particularly to radiating antennas (e.g., non-inductive, resonant near-field antennas coupled with a feed line) paired with non-radiating elements (e.g., elements not coupled with a feed line) for increasing the locations at which a receiver device can harness usable power on a charging surface.
BACKGROUND
[0003] Portable electronic devices such as smartphones, tablets, notebooks, audio output devices and other electronic devices have become a necessity for communicating and interacting with others. The frequent use of portable electronic devices, however, requires a significant amount of power, which quickly depletes the batteries attached to these devices. Inductive charging pads and corresponding inductive coils in portable devices allow users to wirelessly charge a device by placing the device at a particular position on an inductive pad to allow for a contact-based charging of the device.
[0004] Conventional inductive charging pads, however, suffer from many drawbacks.
For one, users typically must place their devices at a specific position and in a certain orientation on the charging pad because gaps (“dead zones” or “cold zones”) exist on the surface of the charging pad. In other words, for optimal charging, the coil in the charging pad needs to be aligned with the coil in the device in order for the required magnetic coupling to occur. Additionally, placement of other metallic objects near an inductive charging pad may interfere with operation of the inductive charging pad, so even if the user places their device at the exact right position, if another metal object is also on the pad, then magnetic coupling still may not occur and the device will not be charged by the inductive charging pad. This results in a frustrating experience for many users, as they may be unable to properly charge their devices. Also, inductive charging requires a relatively large receiver coil to be placed within a device to be charged, which is less than ideal for devices where internal space is at a premium.
[0005] Further, while near-field radio-frequency-based transmission techniques have also been explored, some of these techniques result in formation of charging areas that are insufficiently uniform to allow for a placing a device to-be-charge at any position on the charging surface.
SUMMARY
[0006] Accordingly, there is a need for a near-field charging system that addresses the problems identified above. To this end, systems and methods described herein are capable of increasing the usable charging area on a charging surface, which allows users more flexibility to place their devices to be charged at various positions on the charging surface. In some embodiments, the usable charging area on the charging surface is improved by placing a non radiating element between a charging surface and a radiating antenna.
[0007] (Al) In some embodiments, a near-field charging system comprising a housing is provided. The housing includes a charging surface and at least one other surface, a radiating antenna, and a non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. The radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, and the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing. In addition, the non-radiating element is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, and the second electromagnetic field distribution is configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing. The second portion can be at least 10% percent greater than the first portion.
[0008] (A2) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide at least 220 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
[0009] (A3) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
[0010] (A4) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
[0011] (A5) In some embodiments of the near-field charging system of Al, the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
[0012] (A6) In some embodiments of the near-field charging system of Al, the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 12% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
[0013] (A7) In some embodiments of the near-field charging system of A6, the second reflection coefficient varies between -13dB and -16dB.
[0014] (A8) In some embodiments of the near-field charging system of A6, the second reflection coefficient is less than -lOdB.
[0015] (A9) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide more than 200 Milliwatts of usable power to the wireless-power receiver at fewer locations on the charging surface of the housing relative to the first electromagnetic field distribution.
[0016] (A10) In some embodiments of the near-field charging system of Al, the charging surface has a depression configured to receive and partially house an audio output device. The wireless-power receiver can be coupled to the audio output device, and the wireless power receiver is configured to provide the at least 200 Milliwatts of usable power to the audio output device for charging or powering purposes.
[0017] (A11) In some embodiments of the near-field charging system of A10, the audio output device is a single in-ear audio output device.
[0018] (A12) In some embodiments of the near-field charging system of Al, the radiating antenna has a shape, and the radiating antenna is oriented to have a first orientation within the housing; and the non-radiating element has the shape and the first orientation within the housing.
[0019] (A13) In some embodiments of the near-field charging system of Al, the radiating antenna has a shape and the radiating antenna is oriented to have a first orientation within the housing; the non-radiating element has: the same shape; and a second orientation within the housing that is different from the first orientation.
[0020] (A14) In some embodiments of the near-field charging system of Al, the radiating antenna is connected to a power feed line, and the non-radiating element is not connected to a power feed line.
[0021] (A15) In some embodiments of the near-field charging system of Al, a non conducting material is placed between the radiating antenna and the non-radiating element, wherein the non-conducting material electrically isolates the radiating antenna from the non radiating element.
[0022] (A16) In some embodiments of the near-field charging system of Al, the radiating antenna and the non-radiating element both have a same radiating antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
[0023] (A17) In some embodiments of the near-field charging system of Al, the non radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
[0024] (Bl) In yet another aspect, a method of constructing a near-field charging system that increases usable wireless charging area available to a wireless-power receiver, the method comprising: providing a housing that includes a charging surface and at least one other surface a radiating antenna; placing a radiating antenna within the housing, the radiating antenna configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; placing a non-radiating element in a position above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, wherein placing the non-radiating element in the position above the radiating antenna within the housing changes a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing, wherein the second portion is at least 10% percent greater than the first portion.
[0025] (B2) In some embodiments of the method of Bl, additional constructing/ producing steps are performed so that the resulting near-field charging system is in accordance with any one of A2-A18.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various embodiments, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
[0027] Figures 1 shows a diagram of an example embodiment of a near field charging system for charging a pair of headphones or hearing aids.
[0028] Figures 2 shows a diagram of an exploded view of a near field charging system for charging a pair of headphones or hearing aids, in accordance with some embodiments.
[0029] Figure 3 A shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments. [0030] Figure 3B shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
[0031] Figure 4A shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a first orientation.
[0032] Figure 4B shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a second orientation, in accordance with some embodiments.
[0033] Figures 5A-1 and 5A-2 show plots of the return loss when a non-radiating element is not added to the charging system, in accordance with some embodiments.
[0034] Figures 5B-1 and 5B-2 show plots of the return loss when a non-radiating element is added to the charging system, in accordance with some embodiments.
[0035] Figure 6 is a block diagram of an RF wireless-power transmission system, in accordance with some embodiments.
[0036] Figure 7 is a block diagram showing components of an example RF power transmission system that includes an RF power transmitter integrated circuit and antenna coverage areas, in accordance with some embodiments.
[0037] Figure 8 is a flow diagram showing a method of constructing a near-field charging system, in accordance with some embodiments.
[0038] In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
PET ATT, ED DESCRIPTION
[0039] Numerous details are described herein in order to provide a thorough understanding of the example embodiments illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known processes, components, and materials have not been described in exhaustive detail so as not to unnecessarily obscure pertinent aspects of the embodiments described herein.
[0040] Figure 1 shows an illustration of a representative near-field charging system
100 that is configured to charge an electronic device (e.g., headphones, cellphones, tablets, and/or other electronic devices) or a pair of associated electronic devices (e.g., a pair of earbuds, a pair of hearing aids, etc.). The design of a near-field charging system 100 is illustrated in a particular way for ease of illustration and one skilled in the art will appreciate that other designs are possible. For example, the overall size of the charging system 100 can be varied to be appropriate for the device(s) that is being charged.
[0041] As electronic devices shift to wireless designs (e.g., wireless audio output devices 102 A and 102B, which in some embodiments are hearing aids, or earbuds) that require them to be charged daily, there has become a need for a convenient way to charge all these devices. Traditional methods have required specialized charging cases that require electronic devices to be oriented in a specific manner and placed at a specific position to receive power and get charged. Having a charging surface that can charge wireless devices without regard to the orientation of the wireless devices on the charging surface, similar to the near-field charging system 100 shown in Figure 1, is highly convenient. Such an approach does not involve specialized cases, the user can simply place the devices they wish to be charged on the charging surface at any position and/or orientation, and not perform any additional action (e.g., the user could just drop the earbuds down on the charging surface).
[0042] Specifically, Figure 1 shows a representative near-field charging system that has a charging surface that can charge wireless devices (e.g., audio output devices 102A and 102B such as wireless earphones) without regard to the orientation of the wireless devices on the charging surface. Near-field charging system 100 in Figure 1 includes a housing 104 that has multiple charging surfaces (e.g., charging surfaces 106A and 106B) disposed upon a top surface 105 of the housing 104. In this illustrated embodiment, charging surfaces 106A and 106B are indicated to the user by depressions 108 A and 108B, respectively. Furthermore, the components under the charging surface (shown in Figure 2) are configured to output enough Radio Frequency (RF) energy that when the RF energy is rectified by a receiving device (specific receiving device that is configured to receive 200mW from the charging system), the receiving device receives 200mW of usable power. It should also be appreciated that 200mW is just one configuration to charge audio output devices 102A and 102B (e.g., headphones, earbuds, hearing aids, etc.,) and the usable power may be adjusted based on the different power-consumption demands of other electronic devices (e.g., 500mW of usable power may be sufficient to charge a cellphone). In some embodiments, usable power is the power required to concurrently power or charge an electronic device that is in an active state (e.g., the electronic device is operating in a powered on state, and the device fully charges in a reasonable amount of time (e.g., 1 to 2 hours)). To illustrate the charging surfaces depressions 106A-1 and 106B-1 are shown to correspond with the charging surfaces 106 A and 106B, respectively.
[0043] Although two charging surfaces are shown in a specific orientation, any orientation of charging surfaces is possible depending on the requirements of the electronic device(s). For example, in some embodiments, charging surfaces 106A and 106B can overlap or be perfectly adjacent to each other to make a continuous charging surface. Figure 1 also shows two reduced-charging-areas 110A and 110B and two increased-charging-areas 112A and 112B. These two reduced-charging-areas 110A and 110B illustrate the reduced charging surface area that results if the housing 104 includes a radiating antenna and does not include a non-radiating element within the housing as well. The two increased-charging- areas 112A and 112B illustrate the increased charging surface area that results when a non radiating elements 202 A and 202B in Figure 2 (which are analogous to elements 711-A - 711-N in Figure 7) are placed between radiating antennas 204A and 204B in Figure 2 (which are analogous to Antennas 710-A - 710-N in Figure 7) and charging surfaces 106A and 106B, respectively. Figure 1 also shows a bottom surface 114 of the housing 104, which helps contain the components described in Figure 2. . To further illustrate the increased charging area, the shaded regions 107A and 107B (e.g., dead zones) show the locations at which usable power is available as a result of adding the non-radiating elements. As illustrated by the shaded regions 107A and 107B, by positioning the non-radiating element 202A and 202B above the radiating elements 204A and 204B, the shaded regions (e.g., dead zones) now become a usable area for charging an electronic device, thereby making the overall charging area more uniform across the entirety of the charging surfaces 106.
[0044] Figure 2 shows an exploded view 200 of a near-field charging system 100. As briefly described above, the inventive near-field charging system 100 produces a uniform charging surface with minimal dead spots. In some embodiments, this is achieved by causing a change to a radiating antenna’s electromagnetic field (i.e., electric field distribution, magnetic field distribution, or current distribution) by placing a non-radiating element (e.g., a PIFA antenna design, a patch antenna design, and a dipole antenna design that are all electrically isolated from a power source) above the radiating antenna. Stated another way, the non-radiating element can change a distribution characteristic of the radiating element’s electromagnetic field distribution to produce another electromagnetic field distribution that produces a uniform charging area across the charging surface.
[0045] Specifically, Figure 2 shows components of a near-field charging system 100 capable of charging wireless audio output devices 102A and 102B. As shown in Figure 2 (and as was also described above with reference to Figure 1), a housing 104 has charging surfaces 106A and 106B. Beneath each of charging surfaces 106A and 106B is a non radiating element (e.g., an element that is not connected to a power feed line or a ground line). The non-radiating elements are shown in Figure 2 as 202A and 202B, and these non radiating elements are placed below charging surfaces 106A and 106B, respectively, within the housing 104. In some embodiments, the non-radiating elements 202A and 202B can be printed on a top surface of a circuit board 206. In such embodiments, circuit board 206 can be made of a non-conducting material (e.g., a dielectric substrate or plastic) that electrically isolates non-radiating elements 202A and 202B from power sources and ground. To help encourage equal distribution of usable energy across charging surfaces 106 A and 106B (when the radiating antennas 204A and 204B are radiating RF energy), the circuit board 206 should have a thickness of at least 1 millimeter to 5 millimeters.
[0046] Figure 2 also shows two radiating antennas 204A and 204B placed (e.g., in some embodiments, printed) on the bottom side (i.e., opposite) of the circuit board 206 to electrically isolate radiating antennas 204A and 204B, which in some embodiments have a direct connection to the power source(s) and ground(s), from the non-radiating elements 202 A and 202B. In the illustrated embodiment, non-radiating elements 202 A and 202B have the same design, size, and orientation in the housing (housing 104) as radiating antennas 204 A and 204B. A person of skill in the art, upon reading the present disclosure, will appreciate that the designs do not need to match, and even if the designs do match, they do not need to be the same size (e.g., the radiating antenna can be 1% smaller than the non radiating element, or the radiating antenna can be 5% larger than the non-radiating element). Radiating antennas 204A and 204B are also connected to power feed lines 210A and 210B, respectively, and grounds 208A and 208B, respectively.
[0047] As discussed above, the radiating antennas 204A and 204B each produce a first electromagnetic field distribution when there is no non-radiating element positioned above the radiating antennas. This electromagnetic field distribution is shown in Figure 3 A, which shows a electric field distribution plot 300A on a two dimensional plane that is coplanar with charging surfaces 106A and 106B. The electromagnetic field plot 300A shows the electromagnetic field output by the radiating antennas 204A and 204B without having a non-radiating elements 202A and 202B placed in-between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B. As shown in electromagnetic field plot 300A, cold zones (also referred to as dead zones) are present on the charging surfaces (e.g., for purposes of this disclosure, cold zones are areas on the charging surface at which a device to-be-charged would receive an insufficient amount of usable power to power the device or to provide enough power to charge a power source/battery of the device). Cold zones 302-1 and 303-1 indicate positions at which usable power can be improved. Due to presence of these cold zones, the usable charging area on the charging surfaces 106 A and 106B can be said to be non-uniform.
[0048] To improve the uniformity of available usable power on the charging surfaces
106A and 106B, non-radiating elements 202A and 202B are placed between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B, respectively Placement of the non-radiating elements 202A and 202B above the radiating elements 204A and 204B, respectively, causes a change in the electromagnetic field distributions produced, thereby causing the radiating elements to each produce a second (different) electromagnetic field distribution rather than the first electromagnetic field distribution discussed above. The resulting electric field distribution plot 300B (which corresponds to the second electromagnetic field distribution produced by each of the radiating elements) is shown in Figure 3B. As illustrated, cold zones now occupy a far smaller area of each of the charging surfaces. In particular, cold zone 307-1 is significantly smaller than cold zone 302-1, and cold zone 309-1 is significantly smaller than cold zone 303-1. In some embodiments, each cold zones is reduced in size by approximately 80-90%.
[0049] Figure 4 A shows the same resulting electromagnetic field plot 300B as shown in Figure 3B. This electromagnetic field plot 300B, as discussed in relation with Figure 3B shows that adding non-radiating elements 202A and 202B between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B can increase the locations on charging surfaces 106A and 106B that have sufficient usable power (stated another way, and as discussed above, the size of a cold zone on each charging surface is reduced significantly). While one orientation of non-radiating elements 202A and 202B within the housing 104 is shown in Figures 2 and 4A, other possible orientations of non-radiating elements 202A and 202B within the housing 104 are possible. Changes in orientation of the non-radiating elements 202A and 202B can change the resulting electromagnetic field distribution produced by the corresponding radiating elements in the presence of the non-radiating elements.
[0050] For example, Figure 4B shows another possible orientation of non-radiating elements, one in which non-radiating elements 202A and 202B are flipped about horizontal axis 406 (stated another way, the non-radiating elements are rotated 180 degrees relative to the orientation of the non-radiating elements in Figure 4A). These flipped/rotated non radiating elements are shown in Figure 4B as flipped-non-radiating elements 202A-1 and 202B-1. Figure 4B also shows the resulting electromagnetic field plot 402 produced by this combination of flipped-non-radiating elements 202 A- 1 and 202B-1 and radiating elements 204A and 204B, which illustrates how the electromagnetic field distributions produced by the radiating elements are altered in response to flipping of the orientations of the non-radiating elements 202 A and 202B. In some embodiments, one of the reasons why the non-radiating elements results in a more uniform charging surface is that the non-radiating elements stabilize the return loss for the charging system 100 and additionally keeps the return loss lower. In some embodiments, a low and stable return loss ensures that maximum power is transmitted via the charging system 100 and made available at the charging surfaces 106 A and 106B. In some embodiments, without the non-radiating elements, the radiating antennas 204A and 204B would have a return loss that fluctuates as the location of the audio output devices 102 A and 102B changes on the charging surfaces. In some embodiments, when the return loss is high, not enough power is available for charging the electronic devices.
[0051] Figures 5A-1, 5A-2, 5B-1, and 5B-2 show plots of return losses, which show that adding non-radiating elements 202A and 202B between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B can reduce the amount of irregular variation in return loss at the near-field charging system 100 as the location of the audio output devices 102A and 102B is varied. Figures 5A-1 and 5A-2 illustrate the wireless charger transmitter system without the non-radiating elements 202A and 202B (e.g., parasitic elements). Figures 5A-1 and 5A-2 show a large variation in the reflection coefficient. In Figures 5A-1 and 5A-2 “SI 1” and “S22” indicated by 501 and 502, respectively, indicate the reflection coefficients corresponding to the two radiating elements. The plots in Figures 5A-1 and 5A-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces. Figure 5A-1 shows that in some embodiments, the best case for reflection coefficient is: SI 1 = -16.38 dB, S22 = -19.87 dB. Figure 5A-2 shows that in some embodiments, the worst case for reflection coefficient: SI 1 = -4.99 dB, S22 = -5.20 dB. [0052] In contrast to Figures 5A-1 and 5A-2, Figure 5B-1 and 5B-2 illustrate the wireless charger transmitter system with the non-radiating elements 202A and 202B (e.g., parasitic elements). Figures 5B-1 and 5B-2 show a small variation in the reflection coefficient. In Figures 5B-1 and 5B-2 “SI 1” and “S22” indicated by 503 and 504, respectively, indicate the reflection coefficients corresponding to the two radiating elements. The plots in Figures 5B-1 and 5B-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces. Figure 5B-1 shows that in some embodiments, the best case for reflection coefficient is: Sll = -18.10 dB, S22 = -15.17 dB. Figure 5B-2 shows that in some embodiments, the worst case for reflection coefficient: Sll = -11.61 dB, S22 = -13.05 dB.
[0053] While the above descriptions focused on the radiating and non-radiating elements of the inventive near-field charging system 100 for illustrative purposes, one of skill in the art will also appreciate that additional components are used to safely control the transmission of wireless power by the near-field charging system 100. For instance, additional components of the near-field charging system 100 are shown in Figure 6.
[0054] A transmitter can determine the present SAR value of RF energy at one or more particular locations of the transmission field using one or more sampling or measurement techniques. In some embodiments, the SAR values within the transmission field are measured and pre-determined by SAR value measurement equipment. In some implementations, the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which distance ranges in the transmission field are likely to exceed to a pre-stored SAR threshold value. In some implementations, the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which radiation profiles within the transmission field are likely to exceed to a pre-stored SAR threshold value. For example, a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the transmitter receiving a number of power waves (P) having a particular frequency (F). One skilled in the art, upon reading the present disclosure, will appreciate that there are any number of potential calculations, which may use any number of variables, to determine the SAR value of RF energy at a particular locations, each of which is within the scope of this disclosure.
[0055] Moreover, a transmitter may apply the SAR values identified for particular locations in various ways when generating, transmitting, or adjusting the radiation profile.
An SAR value at or below 1.6 W/kg, is in compliance with the FCC (Federal Communications Commission) SAR requirement in the United States. A SAR value at or below 2 W/kg is in compliance with the IEC (International Electrotechnical Commission) SAR requirement in the European Union. In some embodiments, the SAR values may be measured and used by the transmitter to maintain a constant energy level throughout the transmission field, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery. In some embodiments, the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values. For example, after determining how to generate or adjust the radiation profiles, but prior to actually transmitting the power, the transmitter may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the transmitter may actively monitor the transmission field to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold. Where the transmitter is configured to proactively and reactively adjust the power radiation profile, with the goal of maintaining a continuous power level throughout the transmission field, the transmitter may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations throughout the transmission field (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
[0056] In some embodiments, control systems of transmitters adhere to electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2).
[0057] In some embodiments, and as a non-limiting example, the wireless-power transmission systems disclosed herein comply with FCC Part § 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.” In some embodiments, the wireless-power transmission systems disclosed herein comply with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.” In some embodiments, the wireless-power transmission systems disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
[0058] In some embodiments, the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits. One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits. A second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits. In some embodiments, these safety methods (and others) are programmed into a memory of the transmitter (e.g., memory 706) to allow the transmitter to execute such programs and implement these safety methods. In some embodiments, the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
[0059] Figure 6 is a block diagram of an RF wireless-power transmission system 650 in accordance with some embodiments. In some embodiments, the RF wireless-power transmission system 650 includes an RF power transmitter 100 (also referred to herein as a near-field (NF) charging system 100), NF power transmitter 100, RF power transmitter 100). In some embodiments, the RF power transmitter 100 includes an RF power transmitter integrated circuit 660 (described in more detail below). In some embodiments, the RF power transmitter 100 includes one or more communications components 704 (e.g., wireless communication components, such as WI-FI or BLUETOOTH radios). In some embodiments, the RF power transmitter 100 also connects to one or more power amplifier units 608-1, ... 608-n to control operation of the one or more power amplifier units when they drive external power-transfer elements (e.g., power-transfer elements, such as transmission antennas 710-1 to 710-n). In some embodiments antennas 710-1 to 710-n are placed near elements 711-A to 711-n (also referred to as non-radiating elements 202A and 202B, and/or flipped-non-radiating elements 202A-1 and 202B-1 depending on the circumstances and desired radiation distributions to be produced by the corresponding radiating elements), respectively. In some embodiments, a single power amplifier, e.g. 608-1 is controlling one antenna 710-1. In some embodiments, RF power is controlled and modulated at the RF power transmitter 100 via switch circuitry as to enable the RF wireless- power transmission system to send RF power to one or more wireless receiving devices via the TX antenna array 710. In some embodiments, a single power amplifier, e.g. 608-n is controlling multiple antennas 710-m to 710-n through multiple splitters (610-1 to 610-n) and multiple switches (612-1 to 612-n).
[0060] In some embodiments, the communication component(s) 704 enable communication between the RF power transmitter 100 and one or more communication networks. In some embodiments, the communication component(s) 704 are capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6L0WPAN, Thread, Z-Wave, Bluetooth Smart, ISAlOO.lla, WirelessHART, MiWi, etc.) custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document. In some instances, the communication component s) 704 are not able to communicate with wireless-power receivers for various reasons, e.g., because there is no power available for the communication component(s) to use for the transmission of data signals or because the wireless-power receiver itself does not actually include any communication component of its own. As such, in some optional embodiments, near-field power transmitters described herein are still able to uniquely identify different types of devices and, when a wireless-power receiver is detected, figure out if that wireless-power receiver is authorized to receive wireless-power. In some embodiments, a signature-signal receiving/generating circuits are used in identifying the receivers. [0061] Figure 7 is a block diagram of the RF power transmitter integrated circuit 660
(the “RF IC”) in accordance with some embodiments. In some embodiments, the RF IC 660 includes a CPU subsystem 670, an external device control interface, an RF subsection for DC to RF power conversion, and analog and digital control interfaces interconnected via an interconnection component, such as a bus or interconnection fabric block 671. In some embodiments, the CPU subsystem 670 includes a microprocessor unit (CPU) 702 with related Read-Only-Memory (ROM) 672 for device program booting via a digital control interface, e.g. an I2C port, to an external FLASH containing the CPU executable code to be loaded into the CPU Subsystem Random Access Memory (RAM) 674 or executed directly from FLASH. In some embodiments, the CPU subsystem 670 also includes an encryption module or block 676 to authenticate and secure communication exchanges with external devices, such as wireless-power receivers that attempt to receive wirelessly delivered power from the RF power transmitter 100.
[0062] In some embodiments, the RF IC 660 also includes (or is in communication with) a power amplifier controller IC 661 A (PA IC) that is responsible for controlling and managing operations of a power amplifier, including for reading measurements of impedance at various measurement points within the power amplifier. The PA IC 661 A may be on the same integrated circuit at the RF IC 660, or may be on its own integrated circuit that is separate from (but still in communication with) the RF IC 660. In some embodiments, the PA IC 661 A is on the same chip with one or more of the Power Amplifiers (PAs) 608. In some other embodiments, the PA IC 661 A is on its own chip that is a separate chip from the Power Amplifiers (PAs) 608.
[0063] In some embodiments, executable instructions running on the CPU are used to manage operation of the RF power transmitter 100 and to control external devices through a control interface, e.g., SPI control interface 675, and the other analog and digital interfaces included in the RF power transmitter integrated circuit 660. In some embodiments, the CPU subsystem 670 also manages operation of the RF subsection of the RF power transmitter integrated circuit 660, which includes an RF local oscillator (LO) 677 and an RF transmitter (TX) 678. In some embodiments, the RF LO 677 is adjusted based on instructions from the CPU subsystem 670 and is thereby set to different desired frequencies of operation, while the RF TX converts, amplifies, modulates the RF output as desired to generate a viable RF power level. [0064] In some embodiments, the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use any beam-forming capabilities (e.g., bypasses/ disables a beam-forming IC and/or any associated algorithms if phase-shifting is not required, such as when only a single antenna 710 is used to transmit power transmission signals to a wireless-power receiver). In some embodiments, the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
[0065] In some embodiments, the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use a beam-forming IC. In some embodiments, by not using beam-forming control, there is no active beam-forming control in the power transmission system. For example, in some embodiments, by eliminating the active beam forming control, the relative phases of the power signals from different antennas are unaltered after transmission. In some embodiments, by eliminating the active beam-forming control, the phases of the power signals are not controlled and remain in a fixed or initial phase. In some embodiments, the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
[0066] The components of the near-field charging system 100 are also used to ensure that power is transmitted safely. For example, Specific Absorption Rate (SAR) values and Electromagnetic Field (EMF) values can be used to help ensure safe transmission of wireless power. In some embodiments, the system 100 can determine the present SAR value of RF energy at one or more particular locations near the charging surfaces described herein using one or more sampling or measurement techniques. In some embodiments, the SAR values near the charging surfaces are measured and pre-determined by SAR value measurement equipment. In some implementations, the system 100 may be preloaded with values, tables, and/or algorithms that indicate for the system 100 which distance ranges are likely to exceed a pre-stored SAR threshold value. In some implementations, the system may be preloaded with values, tables, and/or algorithms that indicate for the system which radiation profiles near the charging surface are likely to exceed to a pre-stored SAR threshold value. For example, a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the system receiving a number of power waves (P) having a particular frequency (F). One skilled in the art, upon reading the present disclosure, will appreciate that there are any number of potential calculations, which may use any number of variables, to determine the SAR value of RF energy at a particular locations, each of which is within the scope of this disclosure.
[0067] A SAR value at or below 1.6 W/kg, is in compliance with the FCC (Federal
Communications Commission) SAR requirement in the United States. A SAR value at or below 2 W/kg is in compliance with the IEC (International Electrotechnical Commission) SAR requirement in the European Union. In some embodiments, the SAR values may be measured and used by the system to maintain a constant energy level throughout the charging surfaces, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery. In some embodiments, the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values. For example, after determining how to generate or adjust the radiation profiles, but prior to actually transmitting the power, the system may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the system may actively monitor the charging surfaces to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold. Where the system is configured to proactively and reactively adjust the power radiation profile, with the goal of maintaining a continuous power level throughout the charging surface, the system may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations near the charging surfaces (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
[0068] In some embodiments, the system 100 described herein also adheres to electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2)
[0069] In some embodiments, and as a non-limiting example, the system disclosed herein complies with FCC Part § 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.” In some embodiments, the system disclosed herein complies with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.” In some embodiments, the system 100 disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
[0070] In some embodiments, the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits. One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits. A second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits. In some embodiments, these safety methods (and others) are programmed into a memory of the transmitter (not shown) to allow the transmitter to execute such programs and implement these safety methods. In some embodiments, the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
[0071] Figure 8 shows a flow diagram of a method of constructing a near-field charging system, in accordance with some embodiments. In some embodiments, the method of Figure 8 is performed by a manufacturer of near-field charging systems, or by a manufacturer of components such systems. [0072] Specifically, Figure 8 shows a method 800 of constructing (802) a near-field charging system for increasing a usable wireless charging area available to a wireless-power receiver. The method 800 includes providing a housing of the near-field charging system (804). The housing that is provided in operation 804 includes a charging surface and at least one other surface (806). In some embodiments, the charging surface is a top surface of the housing, such as top surface of the housing 104 depicted in Figures 1 and 2. The top surface includes one or more charging surfaces (e.g., charging surfaces 106A and 106B, Figures 1 and 2) at which a wireless-power receiver is placed to allow that receiver to receive electromagnetic energy that it can then convert into usable power for charging or powering of an electronic device coupled to the wireless-power receiver. The other surfaces can be surfaces that allow for encasing the radiating antenna (e.g., radiating antennas 204A and 204B) and the non-radiating elements (e.g., parasitic element) 202A, 202B, 202A-1, and 202B-1, but these other surfaces are not configured to allow for the wireless-power receiver to receive the electromagnetic energy. Stated another way, the radiating elements 204A and 204B and parasitic element 202 A, 202B, 202A-1, and 202B-1, in some embodiments, produce electromagnetic energy that is enhanced on the charging surface, and is not configured to be available on the other surfaces).
[0073] Further, the housing that is provided in operation 804 also includes a radiating antenna (806). In some embodiments, the radiating antenna is made from a conductive material such as copper, or any other suitable radiative material. The radiating antenna is coupled to a feed line that provides an RF signal to the radiating antenna. In contrast, a non radiating element (also referred to as a parasitic element, and discussed below) is not coupled to a feeding line. The housing also includes the non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (806) (e.g., the non-radiating element is a parasitic element such as a conductive metal patch, an example of which is depicted in Figures 2, 4A, and 4B (e.g., non-radiating element 202A), and which is depicted as positioned on top of the radiating antenna 204A. In some embodiments, the parasitic element has a same shape as the radiating antenna, as is shown in Figures 2, 4A, and 4B).
[0074] The radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface (e.g., charging surfaces 106A and 106B in Figures 2, 4A, and 4B, which can be surfaces of the housing (e.g., housing 104) on which receiving devices may be placed. In some embodiments or circumstances, the first electromagnetic field distribution can be configured to provide at least 200 and/or a minimum of milliwatts of usable power (e.g., usable power is energy that is rectified and converted to the correct requirements for whatever type of device is receiving power or charge from the wireless-power receiver) to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing (808).
[0075] The non-radiating element, when placed in a position above the radiating element, is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution (which is distinct from the first electromagnetic field distribution), the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing (810).
[0076] In some circumstances, examples of the change to the distribution characteristic include, as non-limiting examples, changes to e-field distribution to lower peaks and/or valleys. To illustrate this in one example, attention is directed to Figures 3 A and 3B. A comparison of the electric field distribution plots shown in Figures 3A (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is not present, i.e., the first electromagnetic field distribution) and Figure 3B (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is present, i.e., the second electromagnetic field distribution) shows this change in the distribution characteristics that occurs when the non-radiating element is used to alter the electromagnetic field distribution of the radiating antenna.
[0077] The second portion can be at least 10% percent greater in size than the first portion (812). As one example, the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 110A and 110B each represent approximately 70% of the surface area of the charging surface), and the second portion of the charging surface of the housing covers an area that includes at least 80% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 112A and 112B each represent approximately 80% of the surface area of the charging surface). In some embodiments, the second portion covers an area of the charging surface that is at least 10% percent larger in size than the first portion. In some embodiments, the percentage can be any integer or fractional value falling between the range of 10% to 30% (e.g., 11%, 11.5%, 18%, 19.1%, 20.5, 25, etc.)
[0078] In some embodiments of the method 800, the second electromagnetic field distribution is configured to provide at least 220 milliwatts of usable power to the wireless- power receiver when the wireless-power receiver is placed at any position across the second portion of the charging surface of the housing. In other words, amount of usable power available across the second portion of the charging surface can be increased from 200 to 220 milliwatts in order to provide an amount of usable power to a receiving device with a higher power requirement. In some embodiments, 220 milliwatts provides enough power to charge one or more wireless earbuds or hearing aids.
[0079] In some embodiments of the near-field charging system, the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing. In other words, amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 1 watt in order to provide an amount of usable power to a receiving device with a higher power requirement. In some embodiments, 1 watt provides enough power to charge a wearable electronic device such as a smartwatch.
[0080] In some embodiments of the near-field charging system, the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing. In other words, amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 5 watts in order to provide an amount of usable power to a receiving device with a higher power requirement. In some embodiments, 5 watts provides enough power to charge a small electronic device such as a smartphone.
[0081] In some embodiments of the near-field charging system, the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface. For example, Figure 3B, 4A, and 4B show charging surfaces that cover 70% of the charging surface.
[0082] In some embodiments of the near-field charging system, the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 75% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system. In some embodiments, while the reflection coefficient becomes more invariant with the movement of the wireless receiver devices on the charging surfaces of the near-field charging system, the charging surfaces uniformity increases. In some embodiments, the second reflection coefficient is up to 20% less than the first reflection coefficient.
[0083] In some embodiments, the addition of the non-radiating element (e.g., the parasitic element) results in a reflection coefficient of the near field charging system’s radiating antennas becoming more stable and far less sensitive to the relative placement and/or location of the receiver device (e.g., where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud)). Therefore, as the receiver is moved over the surface of the transmitter antenna, the reflection coefficient does not vary as much, the return loss at the radiating antenna feed can be greatly reduced, and the power transferred to the radiating antenna is uniform and stable. This is not, however, the case for the radiating antennas without non-radiating elements placed proximate thereto. For example, when the near field charging system does not have a non-radiating element, reflection coefficient varies between -5 dB to -18 dB as the position of the receiver is varied within the charging area. This, in turn, leads to poor coupling of power in some areas where the reflection coefficient (and return loss) is high. On the other hand, when the parasitic element is added, in some embodiments, the reflection coefficient varies between - 13 dB to -16 dB as the position of the receiver is varied within the charging area. In most circumstances, this is a desired result because the reflection coefficient (and return loss) is always low at the antenna feed. In some embodiments, reflection coefficient is (and in some embodiments always) less than -10 dB. Therefore, the power transferred into the radiating antenna can be uniform and stable, and is not dependent on the location of the receiver antenna.
[0084] In some embodiments of the near-field charging system, the second electromagnetic field distribution of the near-field charging system is configured to provide more than 200 milliwatts. In some embodiments, this amount of usable power is adjusted based on the requirements of the receiving device (i.e., the electronic device that is coupled to the wireless-power receiver). In some embodiments, 1 watt emitted by the system 100 can be an appropriate amount of power to charge a single wireless headphone. In some embodiments, 200 watts emitted by the near-field charging system may be an appropriate amount of power to charge a laptop device. In some embodiments, placement of the parasitic element above the radiating antenna within the housing thus causes a flattening of the resulting electromagnetic field distribution (the referenced second electromagnetic field distribution referred to herein) produced by the radiating antennas of the near-field charging system 100, such that more usable charging locations are available to the wireless-power receiver on the charging surface (e.g., locations at which the receiver is able to receive at least 200 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power), but the locations at which more than 250 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power could be received by the wireless-power receiver are reduced. Thus, in such embodiments, more usable charging locations are available overall (e.g., as depicted and explained with reference to Figure 2, cold zone locations are reduced on the charging surfaces), but less locations of higher amounts of usable power are made available to the wireless-power receiver. Such an occurrence is evidenced by comparing Figure 3 A (which shows the electromagnetic field distribution without the non-radiating element) to Figure 3B (which shows the electromagnetic field distribution with the non-radiating element)). In other words, in some embodiments, uniformity of charging across the charging surfaces is the most important goal, and therefore sacrificing higher power level areas to achieve uniformity is desirable.
[0085] In some embodiments, the charging surface of the near-field charging system has a depression (e.g., depressions 106A-1 and 106B-1 in Figure 1) that is configured to receive and partially surround an audio output device, and where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud), and the wireless power receiver is configured to provide at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
[0086] In some embodiments, the audio output device is a single in-ear audio output device (e.g., a wireless earbud or audio output device (indicated by 102 A and 102B in Figure 1), or a hearing aid, etc.).
[0087] In some embodiments, the radiating antenna has a shape (e.g., a PIFA antenna with a radiator substantially in the shape of the letter ‘c,’ similar to the shape depicted for radiating elements in Figures 2, 4A, and 4B), and the radiating antenna is oriented to have a first orientation within the housing. In embodiments in which the charging surface is a planar surface, the first orientation can be such that the largest surface of the radiating antenna is substantially coplanar with (e.g., within +/- 5 degrees of coplanar with) the largest surface of the charging surface, similar to the orientation shown in Figure 2 and Figure 4A.); and the non-radiating element has the shape (e.g., a substantially identical shape as the radiating antenna, as shown in Figures 2 and 4A) and the first orientation within the housing. In some embodiments, the non-radiating element has a surface area that varies by approximately 10% relative to a surface area of the radiating antenna (e.g., the non-radiating element is either larger or smaller than the radiating antenna by 10% of its surface area).
[0088] In some embodiments, the radiating antenna has a shape (e.g., a PIFA antenna with a radiator having a ‘c’ shaped design, similar to the shape shown by radiating elements in Figures 2, 4A, and 4B) and the radiating antenna is oriented to have the first orientation (described above) within the housing; and the non-radiating element has: the same shape (e.g., an identical shape as the radiating antenna, as shown in Figure 4A); and a second orientation within the housing that is different from the first orientation (as shown in Figure 4B). .
[0089] In some embodiments, the radiating antenna is connected to a power feed line
(as shown by power feed lines 210A and 210B in Figure 2), and the non-radiating element (e.g., the non-radiating element is a parasitic element) is not connected to a power feed line (as shown Figure 2).
[0090] In some embodiments, a non-conducting material is placed between the radiating antenna and the non-radiating element, and the non-conducting material electrically isolates the radiating antenna from the non-radiating element (as shown by circuit board 206 in Figure 2, 4A, and 4B). In some embodiments, rather than use a circuit board, a dielectric can be utilized as the non-conducting material, and the radiating antennas and non-radiating elements can be in the form of stamped metal components (instead of being printed elements on a circuit board).
[0091] In some embodiments, the radiating antenna and the non-radiating element both have a same antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
[0092] In some embodiments, the non-radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (e.g., as shown in Figure 1 where the circuit board 206 is 1 millimeter thick). In some embodiments, the non-radiating element is positioned at least 1.5 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. In some embodiments, the non-radiating elements are floating exactly on top of the radiating element with a one-millimeter layer of dielectric in between. In some embodiments, there is no conductive material connecting the non-radiating elements with the radiating antennas; in other words, there is no electrical connection between the radiating antennas and the non radiating elements.
[0093] The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the embodiments described herein and variations thereof. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the subject matter disclosed herein. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.
[0094] Features of the present invention can be implemented in, using, or with the assistance of a computer program product, such as a storage medium (media) or computer readable storage medium (media) having instructions stored thereon/in which can be used to program a processing system to perform any of the features presented herein. The storage medium (e.g., memory 206, 256) can include, but is not limited to, high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory optionally includes one or more storage devices remotely located from the CPU(s) (e.g., processor(s)). Memory, or alternatively the non-volatile memory device(s) within the memory, comprises a non-transitory computer readable storage medium.
[0095] Stored on any one of the machine readable medium (media), features of the present invention can be incorporated in software and/or firmware for controlling the hardware of a processing system (such as the components associated with the transmitters 100 and/or receivers 104), and for enabling a processing system to interact with other mechanisms utilizing the results of the present invention. Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers. [0096] It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.
[0097] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
[0098] As used herein, the term “if’ may be construed to mean “when” or “upon” or
“in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
[0099] The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.

Claims

What is claimed is:
1. A near-field charging system for increasing a usable wireless charging area available to a wireless-power receiver, the near-field charging system comprising: a housing including: a charging surface and at least one other surface, a radiating antenna, and a non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, wherein: the radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; the non-radiating element is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing, further wherein the second portion is at least 10% percent greater than the first portion.
2. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide at least 220 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
3. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
4. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide at least 5 watts of usable power to the wireless- power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
5. The near-field charging system of any of claims 1-4, wherein the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
6. The near-field charging system of any of claims 1-5, wherein: the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 12% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
7. The near-field charging system of claim 6, wherein the second reflection coefficient varies between -13dB and -16dB.
8. The near-field charging system of claim 6, wherein the second reflection coefficient is less than -lOdB.
9. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide more than 200 milliwatts of usable power to the wireless-power receiver at fewer locations on the charging surface of the housing relative to the first electromagnetic field distribution.
10. The near-field charging system of any of claims 1-9, wherein the charging surface has a depression configured to receive and partially house an audio output device, and further wherein the wireless-power receiver is coupled to the audio output device, and the wireless power receiver is configured to provide the at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
11. The near-field charging system of claim 10, wherein the audio output device is a single in-ear audio output device.
12. The near-field charging system of any of claims 1-11, wherein: the radiating antenna has a shape, and the radiating antenna is oriented to have a first orientation within the housing; and the non-radiating element has the shape and the first orientation within the housing.
13. The near-field charging system of any of claims 1-11, wherein: the radiating antenna has a shape and the radiating antenna is oriented to have a first orientation within the housing; the non-radiating element has: the same shape; and a second orientation within the housing that is different from the first orientation.
14. The near-field charging system of any of claims 1-13, wherein the radiating antenna is connected to a power feed line, and the non-radiating element is not connected to a power feed line.
15. The near-field charging system of any of claims 1-14, wherein a non-conducting material is placed between the radiating antenna and the non-radiating element, wherein the non-conducting material electrically isolates the radiating antenna from the non-radiating element.
16. The near-field charging system of any of claims 1-15, wherein the radiating antenna and the non-radiating element both have a same radiating antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
17. The near-field charging system of any of claims 1-16, wherein the non-radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
18. A method of constructing a near-field charging system that increases usable wireless charging area available to a wireless-power receiver, the method comprising: providing a housing that includes a charging surface and at least one other surface; placing a radiating antenna within the housing, the radiating antenna configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; placing a non-radiating element in a position above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, wherein placing the non-radiating element in the position above the radiating antenna within the housing changes a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing, wherein the second portion is at least 10% percent greater than the first portion.
PCT/US2021/027140 2020-04-13 2021-04-13 Wireless-power transmitting device for creating a uniform near-field charging area WO2021211621A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180022816.2A CN115336138A (en) 2020-04-13 2021-04-13 Wireless power transmitting device for creating uniform near-field charging area
EP21787881.8A EP4136738A4 (en) 2020-04-13 2021-04-13 Wireless-power transmitting device for creating a uniform near-field charging area

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063009361P 2020-04-13 2020-04-13
US63/009,361 2020-04-13
US17/228,621 US11799324B2 (en) 2020-04-13 2021-04-12 Wireless-power transmitting device for creating a uniform near-field charging area
US17/228,621 2021-04-12

Publications (1)

Publication Number Publication Date
WO2021211621A1 true WO2021211621A1 (en) 2021-10-21

Family

ID=78007165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/027140 WO2021211621A1 (en) 2020-04-13 2021-04-13 Wireless-power transmitting device for creating a uniform near-field charging area

Country Status (4)

Country Link
US (2) US11799324B2 (en)
EP (1) EP4136738A4 (en)
CN (1) CN115336138A (en)
WO (1) WO2021211621A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
USD1030659S1 (en) * 2022-04-22 2024-06-11 Shenzhen Yifeng Intelligent Technology Co., Ltd. Wireless charger
USD1030660S1 (en) * 2022-04-22 2024-06-11 Shenzhen Yifeng Intelligent Technology Co., Ltd. Wireless charger
CN117254243B (en) * 2023-11-20 2024-01-19 上海英内物联网科技股份有限公司 Near-field read-write antenna based on bending coplanar waveguide transmission line

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819604B1 (en) * 2005-07-27 2008-04-03 엘에스전선 주식회사 Wireless Charger Decreased in Variation of Charging Efficiency
US20100201202A1 (en) 2008-05-13 2010-08-12 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US20150380972A1 (en) 2014-06-27 2015-12-31 Andrew David Fort Devices and methods for charging medical devices
US20160204643A1 (en) * 2013-08-15 2016-07-14 Humavox Ltd. Wireless Charging Device
US20160248160A1 (en) 2005-01-21 2016-08-25 Ruckus Wireless, Inc. Pattern shaping of rf emission patterns
US20170005481A1 (en) * 2015-07-02 2017-01-05 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
KR20180114721A (en) * 2017-04-11 2018-10-19 엘지이노텍 주식회사 A wireless power module
US20180331581A1 (en) * 2015-12-24 2018-11-15 Energous Corporation Near-Field Antenna for Wireless Power Transmission with Four Coplanar Antenna Elements that Each Follows a Respective Meandering Pattern

Family Cites Families (1108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787412A (en) 1900-05-16 1905-04-18 Nikola Tesla Art of transmitting electrical energy through the natural mediums.
US2811624A (en) 1954-01-07 1957-10-29 Raytheon Mfg Co Radiation systems
US2863148A (en) 1954-06-17 1958-12-02 Emi Ltd Helical antenna enclosed in a dielectric
GB927051A (en) 1959-10-07 1963-05-22 Rudolf Guertler Improvements in or relating to antennas for high frequencies
US3434678A (en) 1965-05-05 1969-03-25 Raytheon Co Microwave to dc converter
US4944036A (en) 1970-12-28 1990-07-24 Hyatt Gilbert P Signature filter system
US3696384A (en) 1971-07-08 1972-10-03 Recognition Devices Ultrasonic tracking and locating system
US3754269A (en) 1972-03-07 1973-08-21 Vorta Systems Inc Omni-directional antenna mounted in circular radome
US4101895A (en) 1977-02-14 1978-07-18 The United States Of America As Represented By The Secretary Of The Army Multifrequency antenna system integrated into a radome
US4360741A (en) 1980-10-06 1982-11-23 The Boeing Company Combined antenna-rectifier arrays for power distribution systems
US4995010A (en) 1989-07-21 1991-02-19 Johnson Fishing, Inc. Depth finding-trolling system
US5211471A (en) 1990-12-28 1993-05-18 The Brinkmann Corporation Flashlight with tailcap switch boot
US5276455A (en) 1991-05-24 1994-01-04 The Boeing Company Packaging architecture for phased arrays
US5200759A (en) 1991-06-03 1993-04-06 Mcginnis Henry J Telecommunications tower equipment housing
US6738697B2 (en) 1995-06-07 2004-05-18 Automotive Technologies International Inc. Telematics system for vehicle diagnostics
US5142292A (en) 1991-08-05 1992-08-25 Checkpoint Systems, Inc. Coplanar multiple loop antenna for electronic article surveillance systems
US5556749A (en) 1992-11-12 1996-09-17 Hitachi Chemical Research Center, Inc. Oligoprobe designstation: a computerized method for designing optimal DNA probes
US6069412A (en) 1993-03-29 2000-05-30 Powerware Corporation Power factor corrected UPS with improved connection of battery to neutral
US5422647A (en) 1993-05-07 1995-06-06 Space Systems/Loral, Inc. Mobile communication satellite payload
US5631572A (en) 1993-09-17 1997-05-20 Teradyne, Inc. Printed circuit board tester using magnetic induction
US6664920B1 (en) 1993-11-18 2003-12-16 Raytheon Company Near-range microwave detection for frequency-modulation continuous-wave and stepped frequency radar systems
US5574967A (en) 1994-01-11 1996-11-12 Ericsson Ge Mobile Communications, Inc. Waste energy control and management in power amplifiers
US5712642A (en) 1994-09-27 1998-01-27 Hughes Missile Systems Company Spatial power combiner using subharmonic beam position control
US5646633A (en) 1995-04-05 1997-07-08 Mcdonnell Douglas Corporation Microstrip antenna having a plurality of broken loops
JPH0951293A (en) 1995-05-30 1997-02-18 Matsushita Electric Ind Co Ltd Indoor radio communication system
US6061025A (en) 1995-12-07 2000-05-09 Atlantic Aerospace Electronics Corporation Tunable microstrip patch antenna and control system therefor
US8112131B2 (en) 1996-02-20 2012-02-07 Chester Holdings LLC Radiative focal area antenna transmission coupling arrangement
US7043543B2 (en) 1996-07-23 2006-05-09 Server Technology, Inc. Vertical-mount electrical power distribution plugstrip
US8183998B2 (en) 1996-12-16 2012-05-22 Ip Holdings, Inc. System for seamless and secure networking of implantable medical devices, electronic patch devices and wearable devices
US5914692A (en) 1997-01-14 1999-06-22 Checkpoint Systems, Inc. Multiple loop antenna with crossover element having a pair of spaced, parallel conductors for electrically connecting the multiple loops
US5983073A (en) 1997-04-04 1999-11-09 Ditzik; Richard J. Modular notebook and PDA computer systems for personal computing and wireless communications
US7068991B2 (en) 1997-05-09 2006-06-27 Parise Ronald J Remote power recharge for electronic equipment
US5982139A (en) 1997-05-09 1999-11-09 Parise; Ronald J. Remote charging system for a vehicle
US6176433B1 (en) 1997-05-15 2001-01-23 Hitachi, Ltd. Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance
US6046708A (en) 1998-02-03 2000-04-04 Telefonaktiebolaget Lm Ericsson Termination contact for an antenna with a nickel-titanium radiating element
US5936527A (en) 1998-02-10 1999-08-10 E-Tag Systems, Inc. Method and apparatus for locating and tracking documents and other objects
JP4219436B2 (en) 1998-02-17 2009-02-04 富士通株式会社 Tuner device
US6208287B1 (en) 1998-03-16 2001-03-27 Raytheoncompany Phased array antenna calibration system and method
US6127942A (en) 1998-10-27 2000-10-03 The Aerospace Corporation Ultrasonic power sensory system
US6597897B2 (en) 1998-12-14 2003-07-22 Lear Automotive Dearborn, Inc. Low power radio frequency transmitter with controllable gain
US6615074B2 (en) 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
US6289237B1 (en) 1998-12-22 2001-09-11 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
JP4235300B2 (en) 1999-01-14 2009-03-11 キヤノン株式会社 Communications system
FI108365B (en) 1999-02-11 2002-01-15 Patria Vehicles Oy Teleskooppimastojõrjestelmõ
JP2000323916A (en) 1999-05-10 2000-11-24 Mitsubishi Electric Corp Loop antenna
US6127799A (en) 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
US6163296A (en) 1999-07-12 2000-12-19 Lockheed Martin Corp. Calibration and integrated beam control/conditioning system for phased-array antennas
CA2314664A1 (en) 1999-08-10 2001-02-10 Armstrong World Industries, Inc. Ceiling tile transmitter and receiver system
US9425638B2 (en) 1999-11-01 2016-08-23 Anthony Sabo Alignment independent and self-aligning inductive power transfer system
US6803744B1 (en) 1999-11-01 2004-10-12 Anthony Sabo Alignment independent and self aligning inductive power transfer system
DE19952819A1 (en) 1999-11-02 2001-07-12 Rr Elektronische Geraete Gmbh Reflector antenna and method of manufacturing a sub-reflector
US6476795B1 (en) 2000-01-20 2002-11-05 Hewlett-Packard Company Mouse recharging module
US8077040B2 (en) 2000-01-24 2011-12-13 Nextreme, Llc RF-enabled pallet
US6640084B2 (en) 2000-02-01 2003-10-28 Krishna Pande Complete outdoor radio unit for LMDS
WO2001059905A1 (en) 2000-02-07 2001-08-16 Fujitsu Limited Charger and power unit of portable terminal
US6271799B1 (en) 2000-02-15 2001-08-07 Harris Corporation Antenna horn and associated methods
US6329908B1 (en) 2000-06-23 2001-12-11 Armstrong World Industries, Inc. Addressable speaker system
JP2002017058A (en) 2000-06-30 2002-01-18 Mitsubishi Electric Corp Cordless power carrying system, power carrying terminal and electrical apparatus
GB0022269D0 (en) 2000-09-12 2000-10-25 Koninkl Philips Electronics Nv Data transmission system
DE20016655U1 (en) 2000-09-25 2002-02-14 iC-Haus GmbH, 55294 Bodenheim System for wireless energy and data transmission
DE10049844A1 (en) 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturized microwave antenna
JP4624577B2 (en) 2001-02-23 2011-02-02 富士通株式会社 Human interface system with multiple sensors
US6501414B2 (en) 2001-04-02 2002-12-31 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method for locating a concealed object
JP2002319816A (en) 2001-04-24 2002-10-31 Ee C Ii Tec Kk Antenna system
TW535329B (en) 2001-05-17 2003-06-01 Acer Neweb Corp Dual-band slot antenna
TW556368B (en) 2001-08-24 2003-10-01 Gemtek Technology Co Ltd Improvement of planar reversed-F antenna
US6693601B2 (en) 2001-09-24 2004-02-17 Romain Louis Billiet Ceramic-embedded micro-electromagnetic device and method of fabrication thereof
US20060019712A1 (en) 2001-11-14 2006-01-26 Seung-Won Choi Calibration apparatus for smart antenna and method thereof
US6853197B1 (en) 2001-12-03 2005-02-08 Atheros Communications, Inc. Method and apparatus for insuring integrity of a connectorized antenna
US6844855B2 (en) 2002-01-25 2005-01-18 The Boeing Company Aircraft phased array antenna structure including adjacently supported equipment
US6888504B2 (en) 2002-02-01 2005-05-03 Ipr Licensing, Inc. Aperiodic array antenna
KR100434336B1 (en) 2002-02-21 2004-06-04 이노에이스(주) Broadband radio relay apparatus using interference signal rejection of mobile telecommunication system
US7392068B2 (en) 2002-03-01 2008-06-24 Mobilewise Alternative wirefree mobile device power supply method and system with free positioning
AU2003233113A1 (en) 2002-04-24 2003-11-10 Marconi Intellectual Property (Us) Inc Energy source recharging device and method
EP1359684A1 (en) 2002-04-30 2003-11-05 Motorola Energy Systems Inc. Wireless transmission using an adaptive transmit antenna array
GB2388715B (en) 2002-05-13 2005-08-03 Splashpower Ltd Improvements relating to the transfer of electromagnetic power
US8917057B2 (en) 2002-06-10 2014-12-23 City University Of Hong Kong Battery charging system
US6960968B2 (en) 2002-06-26 2005-11-01 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
US20040020100A1 (en) 2002-08-05 2004-02-05 O'brien Denis Michael Apparatus for a wireless animal trap detection system
AU2003258171A1 (en) 2002-08-12 2004-02-25 Mobilewise, Inc. Wireless power supply system for small devices
US6856291B2 (en) 2002-08-15 2005-02-15 University Of Pittsburgh- Of The Commonwealth System Of Higher Education Energy harvesting circuits and associated methods
FR2844399A1 (en) 2002-09-09 2004-03-12 Thomson Licensing Sa DIELECTRIC RESONATOR TYPE ANTENNAS
US20040203989A1 (en) 2002-09-12 2004-10-14 Broadcom Corporation Using location information to control transmission signal levels of wireless devices
US9153074B2 (en) 2011-07-18 2015-10-06 Dylan T X Zhou Wearable augmented reality eyeglass communication device including mobile phone and mobile computing via virtual touch screen gesture control and neuron command
US7193644B2 (en) 2002-10-15 2007-03-20 Revolutionary Concepts, Inc. Automated audio video messaging and answering system
JP2004200772A (en) 2002-12-16 2004-07-15 Alps Electric Co Ltd Antenna device
US8183827B2 (en) 2003-01-28 2012-05-22 Hewlett-Packard Development Company, L.P. Adaptive charger system and method
FI115261B (en) 2003-02-27 2005-03-31 Filtronic Lk Oy Multi-band planar antenna
KR20040077228A (en) 2003-02-28 2004-09-04 배대환 Wireless charging system using rectenna
FI115574B (en) 2003-04-15 2005-05-31 Filtronic Lk Oy Adjustable multi-band antenna
US8310201B1 (en) 2003-05-06 2012-11-13 Cypress Semiconductor Corporation Battery with electronic compartment
US7068234B2 (en) 2003-05-12 2006-06-27 Hrl Laboratories, Llc Meta-element antenna and array
US7403803B2 (en) 2003-05-20 2008-07-22 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Recharging method and associated apparatus
US6967462B1 (en) 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US6798716B1 (en) 2003-06-19 2004-09-28 Bc Systems, Inc. System and method for wireless electrical power transmission
US6844849B1 (en) 2003-07-10 2005-01-18 Codar Ocean Sensors, Ltd. Circular superdirective receive antenna arrays
GB2404497A (en) 2003-07-30 2005-02-02 Peter Bryan Webster PCB mounted antenna
US20120181973A1 (en) 2003-08-29 2012-07-19 Robert Lyden Solar array resembling natural foliage including means for wireless transmission of electric power
US8323106B2 (en) 2008-05-30 2012-12-04 Sony Computer Entertainment America Llc Determination of controller three-dimensional location using image analysis and ultrasonic communication
FR2860361A1 (en) 2003-09-25 2005-04-01 France Telecom METHOD OF CONTROLLING TRANSMISSION POWER WITHIN A WIRELESS COMMUNICATION NETWORK
AU2004306911B2 (en) 2003-10-17 2008-09-11 Powercast Corporation Method and apparatus for a wireless power supply
US7003350B2 (en) 2003-11-03 2006-02-21 Kenergy, Inc. Intravenous cardiac pacing system with wireless power supply
TWI269482B (en) 2003-11-19 2006-12-21 Univ Nat Taiwan Science Tech A chip antenna
US7132995B2 (en) 2003-12-18 2006-11-07 Kathrein-Werke Kg Antenna having at least one dipole or an antenna element arrangement similar to a dipole
CA2562479A1 (en) 2004-04-12 2005-12-01 Airgain, Inc. Switched multi-beam antenna
JP4621200B2 (en) 2004-04-15 2011-01-26 パナソニック株式会社 Communication apparatus, communication system, and authentication method
GB2414121B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
US7079079B2 (en) 2004-06-30 2006-07-18 Skycross, Inc. Low profile compact multi-band meanderline loaded antenna
US7012572B1 (en) 2004-07-16 2006-03-14 Hrl Laboratories, Llc Integrated ultra wideband element card for array antennas
US7460839B2 (en) 2004-07-19 2008-12-02 Purewave Networks, Inc. Non-simultaneous frequency diversity in radio communication systems
US7263335B2 (en) 2004-07-19 2007-08-28 Purewave Networks, Inc. Multi-connection, non-simultaneous frequency diversity in radio communication systems
WO2006019339A1 (en) 2004-08-18 2006-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Wave-guide-notch antenna
EP2426785A2 (en) 2004-10-01 2012-03-07 L. Pierre De Rochemont Ceramic antenna module and methods of manufacture thereof
IL164576A (en) 2004-10-14 2006-10-05 Alvarion Ltd Method and apparatus for power saving in wireless systems
US8228194B2 (en) 2004-10-28 2012-07-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Recharging apparatus
US7614556B2 (en) 2004-11-05 2009-11-10 Goliath Solutions, Llc Distributed RFID antenna array utilizing circular polarized helical antennas
US7191013B1 (en) 2004-11-08 2007-03-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hand held device for wireless powering and interrogation of biomems sensors and actuators
US7443057B2 (en) 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
JP2006157586A (en) 2004-11-30 2006-06-15 Keakomu:Kk Portable radio equipment
US7944404B2 (en) 2004-12-07 2011-05-17 Electronics And Telecommunications Research Institute Circular polarized helical radiation element and its array antenna operable in TX/RX band
JP4519142B2 (en) 2005-01-13 2010-08-04 富士通株式会社 Information access system and method for accessing information in a contactless information storage device
US7689969B1 (en) 2005-01-18 2010-03-30 The Mathworks, Inc. Obfuscation of automatically generated code
KR100700944B1 (en) 2005-01-19 2007-03-28 삼성전자주식회사 Apparatus and method for charging rf derelict power in portable terminal
US20070149162A1 (en) 2005-02-24 2007-06-28 Powercast, Llc Pulse transmission method
EP1854219A4 (en) 2005-02-24 2011-12-21 Powercast Corp Method, apparatus and system for power transmitssion
US7205749B2 (en) 2005-02-28 2007-04-17 Texas Instruments Incorporated Power line communication using power factor correction circuits
JP4318044B2 (en) 2005-03-03 2009-08-19 ソニー株式会社 Power supply system, power supply apparatus and method, power reception apparatus and method, recording medium, and program
US20070019693A1 (en) 2005-03-07 2007-01-25 Graham David S Wireless power beaming to common electronic devices
US7286056B2 (en) 2005-03-22 2007-10-23 Lawrence Kates System and method for pest detection
US7274334B2 (en) 2005-03-24 2007-09-25 Tdk Corporation Stacked multi-resonator antenna
WO2006105094A2 (en) 2005-03-29 2006-10-05 Duke University Sensor system for identifying and tracking movements of multiple sources
US20060238365A1 (en) 2005-04-24 2006-10-26 Elio Vecchione Short-range wireless power transmission and reception
US7359730B2 (en) 2005-04-29 2008-04-15 Telecordia Technologies, Inc. Method and apparatus for reducing interference associated with wireless communication
EP1724541A1 (en) 2005-05-18 2006-11-22 Electrolux Home Products Corporation N.V. Food temperature setting using RFID technology
US20060266917A1 (en) 2005-05-23 2006-11-30 Baldis Sisinio F Wireless Power Transmission System
US20070191074A1 (en) 2005-05-24 2007-08-16 Powercast, Llc Power transmission network and method
US7451839B2 (en) 2005-05-24 2008-11-18 Rearden, Llc System and method for powering a vehicle using radio frequency generators
CA2606709A1 (en) 2005-05-24 2006-11-30 Powercast Corporation Power transmission network
US8469122B2 (en) 2005-05-24 2013-06-25 Rearden, Llc System and method for powering vehicle using radio frequency signals and feedback
CN101194219A (en) 2005-06-08 2008-06-04 鲍尔卡斯特公司 Powering devices using RF energy harvesting
US20060284593A1 (en) 2005-06-21 2006-12-21 Nagy Louis L Wireless battery charging system and method
CA2511051A1 (en) 2005-06-28 2006-12-29 Roger J. Soar Contactless battery charging apparel
FI20055353A0 (en) 2005-06-28 2005-06-28 Lk Products Oy Internal multi-band antenna
US20070007821A1 (en) 2005-07-06 2007-01-11 Nazzareno Rossetti Untethered power supply of electronic devices
US20070021140A1 (en) 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
FI20055420A0 (en) 2005-07-25 2005-07-25 Lk Products Oy Adjustable multi-band antenna
JP2007043432A (en) 2005-08-02 2007-02-15 Mitsubishi Materials Corp Surface-mounted antenna
US7509146B2 (en) 2005-08-03 2009-03-24 Purewave Networks, Inc. Beamforming using subset of antenna array
US7400253B2 (en) 2005-08-04 2008-07-15 Mhcmos, Llc Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof
US7904117B2 (en) 2005-08-12 2011-03-08 Sibeam Wireless communication device using adaptive beamforming
US7535195B1 (en) 2005-08-25 2009-05-19 National Semiconductor Corporation Battery charger that employs current sharing to simultaneously power an application and charge a battery
US7423601B2 (en) 2005-10-20 2008-09-09 Raytheon Company Reflect array antennas having monolithic sub-arrays with improved DC bias current paths
WO2007048052A2 (en) 2005-10-21 2007-04-26 The Regents Of The University Of Colorado Systems and methods for receiving and managing power in wireless devices
KR100736053B1 (en) 2005-10-24 2007-07-06 삼성전자주식회사 Apparatus and method of wireless power sharing by induction method
ZA200803885B (en) 2005-10-24 2009-08-26 Powercast Corp Method and apparatus for high efficiency rectification for various loads
US7327577B2 (en) 2005-11-03 2008-02-05 International Business Machines Corporation Method and apparatus for grounding a heat sink in thermal contact with an electronic component using a grounding spring having multiple-jointed spring fingers
WO2007054900A2 (en) 2005-11-10 2007-05-18 Nxp B.V. Broadband antenna for a transponder of a radio frequency identification system
AU2006318721A1 (en) 2005-11-21 2007-05-31 Powercast Corporation Radio-frequency (RF) power portal
US7557757B2 (en) 2005-12-14 2009-07-07 The University Of Kansas Inductively coupled feed structure and matching circuit for RFID device
WO2007079490A2 (en) 2006-01-05 2007-07-12 University Of Pittsburgh-Of The Commonwealth System Of Higher Education A wireless autonomous device system
US7372408B2 (en) 2006-01-13 2008-05-13 International Business Machines Corporation Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
KR100792308B1 (en) 2006-01-31 2008-01-07 엘에스전선 주식회사 A contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
US7652577B1 (en) 2006-02-04 2010-01-26 Checkpoint Systems, Inc. Systems and methods of beamforming in radio frequency identification applications
US20070191075A1 (en) 2006-02-13 2007-08-16 Powercast, Llc Implementation of an RF power transmitter and network
US7714780B2 (en) 2006-03-10 2010-05-11 Broadcom Corporation Beamforming RF circuit and applications thereof
JP2009530964A (en) 2006-03-22 2009-08-27 パワーキャスト コーポレイション Method and apparatus for implementation of a wireless power supply
US8994276B2 (en) 2006-03-28 2015-03-31 Wireless Environment, Llc Grid shifting system for a lighting circuit
US8552597B2 (en) 2006-03-31 2013-10-08 Siemens Corporation Passive RF energy harvesting scheme for wireless sensor
US8120461B2 (en) 2006-04-03 2012-02-21 Intermec Ip Corp. Automatic data collection device, method and article
WO2007122439A1 (en) 2006-04-24 2007-11-01 Nokia Corporation System and method for manage and control near field communication for a mobile multifunctional device when the device is uncharged or only partially charged
US8770482B2 (en) 2006-04-26 2014-07-08 Roche Diagnostics Operations, Inc. Apparatus and method to administer and manage an intelligent base unit for a handheld medical device
KR100751875B1 (en) 2006-05-12 2007-08-24 순천대학교 산학협력단 wireless power device with an antenna for receiving power using electromagnetic waves
US7911386B1 (en) 2006-05-23 2011-03-22 The Regents Of The University Of California Multi-band radiating elements with composite right/left-handed meta-material transmission line
US7948208B2 (en) 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
KR100755144B1 (en) 2006-06-02 2007-09-04 엘지전자 주식회사 Refrigerator for wireless data communication with sensor for detecting condition of stored food
US8049676B2 (en) * 2006-06-12 2011-11-01 Broadcom Corporation Planer antenna structure
US7471247B2 (en) 2006-06-13 2008-12-30 Nokia Siemens Networks, Oy Antenna array and unit cell using an artificial magnetic layer
WO2007146164A2 (en) 2006-06-14 2007-12-21 Powercast Corporation Wireless power transmission
GB2440570A (en) 2006-07-28 2008-02-06 Iti Scotland Ltd Antenna and heat sink
US7639994B2 (en) 2006-07-29 2009-12-29 Powercast Corporation RF power transmission network and method
DE102006037517A1 (en) 2006-08-10 2008-02-21 Kathrein-Werke Kg Antenna arrangement, in particular for a mobile radio base station
JP4918594B2 (en) 2006-08-25 2012-04-18 タイコ エレクトロニクス サービス ゲーエムベーハー Antenna based on metamaterial structure
US9022293B2 (en) 2006-08-31 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and power receiving device
EP2054989A2 (en) 2006-09-01 2009-05-06 Powercast Corporation Rf powered specialty lighiting, motion, sound
US8159090B2 (en) 2006-09-01 2012-04-17 Powercast Corporation Hybrid power harvesting and method
US9129741B2 (en) 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
US7348932B1 (en) 2006-09-21 2008-03-25 Raytheon Company Tile sub-array and related circuits and techniques
US8279131B2 (en) 2006-09-21 2012-10-02 Raytheon Company Panel array
EP2076974B1 (en) 2006-10-16 2014-04-23 Assa Abloy Hospitality, Inc. Centralized wireless network for multi-room large properties
WO2008050260A1 (en) 2006-10-26 2008-05-02 Philips Intellectual Property & Standards Gmbh Inductive power system and method of operation
US8220334B2 (en) 2006-11-10 2012-07-17 Penrith Corporation Transducer array imaging system
US8099140B2 (en) 2006-11-24 2012-01-17 Semiconductor Energy Laboratory Co., Ltd. Wireless power supply system and wireless power supply method
US7889528B2 (en) 2006-11-29 2011-02-15 Semiconductor Energy Laroratory Co., Ltd. Rectifier circuit, power supply circuit, and semiconductor device
KR100859718B1 (en) 2006-12-04 2008-09-23 한국전자통신연구원 Dipole tag antenna mountable on metallic objects using artificial magnetic conductorAMC for wireless identification and wireless identification system using the same dipole tag antenna
JP2008167017A (en) 2006-12-27 2008-07-17 Renesas Technology Corp Power amplification and detection circuit, and transmitter and transceiver each using the same,
US8064533B2 (en) 2006-12-29 2011-11-22 Broadcom Corporation Reconfigurable MIMO transceiver and method for use therewith
US20090102296A1 (en) 2007-01-05 2009-04-23 Powercast Corporation Powering cell phones and similar devices using RF energy harvesting
US20080169910A1 (en) 2007-01-05 2008-07-17 Powercast Corporation Implementation of a wireless power transmitter and method
JP4308858B2 (en) 2007-02-16 2009-08-05 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
US7889147B2 (en) 2007-02-23 2011-02-15 Northrop Grumman Systems Corporation Modular active phased array
US7793121B2 (en) 2007-03-01 2010-09-07 Eastman Kodak Company Charging display system
WO2008115881A1 (en) 2007-03-16 2008-09-25 Rayspan Corporation Metamaterial antenna arrays with radiation pattern shaping and beam switching
US20080233869A1 (en) 2007-03-19 2008-09-25 Thomas Baker Method and system for a single-chip fm tuning system for transmit and receive antennas
US9196770B2 (en) 2007-03-27 2015-11-24 Newdoll Enterprises Llc Pole-mounted power generation systems, structures and processes
TWI324839B (en) 2007-05-07 2010-05-11 Univ Nat Taiwan Wideband dielectric resonator antenna and design method thereof
US8718773B2 (en) 2007-05-23 2014-05-06 Ebr Systems, Inc. Optimizing energy transmission in a leadless tissue stimulation system
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US8159364B2 (en) 2007-06-14 2012-04-17 Omnilectric, Inc. Wireless power transmission system
US8446248B2 (en) 2007-06-14 2013-05-21 Omnilectric, Inc. Wireless power transmission system
US9037750B2 (en) 2007-07-10 2015-05-19 Qualcomm Incorporated Methods and apparatus for data exchange in peer to peer communications
US7702296B2 (en) 2007-08-01 2010-04-20 Mediatek Usa Inc. Transmit/receive switch
US8193764B2 (en) 2007-08-08 2012-06-05 Jay Marketing Associates, Inc. Wireless charging of electronic devices
US20090047998A1 (en) 2007-08-16 2009-02-19 Motorola, Inc. Method and apparatus for controlling power transmission levels for a mobile station having transmit diversity
US20090067198A1 (en) 2007-08-29 2009-03-12 David Jeffrey Graham Contactless power supply
US20090058731A1 (en) 2007-08-30 2009-03-05 Gm Global Technology Operations, Inc. Dual Band Stacked Patch Antenna
EP2031785A1 (en) 2007-09-02 2009-03-04 Mitsubishi Electric Information Technology Centre Europe B.V. System for transmitting information data from a transmitter to a receiver over a nested block channel
US20090122847A1 (en) 2007-09-04 2009-05-14 Sierra Wireless, Inc. Antenna Configurations for Compact Device Wireless Communication
US8223084B2 (en) 2007-09-06 2012-07-17 Panasonic Corporation Antenna element
US8461817B2 (en) 2007-09-11 2013-06-11 Powercast Corporation Method and apparatus for providing wireless power to a load device
US20090073066A1 (en) 2007-09-14 2009-03-19 M/A-Com, Inc. Grid Antenna
CN101803110A (en) 2007-09-19 2010-08-11 高通股份有限公司 Maximizing power yield from wireless power magnetic resonators
US20090096412A1 (en) 2007-10-10 2009-04-16 Chuan-Pan Huang Inductive charging device
US8175660B2 (en) 2007-10-30 2012-05-08 Qualcomm Incorporated Wireless energy transfer
US7843288B2 (en) 2007-11-15 2010-11-30 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly
US20110133691A1 (en) 2007-11-20 2011-06-09 Nokia Corporation Wireless Galvanic Charging Device,Method of Operation Thereof and Mobile Electric Device to be Charged
EP2075927A1 (en) 2007-12-21 2009-07-01 Thomson Licensing Method of transmission of at least a data packet by several antennas and corresponding reception method
US7724201B2 (en) 2008-02-15 2010-05-25 Sierra Wireless, Inc. Compact diversity antenna system
KR100976161B1 (en) 2008-02-20 2010-08-16 정춘길 Charging control method of non-contact charging system of wireless power transmision and chrging control method thereof
JP2009201328A (en) 2008-02-25 2009-09-03 Toshiba Corp Charger and charging system
US20090218891A1 (en) 2008-02-29 2009-09-03 Mccollough Jr Norman D Method and apparatus for rfid based smart sensors
US9431700B2 (en) 2008-03-05 2016-08-30 Ethertronics, Inc. Modal antenna-integrated battery assembly
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US7830312B2 (en) 2008-03-11 2010-11-09 Intel Corporation Wireless antenna array system architecture and methods to achieve 3D beam coverage
EP2255484B1 (en) 2008-03-20 2013-08-28 Nokia Corporation New data indicator for persistently allocated packets in a communication system
US9054773B2 (en) 2008-03-21 2015-06-09 Nxp B.V. Apparatus comprising a broadcast receiver circuit and provided with an antenna
GB2470698B (en) 2008-03-22 2013-01-23 Lyle Shirley Dimensional probe and methods of use
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US7800541B2 (en) 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
US8055003B2 (en) 2008-04-01 2011-11-08 Apple Inc. Acoustic systems for electronic devices
US7696930B2 (en) 2008-04-14 2010-04-13 International Business Machines Corporation Radio frequency (RF) integrated circuit (IC) packages with integrated aperture-coupled patch antenna(s) in ring and/or offset cavities
JP4661900B2 (en) 2008-04-17 2011-03-30 ソニー株式会社 Wireless communication apparatus, power supply method, program, and wireless communication system
KR101572743B1 (en) 2008-04-21 2015-12-01 퀄컴 인코포레이티드 Short range efficient wireless power transfer
CN201278367Y (en) 2008-04-21 2009-07-22 江苏华灿电讯股份有限公司 3500MHz 65DEG bi-polarized plate type antenna
JP4544339B2 (en) 2008-04-28 2010-09-15 ソニー株式会社 Power transmission device, power transmission method, program, and power transmission system
GB0808010D0 (en) 2008-05-02 2008-06-11 Univ Belfast Retrodirective antenna systems
US20110050164A1 (en) 2008-05-07 2011-03-03 Afshin Partovi System and methods for inductive charging, and improvements and uses thereof
JP4557045B2 (en) 2008-05-12 2010-10-06 ソニー株式会社 Power transmission device, power transmission method, program, and power transmission system
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US9356473B2 (en) 2008-05-28 2016-05-31 Georgia Tech Research Corporation Systems and methods for providing wireless power to a portable unit
JP2012507978A (en) 2008-06-02 2012-03-29 パワーマット テクノロジーズ リミテッド Equipment with a power outlet
US20100142418A1 (en) 2008-06-02 2010-06-10 Shinichiro Nishioka Data communication system, data communication request device, and data communication response device
US8674551B2 (en) 2008-06-06 2014-03-18 University Of Florida Research Foundation, Inc. Method and apparatus for contactless power transfer
TWI364895B (en) 2008-06-09 2012-05-21 Univ Nat Taipei Technology Wireless power transmitting apparatus
US8024012B2 (en) 2008-06-11 2011-09-20 International Business Machines Corporation Intelligent wireless power charging system
JP4725664B2 (en) 2008-06-25 2011-07-13 セイコーエプソン株式会社 Power transmission control device, power transmission device, power reception control device, power reception device, electronic device, power transmission control method, and power reception control method
CN101621209A (en) 2008-07-03 2010-01-06 深圳富泰宏精密工业有限公司 Charging device and charging method thereof
EP2294673A1 (en) 2008-07-09 2011-03-16 Access Business Group International LLC Wireless charging system
US8092301B2 (en) 2008-07-14 2012-01-10 Cfph, Llc Information aggregation games
US9013310B2 (en) 2008-07-24 2015-04-21 International Business Machines Corporation Circuit structure and method of fabrication for facilitating radio frequency identification (RFID)
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
EP2308197A4 (en) 2008-07-31 2014-04-16 Inovus Solar Inc Wireless autonomous solar-powered outdoor lighting and energy and information management network
US20100034238A1 (en) 2008-08-05 2010-02-11 Broadcom Corporation Spread spectrum wireless resonant power delivery
US7893564B2 (en) 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
US8411963B2 (en) 2008-08-08 2013-04-02 The Nielsen Company (U.S.), Llc Methods and apparatus to count persons in a monitored environment
US8626249B2 (en) 2008-08-12 2014-01-07 T-Mobile Usa, Inc. Charging station that operates as an intermediary device between mobile devices and other devices
US8901880B2 (en) 2008-08-19 2014-12-02 Qualcomm Incorporated Wireless power transmission for portable wireless power charging
US9473209B2 (en) 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
US20120286897A1 (en) 2011-04-21 2012-11-15 Duke University Metamaterial waveguide lens
EP2329505A1 (en) 2008-08-25 2011-06-08 Governing Dynamics, LLC. Wireless energy transfer system
US8947041B2 (en) 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
US8581542B2 (en) 2008-09-08 2013-11-12 Qualcomm Incorporated Receive antenna arrangement for wireless power
JP2010068085A (en) 2008-09-09 2010-03-25 Toshiba Corp Antenna device
US8639347B2 (en) 2008-09-15 2014-01-28 The Invention Science Fund I, Llc Methods, devices and systems for transmission between an implanted device and an external device
JP5645238B2 (en) 2008-09-19 2014-12-24 日本電気株式会社 Wireless communication system control method and wireless communication system
US8234509B2 (en) 2008-09-26 2012-07-31 Hewlett-Packard Development Company, L.P. Portable power supply device for mobile computing devices
US20120086284A1 (en) 2008-09-27 2012-04-12 Capanella Andrew J Wireless transmission of solar generated power
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US20140312706A1 (en) 2008-09-27 2014-10-23 Witricity Corporation Temperature compensation in a wireless transfer system
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US20120248888A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Wireless energy transfer with resonator arrays for medical applications
US20120248886A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Multi-resonator wireless energy transfer to mobile devices
US20160043571A1 (en) 2008-09-27 2016-02-11 Witricity Corporation Resonator enclosure
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
CN104485753B (en) 2008-09-30 2017-10-03 发明科学基金I有限责任公司 Power emission for local receiver
US7786419B2 (en) 2008-09-30 2010-08-31 The Invention Science Fund I, Llc Beam power with beam redirection
US8264101B2 (en) 2008-09-30 2012-09-11 The Invention Science Fund I, Llc Beam power with multiple power zones
US20100087227A1 (en) 2008-10-02 2010-04-08 Alvarion Ltd. Wireless base station design
US8279137B2 (en) 2008-11-13 2012-10-02 Microsoft Corporation Wireless antenna for emitting conical radiation
US7855681B2 (en) 2008-11-19 2010-12-21 Harris Corporation Systems and methods for determining element phase center locations for an array of antenna elements
US20100123618A1 (en) 2008-11-19 2010-05-20 Harris Corporation Closed loop phase control between distant points
US8929957B2 (en) 2008-11-21 2015-01-06 Qualcomm Incorporated Reduced jamming between receivers and wireless power transmitters
US8401595B2 (en) 2008-12-08 2013-03-19 Samsung Electronics Co., Ltd. Method and system for integrated wireless power and data communication
US8866692B2 (en) 2008-12-19 2014-10-21 Apple Inc. Electronic device with isolated antennas
US20100164433A1 (en) 2008-12-30 2010-07-01 Motorola, Inc. Wireless Battery Charging Systems, Battery Systems and Charging Apparatus
US20100167664A1 (en) 2008-12-31 2010-07-01 Motorola, Inc. Apparatus and Method for Providing Antenna Beamforming
CN102341985B (en) 2009-01-06 2015-04-01 捷通国际有限公司 Wireless charging system with device power compliance
US9242411B2 (en) 2009-01-06 2016-01-26 Stratasys Ltd. Method and apparatus for monitoring electro-magnetic radiation power in solid freeform fabrication systems
US20120150670A1 (en) 2009-01-06 2012-06-14 Access Business Group International Llc Wireless power delivery during payment
US8069100B2 (en) 2009-01-06 2011-11-29 Access Business Group International Llc Metered delivery of wireless power
FR2940872B1 (en) 2009-01-07 2012-05-18 Commissariat Energie Atomique FLAT SCREEN WITH INTEGRATED ANTENNA
TWI389415B (en) 2009-01-14 2013-03-11 Mstar Semiconductor Inc Radio frequency charging system and method
EP2208458A1 (en) 2009-01-14 2010-07-21 Roche Diagnostics GmbH Medical monitoring network
US9088216B2 (en) 2009-01-19 2015-07-21 Power Systems Technologies, Ltd. Controller for a synchronous rectifier switch
CN102292918A (en) 2009-01-22 2011-12-21 创科电动工具科技有限公司 Wireless power distribution system and method for power tools
US9257865B2 (en) 2009-01-22 2016-02-09 Techtronic Power Tools Technology Limited Wireless power distribution system and method
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
DE102009007464B4 (en) 2009-02-04 2023-12-21 Intel Deutschland Gmbh Determination device, method for determining a transmission parameter, energy transmission device and method for wirelessly transmitting energy
US9130394B2 (en) 2009-02-05 2015-09-08 Qualcomm Incorporated Wireless power for charging devices
US8070595B2 (en) 2009-02-10 2011-12-06 Cfph, Llc Amusement devices and games including means for processing electronic data where ultimate outcome of the game is dependent on relative odds of a card combination and/or where chance is a factor: the monty hall paradox
US20100201201A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US8796999B2 (en) 2009-02-12 2014-08-05 Qualcomm Incorporated Wireless power transfer for low power devices
US8682261B2 (en) 2009-02-13 2014-03-25 Qualcomm Incorporated Antenna sharing for wirelessly powered devices
US8963486B2 (en) 2009-02-13 2015-02-24 Qualcomm Incorporated Wireless power from renewable energy
US9240824B2 (en) 2009-02-13 2016-01-19 Qualcomm Incorporated Wireless power and wireless communication for electronic devices
US8760113B2 (en) 2009-02-24 2014-06-24 Qualcomm Incorporated Wireless power charging timing and charging control
US8144066B2 (en) 2009-02-26 2012-03-27 Harris Corporation Wireless communications including an antenna for wireless power transmission and data communication and associated methods
US8773311B2 (en) 2009-03-06 2014-07-08 Nec Corporation Resonator antenna and communication apparatus
US20100225270A1 (en) 2009-03-08 2010-09-09 Qualcomm Incorporated Wireless power transfer for chargeable devices
US8909165B2 (en) 2009-03-09 2014-12-09 Qualcomm Incorporated Isolation techniques for multiple co-located radio modules
EP2406852B1 (en) 2009-03-11 2017-05-17 Tyco Electronics Services GmbH High gain metamaterial antenna device
US8338991B2 (en) 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
US8803474B2 (en) 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
US8452235B2 (en) 2009-03-28 2013-05-28 Qualcomm, Incorporated Tracking receiver devices with wireless power systems, apparatuses, and methods
US8536736B2 (en) 2009-04-03 2013-09-17 International Business Machines Corporation Wireless power infrastructure
IL197906A (en) 2009-04-05 2014-09-30 Elta Systems Ltd Phased array antennas and method for producing them
US8970180B2 (en) 2009-04-07 2015-03-03 Qualcomm Incorporated Wireless power transmission scheduling
US8072380B2 (en) 2009-04-10 2011-12-06 Raytheon Company Wireless power transmission system and method
US8451189B1 (en) 2009-04-15 2013-05-28 Herbert U. Fluhler Ultra-wide band (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays
WO2010138994A1 (en) 2009-06-02 2010-12-09 Commonwealth Scientific Industrial Research Organisation Power transmission to mobile devices on animals
US8212735B2 (en) 2009-06-05 2012-07-03 Nokia Corporation Near field communication
US8922347B1 (en) 2009-06-17 2014-12-30 L. Pierre de Rochemont R.F. energy collection circuit for wireless devices
JP2011004250A (en) 2009-06-19 2011-01-06 Sony Corp Resonator and method of manufacturing the same, and oscillator and electronic apparatus
US8565344B2 (en) 2009-07-02 2013-10-22 Panasonic Corporation Transmission circuit and communication device
US8655272B2 (en) 2009-07-07 2014-02-18 Nokia Corporation Wireless charging coil filtering
EP2458710B1 (en) 2009-07-23 2016-01-06 Fujitsu Limited Power transmission device, wireless power supply system, and wireless power supply device
RU2540896C2 (en) 2009-07-24 2015-02-10 Эксесс Бизнесс Груп Интернешнл Ллс Power supply
GB2485310B (en) 2009-08-06 2014-12-10 Indian Space Res Organisation Printed quasi-tapered tape helical array antenna
US8614643B2 (en) 2009-08-06 2013-12-24 Truepath Holdings Llc System and methods for antenna optimization for wireless broadband communication
US9312728B2 (en) 2009-08-24 2016-04-12 Access Business Group International Llc Physical and virtual identification in a wireless power network
WO2011025212A2 (en) 2009-08-27 2011-03-03 엘지전자 주식회사 Cooperative wireless power signal transmission method and device
WO2011026034A2 (en) 2009-08-31 2011-03-03 Andrew Llc Modular type cellular antenna assembly
KR101087870B1 (en) 2009-09-02 2011-11-30 채광묵 Transmitting Apparatus and Receiving Apparatus for Remote Position Indication
KR101256556B1 (en) 2009-09-08 2013-04-19 한국전자통신연구원 Patch Antenna with Wide Bandwidth at Millimeter Wave Band
US8442457B2 (en) 2009-09-08 2013-05-14 Google Inc. System and method for adaptive beamforming for specific absorption rate control
US8928284B2 (en) 2009-09-10 2015-01-06 Qualcomm Incorporated Variable wireless power transmission
US20110062788A1 (en) 2009-09-17 2011-03-17 Yung-Hsiang Chen Wirless power supply device
US20110074342A1 (en) 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
KR101706616B1 (en) 2009-11-09 2017-02-14 삼성전자주식회사 Load Impedance Selecting Device, Wireless Power Transmission Device and Wireless Power Transmission Method
US8547057B2 (en) 2009-11-17 2013-10-01 Qualcomm Incorporated Systems and methods for selective wireless power transfer
US20110115605A1 (en) 2009-11-17 2011-05-19 Strattec Security Corporation Energy harvesting system
CN102714430A (en) 2009-11-19 2012-10-03 捷通国际有限公司 Multiple use wireless power systems
US20110122026A1 (en) 2009-11-24 2011-05-26 Delaquil Matthew P Scalable and/or reconfigurable beamformer systems
TWI425711B (en) 2009-11-24 2014-02-01 Ind Tech Res Inst Electromagnetic conductor reflecting plate, antenna array thereof, radar thereof, and communication apparatus thereof
US9787364B2 (en) 2011-01-20 2017-10-10 Triune Ip, Llc Multi-use wireless power and data system
US9590444B2 (en) 2009-11-30 2017-03-07 Broadcom Corporation Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency
US20110127953A1 (en) 2009-11-30 2011-06-02 Broadcom Corporation Wireless power system
US8525370B2 (en) 2009-11-30 2013-09-03 Broadcom Corporation Wireless power circuit board and assembly
US20110154429A1 (en) 2009-12-17 2011-06-23 Winegard Company Internal television antenna and method for a portable entertainment module
WO2011078753A1 (en) 2009-12-22 2011-06-30 Saab Ab Radiation element retainer device
US11205926B2 (en) 2009-12-22 2021-12-21 View, Inc. Window antennas for emitting radio frequency signals
US8879995B2 (en) 2009-12-23 2014-11-04 Viconics Electronics Inc. Wireless power transmission using phased array antennae
US8686685B2 (en) 2009-12-25 2014-04-01 Golba, Llc Secure apparatus for wirelessly transferring power and communicating with one or more slave devices
KR20120055676A (en) 2009-12-25 2012-05-31 가부시끼가이샤 도시바 Wireless power transmission device and power receiving device
US8276325B2 (en) 2009-12-31 2012-10-02 The United States Of America As Represented By The Secretary Of The Navy Vehicle and mast mounting assembly therefor
CA2785181C (en) 2010-01-07 2018-01-02 Voxx International Corporation Method and apparatus for harvesting energy
EP2346136A1 (en) 2010-01-13 2011-07-20 Universität Duisburg-Essen Apparatus for generating an alternating magnetic field and apparatus for providing an effective power from an alternating magnetic field
JP5526795B2 (en) 2010-01-15 2014-06-18 ソニー株式会社 Wireless power supply system
US8823214B2 (en) 2010-01-27 2014-09-02 Honeywell International Inc. Wireless energy transfer
CA2788091C (en) 2010-01-27 2017-01-03 Cynetic Designs Ltd. Modular pocket with inductive power and data
US20110184842A1 (en) 2010-01-28 2011-07-28 Roger D Melen Energy transfer systems and methods for mobile vehicles
US8489113B2 (en) 2010-02-09 2013-07-16 Omnilink Systems, Inc. Method and system for tracking, monitoring and/or charging tracking devices including wireless energy transfer features
CN101959296B (en) 2010-02-11 2013-10-09 华为终端有限公司 Routing equipment of wireless local area access network and signal transmitting method
TWM385858U (en) 2010-02-12 2010-08-01 Fu Da Tong Technology Co Ltd Frequency conversion type wireless power supply and charging device
GB2478025A (en) 2010-02-17 2011-08-24 Stewart John Robert Jackson Power supply having a constant supply circuit and a timed supply circuit
TWM384453U (en) 2010-03-02 2010-07-11 Winharbor Technology Co Ltd Pull-resistant illuminating/heat generating structure capable of being charged in wireless manner
US9544640B2 (en) 2010-03-02 2017-01-10 Harman International Industries, Incorporated Wireless theater system
US9107684B2 (en) 2010-03-05 2015-08-18 Covidien Lp System and method for transferring power to intrabody instruments
TWM388610U (en) 2010-03-09 2010-09-11 Winharbor Technology Co Ltd Removable wireless rechargeable light-emitting device
TWM384018U (en) 2010-03-12 2010-07-11 Winharbor Technology Co Ltd Wireless rechargeable thermit pad
KR20110103296A (en) 2010-03-12 2011-09-20 삼성전자주식회사 Method and apparatus for wireless charging of electronic divice
EP2555323B1 (en) 2010-03-31 2017-12-06 Nec Corporation Wireless communication device and current-reducing method
KR101648751B1 (en) 2010-04-02 2016-08-30 삼성전자주식회사 Method and Apparatus to Control Wireless Power Transform
US9806789B2 (en) 2010-04-06 2017-10-31 Samsung Electronics Co., Ltd. Apparatus and method for spatial division duplex (SDD) for millimeter wave communication system
JP5750583B2 (en) 2010-04-07 2015-07-22 パナソニックIpマネジメント株式会社 Wireless power transmission system
US8681619B2 (en) 2010-04-08 2014-03-25 Landis+Gyr Technologies, Llc Dynamic modulation selection
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US9027840B2 (en) 2010-04-08 2015-05-12 Access Business Group International Llc Point of sale inductive systems and methods
KR20110112917A (en) 2010-04-08 2011-10-14 삼성전자주식회사 Television set with wireless power transform function
ES2953887T3 (en) 2010-04-08 2023-11-16 Foerster Inst Dr Gmbh & Co Kg Thermographic test method and test device to carry out the test method
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
JP2011223739A (en) 2010-04-09 2011-11-04 Sony Corp Power supply device, power reception device, and wireless power supply system
US8860364B2 (en) 2010-04-23 2014-10-14 Qualcomm Incorporated Wireless power distribution among a plurality of receivers
KR101438470B1 (en) 2010-04-26 2014-09-05 타이코 일렉트로닉스 서비시스 게엠베하 Pcb antenna layout
KR20110118963A (en) 2010-04-26 2011-11-02 한국생산기술연구원 Heating apparatus with non-contacting charging
JP2013529451A (en) 2010-04-30 2013-07-18 パワーマッド テクノロジーズ リミテッド System and method for inductively transferring power over an extended area
EP2567467A2 (en) 2010-05-04 2013-03-13 Celeno Communications Ltd. System and method for channel state related feedback in multi-user multiple-input-multiple-output systems
US20110282415A1 (en) 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Wearable wireless power transmitter
US8968609B2 (en) 2010-05-12 2015-03-03 General Electric Company Dielectric materials for power transfer system
TWI406471B (en) 2010-05-14 2013-08-21 崇越科技股份有限公司 Charging system and charging method thereof
US8934857B2 (en) 2010-05-14 2015-01-13 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
KR102043136B1 (en) 2010-05-20 2019-11-12 삼성전자주식회사 Wireless charging method and system using radio frequency
US9083595B2 (en) 2010-05-28 2015-07-14 Cohere Technologies, Inc. Signal modulation method resistant to echo reflections and frequency offsets
JP5841132B2 (en) 2010-05-28 2016-01-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Transmitter module used in modular power transmission system
US9668148B2 (en) 2010-05-28 2017-05-30 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
KR101166020B1 (en) 2010-05-31 2012-07-19 삼성에스디아이 주식회사 A contactless power charging system and energy storage system including the contactless charging system
TWI389416B (en) 2010-05-31 2013-03-11 Fu Da Tong Technology Co Ltd Power transmission method of high power wireless inductive power supply
KR101151204B1 (en) 2010-06-01 2012-05-29 심현섭 Led lamp
US20110302078A1 (en) 2010-06-02 2011-12-08 Bryan Marc Failing Managing an energy transfer between a vehicle and an energy transfer system
US20130076308A1 (en) 2010-06-03 2013-03-28 Powerkiss Oy Arrangement for a charger
US20110304437A1 (en) 2010-06-09 2011-12-15 Plus Location Systems USA LLC Antenna and Sensor System for Sharply Defined Active Sensing Zones
JP6054863B2 (en) 2010-06-10 2016-12-27 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Coil configuration for inductive power transfer
WO2011156768A2 (en) 2010-06-11 2011-12-15 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
KR20110135540A (en) 2010-06-11 2011-12-19 삼성전자주식회사 Method and apparatus for receiving wireless power
EP2400660B1 (en) 2010-06-15 2014-04-30 Telefonaktiebolaget L M Ericsson (publ) Conversion circuit
EP2450840B1 (en) 2010-06-18 2013-08-21 Research In Motion Limited Shared coil for inductive charging and hearing-aid-compliance requirements in mobile phones
WO2011158470A1 (en) 2010-06-18 2011-12-22 パナソニック株式会社 Communication apparatus and communication method
JP4996722B2 (en) 2010-06-30 2012-08-08 株式会社東芝 Power transmission system and power transmission device
US8970070B2 (en) 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
US9438063B2 (en) 2010-07-09 2016-09-06 Industrial Technology Research Institute Charge apparatus
US20120013296A1 (en) 2010-07-15 2012-01-19 Soudeh Heydari Method and system for harvesting rf signals and wirelessly charging a device
JP5640515B2 (en) 2010-07-15 2014-12-17 ソニー株式会社 Power transmission relay device, power transmission device, and method of manufacturing power transmission relay device
KR20120008353A (en) 2010-07-16 2012-01-30 삼성에스디아이 주식회사 Fuel cell system and power management method in the same
KR20120009843A (en) 2010-07-21 2012-02-02 엘지전자 주식회사 Mobile terminal and method for sharing applications thereof
WO2012014984A1 (en) 2010-07-28 2012-02-02 国立大学法人京都工芸繊維大学 Microwave resonator
KR101394963B1 (en) 2010-07-29 2014-05-16 한국전자통신연구원 Wireless power transmitter, wireless power receiver, and method for wireless power transfer using them
US8432071B2 (en) 2010-08-05 2013-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for energy harvest from ambient sources
US20120043887A1 (en) 2010-08-18 2012-02-23 Steven Mesibov Wireless power transmission system and associated devices
GB201014056D0 (en) 2010-08-23 2010-10-06 Litonics Ltd Heatsink for lighting device
KR101313662B1 (en) 2010-08-27 2013-10-02 한양대학교 산학협력단 Active rectifier with delay locked loop, Wireless power receiving apparatus including active rectifier
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9071063B2 (en) 2010-09-02 2015-06-30 Advantest Corporation Wireless power receiving apparatus
RU2010136667A (en) 2010-09-02 2012-03-10 Владимир Витальевич Мирошниченко (RU) METHOD OF POWER SUPPLY OF TECHNICAL MEANS OF THE DEVICE
US20120056741A1 (en) 2010-09-07 2012-03-08 Liping Julia Zhu System to track one or more indoor persons, outdoor persons and vehicles
US9030364B2 (en) 2010-09-07 2015-05-12 Kunjie Zhuang Dual-polarized microstrip antenna
US8457656B2 (en) 2010-09-27 2013-06-04 Awarepoint Corporation Wireless tracking system and method utilizing multiple location algorithms
US8618766B2 (en) 2010-09-27 2013-12-31 Deere & Company Robot power source charging station
US20120075072A1 (en) 2010-09-29 2012-03-29 Ravikanth Pappu Co-located radio-frequency identification fields
EP2625889B1 (en) 2010-10-04 2016-04-20 Telefonaktiebolaget LM Ericsson (publ) Network based control of report messages in a wireless communications network
US20120086615A1 (en) 2010-10-12 2012-04-12 John Peter Norair Method and Apparatus for an Integrated Antenna
KR101743777B1 (en) 2010-10-21 2017-06-05 삼성전자주식회사 Method for wireless charging and apparatus for the same
US9198127B2 (en) 2010-10-25 2015-11-24 Yamamoto Kazuhiro Communication device
US8918270B2 (en) 2010-10-28 2014-12-23 Tongqing Wang Wireless traffic sensor system
JP5655503B2 (en) 2010-10-28 2015-01-21 凸版印刷株式会社 Cross dipole antenna and non-contact communication medium having the same
EP2636118B1 (en) 2010-11-02 2019-07-17 Ember Technologies, Inc. Heated or cooled dishwasher safe dishware and drinkware
US9484772B2 (en) 2010-11-09 2016-11-01 The Regents Of The University Of California Wireless power mechanisms for lab-on-a-chip devices
US8712485B2 (en) 2010-11-19 2014-04-29 Apple Inc. Proximity sensor arrangement in a mobile device
US8560026B2 (en) 2010-11-23 2013-10-15 Motorola Mobility Llc Methods and devices for power-aware data synchronization in wireless devices
KR101767266B1 (en) 2010-11-26 2017-08-11 한국전자통신연구원 Direct feeding apparatus for impedance matching of wireless power transmission device and transmitter/receiver for the same
US8811918B2 (en) 2010-11-26 2014-08-19 Broadcom Corporation Distribution of transmit signal to multiple transmit antennas for reduction of measured specific absorption rate
US9006622B2 (en) 2010-11-30 2015-04-14 Bose Corporation Induction cooking
US20120211214A1 (en) 2010-12-09 2012-08-23 Panasonic Avionics Corporation Heatsink Device and Method
JP5564412B2 (en) 2010-12-10 2014-07-30 株式会社日立製作所 Wireless power transmission system, power transmission device, and power reception device
US9496924B2 (en) 2010-12-10 2016-11-15 Everheart Systems, Inc. Mobile wireless power system
JP5804698B2 (en) 2010-12-10 2015-11-04 キヤノン株式会社 Power supply apparatus and method
TWI551071B (en) 2010-12-16 2016-09-21 李百祺 Wireless power transmission system, wireless power transmitting apparatus and wireless power receiving apparatus
US9379780B2 (en) 2010-12-16 2016-06-28 Qualcomm Incorporated Wireless energy transfer and continuous radio station signal coexistence
US9294840B1 (en) 2010-12-17 2016-03-22 Logitech Europe S. A. Ease-of-use wireless speakers
US8736228B1 (en) 2010-12-20 2014-05-27 Amazon Technologies, Inc. Charging an electronic device including traversing at least a portion of a path with an apparatus
US20120153739A1 (en) 2010-12-21 2012-06-21 Cooper Emily B Range adaptation mechanism for wireless power transfer
KR101672768B1 (en) 2010-12-23 2016-11-04 삼성전자주식회사 System for wireless power and data transmission and reception
US9246349B2 (en) 2010-12-27 2016-01-26 Golba Llc Method and system for wireless battery charging utilizing ultrasonic transducer array based beamforming
US9077188B2 (en) 2012-03-15 2015-07-07 Golba Llc Method and system for a battery charging station utilizing multiple types of power transmitters for wireless battery charging
US9143010B2 (en) 2010-12-28 2015-09-22 Tdk Corporation Wireless power transmission system for selectively powering one or more of a plurality of receivers
US10043223B2 (en) 2010-12-30 2018-08-07 International Business Machines Corporation Managing power distribution
JP2012143146A (en) 2011-01-03 2012-07-26 Samsung Electronics Co Ltd Wireless power transmission apparatus and wireless power transmission system thereof
US8395353B2 (en) 2011-01-04 2013-03-12 Primax Electronics, Ltd. Wireless charging transmitter for portable electronic device
US9166440B2 (en) 2011-01-10 2015-10-20 Powermat Technologies Ltd. System for transferring power inductively to items within a container
JP5918270B2 (en) 2011-01-14 2016-05-18 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for transmitting user input from sink device to source device in wifi direct communication system
US9178369B2 (en) 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
JP5545229B2 (en) 2011-01-26 2014-07-09 株式会社デンソー In-vehicle power supply, roadside power supply, road-to-vehicle power transmission system
JP5654367B2 (en) 2011-01-28 2015-01-14 パナソニックIpマネジメント株式会社 Power supply module of non-contact power supply device, method of using power supply module of non-contact power supply device, and method of manufacturing power supply module of non-contact power supply device
JP2012161041A (en) 2011-02-02 2012-08-23 Mitsubishi Steel Mfg Co Ltd Antenna device
US9887728B2 (en) 2011-02-03 2018-02-06 The Board Of Trustees Of The Leland Stanford Junior University Single channel full duplex wireless communications
US8797211B2 (en) 2011-02-10 2014-08-05 International Business Machines Corporation Millimeter-wave communications using a reflector
WO2012111271A1 (en) 2011-02-17 2012-08-23 パナソニック株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting method
EP2677628B1 (en) 2011-02-18 2018-05-02 LG Electronics Inc. Device for wireless charging
JP5703822B2 (en) 2011-02-21 2015-04-22 ソニー株式会社 Power transmission device, power transmission method, and power transmission system
JP5703823B2 (en) 2011-02-21 2015-04-22 ソニー株式会社 Power transmission device, power transmission method, and power transmission system
US8928544B2 (en) 2011-02-21 2015-01-06 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Wideband circularly polarized hybrid dielectric resonator antenna
US9161318B2 (en) 2011-02-24 2015-10-13 Nokia Solutions And Networks Oy Configuring power distribution within cooperation areas of cellular communication networks
US8909282B2 (en) 2011-03-04 2014-12-09 Qualcomm Incorporated Systems and methods for dynamic transmission power limit back-off for specific absorption rate compliance
KR20120102446A (en) 2011-03-08 2012-09-18 삼성전자주식회사 Mobile terminal, method for controlling wireless charge thereof, and wireless charging system thereof
US9887583B2 (en) 2011-03-10 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Power-receiving device, wireless power-feeding system including power-receiving device, and wireless communication system including power-receiving device
US9052428B2 (en) 2011-03-11 2015-06-09 Apple Inc. Systems, methods, and computer-readable media for thermally managing electronic devices using dynamic optical components
WO2012125185A1 (en) 2011-03-15 2012-09-20 Intel Corporation Mm-wave phased array antenna with beam tilting radiation pattern
PT2689627E (en) 2011-03-22 2015-08-25 Ericsson Telefon Ab L M Performing coordinated multipoint transmission and reception (comp) in a wireless communication network
US9225199B2 (en) 2011-03-22 2015-12-29 Triune Ip, Llc Variable power energy harvesting system
KR101859191B1 (en) 2011-03-23 2018-05-18 삼성전자주식회사 Method and apparatus for controlling wireless power transmission and reception, and wireless power transmission system
KR101850527B1 (en) 2011-03-25 2018-04-19 삼성전자주식회사 Portable Device and Wireless Power Charging system
KR101768723B1 (en) 2011-03-30 2017-08-17 삼성전자주식회사 Method and system for wireless charging in a portable terminal
US8946939B2 (en) 2011-03-31 2015-02-03 Qualcomm Incorporated Systems and methods for detecting and protecting a wireless power communication device in a wireless power system
CN103548205B (en) 2011-04-07 2017-02-22 Hrl实验室有限责任公司 Tunable impedance surfaces
US8843206B2 (en) 2011-04-13 2014-09-23 Spinal Modulation, Inc. Telemetry antennas for medical devices and medical devices including telemetry antennas
US10090885B2 (en) 2011-04-13 2018-10-02 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
US8759990B2 (en) 2011-04-19 2014-06-24 Eastman Kodak Company Energy harvesting device including MEMS composite transducer
KR101785456B1 (en) 2011-04-25 2017-11-06 엘지전자 주식회사 Apparatus and system for providing wireless power charge service
US20120274154A1 (en) 2011-04-27 2012-11-01 Research In Motion Limited Methods and apparatuses for wireless power transfer
US9035601B2 (en) 2011-05-05 2015-05-19 Samsung Electro-Mechanics Wireless power transfer system and methods
KR101813131B1 (en) 2011-05-11 2017-12-28 삼성전자주식회사 Wireless power transmission system and method for controlling of resonance frequency and resonance impedance of wireless power transmission system
US10326309B2 (en) 2011-05-13 2019-06-18 Samsung Electronics Co., Ltd Wireless power system comprising power transmitter and power receiver and method for receiving and transmitting power of the apparatuses
KR102000561B1 (en) 2011-05-17 2019-10-01 삼성전자주식회사 Apparatus and method for controlling wireless power transmission
US20120292993A1 (en) 2011-05-20 2012-11-22 American Science And Technology Corporation Energy Scavenging Power Supply
US9244500B2 (en) 2011-05-23 2016-01-26 Intel Corporation System integration supporting completely wireless peripheral applications
JP5338851B2 (en) 2011-05-23 2013-11-13 株式会社デンソー Power transmission / reception system for vehicles
US9297896B1 (en) 2011-05-24 2016-03-29 Garmin International, Inc. Electronically steered weather radar
US9590779B2 (en) 2011-05-26 2017-03-07 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
KR101688948B1 (en) 2011-05-27 2016-12-22 엘지전자 주식회사 Establishing a data communication connection using a wireless power transmission
US9831920B2 (en) 2011-05-27 2017-11-28 uBeam Inc. Motion prediction for wireless power transfer
US9214151B2 (en) 2011-05-27 2015-12-15 uBeam Inc. Receiver controller for wireless power transfer
TWI423601B (en) 2011-05-30 2014-01-11 Ralink Technology Corp Rf processing circuit and wireless communication device using the same
KR102012688B1 (en) 2011-05-31 2019-08-26 삼성전자주식회사 Apparatus and method for data communication using wireless power
US8929806B2 (en) 2011-05-31 2015-01-06 Facebook, Inc. Passively powering a wireless communications device
US9391461B2 (en) 2011-05-31 2016-07-12 Samsung Electronics Co., Ltd. Wireless power transmission and charging system, and power control method of wireless power transmission and charging system
KR102040712B1 (en) 2011-06-01 2019-11-27 삼성전자주식회사 Wireless power transmission system, method and apparatus for communication channel allocation and power transmission in wireless power transmission system
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8922442B2 (en) 2011-06-01 2014-12-30 Symbol Technologies, Inc. Low-profile multiband antenna for a wireless communication device
US20120182427A1 (en) 2011-06-06 2012-07-19 Aaron Marshall System and method for providing thermal gender recognition
JP5591760B2 (en) 2011-06-06 2014-09-17 株式会社東芝 Antenna unit and panel array antenna apparatus
KR101950309B1 (en) 2011-06-07 2019-02-21 삼성전자주식회사 Method for controlling wireless power of receiver in wireless power transmitting/receiving system and the receiver
US9706137B2 (en) 2011-06-10 2017-07-11 Flir Systems, Inc. Electrical cabinet infrared monitor
US9853480B2 (en) 2011-06-21 2017-12-26 Intel Corporation Apparatus, systems and methods for wireless charging for PC platforms and peripherals
US9030161B2 (en) 2011-06-27 2015-05-12 Board Of Regents, The University Of Texas System Wireless power transmission
US9306401B2 (en) 2011-06-29 2016-04-05 Lg Electronics Inc. Wireless power transmitter and wireless power transfer method thereof in many-to-one communication
KR101832331B1 (en) 2011-06-29 2018-02-26 엘지전자 주식회사 Wireless power transmission and communication between devices
US8989867B2 (en) 2011-07-14 2015-03-24 Cyberonics, Inc. Implantable nerve wrap for nerve stimulation configured for far field radiative powering
EP2735083A4 (en) 2011-07-21 2015-10-07 Ut Battelle Llc Wireless power transfer electric vehicle supply equipment installation and validation tool
US20130038402A1 (en) 2011-07-21 2013-02-14 Witricity Corporation Wireless power component selection
CN103732361B (en) 2011-07-24 2017-03-01 株式会社牧田 For the adapter of electric tool, electric tool system and its operational approach
US20130026981A1 (en) 2011-07-28 2013-01-31 Broadcom Corporation Dual mode wireless power
US20130026982A1 (en) 2011-07-29 2013-01-31 Perry Rothenbaum Wireless battery charging device, method and system
US8817076B2 (en) 2011-08-03 2014-08-26 General Electric Company Method and system for cropping a 3-dimensional medical dataset
US8872660B2 (en) 2011-08-13 2014-10-28 Walter V. Raczynski Powered item attachment device
RU2596606C2 (en) 2011-08-16 2016-09-10 Конинклейке Филипс Н.В. Dynamic resonance matching circuit for wireless energy receivers
KR101844283B1 (en) 2011-08-18 2018-04-03 삼성전자주식회사 A method and an apparatus for energy sharing of wireless communication device
US9178354B2 (en) 2011-08-24 2015-11-03 3Dfs L.L.C. Multipurpose, universal converter with battery control and real-time power factor correction
WO2013028111A1 (en) 2011-08-25 2013-02-28 Telefonaktiebolaget L M Ericsson (Publ) Charging of battery-operated devices over wireless connections
KR101580342B1 (en) 2011-08-29 2015-12-24 삼성전기주식회사 Wireless power transmission system and control method thereof
US8712355B2 (en) 2011-08-30 2014-04-29 Motorola Mobility Llc Antenna tuning on an impedance trajectory
KR101817194B1 (en) 2011-08-31 2018-01-10 삼성전자주식회사 Wireless power transmission system using solar cell module
US20130063143A1 (en) 2011-09-01 2013-03-14 Siemens Aktiengesellschaft Local SAR Constrained Parallel Transmission RF Pulse in Magnetic Resonance Imaging
WO2013031025A1 (en) 2011-09-02 2013-03-07 富士通株式会社 Power relay
US8643330B2 (en) 2011-09-02 2014-02-04 Tesla Motors, Inc. Method of operating a multiport vehicle charging system
US9448603B2 (en) 2011-09-03 2016-09-20 Leigh M. Rothschild Transferring power to a mobile device
KR101253670B1 (en) 2011-09-05 2013-04-11 엘에스전선 주식회사 Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
US20130058379A1 (en) 2011-09-05 2013-03-07 Samsung Electronics Co., Ltd. Communication apparatus and communication method in wireless power transmission system
KR101966302B1 (en) 2011-09-06 2019-04-05 삼성전자주식회사 Communication method and apparatus in wireless charge system
KR101897543B1 (en) 2011-09-08 2018-09-12 삼성전자주식회사 Wireless power receiver and method for controlling thereof
EP2755300A4 (en) 2011-09-09 2015-04-22 Chugoku Electric Power Non-contact power supply system and non-contact power supply method
US9252846B2 (en) 2011-09-09 2016-02-02 Qualcomm Incorporated Systems and methods for detecting and identifying a wireless power device
DE102011053501B4 (en) 2011-09-12 2014-10-23 Rwth Aachen Device for modifying trajectories
FR2980055B1 (en) 2011-09-12 2013-12-27 Valeo Systemes Thermiques INDUCTIVE POWER TRANSMISSION DEVICE
JP2013070477A (en) 2011-09-21 2013-04-18 Panasonic Corp Non-contact power supply system
KR101828837B1 (en) 2011-09-29 2018-03-30 삼성전자주식회사 Method and apparatus for short handover latency in wireless communication system using beam forming
KR20130035905A (en) 2011-09-30 2013-04-09 삼성전자주식회사 Method for wireless charging and apparatus for the same
US9142998B2 (en) 2011-10-03 2015-09-22 The Board Of Trustees Of The Leland Stanford Junior University Wireless energy transfer
KR101781650B1 (en) 2011-10-04 2017-09-26 삼성전자주식회사 Wireless power multi-charge method and power transmitter
US9419444B2 (en) 2011-10-05 2016-08-16 Blackberry Limited Wireless charging and communication with power source devices and power charge devices in a communication system
WO2013052950A1 (en) 2011-10-06 2013-04-11 Rolls-Royce Corporation Wireless battery charging system
US8483899B2 (en) 2011-10-06 2013-07-09 Ford Global Technologies, Llc Vehicle guidance system
US9240270B2 (en) 2011-10-07 2016-01-19 Utah State University Wireless power transfer magnetic couplers
KR20130038553A (en) 2011-10-10 2013-04-18 한국전자통신연구원 Apparatus and method for recognizing location of object in location recognition system
KR20130039031A (en) 2011-10-11 2013-04-19 한국전자통신연구원 Wireless power transfer device, wireless power recieve device and wireless power transfer and recieve device
KR101722018B1 (en) 2011-10-19 2017-04-03 삼성전자주식회사 Multilayered circuit type antenna package
JP5512628B2 (en) 2011-10-19 2014-06-04 東芝テック株式会社 Power transmission device, power transmission device, power reception device, and power transmission method
US8358102B2 (en) 2011-10-21 2013-01-22 General Electric Company System, charging device, and method of charging a power storage device
US9145110B2 (en) 2011-10-27 2015-09-29 Ford Global Technologies, Llc Vehicle wireless charger safety system
JP5895449B2 (en) 2011-10-28 2016-03-30 日立化成株式会社 Non-contact power transmission device and non-contact power transmission system
KR101349551B1 (en) 2011-11-02 2014-01-08 엘지이노텍 주식회사 A wireless power transmission apparatus and method thereof
US20140252866A1 (en) 2011-11-03 2014-09-11 Jim Walsh Presence and range detection of wireless power receiving devices and method thereof
CA2794161A1 (en) 2011-11-03 2013-05-03 Shaw Industries Group, Inc. Wireless energy transfer systems
WO2013064204A1 (en) 2011-11-04 2013-05-10 Kathrein-Werke Kg Patch radiator
KR101338732B1 (en) 2011-11-10 2013-12-06 엘지이노텍 주식회사 Apparatus for transmmiting wireless power and apparatus for receiving wireless power and method for transmitting wireless power, method for receiving wireless power, method for transmitting information and method for receiving information
US9337833B2 (en) 2011-11-14 2016-05-10 Atmel Corporation Driven shield for shaping an electric field of a touch sensor
US8558746B2 (en) 2011-11-16 2013-10-15 Andrew Llc Flat panel array antenna
US8866687B2 (en) 2011-11-16 2014-10-21 Andrew Llc Modular feed network
KR101968605B1 (en) 2011-11-17 2019-04-15 삼성전자주식회사 Method and apparatus for data communication in wireless power transfer
JP5790434B2 (en) 2011-11-18 2015-10-07 ソニー株式会社 Electronic device, charging control method, charging system, and data transfer system
US9746527B2 (en) 2011-11-21 2017-08-29 Blackberry Limited Method and apparatus for battery charge level estimation
US20130134923A1 (en) 2011-11-25 2013-05-30 Research In Motion Limited Apparatus, and associated method, for providing charging energy to recharge a portable power supply
SG190477A1 (en) 2011-11-28 2013-06-28 Sony Corp Wireless energy transfer system
US9236756B2 (en) 2011-12-05 2016-01-12 Qualcomm Incorporated Apparatus for wireless device charging using radio frequency (RF) energy and device to be wirelessly charged
US9444540B2 (en) 2011-12-08 2016-09-13 Apple Inc. System and methods for performing antenna transmit diversity
US20140292090A1 (en) 2011-12-09 2014-10-02 Carlos Cordeiro Implementing wireless power transfer with 60 ghz mmwave communication
WO2013089485A1 (en) 2011-12-15 2013-06-20 Samsung Electronics Co., Ltd. Apparatus and method for transmitting wireless power
KR101951358B1 (en) 2011-12-15 2019-02-22 삼성전자주식회사 Wireless power transmitter, wireless power receiver and method for controlling each thereof
US9743357B2 (en) 2011-12-16 2017-08-22 Joseph Akwo Tabe Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception
EP2795717B1 (en) 2011-12-22 2019-08-28 CommScope Technologies LLC Capacitive blind-mate module interconnection
KR101337437B1 (en) 2011-12-26 2013-12-06 고려대학교 산학협력단 Charge pumping apparatus using optimum power point tracking and Method thereof
KR101667318B1 (en) 2011-12-27 2016-10-18 쥬코쿠 덴료쿠 가부시키 가이샤 Wireless power transfer system, transmission device, and controlling method of wireless power transfer system
US9337943B2 (en) 2011-12-28 2016-05-10 Lutron Electronics Co., Inc. Load control system having a broadcast controller with a diverse wireless communication system
US9417677B2 (en) 2011-12-29 2016-08-16 Blackberry Limited Power supply management for portable electronic devices
EP2798887B1 (en) 2011-12-30 2017-10-04 Robert Bosch GmbH Low cost proximity pairing mechanism in wireless personal area networks
US8831528B2 (en) 2012-01-04 2014-09-09 Futurewei Technologies, Inc. SAR control using capacitive sensor and transmission duty cycle control in a wireless device
WO2013102908A1 (en) 2012-01-08 2013-07-11 Powermat Technologies Ltd System and method for providing and controlling inductive power charging
US9508488B2 (en) 2012-01-10 2016-11-29 Samsung Electronics Co., Ltd. Resonant apparatus for wireless power transfer
GB201200638D0 (en) 2012-01-13 2012-02-29 Sarantel Ltd An antenna assembly
WO2013112979A1 (en) 2012-01-26 2013-08-01 Alivecor, Inc. Ultrasonic digital communication of biological parameters
US8994224B2 (en) 2012-01-27 2015-03-31 Building Materials Investment Corporation Solar roof shingles and underlayment with wireless power transfer
JP2013162624A (en) 2012-02-03 2013-08-19 Sharp Corp Power supply system
WO2013114378A1 (en) 2012-02-05 2013-08-08 Humavox Ltd. Remote charging system
US20150015182A1 (en) 2012-02-07 2015-01-15 Puck Charger Systems Pty Ltd System and method for charging mobile devices at a venue
CN102542768B (en) 2012-02-10 2013-10-09 华为终端有限公司 Radio frequency equipment pairing method and system, and radio frequency equipment
US9225203B2 (en) 2012-02-15 2015-12-29 Snu R&Db Foundation Method, system and computer-readable recording medium for transferring wireless power by using antennas with high orders of spherical modes
US8947308B2 (en) 2012-02-17 2015-02-03 Skycross, Inc. Method and apparatus for controlling an antenna
AU2013221336B2 (en) 2012-02-17 2017-08-17 University Of Virginia D/B/A University Of Virginia Licensing & Ventures Group Energy harvesting and control for sensor node
US9209523B2 (en) 2012-02-24 2015-12-08 Futurewei Technologies, Inc. Apparatus and method for modular multi-sector active antenna system
KR20130098546A (en) 2012-02-28 2013-09-05 삼성전자주식회사 Method and devices for transmitting signal from a plurality of wireless power receivers to wireless power provider
KR102121919B1 (en) 2012-02-29 2020-06-11 한국전자통신연구원 Apparatus for transferring power
KR101712041B1 (en) 2012-02-29 2017-03-03 쥬코쿠 덴료쿠 가부시키 가이샤 Wireless power transfer system, power transmission device, power receiving device, and control method of wireless power transfer system
JP5844662B2 (en) 2012-03-07 2016-01-20 日立マクセル株式会社 Non-contact power transmission system and non-contact power transmission method
US9397522B2 (en) 2012-03-08 2016-07-19 Ricoh Co., Ltd. Method and system to control ambient RF energy for wireless devices
JP5909700B2 (en) 2012-03-09 2016-04-27 パナソニックIpマネジメント株式会社 Metal detection method, metal detection device, and metal detection method and non-contact power supply device of non-contact power supply device
JP2013191913A (en) 2012-03-12 2013-09-26 Renesas Electronics Corp Wireless charging circuit, wireless charging system, and semiconductor device
US20130271069A1 (en) 2012-03-21 2013-10-17 Mojo Mobility, Inc. Systems and methods for wireless power transfer
JP2013198322A (en) 2012-03-21 2013-09-30 Tokai Rika Co Ltd On-vehicle non-contact charging system
US9722447B2 (en) 2012-03-21 2017-08-01 Mojo Mobility, Inc. System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
CN103324495A (en) 2012-03-23 2013-09-25 鸿富锦精密工业(深圳)有限公司 Method and system for data center server boot management
KR20130108027A (en) 2012-03-23 2013-10-02 주식회사 엘지화학 Method for preparing substrate for organic electronic device
WO2013142866A1 (en) 2012-03-23 2013-09-26 Hevo Inc. Systems and mobile application for electric wireless charging stations
US9231655B2 (en) 2012-04-06 2016-01-05 Broadcom Corporation System and method for power control in a physical layer device
KR101924341B1 (en) 2012-04-09 2018-12-03 삼성전자주식회사 Apparatus and method for controlling wireless power transmission
KR101428000B1 (en) 2012-04-20 2014-08-08 전자부품연구원 Method and system for multi contactless charging
US9755437B2 (en) 2012-04-25 2017-09-05 Nokia Technologies Oy Method, apparatus, and computer program product for wireless charging detection
KR101319731B1 (en) 2012-04-26 2013-10-17 삼성전기주식회사 Circuit for controlling switching time of transmitting and receiving signal in wireless communication system
US9391674B2 (en) 2012-04-26 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power feeding system and power feeding method
US9143379B1 (en) 2012-05-01 2015-09-22 Time Warner Cable Enterprises Llc Power fluctuation detection and analysis
KR101844226B1 (en) 2012-05-14 2018-05-14 엘지전자 주식회사 Wireless charger which can display charable area and controlling method thereof
JP2013243431A (en) 2012-05-17 2013-12-05 Equos Research Co Ltd Antenna coil
US9218031B2 (en) 2012-05-18 2015-12-22 Dell Products, Lp System and method for providing wireless power feedback in a wireless power delivery system
US9000987B2 (en) 2012-05-18 2015-04-07 Blackberry Limited Compact multi-band antenna for worldwide mobile handset applications
US9620964B2 (en) 2012-05-23 2017-04-11 Pioneer Corporation Power transmission system and method, power transmitting apparatus and power receiving apparatus
NZ702514A (en) 2012-05-29 2016-11-25 Humavox Ltd Wireless charging device
US9806420B2 (en) 2012-06-12 2017-10-31 The United States Of America As Represented By Secretary Of The Navy Near field tunable parasitic antenna
US20130339108A1 (en) 2012-06-14 2013-12-19 Sap Ag Managing demand charge tariffs for electric power
KR101920236B1 (en) 2012-06-19 2018-11-20 삼성전자주식회사 Method for charging battery and an electronic device thereof
US9185501B2 (en) 2012-06-20 2015-11-10 Broadcom Corporation Container-located information transfer module
US9356774B2 (en) 2012-06-22 2016-05-31 Blackberry Limited Apparatus and associated method for providing communication bandwidth in communication system
CN103493550B (en) 2012-06-25 2017-08-11 华为终端有限公司 A kind of method and Wi Fi equipment of setting communication pattern
JP5999693B2 (en) 2012-06-29 2016-09-28 株式会社Ihiエアロスペース Rectena
US20140006017A1 (en) 2012-06-29 2014-01-02 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for generating obfuscated speech signal
US9509177B2 (en) 2012-06-29 2016-11-29 Broadcom Corporation Portable device capable of wireless power reception and transmission
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US20150222126A1 (en) 2013-05-10 2015-08-06 Energous External or internal receiver for smart mobile devices
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US20150340903A1 (en) 2014-05-23 2015-11-26 Energous Corporation Systems and Methods for Power Payment Based on Proximity
US20160013677A1 (en) 2014-07-14 2016-01-14 Energous Corporation System and Method for Enabling Automatic Charging Schedules in a Wireless Power Network to One or More Devices
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US20150077037A1 (en) 2013-05-10 2015-03-19 DvineWave Inc. Wireless power transmission utilizing alternate energy sources
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US20150001949A1 (en) 2013-07-01 2015-01-01 DvineWave Inc. Hybrid charging method for wireless power transmission based on pocket-forming
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US20150041459A1 (en) 2013-08-06 2015-02-12 DvineWave Inc. Wireless electrical temperature regulator for food and beverages
US20150028694A1 (en) 2013-07-25 2015-01-29 DvineWave Inc. Power couplings in transmitters for wireless power transmission
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US20150076917A1 (en) 2013-05-10 2015-03-19 DvineWave Inc. Wireless power supply for logistic services
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US20150326024A1 (en) 2014-05-07 2015-11-12 Energous Corporation Systems and Methods for Device and Power Receiver Pairing
US20150155738A1 (en) 2013-05-10 2015-06-04 DvineWave Inc. Wireless power distribution system for law enforcement equipment
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US20160012695A1 (en) 2014-07-14 2016-01-14 Energous Corporation Off-Premises Alert System and Method for Wireless Power Receivers in a Wireless Power Network
US9876380B1 (en) 2013-09-13 2018-01-23 Energous Corporation Secured wireless power distribution system
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US20150076927A1 (en) 2013-05-10 2015-03-19 DvineWave Inc. Wireless power supply for rescue devices
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US20150022008A1 (en) 2013-05-10 2015-01-22 DvineWave Inc. Home base station for multiple room coverage with multiple transmitters
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US20140354221A1 (en) 2013-05-10 2014-12-04 DvineWave Inc. Antenna arrangement for pocket-forming
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US20140368048A1 (en) 2013-05-10 2014-12-18 DvineWave Inc. Wireless charging with reflectors
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US20150015192A1 (en) 2013-07-11 2015-01-15 DvineWave Inc. Wireless tracking pocket-forming
US9450449B1 (en) 2012-07-06 2016-09-20 Energous Corporation Antenna arrangement for pocket-forming
US20150326143A1 (en) 2014-05-07 2015-11-12 Energous Corporation Synchronous Rectifier Design for Wireless Power Receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US20150042265A1 (en) 2013-05-10 2015-02-12 DvineWave Inc. Wireless powering of electronic devices
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US20150162751A1 (en) 2013-05-10 2015-06-11 DvineWave Inc. Wireless charging of clothing and smart fabrics
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US20150022010A1 (en) 2013-05-10 2015-01-22 DvineWave Inc. Wireless charging and powering of electronic sensors in a vehicle
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US20150077036A1 (en) 2013-05-10 2015-03-19 DvineWave Inc. Wireless power distribution system for military applications
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US20150130285A1 (en) 2013-05-10 2015-05-14 DvineWave Inc. Portable transmitter for wireless power transmission
US20140375253A1 (en) 2013-06-24 2014-12-25 DvineWave Inc. Methodology for multiple pocket-forming
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US20150102764A1 (en) 2013-05-10 2015-04-16 DvineWave Inc. Wireless charging methods and systems for game controllers, based on pocket-forming
US20150326072A1 (en) 2014-05-07 2015-11-12 Energous Corporation Boost-Charger-Boost System for Enhanced Power Delivery
US20150102769A1 (en) 2013-05-10 2015-04-16 DvineWave Inc. Wireless charging of tools using a toolbox transmitter
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9130397B2 (en) 2013-05-10 2015-09-08 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US20140354063A1 (en) 2013-05-10 2014-12-04 DvineWave Inc. Tracking surface for determining optimal charging position
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US20180048178A1 (en) 2013-06-25 2018-02-15 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
KR101950688B1 (en) 2012-07-09 2019-02-21 삼성전자주식회사 Wireless power transmitter and method for controlling thereof
US9419476B2 (en) 2012-07-10 2016-08-16 Farrokh Mohamadi Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system
US9870859B2 (en) 2012-07-15 2018-01-16 Access Business Group International Llc Variable mode wireless power supply systems
US8818444B2 (en) 2012-07-20 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Method and system for providing wireless base station radio with non-disruptive service power class switching
US9302594B2 (en) 2012-07-31 2016-04-05 Qualcomm Incorporated Selective communication based on distance from a plurality of electric vehicle wireless charging stations in a facility
WO2014021636A1 (en) 2012-07-31 2014-02-06 인텔렉추얼디스커버리 주식회사 Wireless power transmission network and wireless power transmission method
US9214730B2 (en) 2012-07-31 2015-12-15 Cambium Networks Limited Patch antenna
US8933902B2 (en) 2012-08-13 2015-01-13 Htc Corporation Touch panel structure, touch and display panel structure, and integrated touch display panel structure having antenna pattern and method of forming touch panel having antenna pattern
US9154189B2 (en) 2012-08-17 2015-10-06 Qualcomm Incorporated Wireless power system with capacitive proximity sensing
KR102086667B1 (en) 2012-08-23 2020-03-10 삼성전자 주식회사 Method and apparatus for wireless charging of user device
US9859956B2 (en) 2012-08-24 2018-01-02 Qualcomm Incorporated Power supply control in wireless power transfer systems
KR20140031780A (en) 2012-09-05 2014-03-13 삼성전자주식회사 Wireless power transmitter for excluding cross connected wireless power receiver and method for controlling thereof
US9722448B2 (en) 2012-09-07 2017-08-01 Qualcomm Incorporated Protection device and method for power transmitter
US9276440B2 (en) 2012-09-07 2016-03-01 WIPQTUS Inc. Multi-mode multi-coupling multi-protocol ubiquitous wireless power transmitter
US9912166B2 (en) 2012-09-11 2018-03-06 Access Business Group International Llc Wireless power control
JP5695619B2 (en) 2012-09-19 2015-04-08 アンリツ株式会社 Test system and test method
US9408147B2 (en) 2012-09-24 2016-08-02 Broadcom Corporation Enhanced rate physical layer for Bluetooth™ low energy
JP6008672B2 (en) 2012-09-26 2016-10-19 ローム株式会社 Wireless power supply / reception device, wireless power reception device, and wireless power supply device
US20140091636A1 (en) 2012-10-02 2014-04-03 Witricity Corporation Wireless power transfer
JP2014075927A (en) 2012-10-04 2014-04-24 Sanyo Electric Co Ltd Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method
JP6053439B2 (en) 2012-10-05 2016-12-27 キヤノン株式会社 Power supply apparatus and program
WO2014057343A1 (en) 2012-10-11 2014-04-17 Powermat Technologies Ltd. Inductive power transmission system and method for concurrently transmitting digital messages
US20140104157A1 (en) 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
KR101807899B1 (en) 2012-10-19 2017-12-11 삼성전자주식회사 Wireless power transmitter, wireless power receiver and method for permitting wireless power receiver of wireless power transmitter in wireless power network
KR101807335B1 (en) 2012-10-19 2018-01-10 삼성전자주식회사 Wireless power receiver and method for setting a sleep mode of the wireless power receiver in wireless power network
GB2510318A (en) 2012-10-24 2014-08-06 Microsoft Corp Antenna device with reduced specific absorption rate (SAR) characteristics
US20140118140A1 (en) 2012-10-25 2014-05-01 David Amis Methods and systems for requesting the aid of security volunteers using a security network
JP2014112063A (en) 2012-10-31 2014-06-19 Nissan Motor Co Ltd Non-contact power supply device
US9056552B2 (en) 2012-10-31 2015-06-16 GM Global Technology Operations LLC Method and system for charging a plug-in electric vehicle
US9768643B2 (en) 2012-11-02 2017-09-19 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system capable of continuing power transmission while suppressing heatup of foreign objects
CN102903746B (en) 2012-11-07 2015-06-03 东南大学 High-current-density lateral ultra-thin insulated gate bipolar transistor
KR20140059492A (en) 2012-11-08 2014-05-16 삼성전자주식회사 Apparatus and method for outputting a location of a wireless charging device in a portabil terminal
US10367380B2 (en) 2012-11-09 2019-07-30 California Institute Of Technology Smart RF lensing: efficient, dynamic and mobile wireless power transfer
US9774277B2 (en) 2012-11-13 2017-09-26 The Board Of Trustees Of The Leland Stanford Junior University Energy harvesting
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US20140141838A1 (en) 2012-11-16 2014-05-22 UNU Electronics Inc. Mobile device case with interchangeable display
KR101967340B1 (en) 2012-11-20 2019-08-13 삼성전자주식회사 Wireless power receiver
US9276329B2 (en) 2012-11-22 2016-03-01 Commscope Technologies Llc Ultra-wideband dual-band cellular basestation antenna
US9362776B2 (en) 2012-11-27 2016-06-07 Qualcomm Incorporated Wireless charging systems and methods
US8917210B2 (en) 2012-11-27 2014-12-23 International Business Machines Corporation Package structures to improve on-chip antenna performance
US9608454B2 (en) 2012-12-03 2017-03-28 WIPQTUS Inc. Wireless power system with a self-regulating wireless power receiver
KR102016688B1 (en) 2012-12-10 2019-09-02 한국전자통신연구원 Apparatus for converting energy
WO2014091274A1 (en) 2012-12-10 2014-06-19 Intel Corporation Modular antenna array with rf and baseband beamforming
US9831705B2 (en) 2012-12-12 2017-11-28 Qualcomm Incorporated Resolving communcations in a wireless power system with co-located transmitters
US9496744B2 (en) 2012-12-20 2016-11-15 Intel Corporation Wireless charging optimization utilizing an NFC module that detects induced current and provides an indication of induced current
EP2747195B1 (en) 2012-12-21 2017-02-08 Stichting IMEC Nederland Antenna arrangement for wireless powering
TWM456517U (en) 2012-12-24 2013-07-01 Hon Hai Prec Ind Co Ltd Electronic wrist watch having wireless charging function
US10230267B2 (en) 2012-12-26 2019-03-12 Elwha Llc Ad-hoc wireless sensor package
KR101397668B1 (en) 2012-12-27 2014-05-23 전자부품연구원 A transmitting antenna and a transmitter for wireless power charging
KR102066531B1 (en) 2012-12-27 2020-03-02 전자부품연구원 In-band communication for wireless power transfer
US20140184163A1 (en) 2012-12-28 2014-07-03 Ripan Das Battery charge management for electronic device
US9735835B2 (en) 2012-12-28 2017-08-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Power transfer architecture with charging history
US20140183964A1 (en) 2012-12-28 2014-07-03 Broadcom Corporation Power Transmitting Device Having Power Theft Detection and Prevention
KR20140089038A (en) 2013-01-02 2014-07-14 주식회사 케이티 Method and system of power demand management in charging station for electric vehicle
US20140191568A1 (en) 2013-01-04 2014-07-10 Mojo Mobility, Inc. System and method for powering or charging multiple receivers wirelessly with a power transmitter
US20140194095A1 (en) 2013-01-06 2014-07-10 Wavemarket, Inc. System and method for message identification and notification
US20140197691A1 (en) 2013-01-14 2014-07-17 Mitsubishi Electric Research Laboratories, Inc Wireless Energy Transfer for Misaligned Resonators
US9304042B2 (en) 2013-01-18 2016-04-05 Delphi Technologies, Inc. Foreign object detection system and method suitable for source resonator of wireless energy transfer system
US9197095B2 (en) 2013-01-24 2015-11-24 Electronics And Telecommunications Research Institute Wireless power charging apparatus and method of charging the apparatus
JP6128861B2 (en) 2013-01-29 2017-05-17 キヤノン株式会社 Power supply apparatus, power supply method, and program
US9270344B2 (en) 2013-02-01 2016-02-23 Creating Revolutions, LLC Combination process interaction
US9553473B2 (en) 2013-02-04 2017-01-24 Ossia Inc. Systems and methods for optimally delivering pulsed wireless power
US9923621B2 (en) 2013-02-16 2018-03-20 Cable Television Laboratories, Inc. Multiple-input multiple-output (MIMO) communication system
GB201302749D0 (en) 2013-02-18 2013-04-03 Ento July Maurice Universal power port
BR112015020236A2 (en) 2013-02-22 2017-07-18 Ossia Inc method and apparatus for focused data communication
CA2902796C (en) 2013-02-28 2022-08-16 Powermat Technologies Ltd. Systems and methods for managing a distributed wireless power transfer network for electrical devices
US9406220B2 (en) 2013-03-04 2016-08-02 Hello Inc. Telemetry system with tracking receiver devices
US20140249994A1 (en) 2013-03-04 2014-09-04 Hello Inc. Wearable device with unique user ID and telemetry system for payments
US20140246416A1 (en) 2013-03-04 2014-09-04 Black & Decker Inc. Electrically heated garment
JP6071654B2 (en) 2013-03-06 2017-02-01 株式会社東芝 Coil, power receiving device, and power transmitting device
WO2014197048A2 (en) 2013-03-11 2014-12-11 Massachusetts Institute Of Technology Superconducting three-terminal device and logic gates
US10468914B2 (en) 2013-03-11 2019-11-05 Robert Bosch Gmbh Contactless power transfer system
US9083452B2 (en) 2013-03-13 2015-07-14 Qualcomm, Incorporated Near-field equivalent source representation for SAR estimation
US10020833B2 (en) 2013-03-14 2018-07-10 Bby Solutions, Inc. Integrated networking equipment and diversity antenna in light bulb
EP3444744B1 (en) 2013-03-14 2022-11-16 IMPINJ, Inc. Powering rfid tags using multiple rfid readers
US9983616B2 (en) 2013-03-15 2018-05-29 uBeam Inc. Transducer clock signal distribution
US9707593B2 (en) 2013-03-15 2017-07-18 uBeam Inc. Ultrasonic transducer
US9242272B2 (en) 2013-03-15 2016-01-26 uBeam Inc. Ultrasonic driver
US9278375B2 (en) 2013-03-15 2016-03-08 uBeam Inc. Ultrasonic transducer control
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
US9559544B2 (en) 2013-03-15 2017-01-31 Jay Marketing Associates, Inc. Wireless interrogation and wireless charging of electronic devices
US9318915B2 (en) 2013-03-20 2016-04-19 Halo2Cloud Llc Portable power charger with wireless and direct charging connectivity
EP2787591A3 (en) 2013-04-05 2015-03-25 Powermat Technologies Ltd. System and Method for Determining Proximity
US9520748B2 (en) 2013-04-17 2016-12-13 El Wha Llc Systems and methods for providing wireless power to a power-receiving device, and related power-receiving devices
KR102142558B1 (en) 2013-04-17 2020-08-07 인텔렉추얼디스커버리 주식회사 Apparatus and method for transmitting wireless power
US9532748B2 (en) 2013-04-22 2017-01-03 Personal Neuro Devices Inc. Methods and devices for brain activity monitoring supporting mental state development and training
US20140325218A1 (en) 2013-04-26 2014-10-30 Toyota Jidosha Kabushiki Kaisha Wireless Charging System Using Secure Wireless Charging Protocols
US9543648B2 (en) 2013-04-27 2017-01-10 Commsky Technologies, Inc. Switchable antennas for wireless applications
US20140327320A1 (en) 2013-05-01 2014-11-06 Witricity Corporation Wireless energy transfer
KR102047963B1 (en) 2013-05-02 2019-11-25 한국전자통신연구원 Wireless charge apparatus and wirelss charge method
KR101787796B1 (en) 2013-05-03 2017-10-18 삼성전자주식회사 Wireless power transmitter, wireless power receiver and method for controlling each thereof
US9350194B2 (en) 2013-05-08 2016-05-24 Broadcom Corporation Limiting wireless power receiver voltage
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US20150318729A1 (en) 2013-05-10 2015-11-05 Energous Corporation Wireless sound tracking pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US20150333573A1 (en) 2013-05-10 2015-11-19 Energous Corporation Wireless sound power distribution system for law enforcement equipment
US20160056635A1 (en) 2014-08-21 2016-02-25 Energous Corporation Systems and Methods for Tracking the Status and Usage Information of a Wireless Power Transmission System
US20140368161A1 (en) 2013-06-17 2014-12-18 DvineWave Inc. Battery life of portable electronic devices
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
TWI474573B (en) 2013-05-14 2015-02-21 Richtek Technology Corp Wireless Power Receiver and Its Rectifier Modulation Circuit
DE102014208991A1 (en) 2013-05-15 2014-11-20 Ford Global Technologies, Llc Security system for wireless vehicle charging device
JP6087740B2 (en) 2013-05-20 2017-03-01 Necトーキン株式会社 Communication device
FR3006505B1 (en) 2013-05-31 2017-02-10 Commissariat Energie Atomique DEVICE FOR DISTURBING ELECTROMAGNETIC WAVE PROPAGATION AND METHOD FOR MANUFACTURING THE SAME
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US20150333528A1 (en) 2013-06-12 2015-11-19 Energous Corporation Wireless sound powered house
US9859719B2 (en) 2013-06-17 2018-01-02 Nokia Technologies Oy Method and apparatus for wireless power transfer
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
WO2014202118A1 (en) 2013-06-18 2014-12-24 Telefonaktiebolaget L M Ericsson (Publ) Inverted f-antennas at a wireless communication node
RU2534020C1 (en) 2013-06-19 2014-11-27 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Wireless charging system for mobile devices
KR102202935B1 (en) 2013-06-21 2021-01-14 삼성전자 주식회사 A method and apparatus for energy efficient signal transmission in massive multi-antenna wireless communication systems
KR102005781B1 (en) 2013-06-27 2019-07-31 한국전자통신연구원 Device for transferring wireless power using ultrasound
KR102105130B1 (en) 2013-07-05 2020-04-28 삼성전자주식회사 Apparatus and method for matching harmonics
US9088305B2 (en) 2013-07-08 2015-07-21 Blackberry Limited Docking station connectivity monitor/controller
US20150022194A1 (en) 2013-07-18 2015-01-22 Blackberry Limited Magnetometer for aligning a portable device on a planar charging surface of an inductive charging unit
US20150023204A1 (en) 2013-07-19 2015-01-22 General Electric Company Systems and methods for combined wireless power charging and network pairing
JP6276532B2 (en) 2013-07-29 2018-02-07 キヤノン株式会社 Power receiving device, power transmitting device, control method thereof, and program
JP5870973B2 (en) 2013-07-29 2016-03-01 株式会社安川電機 Linear motor
JP6164687B2 (en) 2013-07-30 2017-07-19 みこらった株式会社 Electric vacuum cleaner
JP6182010B2 (en) 2013-07-31 2017-08-16 キヤノン株式会社 Control device, control method, and program
KR102010523B1 (en) 2013-07-31 2019-08-13 삼성전자주식회사 Antenna device and electronic device habing it
CN104347915B (en) 2013-07-31 2019-06-18 深圳光启创新技术有限公司 Space angle filter and antenna
KR102017491B1 (en) 2013-08-01 2019-09-04 삼성전자주식회사 Antenna device and electronic device with the same
US9432480B2 (en) 2013-08-01 2016-08-30 Google Inc. Magnetic induction network device
US9407335B2 (en) 2013-08-06 2016-08-02 Google Technology Holdings LLC Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks
GB2517907B (en) 2013-08-09 2018-04-11 Drayson Tech Europe Ltd RF Energy Harvester
KR102126713B1 (en) 2013-08-13 2020-06-25 삼성전자주식회사 Controlling method and apparatus of wireless charging in wireless power transfer system
DE102013216953A1 (en) 2013-08-26 2015-02-26 Robert Bosch Gmbh Inductive energy transfer device and method for operating an inductive energy transfer device
US9409490B2 (en) 2013-09-27 2016-08-09 Qualcomm Incorporated Device alignment in inductive power transfer systems
DE102013219528A1 (en) 2013-09-27 2015-04-02 Siemens Aktiengesellschaft Charging an electrical energy storage of an electrically driven vehicle
US9754139B2 (en) 2013-09-30 2017-09-05 Ricoh Co., Ltd Real-time wireless power transfer control for passive backscattering devices
CA2926811C (en) 2013-10-07 2023-03-21 Google Inc. Smart-home hazard detector providing context specific features and/or pre-alarm configurations
GB2519079B (en) 2013-10-08 2020-11-04 Nokia Technologies Oy Method and apparatus for wireless power transfer
US9832545B2 (en) 2013-10-11 2017-11-28 Northrop Grumman Systems Corporation System and method for providing a distributed directional aperture
US10263342B2 (en) 2013-10-15 2019-04-16 Northrop Grumman Systems Corporation Reflectarray antenna system
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US9473110B2 (en) 2013-10-22 2016-10-18 Nxp B.V. Antenna resonance frequency control using an active rectifier or a driver stage
US9401977B1 (en) 2013-10-28 2016-07-26 David Curtis Gaw Remote sensing device, system, and method utilizing smartphone hardware components
US20150116162A1 (en) 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining a frequency offset based on a differential magnitude
US9270130B2 (en) 2013-10-31 2016-02-23 Honda Motor Co., Ltd. Method and system to mount a portable electronic device to wirelessly charge
KR20150050027A (en) 2013-10-31 2015-05-08 삼성전기주식회사 Wireless charging device and controlling method thereof
CN104640187B (en) 2013-11-07 2019-04-05 中兴通讯股份有限公司 Transmission power control method and device
US9385560B2 (en) 2013-11-12 2016-07-05 Qualcomm Incorporated Methods, devices and systems for self charging sensors
WO2015077730A1 (en) 2013-11-22 2015-05-28 California Institute Of Technology Generator unit for wireless power transfer
US9622720B2 (en) 2013-11-27 2017-04-18 Clear Guide Medical, Inc. Ultrasound system with stereo image guidance or tracking
JP6369304B2 (en) 2013-11-28 2018-08-08 Tdk株式会社 Wireless power transmission system
US9234757B2 (en) 2013-11-29 2016-01-12 Fedex Corporate Services, Inc. Determining node location using a variable power characteristic of a node in a wireless node network
US9153998B2 (en) 2013-12-02 2015-10-06 Qualcomm Incorporated Wireless power orthogonal polarization antenna array
WO2015095182A1 (en) 2013-12-16 2015-06-25 The Regents Of The University Of California Wireless wearable big data brain machine interface
US20150171512A1 (en) 2013-12-17 2015-06-18 Elwha Llc Sub-nyquist holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields
KR102280579B1 (en) 2013-12-19 2021-07-22 삼성전자주식회사 Charge circuit, Charge system and wireless power receiver
KR102012972B1 (en) 2013-12-20 2019-08-23 주식회사 위츠 Apparatus for transmitting and receiving wireless power
US9176188B2 (en) 2013-12-20 2015-11-03 Texas Instruments Incorporated Waveform calibration using built in self test mechanism
US9420178B2 (en) 2013-12-20 2016-08-16 Qualcomm Incorporated Thermal and power management
JP5911608B2 (en) 2013-12-26 2016-04-27 三菱電機エンジニアリング株式会社 Resonant transmission power supply apparatus and resonant transmission power supply system
JP6223471B2 (en) 2013-12-26 2017-11-01 三菱電機エンジニアリング株式会社 Resonant transmission power supply apparatus and resonant transmission power supply system
JP2015128349A (en) 2013-12-27 2015-07-09 キヤノン株式会社 Power transmission device, radio power supply system, control method and program
US9843214B2 (en) 2013-12-28 2017-12-12 Intel Corporation Wireless charging device for wearable electronic device
KR20150077678A (en) 2013-12-30 2015-07-08 전자부품연구원 Wireless power transmitting method and wireless power transmitter performing the same
WO2015102454A1 (en) 2014-01-03 2015-07-09 주식회사 윌러스표준기술연구소 Wireless power transmission apparatus and wireless power transmission method
KR20140023409A (en) 2014-01-06 2014-02-26 엘지이노텍 주식회사 Wireless charging system and method of cotnrolligng the same
US9813997B2 (en) 2014-01-10 2017-11-07 Microsoft Technology Licensing, Llc Antenna coupling for sensing and dynamic transmission
US20150199665A1 (en) 2014-01-10 2015-07-16 Htc Corporation Method of Payment for Wireless Charging Service
US10181877B2 (en) 2014-01-21 2019-01-15 Ossia Inc. Systems and methods for wireless power and communication
US9806558B2 (en) 2014-01-29 2017-10-31 Sk Planet Co., Ltd. Wireless charging equipment, terminal, wireless charging system comprising the same, control method thereof and non-transitory computer readable storage medium having computer program recorded thereon
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US20150236877A1 (en) 2014-02-14 2015-08-20 Mediatek Inc. Methods and apparatus for envelope tracking system
US9995777B2 (en) 2014-02-14 2018-06-12 Qualcomm Incorporated Device detection through dynamic impedance change measurement
KR102363633B1 (en) 2014-02-20 2022-02-17 삼성전자주식회사 Method for controlling wireless power transmitter and wireless power transmitter
US9345050B2 (en) 2014-02-21 2016-05-17 Sony Corporation NFC collision avoidance with controllable NFC transmission delay timing
EP3111530B1 (en) 2014-02-23 2022-04-13 Apple Inc. Impedance matching for inductive power transfer systems
US20150244187A1 (en) 2014-02-26 2015-08-27 Kabushiki Kaisha Toshiba Electronic device
US9847667B2 (en) 2014-02-26 2017-12-19 Htc Corporation Method of handling wireless charging authentication
US10283995B2 (en) 2014-02-28 2019-05-07 L'oreal Charge current monitoring or control in a resonance-tuned inductive charger
US9923381B2 (en) 2014-03-04 2018-03-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonant tuning through rectifier time shifting
US9559605B2 (en) 2014-03-05 2017-01-31 Ricoh Co., Ltd. System for ambient energy harvesting
KR101537896B1 (en) 2014-03-14 2015-07-20 성균관대학교산학협력단 Active rectifier for reducing reverse leakage current and wireless power receiver using the same
US20150263548A1 (en) 2014-03-14 2015-09-17 Emily Cooper Systems and methods for wireless power distribution allocation
US20150262465A1 (en) 2014-03-14 2015-09-17 Wilbert Pritchett Child Proximity Alarm Assembly
US9772401B2 (en) 2014-03-17 2017-09-26 Qualcomm Incorporated Systems, methods, and apparatus for radar-based detection of objects in a predetermined space
JP2015185946A (en) 2014-03-20 2015-10-22 キヤノン株式会社 antenna device
US9583838B2 (en) 2014-03-20 2017-02-28 Apple Inc. Electronic device with indirectly fed slot antennas
US9627919B2 (en) 2014-03-27 2017-04-18 Ultrapower Llc Electro-acoustic device charging and power supply
US9449200B2 (en) 2014-03-28 2016-09-20 Intel Corporation Methods, systems and apparatus to secure devices via physical and/or virtual locking
EP3132497A4 (en) 2014-04-18 2018-04-18 TransSiP UK, Ltd. Metamaterial substrate for circuit design
US9319844B2 (en) 2014-04-25 2016-04-19 Aruba Networks, Inc. Determining location based on both a detected location and a predicted location
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
WO2015175572A1 (en) 2014-05-12 2015-11-19 Micron Devices Llc Remote rf power system with low profile transmitting antenna
CN203826555U (en) 2014-05-15 2014-09-10 重庆大学 Dual-band micro strip antenna based on split resonance ring
US10305176B2 (en) 2014-05-20 2019-05-28 University Of North Dakota Conformal antennas for unmanned and piloted vehicles and method of antenna operation
KR101891426B1 (en) 2014-05-20 2018-08-24 후지쯔 가부시끼가이샤 Wireless power transmission control method and wireless power transmission system
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9443112B2 (en) 2014-05-23 2016-09-13 Bank Of America Corporation Secure media container
US9882250B2 (en) 2014-05-30 2018-01-30 Duracell U.S. Operations, Inc. Indicator circuit decoupled from a ground plane
US9666915B2 (en) 2014-06-11 2017-05-30 Enovate Medical, Llc Transfer priority for a wireless transfer station
US10600070B2 (en) 2014-07-02 2020-03-24 Sk Planet Co., Ltd. Service providing device, terminal, wireless charging system comprising the same, control method thereof and computer readable medium having computer program recorded therefor
CN104090265B (en) 2014-07-04 2016-10-05 北京智谷睿拓技术服务有限公司 Localization method and equipment
WO2016007594A1 (en) 2014-07-08 2016-01-14 Witricity Corporation Resonators for wireless power transfer systems
US10090596B2 (en) 2014-07-10 2018-10-02 Google Llc Robust antenna configurations for wireless connectivity of smart home devices
EP3166682B1 (en) 2014-07-10 2021-01-06 Stimwave Technologies Incorporated Circuit for an implantable device
US10224759B2 (en) 2014-07-15 2019-03-05 Qorvo Us, Inc. Radio frequency (RF) power harvesting circuit
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
WO2016019362A1 (en) 2014-07-31 2016-02-04 Ossia, Inc. Techniques for determining distance between radiating objects in multipath wireless power delivery environments
CN112510856A (en) 2014-08-12 2021-03-16 苹果公司 System and method for power transmission
US8897770B1 (en) 2014-08-18 2014-11-25 Sunlight Photonics Inc. Apparatus for distributed airborne wireless communications
CN111193330A (en) 2014-08-19 2020-05-22 加州理工学院 Recovery unit for wireless power transfer and method of generating DC power from RF waves
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
KR102400669B1 (en) 2014-08-25 2022-05-20 론프록스 코퍼레이션 Indoor position location using delayed scanned directional reflectors
US9929595B2 (en) 2014-08-25 2018-03-27 NuVolta Technologies Wireless power transfer system and method
US10141755B2 (en) 2014-09-09 2018-11-27 Halo International SEZC Ltd. Multi-functional portable power charger
US10559970B2 (en) 2014-09-16 2020-02-11 Qorvo Us, Inc. Method for wireless charging power control
US9711999B2 (en) 2014-09-19 2017-07-18 Qorvo Us, Inc. Antenna array calibration for wireless charging
US9564773B2 (en) 2014-09-24 2017-02-07 Intel IP Corportation Methods and systems for optimizing location-based wireless charging
KR101640785B1 (en) 2014-09-25 2016-07-19 국방과학연구소 Wideband rectenna and rectifying apparatus for rectenna
US10090707B2 (en) 2014-09-25 2018-10-02 Supply, Inc. Wireless power transmission
US9407981B2 (en) 2014-10-17 2016-08-02 Apple Inc. Audio class-compliant charging accessories for wireless headphones and headsets
KR102349713B1 (en) 2014-10-20 2022-01-12 삼성전자주식회사 Operation Method of communication channel and Electronic device supporting the same
US9386610B2 (en) 2014-10-31 2016-07-05 Aruba Networks, Inc. Periodic high power beacon broadcasts
CN107636931B (en) 2014-11-05 2020-12-18 苹果公司 Inductive power receiver
US20160141908A1 (en) 2014-11-14 2016-05-19 Motorola Solutions, Inc Method and apparatus for efficiency compliance in wireless charging systems
CN107155384B (en) 2014-12-05 2021-01-05 三菱电机工程技术株式会社 Resonance type power transmission system, transmission device, and power supply position control system
US9871545B2 (en) 2014-12-05 2018-01-16 Microsoft Technology Licensing, Llc Selective specific absorption rate adjustment
US9882413B2 (en) * 2014-12-12 2018-01-30 Qualcomm Incorporated Wearable devices for wireless power transfer and communication
US10461420B2 (en) 2014-12-12 2019-10-29 The Boeing Company Switchable transmit and receive phased array antenna
US20160294225A1 (en) 2014-12-15 2016-10-06 PogoTec, Inc. Wireless power systems and methods suitable for charging wearable electronic devices
US9781683B2 (en) 2014-12-16 2017-10-03 Qualcomm Incorporated Determining transmit power limits using a combined specific absorption measurement for multiple transmitters
US20160181849A1 (en) 2014-12-22 2016-06-23 Qualcomm Incorporated System and method for thermal management in wireless charging devices
US9871298B2 (en) 2014-12-23 2018-01-16 Palo Alto Research Center Incorporated Rectifying circuit for multiband radio frequency (RF) energy harvesting
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9882398B2 (en) 2015-01-05 2018-01-30 Ossia Inc. Techniques for reducing human exposure to wireless energy in wireless power delivery environments
JP2016128765A (en) 2015-01-09 2016-07-14 富士通株式会社 Position information specification system
US20160238365A1 (en) 2015-01-14 2016-08-18 Barry Douglas Wixey Crown Molding Protractor
US9722452B2 (en) 2015-01-22 2017-08-01 Visteon Global Technologies, Inc. Integrating a wireless charging device with a human machine interface (HMI)
US20160380466A1 (en) 2015-02-03 2016-12-29 Intel Corporation Device dependent maximum coil current
US9819069B2 (en) 2015-02-11 2017-11-14 Google Inc. Multi-band antenna with a battery resonator
GB2558781B (en) 2015-02-13 2019-08-14 Cambium Networks Ltd Radio frequency connection arrangement
KR20160100755A (en) 2015-02-16 2016-08-24 엘지이노텍 주식회사 Wireless apparatus and method for transmitting power
KR20160102779A (en) 2015-02-23 2016-08-31 한국전자통신연구원 Wireless power transmission device, wireless power transmission system including thereof and wireless power transmission method thereof
US9634402B2 (en) 2015-03-09 2017-04-25 Trimble Inc. Polarization diversity in array antennas
US9620996B2 (en) 2015-04-10 2017-04-11 Ossia Inc. Wireless charging with multiple power receiving facilities on a wireless device
US9971015B2 (en) 2015-04-10 2018-05-15 Ossia Inc. Techniques for imaging wireless power delivery environments and tracking objects therein
US10559971B2 (en) 2015-04-10 2020-02-11 Ossia Inc. Wirelessly chargeable battery apparatus
US10459114B2 (en) 2015-05-18 2019-10-29 Lasermotive, Inc. Wireless power transmitter and receiver
US9979221B2 (en) 2015-06-24 2018-05-22 Verizon Patent And Licensing Inc. Contextual assistance for wireless charging
US10110046B1 (en) 2015-06-25 2018-10-23 Marvell International Ltd. Mobile to mobile wireless charging
US9673665B2 (en) 2015-06-30 2017-06-06 Ossia Inc. Energy delivery modulation in wireless power delivery environments
JP6632239B2 (en) 2015-07-22 2020-01-22 キヤノン株式会社 Electronic device capable of wireless communication, control method thereof, and program
KR20170011507A (en) 2015-07-23 2017-02-02 삼성전자주식회사 Operating method of an electronic device and electronic device supporting the same
US9793611B2 (en) 2015-08-03 2017-10-17 City University Of Hong Kong Antenna
KR102514140B1 (en) 2015-08-12 2023-03-27 삼성전자주식회사 Electronic device and method for controlling fan of the electronic device
US9749017B2 (en) 2015-08-13 2017-08-29 Golba Llc Wireless charging system
US9802504B2 (en) 2015-08-14 2017-10-31 Jaguar Land Rover Limited System and method for charging portable electronic devices within a vehicle
US9916485B1 (en) 2015-09-09 2018-03-13 Cpg Technologies, Llc Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium
US20170077733A1 (en) 2015-09-10 2017-03-16 Qualcomm Incorporated Wireless power transmitting unit using metal plates
JP6991143B2 (en) 2015-09-11 2022-01-12 ヤンク テクノロジーズ,インコーポレーテッド Wireless charging platform via 3D phased coil array
US9654168B2 (en) 2015-09-11 2017-05-16 Parallel Wireless, Inc. Antenna-integrated radio with wireless fronthaul
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10462689B2 (en) 2015-09-22 2019-10-29 Veniam, Inc. Systems and methods for monitoring a network of moving things
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10116145B2 (en) 2015-10-16 2018-10-30 uBeam Inc. Performance adjustment for wireless power transfer devices
US10181760B2 (en) 2015-10-19 2019-01-15 Ossia Inc. Techniques for authenticating devices in wireless power delivery environments
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
CA3041583A1 (en) 2015-10-29 2017-05-04 PogoTec, Inc. Hearing aid adapted for wireless power reception
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10389140B2 (en) 2015-11-13 2019-08-20 X Development Llc Wireless power near-field repeater system that includes metamaterial arrays to suppress far-field radiation and power loss
US9866039B2 (en) 2015-11-13 2018-01-09 X Development Llc Wireless power delivery over medium range distances using magnetic, and common and differential mode-electric, near-field coupling
KR102532366B1 (en) 2015-12-03 2023-05-15 삼성전자주식회사 Device for Performing Wireless Charging and Method thereof
US10222875B2 (en) 2015-12-11 2019-03-05 SomniQ, Inc. Apparatus, system, and methods for interfacing with a user and/or external apparatus by stationary state detection
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10186892B2 (en) 2015-12-24 2019-01-22 Energous Corporation Receiver device with antennas positioned in gaps
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
KR20170089668A (en) 2016-01-27 2017-08-04 엘지전자 주식회사 A watch-type mobile terminal comprising an antenna
US10011182B2 (en) 2016-03-24 2018-07-03 Ford Global Technologies, Llc Inductive charger alignment systems for vehicles
KR101846954B1 (en) 2016-06-13 2018-04-10 주식회사 맵스 Wireless power transmitting unit capable auto-tunning in response to impedance variance of load
EP3264597B1 (en) 2016-06-30 2020-08-26 Nxp B.V. Doherty amplifier circuits
CN106329116A (en) 2016-08-31 2017-01-11 武汉虹信通信技术有限责任公司 Small-scale LTE multi-array antenna
US10277043B2 (en) * 2016-09-23 2019-04-30 Apple Inc. Wireless charging mats for portable electronic devices
GB2556620A (en) 2016-09-27 2018-06-06 Zoneart Networks Ltd Antenna array
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
DE112017006442T5 (en) 2016-12-21 2019-09-19 Intel Corporation WIRELESS COMMUNICATION TECHNOLOGY, DEVICES AND METHOD
WO2018129281A1 (en) 2017-01-05 2018-07-12 Ohio State Innovation Foundation Systems and methods for wirelessly charging a hearing device
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10008777B1 (en) 2017-04-13 2018-06-26 Tekcem Method for automatically adjusting a tunable passive antenna and a tuning unit, and apparatus for radio communication using this method
US11038374B2 (en) 2017-04-18 2021-06-15 Infineon Technologies Austria Ag Flexible bridge amplifier for wireless power
US20180309314A1 (en) 2017-04-24 2018-10-25 Qualcomm Incorporated Wireless power transfer protection
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11283296B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Crossover inductor coil and assembly for wireless transmission
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
RU2658332C1 (en) 2017-08-04 2018-06-20 Самсунг Электроникс Ко., Лтд. Wireless power transmission system for a multi-path environment
US10574286B2 (en) 2017-09-01 2020-02-25 Qualcomm Incorporated High selectivity TDD RF front end
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US20190326782A1 (en) 2018-04-24 2019-10-24 Apple Inc. Wireless Charging System With Metallic Object Detection
US10742074B2 (en) 2018-06-15 2020-08-11 Lg Innotek Co., Ltd. Method and apparatus for controlling wireless power transmission
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11152820B2 (en) * 2018-10-05 2021-10-19 Douglas Weisband Charge sharing battery pack for telephone
US11482879B2 (en) * 2018-10-11 2022-10-25 Mpowerd Inc. Solar-powered charging devices
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11916405B2 (en) * 2019-01-02 2024-02-27 Ge Hybrid Technologies, Llc Wireless power transmission apparatus with multiple controllers
US11031827B2 (en) 2019-01-18 2021-06-08 Ossia Inc. Optimizing pairing of a wireless power transmission system with a wireless power receiver client
WO2020160015A1 (en) 2019-01-28 2020-08-06 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
EP3921945A1 (en) 2019-02-06 2021-12-15 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248160A1 (en) 2005-01-21 2016-08-25 Ruckus Wireless, Inc. Pattern shaping of rf emission patterns
KR100819604B1 (en) * 2005-07-27 2008-04-03 엘에스전선 주식회사 Wireless Charger Decreased in Variation of Charging Efficiency
US20100201202A1 (en) 2008-05-13 2010-08-12 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US20160204643A1 (en) * 2013-08-15 2016-07-14 Humavox Ltd. Wireless Charging Device
US20150380972A1 (en) 2014-06-27 2015-12-31 Andrew David Fort Devices and methods for charging medical devices
US20170005481A1 (en) * 2015-07-02 2017-01-05 Qualcomm Incorporated Controlling field distribution of a wireless power transmitter
US20180331581A1 (en) * 2015-12-24 2018-11-15 Energous Corporation Near-Field Antenna for Wireless Power Transmission with Four Coplanar Antenna Elements that Each Follows a Respective Meandering Pattern
KR20180114721A (en) * 2017-04-11 2018-10-19 엘지이노텍 주식회사 A wireless power module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4136738A4

Also Published As

Publication number Publication date
US20240079910A1 (en) 2024-03-07
CN115336138A (en) 2022-11-11
US11799324B2 (en) 2023-10-24
EP4136738A4 (en) 2024-04-10
EP4136738A1 (en) 2023-02-22
US20210320529A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US11799324B2 (en) Wireless-power transmitting device for creating a uniform near-field charging area
US12100971B2 (en) Systems and methods for determining a keep-out zone of a wireless power transmitter
US11539243B2 (en) Systems and methods for miniaturized antenna for wireless power transmissions
US10714984B2 (en) Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves
US11637456B2 (en) Near-field antennas for accumulating radio frequency energy at different respective segments included in one or more channels of a conductive plate
US10879740B2 (en) Electronic device with antenna elements that follow meandering patterns for receiving wireless power from a near-field antenna
US10211680B2 (en) Method for 3 dimensional pocket-forming
US20220171045A1 (en) Systems and methods for using one or more sensors to detect and classify objects in a keep-out zone of a wireless-power transmission field, and antennas with integrated sensor arrangements
US20220181916A1 (en) Wireless-Power Transmitters With Antenna Elements Having Multiple Power-Transfer Points That Each Only Transfer Electromagnetic Energy Upon Coupling With A Wireless-Power Receiver, And Methods Of Use Thereof
US11863001B2 (en) Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US20220255360A1 (en) Battery module configured to enable smart rings of various sizes to have radio-frequency wireless charging capabilities, and a wireless charger device to wirelessly deliver power to the smart rings
US20220158495A1 (en) Asymmetric spiral antennas for wireless power transmission and reception
WO2019055783A1 (en) Systems and methods for receiving both horizontal and vertical polarized wireless power transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021787881

Country of ref document: EP

Effective date: 20221114