WO2021211621A1 - Wireless-power transmitting device for creating a uniform near-field charging area - Google Patents
Wireless-power transmitting device for creating a uniform near-field charging area Download PDFInfo
- Publication number
- WO2021211621A1 WO2021211621A1 PCT/US2021/027140 US2021027140W WO2021211621A1 WO 2021211621 A1 WO2021211621 A1 WO 2021211621A1 US 2021027140 W US2021027140 W US 2021027140W WO 2021211621 A1 WO2021211621 A1 WO 2021211621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless
- charging
- radiating
- power
- housing
- Prior art date
Links
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 91
- 238000009826 distribution Methods 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims description 31
- 238000013461 design Methods 0.000 claims description 22
- 239000004020 conductor Substances 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 9
- 230000001965 increasing effect Effects 0.000 claims description 9
- PEZNEXFPRSOYPL-UHFFFAOYSA-N (bis(trifluoroacetoxy)iodo)benzene Chemical compound FC(F)(F)C(=O)OI(OC(=O)C(F)(F)F)C1=CC=CC=C1 PEZNEXFPRSOYPL-UHFFFAOYSA-N 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 description 33
- 238000004891 communication Methods 0.000 description 19
- 230000005855 radiation Effects 0.000 description 18
- 230000003071 parasitic effect Effects 0.000 description 13
- 230000001939 inductive effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100408383 Mus musculus Piwil1 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
Definitions
- the present disclosure relates generally to wireless power transmission, and more particularly to radiating antennas (e.g., non-inductive, resonant near-field antennas coupled with a feed line) paired with non-radiating elements (e.g., elements not coupled with a feed line) for increasing the locations at which a receiver device can harness usable power on a charging surface.
- radiating antennas e.g., non-inductive, resonant near-field antennas coupled with a feed line
- non-radiating elements e.g., elements not coupled with a feed line
- Portable electronic devices such as smartphones, tablets, notebooks, audio output devices and other electronic devices have become a necessity for communicating and interacting with others.
- the frequent use of portable electronic devices requires a significant amount of power, which quickly depletes the batteries attached to these devices.
- Inductive charging pads and corresponding inductive coils in portable devices allow users to wirelessly charge a device by placing the device at a particular position on an inductive pad to allow for a contact-based charging of the device.
- inductive charging requires a relatively large receiver coil to be placed within a device to be charged, which is less than ideal for devices where internal space is at a premium.
- systems and methods described herein are capable of increasing the usable charging area on a charging surface, which allows users more flexibility to place their devices to be charged at various positions on the charging surface.
- the usable charging area on the charging surface is improved by placing a non radiating element between a charging surface and a radiating antenna.
- a near-field charging system comprising a housing.
- the housing includes a charging surface and at least one other surface, a radiating antenna, and a non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
- the radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, and the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing.
- the non-radiating element is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution
- the second electromagnetic field distribution is configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
- the second portion can be at least 10% percent greater than the first portion.
- the second electromagnetic field distribution is configured to provide at least 220 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
- the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
- the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
- the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
- the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 12% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
- the second reflection coefficient varies between -13dB and -16dB.
- the second reflection coefficient is less than -lOdB.
- the second electromagnetic field distribution is configured to provide more than 200 Milliwatts of usable power to the wireless-power receiver at fewer locations on the charging surface of the housing relative to the first electromagnetic field distribution.
- the charging surface has a depression configured to receive and partially house an audio output device.
- the wireless-power receiver can be coupled to the audio output device, and the wireless power receiver is configured to provide the at least 200 Milliwatts of usable power to the audio output device for charging or powering purposes.
- the audio output device is a single in-ear audio output device.
- the radiating antenna has a shape, and the radiating antenna is oriented to have a first orientation within the housing; and the non-radiating element has the shape and the first orientation within the housing.
- the radiating antenna has a shape and the radiating antenna is oriented to have a first orientation within the housing; the non-radiating element has: the same shape; and a second orientation within the housing that is different from the first orientation.
- the radiating antenna is connected to a power feed line, and the non-radiating element is not connected to a power feed line.
- a non conducting material is placed between the radiating antenna and the non-radiating element, wherein the non-conducting material electrically isolates the radiating antenna from the non radiating element.
- the radiating antenna and the non-radiating element both have a same radiating antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
- the non radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
- a method of constructing a near-field charging system that increases usable wireless charging area available to a wireless-power receiver, the method comprising: providing a housing that includes a charging surface and at least one other surface a radiating antenna; placing a radiating antenna within the housing, the radiating antenna configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; placing a non-radiating element in a position above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, wherein placing the non-radiating element in the position above the radiating antenna within the housing changes a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution is configured to provide at least 200
- Figures 1 shows a diagram of an example embodiment of a near field charging system for charging a pair of headphones or hearing aids.
- Figures 2 shows a diagram of an exploded view of a near field charging system for charging a pair of headphones or hearing aids, in accordance with some embodiments.
- Figure 3 A shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
- Figure 3B shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
- Figure 4A shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a first orientation.
- Figure 4B shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a second orientation, in accordance with some embodiments.
- Figures 5A-1 and 5A-2 show plots of the return loss when a non-radiating element is not added to the charging system, in accordance with some embodiments.
- Figures 5B-1 and 5B-2 show plots of the return loss when a non-radiating element is added to the charging system, in accordance with some embodiments.
- Figure 6 is a block diagram of an RF wireless-power transmission system, in accordance with some embodiments.
- Figure 7 is a block diagram showing components of an example RF power transmission system that includes an RF power transmitter integrated circuit and antenna coverage areas, in accordance with some embodiments.
- Figure 8 is a flow diagram showing a method of constructing a near-field charging system, in accordance with some embodiments.
- Figure 1 shows an illustration of a representative near-field charging system
- a near-field charging system 100 that is configured to charge an electronic device (e.g., headphones, cellphones, tablets, and/or other electronic devices) or a pair of associated electronic devices (e.g., a pair of earbuds, a pair of hearing aids, etc.).
- an electronic device e.g., headphones, cellphones, tablets, and/or other electronic devices
- a pair of associated electronic devices e.g., a pair of earbuds, a pair of hearing aids, etc.
- the design of a near-field charging system 100 is illustrated in a particular way for ease of illustration and one skilled in the art will appreciate that other designs are possible.
- the overall size of the charging system 100 can be varied to be appropriate for the device(s) that is being charged.
- wireless audio output devices 102 A and 102B which in some embodiments are hearing aids, or earbuds
- Traditional methods have required specialized charging cases that require electronic devices to be oriented in a specific manner and placed at a specific position to receive power and get charged.
- Having a charging surface that can charge wireless devices without regard to the orientation of the wireless devices on the charging surface similar to the near-field charging system 100 shown in Figure 1, is highly convenient.
- Such an approach does not involve specialized cases, the user can simply place the devices they wish to be charged on the charging surface at any position and/or orientation, and not perform any additional action (e.g., the user could just drop the earbuds down on the charging surface).
- Figure 1 shows a representative near-field charging system that has a charging surface that can charge wireless devices (e.g., audio output devices 102A and 102B such as wireless earphones) without regard to the orientation of the wireless devices on the charging surface.
- Near-field charging system 100 in Figure 1 includes a housing 104 that has multiple charging surfaces (e.g., charging surfaces 106A and 106B) disposed upon a top surface 105 of the housing 104.
- charging surfaces 106A and 106B are indicated to the user by depressions 108 A and 108B, respectively.
- the components under the charging surface are configured to output enough Radio Frequency (RF) energy that when the RF energy is rectified by a receiving device (specific receiving device that is configured to receive 200mW from the charging system), the receiving device receives 200mW of usable power.
- RF Radio Frequency
- 200mW is just one configuration to charge audio output devices 102A and 102B (e.g., headphones, earbuds, hearing aids, etc.,) and the usable power may be adjusted based on the different power-consumption demands of other electronic devices (e.g., 500mW of usable power may be sufficient to charge a cellphone).
- usable power is the power required to concurrently power or charge an electronic device that is in an active state (e.g., the electronic device is operating in a powered on state, and the device fully charges in a reasonable amount of time (e.g., 1 to 2 hours)).
- an active state e.g., the electronic device is operating in a powered on state, and the device fully charges in a reasonable amount of time (e.g., 1 to 2 hours)).
- a reasonable amount of time e.g. 1 to 2 hours
- charging surfaces 106A and 106B can overlap or be perfectly adjacent to each other to make a continuous charging surface.
- Figure 1 also shows two reduced-charging-areas 110A and 110B and two increased-charging-areas 112A and 112B. These two reduced-charging-areas 110A and 110B illustrate the reduced charging surface area that results if the housing 104 includes a radiating antenna and does not include a non-radiating element within the housing as well.
- the two increased-charging- areas 112A and 112B illustrate the increased charging surface area that results when a non radiating elements 202 A and 202B in Figure 2 (which are analogous to elements 711-A - 711-N in Figure 7) are placed between radiating antennas 204A and 204B in Figure 2 (which are analogous to Antennas 710-A - 710-N in Figure 7) and charging surfaces 106A and 106B, respectively.
- Figure 1 also shows a bottom surface 114 of the housing 104, which helps contain the components described in Figure 2. .
- the shaded regions 107A and 107B show the locations at which usable power is available as a result of adding the non-radiating elements. As illustrated by the shaded regions 107A and 107B, by positioning the non-radiating element 202A and 202B above the radiating elements 204A and 204B, the shaded regions (e.g., dead zones) now become a usable area for charging an electronic device, thereby making the overall charging area more uniform across the entirety of the charging surfaces 106.
- FIG. 2 shows an exploded view 200 of a near-field charging system 100.
- the inventive near-field charging system 100 produces a uniform charging surface with minimal dead spots.
- this is achieved by causing a change to a radiating antenna’s electromagnetic field (i.e., electric field distribution, magnetic field distribution, or current distribution) by placing a non-radiating element (e.g., a PIFA antenna design, a patch antenna design, and a dipole antenna design that are all electrically isolated from a power source) above the radiating antenna.
- a non-radiating element e.g., a PIFA antenna design, a patch antenna design, and a dipole antenna design that are all electrically isolated from a power source
- the non-radiating element can change a distribution characteristic of the radiating element’s electromagnetic field distribution to produce another electromagnetic field distribution that produces a uniform charging area across the charging surface.
- Figure 2 shows components of a near-field charging system 100 capable of charging wireless audio output devices 102A and 102B.
- a housing 104 has charging surfaces 106A and 106B. Beneath each of charging surfaces 106A and 106B is a non radiating element (e.g., an element that is not connected to a power feed line or a ground line).
- the non-radiating elements are shown in Figure 2 as 202A and 202B, and these non radiating elements are placed below charging surfaces 106A and 106B, respectively, within the housing 104.
- the non-radiating elements 202A and 202B can be printed on a top surface of a circuit board 206.
- circuit board 206 can be made of a non-conducting material (e.g., a dielectric substrate or plastic) that electrically isolates non-radiating elements 202A and 202B from power sources and ground.
- the circuit board 206 should have a thickness of at least 1 millimeter to 5 millimeters.
- Figure 2 also shows two radiating antennas 204A and 204B placed (e.g., in some embodiments, printed) on the bottom side (i.e., opposite) of the circuit board 206 to electrically isolate radiating antennas 204A and 204B, which in some embodiments have a direct connection to the power source(s) and ground(s), from the non-radiating elements 202 A and 202B.
- non-radiating elements 202 A and 202B have the same design, size, and orientation in the housing (housing 104) as radiating antennas 204 A and 204B.
- Radiating antennas 204A and 204B are also connected to power feed lines 210A and 210B, respectively, and grounds 208A and 208B, respectively.
- the radiating antennas 204A and 204B each produce a first electromagnetic field distribution when there is no non-radiating element positioned above the radiating antennas.
- This electromagnetic field distribution is shown in Figure 3 A, which shows a electric field distribution plot 300A on a two dimensional plane that is coplanar with charging surfaces 106A and 106B.
- the electromagnetic field plot 300A shows the electromagnetic field output by the radiating antennas 204A and 204B without having a non-radiating elements 202A and 202B placed in-between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B.
- cold zones are present on the charging surfaces (e.g., for purposes of this disclosure, cold zones are areas on the charging surface at which a device to-be-charged would receive an insufficient amount of usable power to power the device or to provide enough power to charge a power source/battery of the device).
- Cold zones 302-1 and 303-1 indicate positions at which usable power can be improved. Due to presence of these cold zones, the usable charging area on the charging surfaces 106 A and 106B can be said to be non-uniform.
- non-radiating elements 202A and 202B are placed between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B, respectively Placement of the non-radiating elements 202A and 202B above the radiating elements 204A and 204B, respectively, causes a change in the electromagnetic field distributions produced, thereby causing the radiating elements to each produce a second (different) electromagnetic field distribution rather than the first electromagnetic field distribution discussed above.
- the resulting electric field distribution plot 300B (which corresponds to the second electromagnetic field distribution produced by each of the radiating elements) is shown in Figure 3B.
- cold zones now occupy a far smaller area of each of the charging surfaces.
- cold zone 307-1 is significantly smaller than cold zone 302-1
- cold zone 309-1 is significantly smaller than cold zone 303-1.
- each cold zones is reduced in size by approximately 80-90%.
- Figure 4 A shows the same resulting electromagnetic field plot 300B as shown in Figure 3B.
- This electromagnetic field plot 300B shows that adding non-radiating elements 202A and 202B between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B can increase the locations on charging surfaces 106A and 106B that have sufficient usable power (stated another way, and as discussed above, the size of a cold zone on each charging surface is reduced significantly). While one orientation of non-radiating elements 202A and 202B within the housing 104 is shown in Figures 2 and 4A, other possible orientations of non-radiating elements 202A and 202B within the housing 104 are possible. Changes in orientation of the non-radiating elements 202A and 202B can change the resulting electromagnetic field distribution produced by the corresponding radiating elements in the presence of the non-radiating elements.
- Figure 4B shows another possible orientation of non-radiating elements, one in which non-radiating elements 202A and 202B are flipped about horizontal axis 406 (stated another way, the non-radiating elements are rotated 180 degrees relative to the orientation of the non-radiating elements in Figure 4A).
- These flipped/rotated non radiating elements are shown in Figure 4B as flipped-non-radiating elements 202A-1 and 202B-1.
- Figure 4B also shows the resulting electromagnetic field plot 402 produced by this combination of flipped-non-radiating elements 202 A- 1 and 202B-1 and radiating elements 204A and 204B, which illustrates how the electromagnetic field distributions produced by the radiating elements are altered in response to flipping of the orientations of the non-radiating elements 202 A and 202B.
- one of the reasons why the non-radiating elements results in a more uniform charging surface is that the non-radiating elements stabilize the return loss for the charging system 100 and additionally keeps the return loss lower.
- a low and stable return loss ensures that maximum power is transmitted via the charging system 100 and made available at the charging surfaces 106 A and 106B.
- the radiating antennas 204A and 204B would have a return loss that fluctuates as the location of the audio output devices 102 A and 102B changes on the charging surfaces. In some embodiments, when the return loss is high, not enough power is available for charging the electronic devices.
- Figures 5A-1, 5A-2, 5B-1, and 5B-2 show plots of return losses, which show that adding non-radiating elements 202A and 202B between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B can reduce the amount of irregular variation in return loss at the near-field charging system 100 as the location of the audio output devices 102A and 102B is varied.
- Figures 5A-1 and 5A-2 illustrate the wireless charger transmitter system without the non-radiating elements 202A and 202B (e.g., parasitic elements).
- Figures 5A-1 and 5A-2 show a large variation in the reflection coefficient.
- FIGs 5A-1 and 5A-2 “SI 1” and “S22” indicated by 501 and 502, respectively, indicate the reflection coefficients corresponding to the two radiating elements.
- the plots in Figures 5A-1 and 5A-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces.
- Figure 5B-1 and 5B-2 illustrate the wireless charger transmitter system with the non-radiating elements 202A and 202B (e.g., parasitic elements).
- Figures 5B-1 and 5B-2 show a small variation in the reflection coefficient.
- “SI 1” and “S22” indicated by 503 and 504, respectively, indicate the reflection coefficients corresponding to the two radiating elements.
- the plots in Figures 5B-1 and 5B-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces.
- a transmitter can determine the present SAR value of RF energy at one or more particular locations of the transmission field using one or more sampling or measurement techniques.
- the SAR values within the transmission field are measured and pre-determined by SAR value measurement equipment.
- the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which distance ranges in the transmission field are likely to exceed to a pre-stored SAR threshold value.
- the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which radiation profiles within the transmission field are likely to exceed to a pre-stored SAR threshold value.
- a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the transmitter receiving a number of power waves (P) having a particular frequency (F).
- V volume of space
- D distance
- P power waves
- F frequency
- a transmitter may apply the SAR values identified for particular locations in various ways when generating, transmitting, or adjusting the radiation profile.
- SAR value at or below 1.6 W/kg is in compliance with the FCC (Federal Communications Commission) SAR requirement in the United States.
- a SAR value at or below 2 W/kg is in compliance with the IEC (International Electrotechnical Commission) SAR requirement in the European Union.
- the SAR values may be measured and used by the transmitter to maintain a constant energy level throughout the transmission field, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery.
- the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values.
- the transmitter may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the transmitter may actively monitor the transmission field to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold.
- the transmitter may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations throughout the transmission field (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
- control systems of transmitters adhere to electromagnetic field (EMF) exposure protection standards for human subjects.
- Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
- FCC Federal Communications Commission
- Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
- power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2).
- the wireless-power transmission systems disclosed herein comply with FCC Part ⁇ 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.”
- the wireless-power transmission systems disclosed herein comply with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.”
- ITU International Telecommunication Union
- the wireless-power transmission systems disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
- the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits.
- One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits.
- a second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits.
- these safety methods are programmed into a memory of the transmitter (e.g., memory 706) to allow the transmitter to execute such programs and implement these safety methods.
- the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
- FIG. 6 is a block diagram of an RF wireless-power transmission system 650 in accordance with some embodiments.
- the RF wireless-power transmission system 650 includes an RF power transmitter 100 (also referred to herein as a near-field (NF) charging system 100), NF power transmitter 100, RF power transmitter 100).
- the RF power transmitter 100 includes an RF power transmitter integrated circuit 660 (described in more detail below).
- the RF power transmitter 100 includes one or more communications components 704 (e.g., wireless communication components, such as WI-FI or BLUETOOTH radios).
- the RF power transmitter 100 also connects to one or more power amplifier units 608-1, ...
- antennas 710-1 to 710-n are placed near elements 711-A to 711-n (also referred to as non-radiating elements 202A and 202B, and/or flipped-non-radiating elements 202A-1 and 202B-1 depending on the circumstances and desired radiation distributions to be produced by the corresponding radiating elements), respectively.
- a single power amplifier, e.g. 608-1 is controlling one antenna 710-1.
- RF power is controlled and modulated at the RF power transmitter 100 via switch circuitry as to enable the RF wireless- power transmission system to send RF power to one or more wireless receiving devices via the TX antenna array 710.
- a single power amplifier e.g. 608-n is controlling multiple antennas 710-m to 710-n through multiple splitters (610-1 to 610-n) and multiple switches (612-1 to 612-n).
- the communication component(s) 704 enable communication between the RF power transmitter 100 and one or more communication networks.
- the communication component(s) 704 are capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6L0WPAN, Thread, Z-Wave, Bluetooth Smart, ISAlOO.lla, WirelessHART, MiWi, etc.) custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
- custom or standard wireless protocols e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6L0WPAN, Thread, Z-Wave, Bluetooth Smart, ISAlOO.lla, WirelessHART, MiWi, etc.
- custom or standard wired protocols e.g., Ethernet, HomePlug, etc.
- the communication component s) 704 are not able to communicate with wireless-power receivers for various reasons, e.g., because there is no power available for the communication component(s) to use for the transmission of data signals or because the wireless-power receiver itself does not actually include any communication component of its own.
- near-field power transmitters described herein are still able to uniquely identify different types of devices and, when a wireless-power receiver is detected, figure out if that wireless-power receiver is authorized to receive wireless-power.
- a signature-signal receiving/generating circuits are used in identifying the receivers.
- the RF IC 660 includes a CPU subsystem 670, an external device control interface, an RF subsection for DC to RF power conversion, and analog and digital control interfaces interconnected via an interconnection component, such as a bus or interconnection fabric block 671.
- the CPU subsystem 670 includes a microprocessor unit (CPU) 702 with related Read-Only-Memory (ROM) 672 for device program booting via a digital control interface, e.g. an I2C port, to an external FLASH containing the CPU executable code to be loaded into the CPU Subsystem Random Access Memory (RAM) 674 or executed directly from FLASH.
- the CPU subsystem 670 also includes an encryption module or block 676 to authenticate and secure communication exchanges with external devices, such as wireless-power receivers that attempt to receive wirelessly delivered power from the RF power transmitter 100.
- the RF IC 660 also includes (or is in communication with) a power amplifier controller IC 661 A (PA IC) that is responsible for controlling and managing operations of a power amplifier, including for reading measurements of impedance at various measurement points within the power amplifier.
- PA IC power amplifier controller IC 661 A
- the PA IC 661 A may be on the same integrated circuit at the RF IC 660, or may be on its own integrated circuit that is separate from (but still in communication with) the RF IC 660.
- the PA IC 661 A is on the same chip with one or more of the Power Amplifiers (PAs) 608.
- the PA IC 661 A is on its own chip that is a separate chip from the Power Amplifiers (PAs) 608.
- executable instructions running on the CPU are used to manage operation of the RF power transmitter 100 and to control external devices through a control interface, e.g., SPI control interface 675, and the other analog and digital interfaces included in the RF power transmitter integrated circuit 660.
- the CPU subsystem 670 also manages operation of the RF subsection of the RF power transmitter integrated circuit 660, which includes an RF local oscillator (LO) 677 and an RF transmitter (TX) 678.
- LO local oscillator
- TX RF transmitter
- the RF LO 677 is adjusted based on instructions from the CPU subsystem 670 and is thereby set to different desired frequencies of operation, while the RF TX converts, amplifies, modulates the RF output as desired to generate a viable RF power level.
- the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use any beam-forming capabilities (e.g., bypasses/ disables a beam-forming IC and/or any associated algorithms if phase-shifting is not required, such as when only a single antenna 710 is used to transmit power transmission signals to a wireless-power receiver).
- the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
- the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use a beam-forming IC.
- the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use a beam-forming IC.
- the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
- the components of the near-field charging system 100 are also used to ensure that power is transmitted safely. For example, Specific Absorption Rate (SAR) values and Electromagnetic Field (EMF) values can be used to help ensure safe transmission of wireless power.
- the system 100 can determine the present SAR value of RF energy at one or more particular locations near the charging surfaces described herein using one or more sampling or measurement techniques.
- the SAR values near the charging surfaces are measured and pre-determined by SAR value measurement equipment.
- the system 100 may be preloaded with values, tables, and/or algorithms that indicate for the system 100 which distance ranges are likely to exceed a pre-stored SAR threshold value.
- the system may be preloaded with values, tables, and/or algorithms that indicate for the system which radiation profiles near the charging surface are likely to exceed to a pre-stored SAR threshold value.
- a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the system receiving a number of power waves (P) having a particular frequency (F).
- a SAR value at or below 1.6 W/kg, is in compliance with the FCC (Federal
- the SAR values may be measured and used by the system to maintain a constant energy level throughout the charging surfaces, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery.
- the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values.
- the system may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the system may actively monitor the charging surfaces to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold.
- the system may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations near the charging surfaces (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
- the system 100 described herein also adheres to electromagnetic field (EMF) exposure protection standards for human subjects.
- EMF electromagnetic field
- Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
- FCC Federal Communications Commission
- Limits established by the FCC for MPE are codified at 47 CFR ⁇ 1.1310.
- power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2)
- the system disclosed herein complies with FCC Part ⁇ 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.”
- the system disclosed herein complies with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.”
- the system 100 disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
- the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits.
- One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits.
- a second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits.
- these safety methods are programmed into a memory of the transmitter (not shown) to allow the transmitter to execute such programs and implement these safety methods.
- the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
- Figure 8 shows a flow diagram of a method of constructing a near-field charging system, in accordance with some embodiments.
- the method of Figure 8 is performed by a manufacturer of near-field charging systems, or by a manufacturer of components such systems.
- Figure 8 shows a method 800 of constructing (802) a near-field charging system for increasing a usable wireless charging area available to a wireless-power receiver.
- the method 800 includes providing a housing of the near-field charging system (804).
- the housing that is provided in operation 804 includes a charging surface and at least one other surface (806).
- the charging surface is a top surface of the housing, such as top surface of the housing 104 depicted in Figures 1 and 2.
- the top surface includes one or more charging surfaces (e.g., charging surfaces 106A and 106B, Figures 1 and 2) at which a wireless-power receiver is placed to allow that receiver to receive electromagnetic energy that it can then convert into usable power for charging or powering of an electronic device coupled to the wireless-power receiver.
- the other surfaces can be surfaces that allow for encasing the radiating antenna (e.g., radiating antennas 204A and 204B) and the non-radiating elements (e.g., parasitic element) 202A, 202B, 202A-1, and 202B-1, but these other surfaces are not configured to allow for the wireless-power receiver to receive the electromagnetic energy.
- the radiating elements 204A and 204B and parasitic element 202 A, 202B, 202A-1, and 202B-1 in some embodiments, produce electromagnetic energy that is enhanced on the charging surface, and is not configured to be available on the other surfaces).
- the housing that is provided in operation 804 also includes a radiating antenna (806).
- the radiating antenna is made from a conductive material such as copper, or any other suitable radiative material.
- the radiating antenna is coupled to a feed line that provides an RF signal to the radiating antenna.
- a non radiating element also referred to as a parasitic element, and discussed below is not coupled to a feeding line.
- the housing also includes the non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (806) (e.g., the non-radiating element is a parasitic element such as a conductive metal patch, an example of which is depicted in Figures 2, 4A, and 4B (e.g., non-radiating element 202A), and which is depicted as positioned on top of the radiating antenna 204A.
- the parasitic element has a same shape as the radiating antenna, as is shown in Figures 2, 4A, and 4B).
- the radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface (e.g., charging surfaces 106A and 106B in Figures 2, 4A, and 4B, which can be surfaces of the housing (e.g., housing 104) on which receiving devices may be placed.
- the first electromagnetic field distribution can be configured to provide at least 200 and/or a minimum of milliwatts of usable power (e.g., usable power is energy that is rectified and converted to the correct requirements for whatever type of device is receiving power or charge from the wireless-power receiver) to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing (808).
- the non-radiating element when placed in a position above the radiating element, is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution (which is distinct from the first electromagnetic field distribution), the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing (810).
- examples of the change to the distribution characteristic include, as non-limiting examples, changes to e-field distribution to lower peaks and/or valleys.
- FIGs 3 A and 3B A comparison of the electric field distribution plots shown in Figures 3A (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is not present, i.e., the first electromagnetic field distribution) and Figure 3B (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is present, i.e., the second electromagnetic field distribution) shows this change in the distribution characteristics that occurs when the non-radiating element is used to alter the electromagnetic field distribution of the radiating antenna.
- the second portion can be at least 10% percent greater in size than the first portion (812).
- the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 110A and 110B each represent approximately 70% of the surface area of the charging surface), and the second portion of the charging surface of the housing covers an area that includes at least 80% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 112A and 112B each represent approximately 80% of the surface area of the charging surface).
- the second portion covers an area of the charging surface that is at least 10% percent larger in size than the first portion.
- the percentage can be any integer or fractional value falling between the range of 10% to 30% (e.g., 11%, 11.5%, 18%, 19.1%, 20.5, 25, etc.)
- the second electromagnetic field distribution is configured to provide at least 220 milliwatts of usable power to the wireless- power receiver when the wireless-power receiver is placed at any position across the second portion of the charging surface of the housing.
- amount of usable power available across the second portion of the charging surface can be increased from 200 to 220 milliwatts in order to provide an amount of usable power to a receiving device with a higher power requirement.
- 220 milliwatts provides enough power to charge one or more wireless earbuds or hearing aids.
- the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
- amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 1 watt in order to provide an amount of usable power to a receiving device with a higher power requirement.
- 1 watt provides enough power to charge a wearable electronic device such as a smartwatch.
- the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
- amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 5 watts in order to provide an amount of usable power to a receiving device with a higher power requirement.
- 5 watts provides enough power to charge a small electronic device such as a smartphone.
- the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
- Figure 3B, 4A, and 4B show charging surfaces that cover 70% of the charging surface.
- the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 75% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
- the second reflection coefficient is up to 20% less than the first reflection coefficient.
- the addition of the non-radiating element results in a reflection coefficient of the near field charging system’s radiating antennas becoming more stable and far less sensitive to the relative placement and/or location of the receiver device (e.g., where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud)). Therefore, as the receiver is moved over the surface of the transmitter antenna, the reflection coefficient does not vary as much, the return loss at the radiating antenna feed can be greatly reduced, and the power transferred to the radiating antenna is uniform and stable. This is not, however, the case for the radiating antennas without non-radiating elements placed proximate thereto.
- the non-radiating element e.g., the parasitic element
- reflection coefficient varies between -5 dB to -18 dB as the position of the receiver is varied within the charging area. This, in turn, leads to poor coupling of power in some areas where the reflection coefficient (and return loss) is high.
- the reflection coefficient varies between - 13 dB to -16 dB as the position of the receiver is varied within the charging area. In most circumstances, this is a desired result because the reflection coefficient (and return loss) is always low at the antenna feed. In some embodiments, reflection coefficient is (and in some embodiments always) less than -10 dB. Therefore, the power transferred into the radiating antenna can be uniform and stable, and is not dependent on the location of the receiver antenna.
- the second electromagnetic field distribution of the near-field charging system is configured to provide more than 200 milliwatts. In some embodiments, this amount of usable power is adjusted based on the requirements of the receiving device (i.e., the electronic device that is coupled to the wireless-power receiver). In some embodiments, 1 watt emitted by the system 100 can be an appropriate amount of power to charge a single wireless headphone. In some embodiments, 200 watts emitted by the near-field charging system may be an appropriate amount of power to charge a laptop device.
- placement of the parasitic element above the radiating antenna within the housing thus causes a flattening of the resulting electromagnetic field distribution (the referenced second electromagnetic field distribution referred to herein) produced by the radiating antennas of the near-field charging system 100, such that more usable charging locations are available to the wireless-power receiver on the charging surface (e.g., locations at which the receiver is able to receive at least 200 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power), but the locations at which more than 250 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power could be received by the wireless-power receiver are reduced.
- the charging surface of the near-field charging system has a depression (e.g., depressions 106A-1 and 106B-1 in Figure 1) that is configured to receive and partially surround an audio output device, and where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud), and the wireless power receiver is configured to provide at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
- the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud), and the wireless power receiver is configured to provide at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
- the audio output device is a single in-ear audio output device (e.g., a wireless earbud or audio output device (indicated by 102 A and 102B in Figure 1), or a hearing aid, etc.).
- a single in-ear audio output device e.g., a wireless earbud or audio output device (indicated by 102 A and 102B in Figure 1), or a hearing aid, etc.).
- the radiating antenna has a shape (e.g., a PIFA antenna with a radiator substantially in the shape of the letter ‘c,’ similar to the shape depicted for radiating elements in Figures 2, 4A, and 4B), and the radiating antenna is oriented to have a first orientation within the housing.
- a shape e.g., a PIFA antenna with a radiator substantially in the shape of the letter ‘c,’ similar to the shape depicted for radiating elements in Figures 2, 4A, and 4B
- the radiating antenna is oriented to have a first orientation within the housing.
- the first orientation can be such that the largest surface of the radiating antenna is substantially coplanar with (e.g., within +/- 5 degrees of coplanar with) the largest surface of the charging surface, similar to the orientation shown in Figure 2 and Figure 4A.); and the non-radiating element has the shape (e.g., a substantially identical shape as the radiating antenna, as shown in Figures 2 and 4A) and the first orientation within the housing.
- the non-radiating element has a surface area that varies by approximately 10% relative to a surface area of the radiating antenna (e.g., the non-radiating element is either larger or smaller than the radiating antenna by 10% of its surface area).
- the radiating antenna has a shape (e.g., a PIFA antenna with a radiator having a ‘c’ shaped design, similar to the shape shown by radiating elements in Figures 2, 4A, and 4B) and the radiating antenna is oriented to have the first orientation (described above) within the housing; and the non-radiating element has: the same shape (e.g., an identical shape as the radiating antenna, as shown in Figure 4A); and a second orientation within the housing that is different from the first orientation (as shown in Figure 4B). .
- a shape e.g., a PIFA antenna with a radiator having a ‘c’ shaped design, similar to the shape shown by radiating elements in Figures 2, 4A, and 4B
- the radiating antenna is oriented to have the first orientation (described above) within the housing
- the non-radiating element has: the same shape (e.g., an identical shape as the radiating antenna, as shown in Figure 4A); and a second orientation within the housing that is different
- the radiating antenna is connected to a power feed line
- the non-radiating element e.g., the non-radiating element is a parasitic element
- the non-radiating element is not connected to a power feed line (as shown Figure 2).
- a non-conducting material is placed between the radiating antenna and the non-radiating element, and the non-conducting material electrically isolates the radiating antenna from the non-radiating element (as shown by circuit board 206 in Figure 2, 4A, and 4B).
- a dielectric can be utilized as the non-conducting material, and the radiating antennas and non-radiating elements can be in the form of stamped metal components (instead of being printed elements on a circuit board).
- the radiating antenna and the non-radiating element both have a same antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
- the non-radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (e.g., as shown in Figure 1 where the circuit board 206 is 1 millimeter thick). In some embodiments, the non-radiating element is positioned at least 1.5 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. In some embodiments, the non-radiating elements are floating exactly on top of the radiating element with a one-millimeter layer of dielectric in between. In some embodiments, there is no conductive material connecting the non-radiating elements with the radiating antennas; in other words, there is no electrical connection between the radiating antennas and the non radiating elements.
- the storage medium can include, but is not limited to, high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
- Memory optionally includes one or more storage devices remotely located from the CPU(s) (e.g., processor(s)). Memory, or alternatively the non-volatile memory device(s) within the memory, comprises a non-transitory computer readable storage medium.
- features of the present invention can be incorporated in software and/or firmware for controlling the hardware of a processing system (such as the components associated with the transmitters 100 and/or receivers 104), and for enabling a processing system to interact with other mechanisms utilizing the results of the present invention.
- software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
An example near-field charging system includes a housing that includes a charging surface and at least one other surface, a radiating antenna, and a non -radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. The radiating antenna produces a first electromagnetic-field distribution that is received by a receiver, the first electromagnetic-field provides usable power when the receiver is placed at any position on a first portion of the charging surface. The non-radiating element changes a distribution characteristic of the first electromagnetic-field distribution to produce a second electromagnetic-field distribution, the second electromagnetic-field distribution providing usable power to the receiver when the receiver is placed at any position across a second portion of the charging surface of the housing, and the second portion is at least 10% percent greater than the first portion.
Description
WIRELESS-POWER TRANSMITTING DEVICE FOR CREATING A UNIFORM NEAR-FIELD CHARGING AREA
RELATED APPLICATIONS
[0001] This application is a continuation of U.S. Utility Patent Application No.
17/228,621, filed April 12, 2021, and also claims priority from U.S. Provisional Application Serial No. 63/009,361, filed April 13, 2020.
TECHNICAL FIELD
[0002] The present disclosure relates generally to wireless power transmission, and more particularly to radiating antennas (e.g., non-inductive, resonant near-field antennas coupled with a feed line) paired with non-radiating elements (e.g., elements not coupled with a feed line) for increasing the locations at which a receiver device can harness usable power on a charging surface.
BACKGROUND
[0003] Portable electronic devices such as smartphones, tablets, notebooks, audio output devices and other electronic devices have become a necessity for communicating and interacting with others. The frequent use of portable electronic devices, however, requires a significant amount of power, which quickly depletes the batteries attached to these devices. Inductive charging pads and corresponding inductive coils in portable devices allow users to wirelessly charge a device by placing the device at a particular position on an inductive pad to allow for a contact-based charging of the device.
[0004] Conventional inductive charging pads, however, suffer from many drawbacks.
For one, users typically must place their devices at a specific position and in a certain orientation on the charging pad because gaps (“dead zones” or “cold zones”) exist on the surface of the charging pad. In other words, for optimal charging, the coil in the charging pad needs to be aligned with the coil in the device in order for the required magnetic coupling to occur. Additionally, placement of other metallic objects near an inductive charging pad may interfere with operation of the inductive charging pad, so even if the user places their device at the exact right position, if another metal object is also on the pad, then magnetic coupling still may not occur and the device will not be charged by the inductive charging pad. This results in a frustrating experience for many users, as they may be unable to properly charge
their devices. Also, inductive charging requires a relatively large receiver coil to be placed within a device to be charged, which is less than ideal for devices where internal space is at a premium.
[0005] Further, while near-field radio-frequency-based transmission techniques have also been explored, some of these techniques result in formation of charging areas that are insufficiently uniform to allow for a placing a device to-be-charge at any position on the charging surface.
SUMMARY
[0006] Accordingly, there is a need for a near-field charging system that addresses the problems identified above. To this end, systems and methods described herein are capable of increasing the usable charging area on a charging surface, which allows users more flexibility to place their devices to be charged at various positions on the charging surface. In some embodiments, the usable charging area on the charging surface is improved by placing a non radiating element between a charging surface and a radiating antenna.
[0007] (Al) In some embodiments, a near-field charging system comprising a housing is provided. The housing includes a charging surface and at least one other surface, a radiating antenna, and a non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna. The radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, and the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing. In addition, the non-radiating element is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, and the second electromagnetic field distribution is configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing. The second portion can be at least 10% percent greater than the first portion.
[0008] (A2) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide at least 220 Milliwatts of
usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
[0009] (A3) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
[0010] (A4) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
[0011] (A5) In some embodiments of the near-field charging system of Al, the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
[0012] (A6) In some embodiments of the near-field charging system of Al, the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 12% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
[0013] (A7) In some embodiments of the near-field charging system of A6, the second reflection coefficient varies between -13dB and -16dB.
[0014] (A8) In some embodiments of the near-field charging system of A6, the second reflection coefficient is less than -lOdB.
[0015] (A9) In some embodiments of the near-field charging system of Al, the second electromagnetic field distribution is configured to provide more than 200 Milliwatts of usable power to the wireless-power receiver at fewer locations on the charging surface of the housing relative to the first electromagnetic field distribution.
[0016] (A10) In some embodiments of the near-field charging system of Al, the charging surface has a depression configured to receive and partially house an audio output device. The wireless-power receiver can be coupled to the audio output device, and the
wireless power receiver is configured to provide the at least 200 Milliwatts of usable power to the audio output device for charging or powering purposes.
[0017] (A11) In some embodiments of the near-field charging system of A10, the audio output device is a single in-ear audio output device.
[0018] (A12) In some embodiments of the near-field charging system of Al, the radiating antenna has a shape, and the radiating antenna is oriented to have a first orientation within the housing; and the non-radiating element has the shape and the first orientation within the housing.
[0019] (A13) In some embodiments of the near-field charging system of Al, the radiating antenna has a shape and the radiating antenna is oriented to have a first orientation within the housing; the non-radiating element has: the same shape; and a second orientation within the housing that is different from the first orientation.
[0020] (A14) In some embodiments of the near-field charging system of Al, the radiating antenna is connected to a power feed line, and the non-radiating element is not connected to a power feed line.
[0021] (A15) In some embodiments of the near-field charging system of Al, a non conducting material is placed between the radiating antenna and the non-radiating element, wherein the non-conducting material electrically isolates the radiating antenna from the non radiating element.
[0022] (A16) In some embodiments of the near-field charging system of Al, the radiating antenna and the non-radiating element both have a same radiating antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
[0023] (A17) In some embodiments of the near-field charging system of Al, the non radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
[0024] (Bl) In yet another aspect, a method of constructing a near-field charging system that increases usable wireless charging area available to a wireless-power receiver, the method comprising: providing a housing that includes a charging surface and at least one other surface a radiating antenna; placing a radiating antenna within the housing, the radiating antenna configured to produce a first electromagnetic field distribution that is configured to
be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; placing a non-radiating element in a position above the radiating antenna within the housing such that the non radiating element is closer to the charging surface than the radiating antenna, wherein placing the non-radiating element in the position above the radiating antenna within the housing changes a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution is configured to provide at least 200 Milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing, wherein the second portion is at least 10% percent greater than the first portion.
[0025] (B2) In some embodiments of the method of Bl, additional constructing/ producing steps are performed so that the resulting near-field charging system is in accordance with any one of A2-A18.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various embodiments, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
[0027] Figures 1 shows a diagram of an example embodiment of a near field charging system for charging a pair of headphones or hearing aids.
[0028] Figures 2 shows a diagram of an exploded view of a near field charging system for charging a pair of headphones or hearing aids, in accordance with some embodiments.
[0029] Figure 3 A shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
[0030] Figure 3B shows an illustration of a electromagnetic field plot produced by a near field charging system, in accordance with some embodiments.
[0031] Figure 4A shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a first orientation.
[0032] Figure 4B shows an illustration of a electromagnetic field plot produced by a near field charging system when a non-radiating element has a second orientation, in accordance with some embodiments.
[0033] Figures 5A-1 and 5A-2 show plots of the return loss when a non-radiating element is not added to the charging system, in accordance with some embodiments.
[0034] Figures 5B-1 and 5B-2 show plots of the return loss when a non-radiating element is added to the charging system, in accordance with some embodiments.
[0035] Figure 6 is a block diagram of an RF wireless-power transmission system, in accordance with some embodiments.
[0036] Figure 7 is a block diagram showing components of an example RF power transmission system that includes an RF power transmitter integrated circuit and antenna coverage areas, in accordance with some embodiments.
[0037] Figure 8 is a flow diagram showing a method of constructing a near-field charging system, in accordance with some embodiments.
[0038] In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
PET ATT, ED DESCRIPTION
[0039] Numerous details are described herein in order to provide a thorough understanding of the example embodiments illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known processes, components, and materials have not been
described in exhaustive detail so as not to unnecessarily obscure pertinent aspects of the embodiments described herein.
[0040] Figure 1 shows an illustration of a representative near-field charging system
100 that is configured to charge an electronic device (e.g., headphones, cellphones, tablets, and/or other electronic devices) or a pair of associated electronic devices (e.g., a pair of earbuds, a pair of hearing aids, etc.). The design of a near-field charging system 100 is illustrated in a particular way for ease of illustration and one skilled in the art will appreciate that other designs are possible. For example, the overall size of the charging system 100 can be varied to be appropriate for the device(s) that is being charged.
[0041] As electronic devices shift to wireless designs (e.g., wireless audio output devices 102 A and 102B, which in some embodiments are hearing aids, or earbuds) that require them to be charged daily, there has become a need for a convenient way to charge all these devices. Traditional methods have required specialized charging cases that require electronic devices to be oriented in a specific manner and placed at a specific position to receive power and get charged. Having a charging surface that can charge wireless devices without regard to the orientation of the wireless devices on the charging surface, similar to the near-field charging system 100 shown in Figure 1, is highly convenient. Such an approach does not involve specialized cases, the user can simply place the devices they wish to be charged on the charging surface at any position and/or orientation, and not perform any additional action (e.g., the user could just drop the earbuds down on the charging surface).
[0042] Specifically, Figure 1 shows a representative near-field charging system that has a charging surface that can charge wireless devices (e.g., audio output devices 102A and 102B such as wireless earphones) without regard to the orientation of the wireless devices on the charging surface. Near-field charging system 100 in Figure 1 includes a housing 104 that has multiple charging surfaces (e.g., charging surfaces 106A and 106B) disposed upon a top surface 105 of the housing 104. In this illustrated embodiment, charging surfaces 106A and 106B are indicated to the user by depressions 108 A and 108B, respectively. Furthermore, the components under the charging surface (shown in Figure 2) are configured to output enough Radio Frequency (RF) energy that when the RF energy is rectified by a receiving device (specific receiving device that is configured to receive 200mW from the charging system), the receiving device receives 200mW of usable power. It should also be appreciated that 200mW is just one configuration to charge audio output devices 102A and 102B (e.g., headphones, earbuds, hearing aids, etc.,) and the usable power may be adjusted based on the
different power-consumption demands of other electronic devices (e.g., 500mW of usable power may be sufficient to charge a cellphone). In some embodiments, usable power is the power required to concurrently power or charge an electronic device that is in an active state (e.g., the electronic device is operating in a powered on state, and the device fully charges in a reasonable amount of time (e.g., 1 to 2 hours)). To illustrate the charging surfaces depressions 106A-1 and 106B-1 are shown to correspond with the charging surfaces 106 A and 106B, respectively.
[0043] Although two charging surfaces are shown in a specific orientation, any orientation of charging surfaces is possible depending on the requirements of the electronic device(s). For example, in some embodiments, charging surfaces 106A and 106B can overlap or be perfectly adjacent to each other to make a continuous charging surface. Figure 1 also shows two reduced-charging-areas 110A and 110B and two increased-charging-areas 112A and 112B. These two reduced-charging-areas 110A and 110B illustrate the reduced charging surface area that results if the housing 104 includes a radiating antenna and does not include a non-radiating element within the housing as well. The two increased-charging- areas 112A and 112B illustrate the increased charging surface area that results when a non radiating elements 202 A and 202B in Figure 2 (which are analogous to elements 711-A - 711-N in Figure 7) are placed between radiating antennas 204A and 204B in Figure 2 (which are analogous to Antennas 710-A - 710-N in Figure 7) and charging surfaces 106A and 106B, respectively. Figure 1 also shows a bottom surface 114 of the housing 104, which helps contain the components described in Figure 2. . To further illustrate the increased charging area, the shaded regions 107A and 107B (e.g., dead zones) show the locations at which usable power is available as a result of adding the non-radiating elements. As illustrated by the shaded regions 107A and 107B, by positioning the non-radiating element 202A and 202B above the radiating elements 204A and 204B, the shaded regions (e.g., dead zones) now become a usable area for charging an electronic device, thereby making the overall charging area more uniform across the entirety of the charging surfaces 106.
[0044] Figure 2 shows an exploded view 200 of a near-field charging system 100. As briefly described above, the inventive near-field charging system 100 produces a uniform charging surface with minimal dead spots. In some embodiments, this is achieved by causing a change to a radiating antenna’s electromagnetic field (i.e., electric field distribution, magnetic field distribution, or current distribution) by placing a non-radiating element (e.g., a PIFA antenna design, a patch antenna design, and a dipole antenna design that are all electrically isolated from a power source) above the radiating antenna. Stated another way,
the non-radiating element can change a distribution characteristic of the radiating element’s electromagnetic field distribution to produce another electromagnetic field distribution that produces a uniform charging area across the charging surface.
[0045] Specifically, Figure 2 shows components of a near-field charging system 100 capable of charging wireless audio output devices 102A and 102B. As shown in Figure 2 (and as was also described above with reference to Figure 1), a housing 104 has charging surfaces 106A and 106B. Beneath each of charging surfaces 106A and 106B is a non radiating element (e.g., an element that is not connected to a power feed line or a ground line). The non-radiating elements are shown in Figure 2 as 202A and 202B, and these non radiating elements are placed below charging surfaces 106A and 106B, respectively, within the housing 104. In some embodiments, the non-radiating elements 202A and 202B can be printed on a top surface of a circuit board 206. In such embodiments, circuit board 206 can be made of a non-conducting material (e.g., a dielectric substrate or plastic) that electrically isolates non-radiating elements 202A and 202B from power sources and ground. To help encourage equal distribution of usable energy across charging surfaces 106 A and 106B (when the radiating antennas 204A and 204B are radiating RF energy), the circuit board 206 should have a thickness of at least 1 millimeter to 5 millimeters.
[0046] Figure 2 also shows two radiating antennas 204A and 204B placed (e.g., in some embodiments, printed) on the bottom side (i.e., opposite) of the circuit board 206 to electrically isolate radiating antennas 204A and 204B, which in some embodiments have a direct connection to the power source(s) and ground(s), from the non-radiating elements 202 A and 202B. In the illustrated embodiment, non-radiating elements 202 A and 202B have the same design, size, and orientation in the housing (housing 104) as radiating antennas 204 A and 204B. A person of skill in the art, upon reading the present disclosure, will appreciate that the designs do not need to match, and even if the designs do match, they do not need to be the same size (e.g., the radiating antenna can be 1% smaller than the non radiating element, or the radiating antenna can be 5% larger than the non-radiating element). Radiating antennas 204A and 204B are also connected to power feed lines 210A and 210B, respectively, and grounds 208A and 208B, respectively.
[0047] As discussed above, the radiating antennas 204A and 204B each produce a first electromagnetic field distribution when there is no non-radiating element positioned above the radiating antennas. This electromagnetic field distribution is shown in Figure 3 A, which shows a electric field distribution plot 300A on a two dimensional plane that is
coplanar with charging surfaces 106A and 106B. The electromagnetic field plot 300A shows the electromagnetic field output by the radiating antennas 204A and 204B without having a non-radiating elements 202A and 202B placed in-between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B. As shown in electromagnetic field plot 300A, cold zones (also referred to as dead zones) are present on the charging surfaces (e.g., for purposes of this disclosure, cold zones are areas on the charging surface at which a device to-be-charged would receive an insufficient amount of usable power to power the device or to provide enough power to charge a power source/battery of the device). Cold zones 302-1 and 303-1 indicate positions at which usable power can be improved. Due to presence of these cold zones, the usable charging area on the charging surfaces 106 A and 106B can be said to be non-uniform.
[0048] To improve the uniformity of available usable power on the charging surfaces
106A and 106B, non-radiating elements 202A and 202B are placed between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B, respectively Placement of the non-radiating elements 202A and 202B above the radiating elements 204A and 204B, respectively, causes a change in the electromagnetic field distributions produced, thereby causing the radiating elements to each produce a second (different) electromagnetic field distribution rather than the first electromagnetic field distribution discussed above. The resulting electric field distribution plot 300B (which corresponds to the second electromagnetic field distribution produced by each of the radiating elements) is shown in Figure 3B. As illustrated, cold zones now occupy a far smaller area of each of the charging surfaces. In particular, cold zone 307-1 is significantly smaller than cold zone 302-1, and cold zone 309-1 is significantly smaller than cold zone 303-1. In some embodiments, each cold zones is reduced in size by approximately 80-90%.
[0049] Figure 4 A shows the same resulting electromagnetic field plot 300B as shown in Figure 3B. This electromagnetic field plot 300B, as discussed in relation with Figure 3B shows that adding non-radiating elements 202A and 202B between the radiating antennas 204 A and 204B and the charging surfaces 106 A and 106B can increase the locations on charging surfaces 106A and 106B that have sufficient usable power (stated another way, and as discussed above, the size of a cold zone on each charging surface is reduced significantly). While one orientation of non-radiating elements 202A and 202B within the housing 104 is shown in Figures 2 and 4A, other possible orientations of non-radiating elements 202A and 202B within the housing 104 are possible. Changes in orientation of the non-radiating elements 202A and 202B can change the resulting electromagnetic field distribution
produced by the corresponding radiating elements in the presence of the non-radiating elements.
[0050] For example, Figure 4B shows another possible orientation of non-radiating elements, one in which non-radiating elements 202A and 202B are flipped about horizontal axis 406 (stated another way, the non-radiating elements are rotated 180 degrees relative to the orientation of the non-radiating elements in Figure 4A). These flipped/rotated non radiating elements are shown in Figure 4B as flipped-non-radiating elements 202A-1 and 202B-1. Figure 4B also shows the resulting electromagnetic field plot 402 produced by this combination of flipped-non-radiating elements 202 A- 1 and 202B-1 and radiating elements 204A and 204B, which illustrates how the electromagnetic field distributions produced by the radiating elements are altered in response to flipping of the orientations of the non-radiating elements 202 A and 202B. In some embodiments, one of the reasons why the non-radiating elements results in a more uniform charging surface is that the non-radiating elements stabilize the return loss for the charging system 100 and additionally keeps the return loss lower. In some embodiments, a low and stable return loss ensures that maximum power is transmitted via the charging system 100 and made available at the charging surfaces 106 A and 106B. In some embodiments, without the non-radiating elements, the radiating antennas 204A and 204B would have a return loss that fluctuates as the location of the audio output devices 102 A and 102B changes on the charging surfaces. In some embodiments, when the return loss is high, not enough power is available for charging the electronic devices.
[0051] Figures 5A-1, 5A-2, 5B-1, and 5B-2 show plots of return losses, which show that adding non-radiating elements 202A and 202B between the radiating antennas 204A and 204B and the charging surfaces 106 A and 106B can reduce the amount of irregular variation in return loss at the near-field charging system 100 as the location of the audio output devices 102A and 102B is varied. Figures 5A-1 and 5A-2 illustrate the wireless charger transmitter system without the non-radiating elements 202A and 202B (e.g., parasitic elements). Figures 5A-1 and 5A-2 show a large variation in the reflection coefficient. In Figures 5A-1 and 5A-2 “SI 1” and “S22” indicated by 501 and 502, respectively, indicate the reflection coefficients corresponding to the two radiating elements. The plots in Figures 5A-1 and 5A-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces. Figure 5A-1 shows that in some embodiments, the best case for reflection coefficient is: SI 1 = -16.38 dB, S22 = -19.87 dB. Figure 5A-2 shows that in some embodiments, the worst case for reflection coefficient: SI 1 = -4.99 dB, S22 = -5.20 dB.
[0052] In contrast to Figures 5A-1 and 5A-2, Figure 5B-1 and 5B-2 illustrate the wireless charger transmitter system with the non-radiating elements 202A and 202B (e.g., parasitic elements). Figures 5B-1 and 5B-2 show a small variation in the reflection coefficient. In Figures 5B-1 and 5B-2 “SI 1” and “S22” indicated by 503 and 504, respectively, indicate the reflection coefficients corresponding to the two radiating elements. The plots in Figures 5B-1 and 5B-2 show the reflection coefficients as the audio output devices 102A and 102B (e.g., two earbuds) are placed at different locations across the charging surfaces. Figure 5B-1 shows that in some embodiments, the best case for reflection coefficient is: Sll = -18.10 dB, S22 = -15.17 dB. Figure 5B-2 shows that in some embodiments, the worst case for reflection coefficient: Sll = -11.61 dB, S22 = -13.05 dB.
[0053] While the above descriptions focused on the radiating and non-radiating elements of the inventive near-field charging system 100 for illustrative purposes, one of skill in the art will also appreciate that additional components are used to safely control the transmission of wireless power by the near-field charging system 100. For instance, additional components of the near-field charging system 100 are shown in Figure 6.
[0054] A transmitter can determine the present SAR value of RF energy at one or more particular locations of the transmission field using one or more sampling or measurement techniques. In some embodiments, the SAR values within the transmission field are measured and pre-determined by SAR value measurement equipment. In some implementations, the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which distance ranges in the transmission field are likely to exceed to a pre-stored SAR threshold value. In some implementations, the transmitter may be preloaded with values, tables, and/or algorithms that indicate for the transmitter which radiation profiles within the transmission field are likely to exceed to a pre-stored SAR threshold value. For example, a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the transmitter receiving a number of power waves (P) having a particular frequency (F). One skilled in the art, upon reading the present disclosure, will appreciate that there are any number of potential calculations, which may use any number of variables, to determine the SAR value of RF energy at a particular locations, each of which is within the scope of this disclosure.
[0055] Moreover, a transmitter may apply the SAR values identified for particular locations in various ways when generating, transmitting, or adjusting the radiation profile.
An SAR value at or below 1.6 W/kg, is in compliance with the FCC (Federal
Communications Commission) SAR requirement in the United States. A SAR value at or below 2 W/kg is in compliance with the IEC (International Electrotechnical Commission) SAR requirement in the European Union. In some embodiments, the SAR values may be measured and used by the transmitter to maintain a constant energy level throughout the transmission field, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery. In some embodiments, the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values. For example, after determining how to generate or adjust the radiation profiles, but prior to actually transmitting the power, the transmitter may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the transmitter may actively monitor the transmission field to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold. Where the transmitter is configured to proactively and reactively adjust the power radiation profile, with the goal of maintaining a continuous power level throughout the transmission field, the transmitter may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations throughout the transmission field (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
[0056] In some embodiments, control systems of transmitters adhere to electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly
expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2).
[0057] In some embodiments, and as a non-limiting example, the wireless-power transmission systems disclosed herein comply with FCC Part § 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.” In some embodiments, the wireless-power transmission systems disclosed herein comply with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.” In some embodiments, the wireless-power transmission systems disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
[0058] In some embodiments, the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits. One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits. A second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits. In some embodiments, these safety methods (and others) are programmed into a memory of the transmitter (e.g., memory 706) to allow the transmitter to execute such programs and implement these safety methods. In some embodiments, the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
[0059] Figure 6 is a block diagram of an RF wireless-power transmission system 650 in accordance with some embodiments. In some embodiments, the RF wireless-power transmission system 650 includes an RF power transmitter 100 (also referred to herein as a near-field (NF) charging system 100), NF power transmitter 100, RF power transmitter 100). In some embodiments, the RF power transmitter 100 includes an RF power transmitter
integrated circuit 660 (described in more detail below). In some embodiments, the RF power transmitter 100 includes one or more communications components 704 (e.g., wireless communication components, such as WI-FI or BLUETOOTH radios). In some embodiments, the RF power transmitter 100 also connects to one or more power amplifier units 608-1, ... 608-n to control operation of the one or more power amplifier units when they drive external power-transfer elements (e.g., power-transfer elements, such as transmission antennas 710-1 to 710-n). In some embodiments antennas 710-1 to 710-n are placed near elements 711-A to 711-n (also referred to as non-radiating elements 202A and 202B, and/or flipped-non-radiating elements 202A-1 and 202B-1 depending on the circumstances and desired radiation distributions to be produced by the corresponding radiating elements), respectively. In some embodiments, a single power amplifier, e.g. 608-1 is controlling one antenna 710-1. In some embodiments, RF power is controlled and modulated at the RF power transmitter 100 via switch circuitry as to enable the RF wireless- power transmission system to send RF power to one or more wireless receiving devices via the TX antenna array 710. In some embodiments, a single power amplifier, e.g. 608-n is controlling multiple antennas 710-m to 710-n through multiple splitters (610-1 to 610-n) and multiple switches (612-1 to 612-n).
[0060] In some embodiments, the communication component(s) 704 enable communication between the RF power transmitter 100 and one or more communication networks. In some embodiments, the communication component(s) 704 are capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6L0WPAN, Thread, Z-Wave, Bluetooth Smart, ISAlOO.lla, WirelessHART, MiWi, etc.) custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document. In some instances, the communication component s) 704 are not able to communicate with wireless-power receivers for various reasons, e.g., because there is no power available for the communication component(s) to use for the transmission of data signals or because the wireless-power receiver itself does not actually include any communication component of its own. As such, in some optional embodiments, near-field power transmitters described herein are still able to uniquely identify different types of devices and, when a wireless-power receiver is detected, figure out if that wireless-power receiver is authorized to receive wireless-power. In some embodiments, a signature-signal receiving/generating circuits are used in identifying the receivers.
[0061] Figure 7 is a block diagram of the RF power transmitter integrated circuit 660
(the “RF IC”) in accordance with some embodiments. In some embodiments, the RF IC 660 includes a CPU subsystem 670, an external device control interface, an RF subsection for DC to RF power conversion, and analog and digital control interfaces interconnected via an interconnection component, such as a bus or interconnection fabric block 671. In some embodiments, the CPU subsystem 670 includes a microprocessor unit (CPU) 702 with related Read-Only-Memory (ROM) 672 for device program booting via a digital control interface, e.g. an I2C port, to an external FLASH containing the CPU executable code to be loaded into the CPU Subsystem Random Access Memory (RAM) 674 or executed directly from FLASH. In some embodiments, the CPU subsystem 670 also includes an encryption module or block 676 to authenticate and secure communication exchanges with external devices, such as wireless-power receivers that attempt to receive wirelessly delivered power from the RF power transmitter 100.
[0062] In some embodiments, the RF IC 660 also includes (or is in communication with) a power amplifier controller IC 661 A (PA IC) that is responsible for controlling and managing operations of a power amplifier, including for reading measurements of impedance at various measurement points within the power amplifier. The PA IC 661 A may be on the same integrated circuit at the RF IC 660, or may be on its own integrated circuit that is separate from (but still in communication with) the RF IC 660. In some embodiments, the PA IC 661 A is on the same chip with one or more of the Power Amplifiers (PAs) 608. In some other embodiments, the PA IC 661 A is on its own chip that is a separate chip from the Power Amplifiers (PAs) 608.
[0063] In some embodiments, executable instructions running on the CPU are used to manage operation of the RF power transmitter 100 and to control external devices through a control interface, e.g., SPI control interface 675, and the other analog and digital interfaces included in the RF power transmitter integrated circuit 660. In some embodiments, the CPU subsystem 670 also manages operation of the RF subsection of the RF power transmitter integrated circuit 660, which includes an RF local oscillator (LO) 677 and an RF transmitter (TX) 678. In some embodiments, the RF LO 677 is adjusted based on instructions from the CPU subsystem 670 and is thereby set to different desired frequencies of operation, while the RF TX converts, amplifies, modulates the RF output as desired to generate a viable RF power level.
[0064] In some embodiments, the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use any beam-forming capabilities (e.g., bypasses/ disables a beam-forming IC and/or any associated algorithms if phase-shifting is not required, such as when only a single antenna 710 is used to transmit power transmission signals to a wireless-power receiver). In some embodiments, the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
[0065] In some embodiments, the RF power transmitter integrated circuit 660 provides the viable RF power level (e.g., via the RF TX 678) directly to the one or more power amplifiers 608 and does not use a beam-forming IC. In some embodiments, by not using beam-forming control, there is no active beam-forming control in the power transmission system. For example, in some embodiments, by eliminating the active beam forming control, the relative phases of the power signals from different antennas are unaltered after transmission. In some embodiments, by eliminating the active beam-forming control, the phases of the power signals are not controlled and remain in a fixed or initial phase. In some embodiments, the PA IC 661 A regulates the functionality of the PAs 608 including adjusting the viable RF power level to the PAs 608.
[0066] The components of the near-field charging system 100 are also used to ensure that power is transmitted safely. For example, Specific Absorption Rate (SAR) values and Electromagnetic Field (EMF) values can be used to help ensure safe transmission of wireless power. In some embodiments, the system 100 can determine the present SAR value of RF energy at one or more particular locations near the charging surfaces described herein using one or more sampling or measurement techniques. In some embodiments, the SAR values near the charging surfaces are measured and pre-determined by SAR value measurement equipment. In some implementations, the system 100 may be preloaded with values, tables, and/or algorithms that indicate for the system 100 which distance ranges are likely to exceed a pre-stored SAR threshold value. In some implementations, the system may be preloaded with values, tables, and/or algorithms that indicate for the system which radiation profiles near the charging surface are likely to exceed to a pre-stored SAR threshold value. For example, a lookup table may indicate that the SAR value for a volume of space (V) located some distance (D) from the system receiving a number of power waves (P) having a particular frequency (F). One skilled in the art, upon reading the present disclosure, will appreciate that there are any number of potential calculations, which may use any number of
variables, to determine the SAR value of RF energy at a particular locations, each of which is within the scope of this disclosure.
[0067] A SAR value at or below 1.6 W/kg, is in compliance with the FCC (Federal
Communications Commission) SAR requirement in the United States. A SAR value at or below 2 W/kg is in compliance with the IEC (International Electrotechnical Commission) SAR requirement in the European Union. In some embodiments, the SAR values may be measured and used by the system to maintain a constant energy level throughout the charging surfaces, where the energy level is both safely below a SAR threshold value but still contains enough RF energy for the receivers to effectively convert into electrical power that is sufficient to power an associated device, and/or charge a battery. In some embodiments, the transmitter may proactively modulate the radiation profiles based upon the energy expected to result from newly formed radiation profiles based upon the predetermined SAR threshold values. For example, after determining how to generate or adjust the radiation profiles, but prior to actually transmitting the power, the system may determine whether the radiation profiles to be generated will result in RF energy accumulation at a particular location that either satisfies or fails the SAR threshold. Additionally or alternatively, in some embodiments, the system may actively monitor the charging surfaces to reactively adjust power waves transmitted to or through a particular location when the transmitter determines that the power waves passing through or accumulating at the particular location fail the SAR threshold. Where the system is configured to proactively and reactively adjust the power radiation profile, with the goal of maintaining a continuous power level throughout the charging surface, the system may be configured to proactively adjust the power radiation profile to be transmitted to a particular location to be certain the power waves will satisfy the SAR threshold, but may also continuously poll the SAR values at locations near the charging surfaces (e.g., using one or more sensors configured to measure such SAR values) to determine whether the SAR values for power waves accumulating at or passing through particular locations unexpectedly fail the SAR threshold.
[0068] In some embodiments, the system 100 described herein also adheres to electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the
microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (pW/cm2)
[0069] In some embodiments, and as a non-limiting example, the system disclosed herein complies with FCC Part § 18.107 requirement which specifies “Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate and use locally RF energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunication.” In some embodiments, the system disclosed herein complies with ITU (International Telecommunication Union) Radio Regulations which specifies “industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.” In some embodiments, the system 100 disclosed herein comply with other requirements such as requirements codified under EN 62311: 2008, IEC/EN 662209-2: 2010, and IEC/EN 62479: 2010.
[0070] In some embodiments, the present systems and methods for wireless-power transmission incorporate various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits. One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits, so that human subjects are not exposed to power levels at or near the EMF exposure limits. A second safety method can provide staged protection measures, such as reduction or termination of wireless-power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a radiation area with power density levels exceeding EMF exposure limits. In some embodiments, these safety methods (and others) are programmed into a memory of the transmitter (not shown) to allow the transmitter to execute such programs and implement these safety methods. In some embodiments, the safety methods are implemented by using sensors to detect a foreign object within the transmission field.
[0071] Figure 8 shows a flow diagram of a method of constructing a near-field charging system, in accordance with some embodiments. In some embodiments, the method of Figure 8 is performed by a manufacturer of near-field charging systems, or by a manufacturer of components such systems.
[0072] Specifically, Figure 8 shows a method 800 of constructing (802) a near-field charging system for increasing a usable wireless charging area available to a wireless-power receiver. The method 800 includes providing a housing of the near-field charging system (804). The housing that is provided in operation 804 includes a charging surface and at least one other surface (806). In some embodiments, the charging surface is a top surface of the housing, such as top surface of the housing 104 depicted in Figures 1 and 2. The top surface includes one or more charging surfaces (e.g., charging surfaces 106A and 106B, Figures 1 and 2) at which a wireless-power receiver is placed to allow that receiver to receive electromagnetic energy that it can then convert into usable power for charging or powering of an electronic device coupled to the wireless-power receiver. The other surfaces can be surfaces that allow for encasing the radiating antenna (e.g., radiating antennas 204A and 204B) and the non-radiating elements (e.g., parasitic element) 202A, 202B, 202A-1, and 202B-1, but these other surfaces are not configured to allow for the wireless-power receiver to receive the electromagnetic energy. Stated another way, the radiating elements 204A and 204B and parasitic element 202 A, 202B, 202A-1, and 202B-1, in some embodiments, produce electromagnetic energy that is enhanced on the charging surface, and is not configured to be available on the other surfaces).
[0073] Further, the housing that is provided in operation 804 also includes a radiating antenna (806). In some embodiments, the radiating antenna is made from a conductive material such as copper, or any other suitable radiative material. The radiating antenna is coupled to a feed line that provides an RF signal to the radiating antenna. In contrast, a non radiating element (also referred to as a parasitic element, and discussed below) is not coupled to a feeding line. The housing also includes the non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (806) (e.g., the non-radiating element is a parasitic element such as a conductive metal patch, an example of which is depicted in Figures 2, 4A, and 4B (e.g., non-radiating element 202A), and which is depicted as positioned on top of the radiating antenna 204A. In some embodiments, the parasitic element has a same shape as the radiating antenna, as is shown in Figures 2, 4A, and 4B).
[0074] The radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface (e.g., charging surfaces 106A and 106B in Figures 2, 4A, and 4B, which can be surfaces of the housing (e.g., housing 104) on which receiving devices may be placed. In some embodiments or circumstances, the first electromagnetic field distribution can be
configured to provide at least 200 and/or a minimum of milliwatts of usable power (e.g., usable power is energy that is rectified and converted to the correct requirements for whatever type of device is receiving power or charge from the wireless-power receiver) to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing (808).
[0075] The non-radiating element, when placed in a position above the radiating element, is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution (which is distinct from the first electromagnetic field distribution), the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing (810).
[0076] In some circumstances, examples of the change to the distribution characteristic include, as non-limiting examples, changes to e-field distribution to lower peaks and/or valleys. To illustrate this in one example, attention is directed to Figures 3 A and 3B. A comparison of the electric field distribution plots shown in Figures 3A (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is not present, i.e., the first electromagnetic field distribution) and Figure 3B (representing the electromagnetic field distribution of the radiating antenna when the parasitic element is present, i.e., the second electromagnetic field distribution) shows this change in the distribution characteristics that occurs when the non-radiating element is used to alter the electromagnetic field distribution of the radiating antenna.
[0077] The second portion can be at least 10% percent greater in size than the first portion (812). As one example, the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 110A and 110B each represent approximately 70% of the surface area of the charging surface), and the second portion of the charging surface of the housing covers an area that includes at least 80% of the surface area of the charging surface (e.g., as shown in Figure 1, the dashed-line outlines labeled 112A and 112B each represent approximately 80% of the surface area of the charging surface). In some embodiments, the second portion covers an area of the charging surface that is at least 10% percent larger in size than the first portion. In some embodiments, the percentage can be any integer or
fractional value falling between the range of 10% to 30% (e.g., 11%, 11.5%, 18%, 19.1%, 20.5, 25, etc.)
[0078] In some embodiments of the method 800, the second electromagnetic field distribution is configured to provide at least 220 milliwatts of usable power to the wireless- power receiver when the wireless-power receiver is placed at any position across the second portion of the charging surface of the housing. In other words, amount of usable power available across the second portion of the charging surface can be increased from 200 to 220 milliwatts in order to provide an amount of usable power to a receiving device with a higher power requirement. In some embodiments, 220 milliwatts provides enough power to charge one or more wireless earbuds or hearing aids.
[0079] In some embodiments of the near-field charging system, the second electromagnetic field distribution is configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing. In other words, amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 1 watt in order to provide an amount of usable power to a receiving device with a higher power requirement. In some embodiments, 1 watt provides enough power to charge a wearable electronic device such as a smartwatch.
[0080] In some embodiments of the near-field charging system, the second electromagnetic field distribution is configured to provide at least 5 watts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing. In other words, amount of usable power available across the second portion of the charging surface can be increased from 200 milliwatts to 5 watts in order to provide an amount of usable power to a receiving device with a higher power requirement. In some embodiments, 5 watts provides enough power to charge a small electronic device such as a smartphone.
[0081] In some embodiments of the near-field charging system, the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface. For example, Figure 3B, 4A, and 4B show charging surfaces that cover 70% of the charging surface.
[0082] In some embodiments of the near-field charging system, the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non-radiating element is
closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 75% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system. In some embodiments, while the reflection coefficient becomes more invariant with the movement of the wireless receiver devices on the charging surfaces of the near-field charging system, the charging surfaces uniformity increases. In some embodiments, the second reflection coefficient is up to 20% less than the first reflection coefficient.
[0083] In some embodiments, the addition of the non-radiating element (e.g., the parasitic element) results in a reflection coefficient of the near field charging system’s radiating antennas becoming more stable and far less sensitive to the relative placement and/or location of the receiver device (e.g., where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud)). Therefore, as the receiver is moved over the surface of the transmitter antenna, the reflection coefficient does not vary as much, the return loss at the radiating antenna feed can be greatly reduced, and the power transferred to the radiating antenna is uniform and stable. This is not, however, the case for the radiating antennas without non-radiating elements placed proximate thereto. For example, when the near field charging system does not have a non-radiating element, reflection coefficient varies between -5 dB to -18 dB as the position of the receiver is varied within the charging area. This, in turn, leads to poor coupling of power in some areas where the reflection coefficient (and return loss) is high. On the other hand, when the parasitic element is added, in some embodiments, the reflection coefficient varies between - 13 dB to -16 dB as the position of the receiver is varied within the charging area. In most circumstances, this is a desired result because the reflection coefficient (and return loss) is always low at the antenna feed. In some embodiments, reflection coefficient is (and in some embodiments always) less than -10 dB. Therefore, the power transferred into the radiating antenna can be uniform and stable, and is not dependent on the location of the receiver antenna.
[0084] In some embodiments of the near-field charging system, the second electromagnetic field distribution of the near-field charging system is configured to provide more than 200 milliwatts. In some embodiments, this amount of usable power is adjusted based on the requirements of the receiving device (i.e., the electronic device that is coupled to the wireless-power receiver). In some embodiments, 1 watt emitted by the system 100 can be an appropriate amount of power to charge a single wireless headphone. In some embodiments, 200 watts emitted by the near-field charging system may be an appropriate
amount of power to charge a laptop device. In some embodiments, placement of the parasitic element above the radiating antenna within the housing thus causes a flattening of the resulting electromagnetic field distribution (the referenced second electromagnetic field distribution referred to herein) produced by the radiating antennas of the near-field charging system 100, such that more usable charging locations are available to the wireless-power receiver on the charging surface (e.g., locations at which the receiver is able to receive at least 200 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power), but the locations at which more than 250 milliwatts (or some other value depending on the circumstances and configuration of the system) of usable power could be received by the wireless-power receiver are reduced. Thus, in such embodiments, more usable charging locations are available overall (e.g., as depicted and explained with reference to Figure 2, cold zone locations are reduced on the charging surfaces), but less locations of higher amounts of usable power are made available to the wireless-power receiver. Such an occurrence is evidenced by comparing Figure 3 A (which shows the electromagnetic field distribution without the non-radiating element) to Figure 3B (which shows the electromagnetic field distribution with the non-radiating element)). In other words, in some embodiments, uniformity of charging across the charging surfaces is the most important goal, and therefore sacrificing higher power level areas to achieve uniformity is desirable.
[0085] In some embodiments, the charging surface of the near-field charging system has a depression (e.g., depressions 106A-1 and 106B-1 in Figure 1) that is configured to receive and partially surround an audio output device, and where the wireless-power receiver is coupled to the audio output device (e.g., a hearing aid, wireless headphones, or an earbud), and the wireless power receiver is configured to provide at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
[0086] In some embodiments, the audio output device is a single in-ear audio output device (e.g., a wireless earbud or audio output device (indicated by 102 A and 102B in Figure 1), or a hearing aid, etc.).
[0087] In some embodiments, the radiating antenna has a shape (e.g., a PIFA antenna with a radiator substantially in the shape of the letter ‘c,’ similar to the shape depicted for radiating elements in Figures 2, 4A, and 4B), and the radiating antenna is oriented to have a first orientation within the housing. In embodiments in which the charging surface is a planar surface, the first orientation can be such that the largest surface of the radiating antenna is
substantially coplanar with (e.g., within +/- 5 degrees of coplanar with) the largest surface of the charging surface, similar to the orientation shown in Figure 2 and Figure 4A.); and the non-radiating element has the shape (e.g., a substantially identical shape as the radiating antenna, as shown in Figures 2 and 4A) and the first orientation within the housing. In some embodiments, the non-radiating element has a surface area that varies by approximately 10% relative to a surface area of the radiating antenna (e.g., the non-radiating element is either larger or smaller than the radiating antenna by 10% of its surface area).
[0088] In some embodiments, the radiating antenna has a shape (e.g., a PIFA antenna with a radiator having a ‘c’ shaped design, similar to the shape shown by radiating elements in Figures 2, 4A, and 4B) and the radiating antenna is oriented to have the first orientation (described above) within the housing; and the non-radiating element has: the same shape (e.g., an identical shape as the radiating antenna, as shown in Figure 4A); and a second orientation within the housing that is different from the first orientation (as shown in Figure 4B). .
[0089] In some embodiments, the radiating antenna is connected to a power feed line
(as shown by power feed lines 210A and 210B in Figure 2), and the non-radiating element (e.g., the non-radiating element is a parasitic element) is not connected to a power feed line (as shown Figure 2).
[0090] In some embodiments, a non-conducting material is placed between the radiating antenna and the non-radiating element, and the non-conducting material electrically isolates the radiating antenna from the non-radiating element (as shown by circuit board 206 in Figure 2, 4A, and 4B). In some embodiments, rather than use a circuit board, a dielectric can be utilized as the non-conducting material, and the radiating antennas and non-radiating elements can be in the form of stamped metal components (instead of being printed elements on a circuit board).
[0091] In some embodiments, the radiating antenna and the non-radiating element both have a same antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
[0092] In some embodiments, the non-radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna (e.g., as shown in Figure 1 where the circuit board 206 is 1 millimeter thick). In some embodiments, the non-radiating element is positioned at least 1.5 millimeter above the radiating antenna within the housing such that
the non-radiating element is closer to the charging surface than the radiating antenna. In some embodiments, the non-radiating elements are floating exactly on top of the radiating element with a one-millimeter layer of dielectric in between. In some embodiments, there is no conductive material connecting the non-radiating elements with the radiating antennas; in other words, there is no electrical connection between the radiating antennas and the non radiating elements.
[0093] The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the embodiments described herein and variations thereof. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the subject matter disclosed herein. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.
[0094] Features of the present invention can be implemented in, using, or with the assistance of a computer program product, such as a storage medium (media) or computer readable storage medium (media) having instructions stored thereon/in which can be used to program a processing system to perform any of the features presented herein. The storage medium (e.g., memory 206, 256) can include, but is not limited to, high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory optionally includes one or more storage devices remotely located from the CPU(s) (e.g., processor(s)). Memory, or alternatively the non-volatile memory device(s) within the memory, comprises a non-transitory computer readable storage medium.
[0095] Stored on any one of the machine readable medium (media), features of the present invention can be incorporated in software and/or firmware for controlling the hardware of a processing system (such as the components associated with the transmitters 100 and/or receivers 104), and for enabling a processing system to interact with other mechanisms utilizing the results of the present invention. Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
[0096] It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.
[0097] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
[0098] As used herein, the term “if’ may be construed to mean “when” or “upon” or
“in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
[0099] The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.
Claims
1. A near-field charging system for increasing a usable wireless charging area available to a wireless-power receiver, the near-field charging system comprising: a housing including: a charging surface and at least one other surface, a radiating antenna, and a non-radiating element positioned above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, wherein: the radiating antenna is configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing; the non-radiating element is configured to change a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing, further wherein the second portion is at least 10% percent greater than the first portion.
2. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide at least 220 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
3. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide at least 1 watt of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
4. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide at least 5 watts of usable power to the wireless- power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing.
5. The near-field charging system of any of claims 1-4, wherein the first portion of the charging surface of the housing covers an area that includes 70% of the surface area of the charging surface.
6. The near-field charging system of any of claims 1-5, wherein: the radiating antenna is configured to produce a first reflection coefficient, and positioning the non-radiating element above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, the radiating antenna is configured to produce a second reflection coefficient that is 12% less than the first reflection coefficient, thereby causing a reduction in return losses for the near-field charging system.
7. The near-field charging system of claim 6, wherein the second reflection coefficient varies between -13dB and -16dB.
8. The near-field charging system of claim 6, wherein the second reflection coefficient is less than -lOdB.
9. The near-field charging system of claim 1, the second electromagnetic field distribution being configured to provide more than 200 milliwatts of usable power to the wireless-power receiver at fewer locations on the charging surface of the housing relative to the first electromagnetic field distribution.
10. The near-field charging system of any of claims 1-9, wherein the charging surface has a depression configured to receive and partially house an audio output device, and further wherein the wireless-power receiver is coupled to the audio output device, and the wireless power receiver is configured to provide the at least 200 milliwatts of usable power to the audio output device for charging or powering purposes.
11. The near-field charging system of claim 10, wherein the audio output device is a single in-ear audio output device.
12. The near-field charging system of any of claims 1-11, wherein: the radiating antenna has a shape, and the radiating antenna is oriented to have a first orientation within the housing; and the non-radiating element has the shape and the first orientation within the housing.
13. The near-field charging system of any of claims 1-11, wherein:
the radiating antenna has a shape and the radiating antenna is oriented to have a first orientation within the housing; the non-radiating element has: the same shape; and a second orientation within the housing that is different from the first orientation.
14. The near-field charging system of any of claims 1-13, wherein the radiating antenna is connected to a power feed line, and the non-radiating element is not connected to a power feed line.
15. The near-field charging system of any of claims 1-14, wherein a non-conducting material is placed between the radiating antenna and the non-radiating element, wherein the non-conducting material electrically isolates the radiating antenna from the non-radiating element.
16. The near-field charging system of any of claims 1-15, wherein the radiating antenna and the non-radiating element both have a same radiating antenna design selected from the group consisting of: a PIFA antenna design, a patch antenna design, and a dipole antenna design.
17. The near-field charging system of any of claims 1-16, wherein the non-radiating element is positioned at least 1 millimeter above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna.
18. A method of constructing a near-field charging system that increases usable wireless charging area available to a wireless-power receiver, the method comprising: providing a housing that includes a charging surface and at least one other surface; placing a radiating antenna within the housing, the radiating antenna configured to produce a first electromagnetic field distribution that is configured to be received by a wireless-power receiver placed on the charging surface of the housing, the first electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position on a first portion of the charging surface of the housing;
placing a non-radiating element in a position above the radiating antenna within the housing such that the non-radiating element is closer to the charging surface than the radiating antenna, wherein placing the non-radiating element in the position above the radiating antenna within the housing changes a distribution characteristic of the first electromagnetic field distribution to produce a second electromagnetic field distribution, the second electromagnetic field distribution being configured to provide at least 200 milliwatts of usable power to the wireless-power receiver when the wireless-power receiver is placed at any position across a second portion of the charging surface of the housing, wherein the second portion is at least 10% percent greater than the first portion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180022816.2A CN115336138A (en) | 2020-04-13 | 2021-04-13 | Wireless power transmitting device for creating uniform near-field charging area |
EP21787881.8A EP4136738A4 (en) | 2020-04-13 | 2021-04-13 | Wireless-power transmitting device for creating a uniform near-field charging area |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063009361P | 2020-04-13 | 2020-04-13 | |
US63/009,361 | 2020-04-13 | ||
US17/228,621 US11799324B2 (en) | 2020-04-13 | 2021-04-12 | Wireless-power transmitting device for creating a uniform near-field charging area |
US17/228,621 | 2021-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021211621A1 true WO2021211621A1 (en) | 2021-10-21 |
Family
ID=78007165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/027140 WO2021211621A1 (en) | 2020-04-13 | 2021-04-13 | Wireless-power transmitting device for creating a uniform near-field charging area |
Country Status (4)
Country | Link |
---|---|
US (2) | US11799324B2 (en) |
EP (1) | EP4136738A4 (en) |
CN (1) | CN115336138A (en) |
WO (1) | WO2021211621A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
USD1030659S1 (en) * | 2022-04-22 | 2024-06-11 | Shenzhen Yifeng Intelligent Technology Co., Ltd. | Wireless charger |
USD1030660S1 (en) * | 2022-04-22 | 2024-06-11 | Shenzhen Yifeng Intelligent Technology Co., Ltd. | Wireless charger |
CN117254243B (en) * | 2023-11-20 | 2024-01-19 | 上海英内物联网科技股份有限公司 | Near-field read-write antenna based on bending coplanar waveguide transmission line |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100819604B1 (en) * | 2005-07-27 | 2008-04-03 | 엘에스전선 주식회사 | Wireless Charger Decreased in Variation of Charging Efficiency |
US20100201202A1 (en) | 2008-05-13 | 2010-08-12 | Qualcomm Incorporated | Wireless power transfer for furnishings and building elements |
US20150380972A1 (en) | 2014-06-27 | 2015-12-31 | Andrew David Fort | Devices and methods for charging medical devices |
US20160204643A1 (en) * | 2013-08-15 | 2016-07-14 | Humavox Ltd. | Wireless Charging Device |
US20160248160A1 (en) | 2005-01-21 | 2016-08-25 | Ruckus Wireless, Inc. | Pattern shaping of rf emission patterns |
US20170005481A1 (en) * | 2015-07-02 | 2017-01-05 | Qualcomm Incorporated | Controlling field distribution of a wireless power transmitter |
KR20180114721A (en) * | 2017-04-11 | 2018-10-19 | 엘지이노텍 주식회사 | A wireless power module |
US20180331581A1 (en) * | 2015-12-24 | 2018-11-15 | Energous Corporation | Near-Field Antenna for Wireless Power Transmission with Four Coplanar Antenna Elements that Each Follows a Respective Meandering Pattern |
Family Cites Families (1108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US787412A (en) | 1900-05-16 | 1905-04-18 | Nikola Tesla | Art of transmitting electrical energy through the natural mediums. |
US2811624A (en) | 1954-01-07 | 1957-10-29 | Raytheon Mfg Co | Radiation systems |
US2863148A (en) | 1954-06-17 | 1958-12-02 | Emi Ltd | Helical antenna enclosed in a dielectric |
GB927051A (en) | 1959-10-07 | 1963-05-22 | Rudolf Guertler | Improvements in or relating to antennas for high frequencies |
US3434678A (en) | 1965-05-05 | 1969-03-25 | Raytheon Co | Microwave to dc converter |
US4944036A (en) | 1970-12-28 | 1990-07-24 | Hyatt Gilbert P | Signature filter system |
US3696384A (en) | 1971-07-08 | 1972-10-03 | Recognition Devices | Ultrasonic tracking and locating system |
US3754269A (en) | 1972-03-07 | 1973-08-21 | Vorta Systems Inc | Omni-directional antenna mounted in circular radome |
US4101895A (en) | 1977-02-14 | 1978-07-18 | The United States Of America As Represented By The Secretary Of The Army | Multifrequency antenna system integrated into a radome |
US4360741A (en) | 1980-10-06 | 1982-11-23 | The Boeing Company | Combined antenna-rectifier arrays for power distribution systems |
US4995010A (en) | 1989-07-21 | 1991-02-19 | Johnson Fishing, Inc. | Depth finding-trolling system |
US5211471A (en) | 1990-12-28 | 1993-05-18 | The Brinkmann Corporation | Flashlight with tailcap switch boot |
US5276455A (en) | 1991-05-24 | 1994-01-04 | The Boeing Company | Packaging architecture for phased arrays |
US5200759A (en) | 1991-06-03 | 1993-04-06 | Mcginnis Henry J | Telecommunications tower equipment housing |
US6738697B2 (en) | 1995-06-07 | 2004-05-18 | Automotive Technologies International Inc. | Telematics system for vehicle diagnostics |
US5142292A (en) | 1991-08-05 | 1992-08-25 | Checkpoint Systems, Inc. | Coplanar multiple loop antenna for electronic article surveillance systems |
US5556749A (en) | 1992-11-12 | 1996-09-17 | Hitachi Chemical Research Center, Inc. | Oligoprobe designstation: a computerized method for designing optimal DNA probes |
US6069412A (en) | 1993-03-29 | 2000-05-30 | Powerware Corporation | Power factor corrected UPS with improved connection of battery to neutral |
US5422647A (en) | 1993-05-07 | 1995-06-06 | Space Systems/Loral, Inc. | Mobile communication satellite payload |
US5631572A (en) | 1993-09-17 | 1997-05-20 | Teradyne, Inc. | Printed circuit board tester using magnetic induction |
US6664920B1 (en) | 1993-11-18 | 2003-12-16 | Raytheon Company | Near-range microwave detection for frequency-modulation continuous-wave and stepped frequency radar systems |
US5574967A (en) | 1994-01-11 | 1996-11-12 | Ericsson Ge Mobile Communications, Inc. | Waste energy control and management in power amplifiers |
US5712642A (en) | 1994-09-27 | 1998-01-27 | Hughes Missile Systems Company | Spatial power combiner using subharmonic beam position control |
US5646633A (en) | 1995-04-05 | 1997-07-08 | Mcdonnell Douglas Corporation | Microstrip antenna having a plurality of broken loops |
JPH0951293A (en) | 1995-05-30 | 1997-02-18 | Matsushita Electric Ind Co Ltd | Indoor radio communication system |
US6061025A (en) | 1995-12-07 | 2000-05-09 | Atlantic Aerospace Electronics Corporation | Tunable microstrip patch antenna and control system therefor |
US8112131B2 (en) | 1996-02-20 | 2012-02-07 | Chester Holdings LLC | Radiative focal area antenna transmission coupling arrangement |
US7043543B2 (en) | 1996-07-23 | 2006-05-09 | Server Technology, Inc. | Vertical-mount electrical power distribution plugstrip |
US8183998B2 (en) | 1996-12-16 | 2012-05-22 | Ip Holdings, Inc. | System for seamless and secure networking of implantable medical devices, electronic patch devices and wearable devices |
US5914692A (en) | 1997-01-14 | 1999-06-22 | Checkpoint Systems, Inc. | Multiple loop antenna with crossover element having a pair of spaced, parallel conductors for electrically connecting the multiple loops |
US5983073A (en) | 1997-04-04 | 1999-11-09 | Ditzik; Richard J. | Modular notebook and PDA computer systems for personal computing and wireless communications |
US7068991B2 (en) | 1997-05-09 | 2006-06-27 | Parise Ronald J | Remote power recharge for electronic equipment |
US5982139A (en) | 1997-05-09 | 1999-11-09 | Parise; Ronald J. | Remote charging system for a vehicle |
US6176433B1 (en) | 1997-05-15 | 2001-01-23 | Hitachi, Ltd. | Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance |
US6046708A (en) | 1998-02-03 | 2000-04-04 | Telefonaktiebolaget Lm Ericsson | Termination contact for an antenna with a nickel-titanium radiating element |
US5936527A (en) | 1998-02-10 | 1999-08-10 | E-Tag Systems, Inc. | Method and apparatus for locating and tracking documents and other objects |
JP4219436B2 (en) | 1998-02-17 | 2009-02-04 | 富士通株式会社 | Tuner device |
US6208287B1 (en) | 1998-03-16 | 2001-03-27 | Raytheoncompany | Phased array antenna calibration system and method |
US6127942A (en) | 1998-10-27 | 2000-10-03 | The Aerospace Corporation | Ultrasonic power sensory system |
US6597897B2 (en) | 1998-12-14 | 2003-07-22 | Lear Automotive Dearborn, Inc. | Low power radio frequency transmitter with controllable gain |
US6615074B2 (en) | 1998-12-22 | 2003-09-02 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
US6289237B1 (en) | 1998-12-22 | 2001-09-11 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
JP4235300B2 (en) | 1999-01-14 | 2009-03-11 | キヤノン株式会社 | Communications system |
FI108365B (en) | 1999-02-11 | 2002-01-15 | Patria Vehicles Oy | Teleskooppimastojõrjestelmõ |
JP2000323916A (en) | 1999-05-10 | 2000-11-24 | Mitsubishi Electric Corp | Loop antenna |
US6127799A (en) | 1999-05-14 | 2000-10-03 | Gte Internetworking Incorporated | Method and apparatus for wireless powering and recharging |
US6163296A (en) | 1999-07-12 | 2000-12-19 | Lockheed Martin Corp. | Calibration and integrated beam control/conditioning system for phased-array antennas |
CA2314664A1 (en) | 1999-08-10 | 2001-02-10 | Armstrong World Industries, Inc. | Ceiling tile transmitter and receiver system |
US9425638B2 (en) | 1999-11-01 | 2016-08-23 | Anthony Sabo | Alignment independent and self-aligning inductive power transfer system |
US6803744B1 (en) | 1999-11-01 | 2004-10-12 | Anthony Sabo | Alignment independent and self aligning inductive power transfer system |
DE19952819A1 (en) | 1999-11-02 | 2001-07-12 | Rr Elektronische Geraete Gmbh | Reflector antenna and method of manufacturing a sub-reflector |
US6476795B1 (en) | 2000-01-20 | 2002-11-05 | Hewlett-Packard Company | Mouse recharging module |
US8077040B2 (en) | 2000-01-24 | 2011-12-13 | Nextreme, Llc | RF-enabled pallet |
US6640084B2 (en) | 2000-02-01 | 2003-10-28 | Krishna Pande | Complete outdoor radio unit for LMDS |
WO2001059905A1 (en) | 2000-02-07 | 2001-08-16 | Fujitsu Limited | Charger and power unit of portable terminal |
US6271799B1 (en) | 2000-02-15 | 2001-08-07 | Harris Corporation | Antenna horn and associated methods |
US6329908B1 (en) | 2000-06-23 | 2001-12-11 | Armstrong World Industries, Inc. | Addressable speaker system |
JP2002017058A (en) | 2000-06-30 | 2002-01-18 | Mitsubishi Electric Corp | Cordless power carrying system, power carrying terminal and electrical apparatus |
GB0022269D0 (en) | 2000-09-12 | 2000-10-25 | Koninkl Philips Electronics Nv | Data transmission system |
DE20016655U1 (en) | 2000-09-25 | 2002-02-14 | iC-Haus GmbH, 55294 Bodenheim | System for wireless energy and data transmission |
DE10049844A1 (en) | 2000-10-09 | 2002-04-11 | Philips Corp Intellectual Pty | Miniaturized microwave antenna |
JP4624577B2 (en) | 2001-02-23 | 2011-02-02 | 富士通株式会社 | Human interface system with multiple sensors |
US6501414B2 (en) | 2001-04-02 | 2002-12-31 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Method for locating a concealed object |
JP2002319816A (en) | 2001-04-24 | 2002-10-31 | Ee C Ii Tec Kk | Antenna system |
TW535329B (en) | 2001-05-17 | 2003-06-01 | Acer Neweb Corp | Dual-band slot antenna |
TW556368B (en) | 2001-08-24 | 2003-10-01 | Gemtek Technology Co Ltd | Improvement of planar reversed-F antenna |
US6693601B2 (en) | 2001-09-24 | 2004-02-17 | Romain Louis Billiet | Ceramic-embedded micro-electromagnetic device and method of fabrication thereof |
US20060019712A1 (en) | 2001-11-14 | 2006-01-26 | Seung-Won Choi | Calibration apparatus for smart antenna and method thereof |
US6853197B1 (en) | 2001-12-03 | 2005-02-08 | Atheros Communications, Inc. | Method and apparatus for insuring integrity of a connectorized antenna |
US6844855B2 (en) | 2002-01-25 | 2005-01-18 | The Boeing Company | Aircraft phased array antenna structure including adjacently supported equipment |
US6888504B2 (en) | 2002-02-01 | 2005-05-03 | Ipr Licensing, Inc. | Aperiodic array antenna |
KR100434336B1 (en) | 2002-02-21 | 2004-06-04 | 이노에이스(주) | Broadband radio relay apparatus using interference signal rejection of mobile telecommunication system |
US7392068B2 (en) | 2002-03-01 | 2008-06-24 | Mobilewise | Alternative wirefree mobile device power supply method and system with free positioning |
AU2003233113A1 (en) | 2002-04-24 | 2003-11-10 | Marconi Intellectual Property (Us) Inc | Energy source recharging device and method |
EP1359684A1 (en) | 2002-04-30 | 2003-11-05 | Motorola Energy Systems Inc. | Wireless transmission using an adaptive transmit antenna array |
GB2388715B (en) | 2002-05-13 | 2005-08-03 | Splashpower Ltd | Improvements relating to the transfer of electromagnetic power |
US8917057B2 (en) | 2002-06-10 | 2014-12-23 | City University Of Hong Kong | Battery charging system |
US6960968B2 (en) | 2002-06-26 | 2005-11-01 | Koninklijke Philips Electronics N.V. | Planar resonator for wireless power transfer |
US20040020100A1 (en) | 2002-08-05 | 2004-02-05 | O'brien Denis Michael | Apparatus for a wireless animal trap detection system |
AU2003258171A1 (en) | 2002-08-12 | 2004-02-25 | Mobilewise, Inc. | Wireless power supply system for small devices |
US6856291B2 (en) | 2002-08-15 | 2005-02-15 | University Of Pittsburgh- Of The Commonwealth System Of Higher Education | Energy harvesting circuits and associated methods |
FR2844399A1 (en) | 2002-09-09 | 2004-03-12 | Thomson Licensing Sa | DIELECTRIC RESONATOR TYPE ANTENNAS |
US20040203989A1 (en) | 2002-09-12 | 2004-10-14 | Broadcom Corporation | Using location information to control transmission signal levels of wireless devices |
US9153074B2 (en) | 2011-07-18 | 2015-10-06 | Dylan T X Zhou | Wearable augmented reality eyeglass communication device including mobile phone and mobile computing via virtual touch screen gesture control and neuron command |
US7193644B2 (en) | 2002-10-15 | 2007-03-20 | Revolutionary Concepts, Inc. | Automated audio video messaging and answering system |
JP2004200772A (en) | 2002-12-16 | 2004-07-15 | Alps Electric Co Ltd | Antenna device |
US8183827B2 (en) | 2003-01-28 | 2012-05-22 | Hewlett-Packard Development Company, L.P. | Adaptive charger system and method |
FI115261B (en) | 2003-02-27 | 2005-03-31 | Filtronic Lk Oy | Multi-band planar antenna |
KR20040077228A (en) | 2003-02-28 | 2004-09-04 | 배대환 | Wireless charging system using rectenna |
FI115574B (en) | 2003-04-15 | 2005-05-31 | Filtronic Lk Oy | Adjustable multi-band antenna |
US8310201B1 (en) | 2003-05-06 | 2012-11-13 | Cypress Semiconductor Corporation | Battery with electronic compartment |
US7068234B2 (en) | 2003-05-12 | 2006-06-27 | Hrl Laboratories, Llc | Meta-element antenna and array |
US7403803B2 (en) | 2003-05-20 | 2008-07-22 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Recharging method and associated apparatus |
US6967462B1 (en) | 2003-06-05 | 2005-11-22 | Nasa Glenn Research Center | Charging of devices by microwave power beaming |
US6798716B1 (en) | 2003-06-19 | 2004-09-28 | Bc Systems, Inc. | System and method for wireless electrical power transmission |
US6844849B1 (en) | 2003-07-10 | 2005-01-18 | Codar Ocean Sensors, Ltd. | Circular superdirective receive antenna arrays |
GB2404497A (en) | 2003-07-30 | 2005-02-02 | Peter Bryan Webster | PCB mounted antenna |
US20120181973A1 (en) | 2003-08-29 | 2012-07-19 | Robert Lyden | Solar array resembling natural foliage including means for wireless transmission of electric power |
US8323106B2 (en) | 2008-05-30 | 2012-12-04 | Sony Computer Entertainment America Llc | Determination of controller three-dimensional location using image analysis and ultrasonic communication |
FR2860361A1 (en) | 2003-09-25 | 2005-04-01 | France Telecom | METHOD OF CONTROLLING TRANSMISSION POWER WITHIN A WIRELESS COMMUNICATION NETWORK |
AU2004306911B2 (en) | 2003-10-17 | 2008-09-11 | Powercast Corporation | Method and apparatus for a wireless power supply |
US7003350B2 (en) | 2003-11-03 | 2006-02-21 | Kenergy, Inc. | Intravenous cardiac pacing system with wireless power supply |
TWI269482B (en) | 2003-11-19 | 2006-12-21 | Univ Nat Taiwan Science Tech | A chip antenna |
US7132995B2 (en) | 2003-12-18 | 2006-11-07 | Kathrein-Werke Kg | Antenna having at least one dipole or an antenna element arrangement similar to a dipole |
CA2562479A1 (en) | 2004-04-12 | 2005-12-01 | Airgain, Inc. | Switched multi-beam antenna |
JP4621200B2 (en) | 2004-04-15 | 2011-01-26 | パナソニック株式会社 | Communication apparatus, communication system, and authentication method |
GB2414121B (en) | 2004-05-11 | 2008-04-02 | Splashpower Ltd | Controlling inductive power transfer systems |
US7079079B2 (en) | 2004-06-30 | 2006-07-18 | Skycross, Inc. | Low profile compact multi-band meanderline loaded antenna |
US7012572B1 (en) | 2004-07-16 | 2006-03-14 | Hrl Laboratories, Llc | Integrated ultra wideband element card for array antennas |
US7460839B2 (en) | 2004-07-19 | 2008-12-02 | Purewave Networks, Inc. | Non-simultaneous frequency diversity in radio communication systems |
US7263335B2 (en) | 2004-07-19 | 2007-08-28 | Purewave Networks, Inc. | Multi-connection, non-simultaneous frequency diversity in radio communication systems |
WO2006019339A1 (en) | 2004-08-18 | 2006-02-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Wave-guide-notch antenna |
EP2426785A2 (en) | 2004-10-01 | 2012-03-07 | L. Pierre De Rochemont | Ceramic antenna module and methods of manufacture thereof |
IL164576A (en) | 2004-10-14 | 2006-10-05 | Alvarion Ltd | Method and apparatus for power saving in wireless systems |
US8228194B2 (en) | 2004-10-28 | 2012-07-24 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Recharging apparatus |
US7614556B2 (en) | 2004-11-05 | 2009-11-10 | Goliath Solutions, Llc | Distributed RFID antenna array utilizing circular polarized helical antennas |
US7191013B1 (en) | 2004-11-08 | 2007-03-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Hand held device for wireless powering and interrogation of biomems sensors and actuators |
US7443057B2 (en) | 2004-11-29 | 2008-10-28 | Patrick Nunally | Remote power charging of electronic devices |
JP2006157586A (en) | 2004-11-30 | 2006-06-15 | Keakomu:Kk | Portable radio equipment |
US7944404B2 (en) | 2004-12-07 | 2011-05-17 | Electronics And Telecommunications Research Institute | Circular polarized helical radiation element and its array antenna operable in TX/RX band |
JP4519142B2 (en) | 2005-01-13 | 2010-08-04 | 富士通株式会社 | Information access system and method for accessing information in a contactless information storage device |
US7689969B1 (en) | 2005-01-18 | 2010-03-30 | The Mathworks, Inc. | Obfuscation of automatically generated code |
KR100700944B1 (en) | 2005-01-19 | 2007-03-28 | 삼성전자주식회사 | Apparatus and method for charging rf derelict power in portable terminal |
US20070149162A1 (en) | 2005-02-24 | 2007-06-28 | Powercast, Llc | Pulse transmission method |
EP1854219A4 (en) | 2005-02-24 | 2011-12-21 | Powercast Corp | Method, apparatus and system for power transmitssion |
US7205749B2 (en) | 2005-02-28 | 2007-04-17 | Texas Instruments Incorporated | Power line communication using power factor correction circuits |
JP4318044B2 (en) | 2005-03-03 | 2009-08-19 | ソニー株式会社 | Power supply system, power supply apparatus and method, power reception apparatus and method, recording medium, and program |
US20070019693A1 (en) | 2005-03-07 | 2007-01-25 | Graham David S | Wireless power beaming to common electronic devices |
US7286056B2 (en) | 2005-03-22 | 2007-10-23 | Lawrence Kates | System and method for pest detection |
US7274334B2 (en) | 2005-03-24 | 2007-09-25 | Tdk Corporation | Stacked multi-resonator antenna |
WO2006105094A2 (en) | 2005-03-29 | 2006-10-05 | Duke University | Sensor system for identifying and tracking movements of multiple sources |
US20060238365A1 (en) | 2005-04-24 | 2006-10-26 | Elio Vecchione | Short-range wireless power transmission and reception |
US7359730B2 (en) | 2005-04-29 | 2008-04-15 | Telecordia Technologies, Inc. | Method and apparatus for reducing interference associated with wireless communication |
EP1724541A1 (en) | 2005-05-18 | 2006-11-22 | Electrolux Home Products Corporation N.V. | Food temperature setting using RFID technology |
US20060266917A1 (en) | 2005-05-23 | 2006-11-30 | Baldis Sisinio F | Wireless Power Transmission System |
US20070191074A1 (en) | 2005-05-24 | 2007-08-16 | Powercast, Llc | Power transmission network and method |
US7451839B2 (en) | 2005-05-24 | 2008-11-18 | Rearden, Llc | System and method for powering a vehicle using radio frequency generators |
CA2606709A1 (en) | 2005-05-24 | 2006-11-30 | Powercast Corporation | Power transmission network |
US8469122B2 (en) | 2005-05-24 | 2013-06-25 | Rearden, Llc | System and method for powering vehicle using radio frequency signals and feedback |
CN101194219A (en) | 2005-06-08 | 2008-06-04 | 鲍尔卡斯特公司 | Powering devices using RF energy harvesting |
US20060284593A1 (en) | 2005-06-21 | 2006-12-21 | Nagy Louis L | Wireless battery charging system and method |
CA2511051A1 (en) | 2005-06-28 | 2006-12-29 | Roger J. Soar | Contactless battery charging apparel |
FI20055353A0 (en) | 2005-06-28 | 2005-06-28 | Lk Products Oy | Internal multi-band antenna |
US20070007821A1 (en) | 2005-07-06 | 2007-01-11 | Nazzareno Rossetti | Untethered power supply of electronic devices |
US20070021140A1 (en) | 2005-07-22 | 2007-01-25 | Keyes Marion A Iv | Wireless power transmission systems and methods |
FI20055420A0 (en) | 2005-07-25 | 2005-07-25 | Lk Products Oy | Adjustable multi-band antenna |
JP2007043432A (en) | 2005-08-02 | 2007-02-15 | Mitsubishi Materials Corp | Surface-mounted antenna |
US7509146B2 (en) | 2005-08-03 | 2009-03-24 | Purewave Networks, Inc. | Beamforming using subset of antenna array |
US7400253B2 (en) | 2005-08-04 | 2008-07-15 | Mhcmos, Llc | Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof |
US7904117B2 (en) | 2005-08-12 | 2011-03-08 | Sibeam | Wireless communication device using adaptive beamforming |
US7535195B1 (en) | 2005-08-25 | 2009-05-19 | National Semiconductor Corporation | Battery charger that employs current sharing to simultaneously power an application and charge a battery |
US7423601B2 (en) | 2005-10-20 | 2008-09-09 | Raytheon Company | Reflect array antennas having monolithic sub-arrays with improved DC bias current paths |
WO2007048052A2 (en) | 2005-10-21 | 2007-04-26 | The Regents Of The University Of Colorado | Systems and methods for receiving and managing power in wireless devices |
KR100736053B1 (en) | 2005-10-24 | 2007-07-06 | 삼성전자주식회사 | Apparatus and method of wireless power sharing by induction method |
ZA200803885B (en) | 2005-10-24 | 2009-08-26 | Powercast Corp | Method and apparatus for high efficiency rectification for various loads |
US7327577B2 (en) | 2005-11-03 | 2008-02-05 | International Business Machines Corporation | Method and apparatus for grounding a heat sink in thermal contact with an electronic component using a grounding spring having multiple-jointed spring fingers |
WO2007054900A2 (en) | 2005-11-10 | 2007-05-18 | Nxp B.V. | Broadband antenna for a transponder of a radio frequency identification system |
AU2006318721A1 (en) | 2005-11-21 | 2007-05-31 | Powercast Corporation | Radio-frequency (RF) power portal |
US7557757B2 (en) | 2005-12-14 | 2009-07-07 | The University Of Kansas | Inductively coupled feed structure and matching circuit for RFID device |
WO2007079490A2 (en) | 2006-01-05 | 2007-07-12 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | A wireless autonomous device system |
US7372408B2 (en) | 2006-01-13 | 2008-05-13 | International Business Machines Corporation | Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas |
US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
US8447234B2 (en) | 2006-01-18 | 2013-05-21 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
US8169185B2 (en) | 2006-01-31 | 2012-05-01 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
KR100792308B1 (en) | 2006-01-31 | 2008-01-07 | 엘에스전선 주식회사 | A contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell |
US7952322B2 (en) | 2006-01-31 | 2011-05-31 | Mojo Mobility, Inc. | Inductive power source and charging system |
US7652577B1 (en) | 2006-02-04 | 2010-01-26 | Checkpoint Systems, Inc. | Systems and methods of beamforming in radio frequency identification applications |
US20070191075A1 (en) | 2006-02-13 | 2007-08-16 | Powercast, Llc | Implementation of an RF power transmitter and network |
US7714780B2 (en) | 2006-03-10 | 2010-05-11 | Broadcom Corporation | Beamforming RF circuit and applications thereof |
JP2009530964A (en) | 2006-03-22 | 2009-08-27 | パワーキャスト コーポレイション | Method and apparatus for implementation of a wireless power supply |
US8994276B2 (en) | 2006-03-28 | 2015-03-31 | Wireless Environment, Llc | Grid shifting system for a lighting circuit |
US8552597B2 (en) | 2006-03-31 | 2013-10-08 | Siemens Corporation | Passive RF energy harvesting scheme for wireless sensor |
US8120461B2 (en) | 2006-04-03 | 2012-02-21 | Intermec Ip Corp. | Automatic data collection device, method and article |
WO2007122439A1 (en) | 2006-04-24 | 2007-11-01 | Nokia Corporation | System and method for manage and control near field communication for a mobile multifunctional device when the device is uncharged or only partially charged |
US8770482B2 (en) | 2006-04-26 | 2014-07-08 | Roche Diagnostics Operations, Inc. | Apparatus and method to administer and manage an intelligent base unit for a handheld medical device |
KR100751875B1 (en) | 2006-05-12 | 2007-08-24 | 순천대학교 산학협력단 | wireless power device with an antenna for receiving power using electromagnetic waves |
US7911386B1 (en) | 2006-05-23 | 2011-03-22 | The Regents Of The University Of California | Multi-band radiating elements with composite right/left-handed meta-material transmission line |
US7948208B2 (en) | 2006-06-01 | 2011-05-24 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
KR100755144B1 (en) | 2006-06-02 | 2007-09-04 | 엘지전자 주식회사 | Refrigerator for wireless data communication with sensor for detecting condition of stored food |
US8049676B2 (en) * | 2006-06-12 | 2011-11-01 | Broadcom Corporation | Planer antenna structure |
US7471247B2 (en) | 2006-06-13 | 2008-12-30 | Nokia Siemens Networks, Oy | Antenna array and unit cell using an artificial magnetic layer |
WO2007146164A2 (en) | 2006-06-14 | 2007-12-21 | Powercast Corporation | Wireless power transmission |
GB2440570A (en) | 2006-07-28 | 2008-02-06 | Iti Scotland Ltd | Antenna and heat sink |
US7639994B2 (en) | 2006-07-29 | 2009-12-29 | Powercast Corporation | RF power transmission network and method |
DE102006037517A1 (en) | 2006-08-10 | 2008-02-21 | Kathrein-Werke Kg | Antenna arrangement, in particular for a mobile radio base station |
JP4918594B2 (en) | 2006-08-25 | 2012-04-18 | タイコ エレクトロニクス サービス ゲーエムベーハー | Antenna based on metamaterial structure |
US9022293B2 (en) | 2006-08-31 | 2015-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and power receiving device |
EP2054989A2 (en) | 2006-09-01 | 2009-05-06 | Powercast Corporation | Rf powered specialty lighiting, motion, sound |
US8159090B2 (en) | 2006-09-01 | 2012-04-17 | Powercast Corporation | Hybrid power harvesting and method |
US9129741B2 (en) | 2006-09-14 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for wireless power transmission |
US7348932B1 (en) | 2006-09-21 | 2008-03-25 | Raytheon Company | Tile sub-array and related circuits and techniques |
US8279131B2 (en) | 2006-09-21 | 2012-10-02 | Raytheon Company | Panel array |
EP2076974B1 (en) | 2006-10-16 | 2014-04-23 | Assa Abloy Hospitality, Inc. | Centralized wireless network for multi-room large properties |
WO2008050260A1 (en) | 2006-10-26 | 2008-05-02 | Philips Intellectual Property & Standards Gmbh | Inductive power system and method of operation |
US8220334B2 (en) | 2006-11-10 | 2012-07-17 | Penrith Corporation | Transducer array imaging system |
US8099140B2 (en) | 2006-11-24 | 2012-01-17 | Semiconductor Energy Laboratory Co., Ltd. | Wireless power supply system and wireless power supply method |
US7889528B2 (en) | 2006-11-29 | 2011-02-15 | Semiconductor Energy Laroratory Co., Ltd. | Rectifier circuit, power supply circuit, and semiconductor device |
KR100859718B1 (en) | 2006-12-04 | 2008-09-23 | 한국전자통신연구원 | Dipole tag antenna mountable on metallic objects using artificial magnetic conductorAMC for wireless identification and wireless identification system using the same dipole tag antenna |
JP2008167017A (en) | 2006-12-27 | 2008-07-17 | Renesas Technology Corp | Power amplification and detection circuit, and transmitter and transceiver each using the same, |
US8064533B2 (en) | 2006-12-29 | 2011-11-22 | Broadcom Corporation | Reconfigurable MIMO transceiver and method for use therewith |
US20090102296A1 (en) | 2007-01-05 | 2009-04-23 | Powercast Corporation | Powering cell phones and similar devices using RF energy harvesting |
US20080169910A1 (en) | 2007-01-05 | 2008-07-17 | Powercast Corporation | Implementation of a wireless power transmitter and method |
JP4308858B2 (en) | 2007-02-16 | 2009-08-05 | セイコーエプソン株式会社 | Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment |
US7889147B2 (en) | 2007-02-23 | 2011-02-15 | Northrop Grumman Systems Corporation | Modular active phased array |
US7793121B2 (en) | 2007-03-01 | 2010-09-07 | Eastman Kodak Company | Charging display system |
WO2008115881A1 (en) | 2007-03-16 | 2008-09-25 | Rayspan Corporation | Metamaterial antenna arrays with radiation pattern shaping and beam switching |
US20080233869A1 (en) | 2007-03-19 | 2008-09-25 | Thomas Baker | Method and system for a single-chip fm tuning system for transmit and receive antennas |
US9196770B2 (en) | 2007-03-27 | 2015-11-24 | Newdoll Enterprises Llc | Pole-mounted power generation systems, structures and processes |
TWI324839B (en) | 2007-05-07 | 2010-05-11 | Univ Nat Taiwan | Wideband dielectric resonator antenna and design method thereof |
US8718773B2 (en) | 2007-05-23 | 2014-05-06 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US8115448B2 (en) | 2007-06-01 | 2012-02-14 | Michael Sasha John | Systems and methods for wireless power |
US8159364B2 (en) | 2007-06-14 | 2012-04-17 | Omnilectric, Inc. | Wireless power transmission system |
US8446248B2 (en) | 2007-06-14 | 2013-05-21 | Omnilectric, Inc. | Wireless power transmission system |
US9037750B2 (en) | 2007-07-10 | 2015-05-19 | Qualcomm Incorporated | Methods and apparatus for data exchange in peer to peer communications |
US7702296B2 (en) | 2007-08-01 | 2010-04-20 | Mediatek Usa Inc. | Transmit/receive switch |
US8193764B2 (en) | 2007-08-08 | 2012-06-05 | Jay Marketing Associates, Inc. | Wireless charging of electronic devices |
US20090047998A1 (en) | 2007-08-16 | 2009-02-19 | Motorola, Inc. | Method and apparatus for controlling power transmission levels for a mobile station having transmit diversity |
US20090067198A1 (en) | 2007-08-29 | 2009-03-12 | David Jeffrey Graham | Contactless power supply |
US20090058731A1 (en) | 2007-08-30 | 2009-03-05 | Gm Global Technology Operations, Inc. | Dual Band Stacked Patch Antenna |
EP2031785A1 (en) | 2007-09-02 | 2009-03-04 | Mitsubishi Electric Information Technology Centre Europe B.V. | System for transmitting information data from a transmitter to a receiver over a nested block channel |
US20090122847A1 (en) | 2007-09-04 | 2009-05-14 | Sierra Wireless, Inc. | Antenna Configurations for Compact Device Wireless Communication |
US8223084B2 (en) | 2007-09-06 | 2012-07-17 | Panasonic Corporation | Antenna element |
US8461817B2 (en) | 2007-09-11 | 2013-06-11 | Powercast Corporation | Method and apparatus for providing wireless power to a load device |
US20090073066A1 (en) | 2007-09-14 | 2009-03-19 | M/A-Com, Inc. | Grid Antenna |
CN101803110A (en) | 2007-09-19 | 2010-08-11 | 高通股份有限公司 | Maximizing power yield from wireless power magnetic resonators |
US20090096412A1 (en) | 2007-10-10 | 2009-04-16 | Chuan-Pan Huang | Inductive charging device |
US8175660B2 (en) | 2007-10-30 | 2012-05-08 | Qualcomm Incorporated | Wireless energy transfer |
US7843288B2 (en) | 2007-11-15 | 2010-11-30 | Samsung Electronics Co., Ltd. | Apparatus and system for transmitting power wirelessly |
US20110133691A1 (en) | 2007-11-20 | 2011-06-09 | Nokia Corporation | Wireless Galvanic Charging Device,Method of Operation Thereof and Mobile Electric Device to be Charged |
EP2075927A1 (en) | 2007-12-21 | 2009-07-01 | Thomson Licensing | Method of transmission of at least a data packet by several antennas and corresponding reception method |
US7724201B2 (en) | 2008-02-15 | 2010-05-25 | Sierra Wireless, Inc. | Compact diversity antenna system |
KR100976161B1 (en) | 2008-02-20 | 2010-08-16 | 정춘길 | Charging control method of non-contact charging system of wireless power transmision and chrging control method thereof |
JP2009201328A (en) | 2008-02-25 | 2009-09-03 | Toshiba Corp | Charger and charging system |
US20090218891A1 (en) | 2008-02-29 | 2009-09-03 | Mccollough Jr Norman D | Method and apparatus for rfid based smart sensors |
US9431700B2 (en) | 2008-03-05 | 2016-08-30 | Ethertronics, Inc. | Modal antenna-integrated battery assembly |
US8855554B2 (en) | 2008-03-05 | 2014-10-07 | Qualcomm Incorporated | Packaging and details of a wireless power device |
US7830312B2 (en) | 2008-03-11 | 2010-11-09 | Intel Corporation | Wireless antenna array system architecture and methods to achieve 3D beam coverage |
EP2255484B1 (en) | 2008-03-20 | 2013-08-28 | Nokia Corporation | New data indicator for persistently allocated packets in a communication system |
US9054773B2 (en) | 2008-03-21 | 2015-06-09 | Nxp B.V. | Apparatus comprising a broadcast receiver circuit and provided with an antenna |
GB2470698B (en) | 2008-03-22 | 2013-01-23 | Lyle Shirley | Dimensional probe and methods of use |
US8629576B2 (en) | 2008-03-28 | 2014-01-14 | Qualcomm Incorporated | Tuning and gain control in electro-magnetic power systems |
US7800541B2 (en) | 2008-03-31 | 2010-09-21 | Golba Llc | Methods and systems for determining the location of an electronic device |
US8055003B2 (en) | 2008-04-01 | 2011-11-08 | Apple Inc. | Acoustic systems for electronic devices |
US7696930B2 (en) | 2008-04-14 | 2010-04-13 | International Business Machines Corporation | Radio frequency (RF) integrated circuit (IC) packages with integrated aperture-coupled patch antenna(s) in ring and/or offset cavities |
JP4661900B2 (en) | 2008-04-17 | 2011-03-30 | ソニー株式会社 | Wireless communication apparatus, power supply method, program, and wireless communication system |
KR101572743B1 (en) | 2008-04-21 | 2015-12-01 | 퀄컴 인코포레이티드 | Short range efficient wireless power transfer |
CN201278367Y (en) | 2008-04-21 | 2009-07-22 | 江苏华灿电讯股份有限公司 | 3500MHz 65DEG bi-polarized plate type antenna |
JP4544339B2 (en) | 2008-04-28 | 2010-09-15 | ソニー株式会社 | Power transmission device, power transmission method, program, and power transmission system |
GB0808010D0 (en) | 2008-05-02 | 2008-06-11 | Univ Belfast | Retrodirective antenna systems |
US20110050164A1 (en) | 2008-05-07 | 2011-03-03 | Afshin Partovi | System and methods for inductive charging, and improvements and uses thereof |
JP4557045B2 (en) | 2008-05-12 | 2010-10-06 | ソニー株式会社 | Power transmission device, power transmission method, program, and power transmission system |
US8878393B2 (en) | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
US9356473B2 (en) | 2008-05-28 | 2016-05-31 | Georgia Tech Research Corporation | Systems and methods for providing wireless power to a portable unit |
JP2012507978A (en) | 2008-06-02 | 2012-03-29 | パワーマット テクノロジーズ リミテッド | Equipment with a power outlet |
US20100142418A1 (en) | 2008-06-02 | 2010-06-10 | Shinichiro Nishioka | Data communication system, data communication request device, and data communication response device |
US8674551B2 (en) | 2008-06-06 | 2014-03-18 | University Of Florida Research Foundation, Inc. | Method and apparatus for contactless power transfer |
TWI364895B (en) | 2008-06-09 | 2012-05-21 | Univ Nat Taipei Technology | Wireless power transmitting apparatus |
US8024012B2 (en) | 2008-06-11 | 2011-09-20 | International Business Machines Corporation | Intelligent wireless power charging system |
JP4725664B2 (en) | 2008-06-25 | 2011-07-13 | セイコーエプソン株式会社 | Power transmission control device, power transmission device, power reception control device, power reception device, electronic device, power transmission control method, and power reception control method |
CN101621209A (en) | 2008-07-03 | 2010-01-06 | 深圳富泰宏精密工业有限公司 | Charging device and charging method thereof |
EP2294673A1 (en) | 2008-07-09 | 2011-03-16 | Access Business Group International LLC | Wireless charging system |
US8092301B2 (en) | 2008-07-14 | 2012-01-10 | Cfph, Llc | Information aggregation games |
US9013310B2 (en) | 2008-07-24 | 2015-04-21 | International Business Machines Corporation | Circuit structure and method of fabrication for facilitating radio frequency identification (RFID) |
US8278784B2 (en) | 2008-07-28 | 2012-10-02 | Qualcomm Incorporated | Wireless power transmission for electronic devices |
EP2308197A4 (en) | 2008-07-31 | 2014-04-16 | Inovus Solar Inc | Wireless autonomous solar-powered outdoor lighting and energy and information management network |
US20100034238A1 (en) | 2008-08-05 | 2010-02-11 | Broadcom Corporation | Spread spectrum wireless resonant power delivery |
US7893564B2 (en) | 2008-08-05 | 2011-02-22 | Broadcom Corporation | Phased array wireless resonant power delivery system |
US8411963B2 (en) | 2008-08-08 | 2013-04-02 | The Nielsen Company (U.S.), Llc | Methods and apparatus to count persons in a monitored environment |
US8626249B2 (en) | 2008-08-12 | 2014-01-07 | T-Mobile Usa, Inc. | Charging station that operates as an intermediary device between mobile devices and other devices |
US8901880B2 (en) | 2008-08-19 | 2014-12-02 | Qualcomm Incorporated | Wireless power transmission for portable wireless power charging |
US9473209B2 (en) | 2008-08-20 | 2016-10-18 | Intel Corporation | Wireless power transfer apparatus and method thereof |
US20120286897A1 (en) | 2011-04-21 | 2012-11-15 | Duke University | Metamaterial waveguide lens |
EP2329505A1 (en) | 2008-08-25 | 2011-06-08 | Governing Dynamics, LLC. | Wireless energy transfer system |
US8947041B2 (en) | 2008-09-02 | 2015-02-03 | Qualcomm Incorporated | Bidirectional wireless power transmission |
US8581542B2 (en) | 2008-09-08 | 2013-11-12 | Qualcomm Incorporated | Receive antenna arrangement for wireless power |
JP2010068085A (en) | 2008-09-09 | 2010-03-25 | Toshiba Corp | Antenna device |
US8639347B2 (en) | 2008-09-15 | 2014-01-28 | The Invention Science Fund I, Llc | Methods, devices and systems for transmission between an implanted device and an external device |
JP5645238B2 (en) | 2008-09-19 | 2014-12-24 | 日本電気株式会社 | Wireless communication system control method and wireless communication system |
US8234509B2 (en) | 2008-09-26 | 2012-07-31 | Hewlett-Packard Development Company, L.P. | Portable power supply device for mobile computing devices |
US20120086284A1 (en) | 2008-09-27 | 2012-04-12 | Capanella Andrew J | Wireless transmission of solar generated power |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US20140312706A1 (en) | 2008-09-27 | 2014-10-23 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US20120248888A1 (en) | 2008-09-27 | 2012-10-04 | Kesler Morris P | Wireless energy transfer with resonator arrays for medical applications |
US20120248886A1 (en) | 2008-09-27 | 2012-10-04 | Kesler Morris P | Multi-resonator wireless energy transfer to mobile devices |
US20160043571A1 (en) | 2008-09-27 | 2016-02-11 | Witricity Corporation | Resonator enclosure |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8304935B2 (en) | 2008-09-27 | 2012-11-06 | Witricity Corporation | Wireless energy transfer using field shaping to reduce loss |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
CN104485753B (en) | 2008-09-30 | 2017-10-03 | 发明科学基金I有限责任公司 | Power emission for local receiver |
US7786419B2 (en) | 2008-09-30 | 2010-08-31 | The Invention Science Fund I, Llc | Beam power with beam redirection |
US8264101B2 (en) | 2008-09-30 | 2012-09-11 | The Invention Science Fund I, Llc | Beam power with multiple power zones |
US20100087227A1 (en) | 2008-10-02 | 2010-04-08 | Alvarion Ltd. | Wireless base station design |
US8279137B2 (en) | 2008-11-13 | 2012-10-02 | Microsoft Corporation | Wireless antenna for emitting conical radiation |
US7855681B2 (en) | 2008-11-19 | 2010-12-21 | Harris Corporation | Systems and methods for determining element phase center locations for an array of antenna elements |
US20100123618A1 (en) | 2008-11-19 | 2010-05-20 | Harris Corporation | Closed loop phase control between distant points |
US8929957B2 (en) | 2008-11-21 | 2015-01-06 | Qualcomm Incorporated | Reduced jamming between receivers and wireless power transmitters |
US8401595B2 (en) | 2008-12-08 | 2013-03-19 | Samsung Electronics Co., Ltd. | Method and system for integrated wireless power and data communication |
US8866692B2 (en) | 2008-12-19 | 2014-10-21 | Apple Inc. | Electronic device with isolated antennas |
US20100164433A1 (en) | 2008-12-30 | 2010-07-01 | Motorola, Inc. | Wireless Battery Charging Systems, Battery Systems and Charging Apparatus |
US20100167664A1 (en) | 2008-12-31 | 2010-07-01 | Motorola, Inc. | Apparatus and Method for Providing Antenna Beamforming |
CN102341985B (en) | 2009-01-06 | 2015-04-01 | 捷通国际有限公司 | Wireless charging system with device power compliance |
US9242411B2 (en) | 2009-01-06 | 2016-01-26 | Stratasys Ltd. | Method and apparatus for monitoring electro-magnetic radiation power in solid freeform fabrication systems |
US20120150670A1 (en) | 2009-01-06 | 2012-06-14 | Access Business Group International Llc | Wireless power delivery during payment |
US8069100B2 (en) | 2009-01-06 | 2011-11-29 | Access Business Group International Llc | Metered delivery of wireless power |
FR2940872B1 (en) | 2009-01-07 | 2012-05-18 | Commissariat Energie Atomique | FLAT SCREEN WITH INTEGRATED ANTENNA |
TWI389415B (en) | 2009-01-14 | 2013-03-11 | Mstar Semiconductor Inc | Radio frequency charging system and method |
EP2208458A1 (en) | 2009-01-14 | 2010-07-21 | Roche Diagnostics GmbH | Medical monitoring network |
US9088216B2 (en) | 2009-01-19 | 2015-07-21 | Power Systems Technologies, Ltd. | Controller for a synchronous rectifier switch |
CN102292918A (en) | 2009-01-22 | 2011-12-21 | 创科电动工具科技有限公司 | Wireless power distribution system and method for power tools |
US9257865B2 (en) | 2009-01-22 | 2016-02-09 | Techtronic Power Tools Technology Limited | Wireless power distribution system and method |
US8497658B2 (en) | 2009-01-22 | 2013-07-30 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
DE102009007464B4 (en) | 2009-02-04 | 2023-12-21 | Intel Deutschland Gmbh | Determination device, method for determining a transmission parameter, energy transmission device and method for wirelessly transmitting energy |
US9130394B2 (en) | 2009-02-05 | 2015-09-08 | Qualcomm Incorporated | Wireless power for charging devices |
US8070595B2 (en) | 2009-02-10 | 2011-12-06 | Cfph, Llc | Amusement devices and games including means for processing electronic data where ultimate outcome of the game is dependent on relative odds of a card combination and/or where chance is a factor: the monty hall paradox |
US20100201201A1 (en) | 2009-02-10 | 2010-08-12 | Qualcomm Incorporated | Wireless power transfer in public places |
US9312924B2 (en) | 2009-02-10 | 2016-04-12 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
US8796999B2 (en) | 2009-02-12 | 2014-08-05 | Qualcomm Incorporated | Wireless power transfer for low power devices |
US8682261B2 (en) | 2009-02-13 | 2014-03-25 | Qualcomm Incorporated | Antenna sharing for wirelessly powered devices |
US8963486B2 (en) | 2009-02-13 | 2015-02-24 | Qualcomm Incorporated | Wireless power from renewable energy |
US9240824B2 (en) | 2009-02-13 | 2016-01-19 | Qualcomm Incorporated | Wireless power and wireless communication for electronic devices |
US8760113B2 (en) | 2009-02-24 | 2014-06-24 | Qualcomm Incorporated | Wireless power charging timing and charging control |
US8144066B2 (en) | 2009-02-26 | 2012-03-27 | Harris Corporation | Wireless communications including an antenna for wireless power transmission and data communication and associated methods |
US8773311B2 (en) | 2009-03-06 | 2014-07-08 | Nec Corporation | Resonator antenna and communication apparatus |
US20100225270A1 (en) | 2009-03-08 | 2010-09-09 | Qualcomm Incorporated | Wireless power transfer for chargeable devices |
US8909165B2 (en) | 2009-03-09 | 2014-12-09 | Qualcomm Incorporated | Isolation techniques for multiple co-located radio modules |
EP2406852B1 (en) | 2009-03-11 | 2017-05-17 | Tyco Electronics Services GmbH | High gain metamaterial antenna device |
US8338991B2 (en) | 2009-03-20 | 2012-12-25 | Qualcomm Incorporated | Adaptive impedance tuning in wireless power transmission |
US8803474B2 (en) | 2009-03-25 | 2014-08-12 | Qualcomm Incorporated | Optimization of wireless power devices |
US8452235B2 (en) | 2009-03-28 | 2013-05-28 | Qualcomm, Incorporated | Tracking receiver devices with wireless power systems, apparatuses, and methods |
US8536736B2 (en) | 2009-04-03 | 2013-09-17 | International Business Machines Corporation | Wireless power infrastructure |
IL197906A (en) | 2009-04-05 | 2014-09-30 | Elta Systems Ltd | Phased array antennas and method for producing them |
US8970180B2 (en) | 2009-04-07 | 2015-03-03 | Qualcomm Incorporated | Wireless power transmission scheduling |
US8072380B2 (en) | 2009-04-10 | 2011-12-06 | Raytheon Company | Wireless power transmission system and method |
US8451189B1 (en) | 2009-04-15 | 2013-05-28 | Herbert U. Fluhler | Ultra-wide band (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays |
WO2010138994A1 (en) | 2009-06-02 | 2010-12-09 | Commonwealth Scientific Industrial Research Organisation | Power transmission to mobile devices on animals |
US8212735B2 (en) | 2009-06-05 | 2012-07-03 | Nokia Corporation | Near field communication |
US8922347B1 (en) | 2009-06-17 | 2014-12-30 | L. Pierre de Rochemont | R.F. energy collection circuit for wireless devices |
JP2011004250A (en) | 2009-06-19 | 2011-01-06 | Sony Corp | Resonator and method of manufacturing the same, and oscillator and electronic apparatus |
US8565344B2 (en) | 2009-07-02 | 2013-10-22 | Panasonic Corporation | Transmission circuit and communication device |
US8655272B2 (en) | 2009-07-07 | 2014-02-18 | Nokia Corporation | Wireless charging coil filtering |
EP2458710B1 (en) | 2009-07-23 | 2016-01-06 | Fujitsu Limited | Power transmission device, wireless power supply system, and wireless power supply device |
RU2540896C2 (en) | 2009-07-24 | 2015-02-10 | Эксесс Бизнесс Груп Интернешнл Ллс | Power supply |
GB2485310B (en) | 2009-08-06 | 2014-12-10 | Indian Space Res Organisation | Printed quasi-tapered tape helical array antenna |
US8614643B2 (en) | 2009-08-06 | 2013-12-24 | Truepath Holdings Llc | System and methods for antenna optimization for wireless broadband communication |
US9312728B2 (en) | 2009-08-24 | 2016-04-12 | Access Business Group International Llc | Physical and virtual identification in a wireless power network |
WO2011025212A2 (en) | 2009-08-27 | 2011-03-03 | 엘지전자 주식회사 | Cooperative wireless power signal transmission method and device |
WO2011026034A2 (en) | 2009-08-31 | 2011-03-03 | Andrew Llc | Modular type cellular antenna assembly |
KR101087870B1 (en) | 2009-09-02 | 2011-11-30 | 채광묵 | Transmitting Apparatus and Receiving Apparatus for Remote Position Indication |
KR101256556B1 (en) | 2009-09-08 | 2013-04-19 | 한국전자통신연구원 | Patch Antenna with Wide Bandwidth at Millimeter Wave Band |
US8442457B2 (en) | 2009-09-08 | 2013-05-14 | Google Inc. | System and method for adaptive beamforming for specific absorption rate control |
US8928284B2 (en) | 2009-09-10 | 2015-01-06 | Qualcomm Incorporated | Variable wireless power transmission |
US20110062788A1 (en) | 2009-09-17 | 2011-03-17 | Yung-Hsiang Chen | Wirless power supply device |
US20110074342A1 (en) | 2009-09-30 | 2011-03-31 | Nellcor Puritan Bennett Llc | Wireless electricity for electronic devices |
KR101706616B1 (en) | 2009-11-09 | 2017-02-14 | 삼성전자주식회사 | Load Impedance Selecting Device, Wireless Power Transmission Device and Wireless Power Transmission Method |
US8547057B2 (en) | 2009-11-17 | 2013-10-01 | Qualcomm Incorporated | Systems and methods for selective wireless power transfer |
US20110115605A1 (en) | 2009-11-17 | 2011-05-19 | Strattec Security Corporation | Energy harvesting system |
CN102714430A (en) | 2009-11-19 | 2012-10-03 | 捷通国际有限公司 | Multiple use wireless power systems |
US20110122026A1 (en) | 2009-11-24 | 2011-05-26 | Delaquil Matthew P | Scalable and/or reconfigurable beamformer systems |
TWI425711B (en) | 2009-11-24 | 2014-02-01 | Ind Tech Res Inst | Electromagnetic conductor reflecting plate, antenna array thereof, radar thereof, and communication apparatus thereof |
US9787364B2 (en) | 2011-01-20 | 2017-10-10 | Triune Ip, Llc | Multi-use wireless power and data system |
US9590444B2 (en) | 2009-11-30 | 2017-03-07 | Broadcom Corporation | Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency |
US20110127953A1 (en) | 2009-11-30 | 2011-06-02 | Broadcom Corporation | Wireless power system |
US8525370B2 (en) | 2009-11-30 | 2013-09-03 | Broadcom Corporation | Wireless power circuit board and assembly |
US20110154429A1 (en) | 2009-12-17 | 2011-06-23 | Winegard Company | Internal television antenna and method for a portable entertainment module |
WO2011078753A1 (en) | 2009-12-22 | 2011-06-30 | Saab Ab | Radiation element retainer device |
US11205926B2 (en) | 2009-12-22 | 2021-12-21 | View, Inc. | Window antennas for emitting radio frequency signals |
US8879995B2 (en) | 2009-12-23 | 2014-11-04 | Viconics Electronics Inc. | Wireless power transmission using phased array antennae |
US8686685B2 (en) | 2009-12-25 | 2014-04-01 | Golba, Llc | Secure apparatus for wirelessly transferring power and communicating with one or more slave devices |
KR20120055676A (en) | 2009-12-25 | 2012-05-31 | 가부시끼가이샤 도시바 | Wireless power transmission device and power receiving device |
US8276325B2 (en) | 2009-12-31 | 2012-10-02 | The United States Of America As Represented By The Secretary Of The Navy | Vehicle and mast mounting assembly therefor |
CA2785181C (en) | 2010-01-07 | 2018-01-02 | Voxx International Corporation | Method and apparatus for harvesting energy |
EP2346136A1 (en) | 2010-01-13 | 2011-07-20 | Universität Duisburg-Essen | Apparatus for generating an alternating magnetic field and apparatus for providing an effective power from an alternating magnetic field |
JP5526795B2 (en) | 2010-01-15 | 2014-06-18 | ソニー株式会社 | Wireless power supply system |
US8823214B2 (en) | 2010-01-27 | 2014-09-02 | Honeywell International Inc. | Wireless energy transfer |
CA2788091C (en) | 2010-01-27 | 2017-01-03 | Cynetic Designs Ltd. | Modular pocket with inductive power and data |
US20110184842A1 (en) | 2010-01-28 | 2011-07-28 | Roger D Melen | Energy transfer systems and methods for mobile vehicles |
US8489113B2 (en) | 2010-02-09 | 2013-07-16 | Omnilink Systems, Inc. | Method and system for tracking, monitoring and/or charging tracking devices including wireless energy transfer features |
CN101959296B (en) | 2010-02-11 | 2013-10-09 | 华为终端有限公司 | Routing equipment of wireless local area access network and signal transmitting method |
TWM385858U (en) | 2010-02-12 | 2010-08-01 | Fu Da Tong Technology Co Ltd | Frequency conversion type wireless power supply and charging device |
GB2478025A (en) | 2010-02-17 | 2011-08-24 | Stewart John Robert Jackson | Power supply having a constant supply circuit and a timed supply circuit |
TWM384453U (en) | 2010-03-02 | 2010-07-11 | Winharbor Technology Co Ltd | Pull-resistant illuminating/heat generating structure capable of being charged in wireless manner |
US9544640B2 (en) | 2010-03-02 | 2017-01-10 | Harman International Industries, Incorporated | Wireless theater system |
US9107684B2 (en) | 2010-03-05 | 2015-08-18 | Covidien Lp | System and method for transferring power to intrabody instruments |
TWM388610U (en) | 2010-03-09 | 2010-09-11 | Winharbor Technology Co Ltd | Removable wireless rechargeable light-emitting device |
TWM384018U (en) | 2010-03-12 | 2010-07-11 | Winharbor Technology Co Ltd | Wireless rechargeable thermit pad |
KR20110103296A (en) | 2010-03-12 | 2011-09-20 | 삼성전자주식회사 | Method and apparatus for wireless charging of electronic divice |
EP2555323B1 (en) | 2010-03-31 | 2017-12-06 | Nec Corporation | Wireless communication device and current-reducing method |
KR101648751B1 (en) | 2010-04-02 | 2016-08-30 | 삼성전자주식회사 | Method and Apparatus to Control Wireless Power Transform |
US9806789B2 (en) | 2010-04-06 | 2017-10-31 | Samsung Electronics Co., Ltd. | Apparatus and method for spatial division duplex (SDD) for millimeter wave communication system |
JP5750583B2 (en) | 2010-04-07 | 2015-07-22 | パナソニックIpマネジメント株式会社 | Wireless power transmission system |
US8681619B2 (en) | 2010-04-08 | 2014-03-25 | Landis+Gyr Technologies, Llc | Dynamic modulation selection |
US9561730B2 (en) | 2010-04-08 | 2017-02-07 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
US9027840B2 (en) | 2010-04-08 | 2015-05-12 | Access Business Group International Llc | Point of sale inductive systems and methods |
KR20110112917A (en) | 2010-04-08 | 2011-10-14 | 삼성전자주식회사 | Television set with wireless power transform function |
ES2953887T3 (en) | 2010-04-08 | 2023-11-16 | Foerster Inst Dr Gmbh & Co Kg | Thermographic test method and test device to carry out the test method |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
JP2011223739A (en) | 2010-04-09 | 2011-11-04 | Sony Corp | Power supply device, power reception device, and wireless power supply system |
US8860364B2 (en) | 2010-04-23 | 2014-10-14 | Qualcomm Incorporated | Wireless power distribution among a plurality of receivers |
KR101438470B1 (en) | 2010-04-26 | 2014-09-05 | 타이코 일렉트로닉스 서비시스 게엠베하 | Pcb antenna layout |
KR20110118963A (en) | 2010-04-26 | 2011-11-02 | 한국생산기술연구원 | Heating apparatus with non-contacting charging |
JP2013529451A (en) | 2010-04-30 | 2013-07-18 | パワーマッド テクノロジーズ リミテッド | System and method for inductively transferring power over an extended area |
EP2567467A2 (en) | 2010-05-04 | 2013-03-13 | Celeno Communications Ltd. | System and method for channel state related feedback in multi-user multiple-input-multiple-output systems |
US20110282415A1 (en) | 2010-05-11 | 2011-11-17 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Wearable wireless power transmitter |
US8968609B2 (en) | 2010-05-12 | 2015-03-03 | General Electric Company | Dielectric materials for power transfer system |
TWI406471B (en) | 2010-05-14 | 2013-08-21 | 崇越科技股份有限公司 | Charging system and charging method thereof |
US8934857B2 (en) | 2010-05-14 | 2015-01-13 | Qualcomm Incorporated | Controlling field distribution of a wireless power transmitter |
KR102043136B1 (en) | 2010-05-20 | 2019-11-12 | 삼성전자주식회사 | Wireless charging method and system using radio frequency |
US9083595B2 (en) | 2010-05-28 | 2015-07-14 | Cohere Technologies, Inc. | Signal modulation method resistant to echo reflections and frequency offsets |
JP5841132B2 (en) | 2010-05-28 | 2016-01-13 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Transmitter module used in modular power transmission system |
US9668148B2 (en) | 2010-05-28 | 2017-05-30 | Cohere Technologies, Inc. | OTFS methods of data channel characterization and uses thereof |
KR101166020B1 (en) | 2010-05-31 | 2012-07-19 | 삼성에스디아이 주식회사 | A contactless power charging system and energy storage system including the contactless charging system |
TWI389416B (en) | 2010-05-31 | 2013-03-11 | Fu Da Tong Technology Co Ltd | Power transmission method of high power wireless inductive power supply |
KR101151204B1 (en) | 2010-06-01 | 2012-05-29 | 심현섭 | Led lamp |
US20110302078A1 (en) | 2010-06-02 | 2011-12-08 | Bryan Marc Failing | Managing an energy transfer between a vehicle and an energy transfer system |
US20130076308A1 (en) | 2010-06-03 | 2013-03-28 | Powerkiss Oy | Arrangement for a charger |
US20110304437A1 (en) | 2010-06-09 | 2011-12-15 | Plus Location Systems USA LLC | Antenna and Sensor System for Sharply Defined Active Sensing Zones |
JP6054863B2 (en) | 2010-06-10 | 2016-12-27 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Coil configuration for inductive power transfer |
WO2011156768A2 (en) | 2010-06-11 | 2011-12-15 | Mojo Mobility, Inc. | System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith |
KR20110135540A (en) | 2010-06-11 | 2011-12-19 | 삼성전자주식회사 | Method and apparatus for receiving wireless power |
EP2400660B1 (en) | 2010-06-15 | 2014-04-30 | Telefonaktiebolaget L M Ericsson (publ) | Conversion circuit |
EP2450840B1 (en) | 2010-06-18 | 2013-08-21 | Research In Motion Limited | Shared coil for inductive charging and hearing-aid-compliance requirements in mobile phones |
WO2011158470A1 (en) | 2010-06-18 | 2011-12-22 | パナソニック株式会社 | Communication apparatus and communication method |
JP4996722B2 (en) | 2010-06-30 | 2012-08-08 | 株式会社東芝 | Power transmission system and power transmission device |
US8970070B2 (en) | 2010-07-02 | 2015-03-03 | Panasonic Intellectual Property Management Co., Ltd. | Wireless power transmission system |
US9438063B2 (en) | 2010-07-09 | 2016-09-06 | Industrial Technology Research Institute | Charge apparatus |
US20120013296A1 (en) | 2010-07-15 | 2012-01-19 | Soudeh Heydari | Method and system for harvesting rf signals and wirelessly charging a device |
JP5640515B2 (en) | 2010-07-15 | 2014-12-17 | ソニー株式会社 | Power transmission relay device, power transmission device, and method of manufacturing power transmission relay device |
KR20120008353A (en) | 2010-07-16 | 2012-01-30 | 삼성에스디아이 주식회사 | Fuel cell system and power management method in the same |
KR20120009843A (en) | 2010-07-21 | 2012-02-02 | 엘지전자 주식회사 | Mobile terminal and method for sharing applications thereof |
WO2012014984A1 (en) | 2010-07-28 | 2012-02-02 | 国立大学法人京都工芸繊維大学 | Microwave resonator |
KR101394963B1 (en) | 2010-07-29 | 2014-05-16 | 한국전자통신연구원 | Wireless power transmitter, wireless power receiver, and method for wireless power transfer using them |
US8432071B2 (en) | 2010-08-05 | 2013-04-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for energy harvest from ambient sources |
US20120043887A1 (en) | 2010-08-18 | 2012-02-23 | Steven Mesibov | Wireless power transmission system and associated devices |
GB201014056D0 (en) | 2010-08-23 | 2010-10-06 | Litonics Ltd | Heatsink for lighting device |
KR101313662B1 (en) | 2010-08-27 | 2013-10-02 | 한양대학교 산학협력단 | Active rectifier with delay locked loop, Wireless power receiving apparatus including active rectifier |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9071063B2 (en) | 2010-09-02 | 2015-06-30 | Advantest Corporation | Wireless power receiving apparatus |
RU2010136667A (en) | 2010-09-02 | 2012-03-10 | Владимир Витальевич Мирошниченко (RU) | METHOD OF POWER SUPPLY OF TECHNICAL MEANS OF THE DEVICE |
US20120056741A1 (en) | 2010-09-07 | 2012-03-08 | Liping Julia Zhu | System to track one or more indoor persons, outdoor persons and vehicles |
US9030364B2 (en) | 2010-09-07 | 2015-05-12 | Kunjie Zhuang | Dual-polarized microstrip antenna |
US8457656B2 (en) | 2010-09-27 | 2013-06-04 | Awarepoint Corporation | Wireless tracking system and method utilizing multiple location algorithms |
US8618766B2 (en) | 2010-09-27 | 2013-12-31 | Deere & Company | Robot power source charging station |
US20120075072A1 (en) | 2010-09-29 | 2012-03-29 | Ravikanth Pappu | Co-located radio-frequency identification fields |
EP2625889B1 (en) | 2010-10-04 | 2016-04-20 | Telefonaktiebolaget LM Ericsson (publ) | Network based control of report messages in a wireless communications network |
US20120086615A1 (en) | 2010-10-12 | 2012-04-12 | John Peter Norair | Method and Apparatus for an Integrated Antenna |
KR101743777B1 (en) | 2010-10-21 | 2017-06-05 | 삼성전자주식회사 | Method for wireless charging and apparatus for the same |
US9198127B2 (en) | 2010-10-25 | 2015-11-24 | Yamamoto Kazuhiro | Communication device |
US8918270B2 (en) | 2010-10-28 | 2014-12-23 | Tongqing Wang | Wireless traffic sensor system |
JP5655503B2 (en) | 2010-10-28 | 2015-01-21 | 凸版印刷株式会社 | Cross dipole antenna and non-contact communication medium having the same |
EP2636118B1 (en) | 2010-11-02 | 2019-07-17 | Ember Technologies, Inc. | Heated or cooled dishwasher safe dishware and drinkware |
US9484772B2 (en) | 2010-11-09 | 2016-11-01 | The Regents Of The University Of California | Wireless power mechanisms for lab-on-a-chip devices |
US8712485B2 (en) | 2010-11-19 | 2014-04-29 | Apple Inc. | Proximity sensor arrangement in a mobile device |
US8560026B2 (en) | 2010-11-23 | 2013-10-15 | Motorola Mobility Llc | Methods and devices for power-aware data synchronization in wireless devices |
KR101767266B1 (en) | 2010-11-26 | 2017-08-11 | 한국전자통신연구원 | Direct feeding apparatus for impedance matching of wireless power transmission device and transmitter/receiver for the same |
US8811918B2 (en) | 2010-11-26 | 2014-08-19 | Broadcom Corporation | Distribution of transmit signal to multiple transmit antennas for reduction of measured specific absorption rate |
US9006622B2 (en) | 2010-11-30 | 2015-04-14 | Bose Corporation | Induction cooking |
US20120211214A1 (en) | 2010-12-09 | 2012-08-23 | Panasonic Avionics Corporation | Heatsink Device and Method |
JP5564412B2 (en) | 2010-12-10 | 2014-07-30 | 株式会社日立製作所 | Wireless power transmission system, power transmission device, and power reception device |
US9496924B2 (en) | 2010-12-10 | 2016-11-15 | Everheart Systems, Inc. | Mobile wireless power system |
JP5804698B2 (en) | 2010-12-10 | 2015-11-04 | キヤノン株式会社 | Power supply apparatus and method |
TWI551071B (en) | 2010-12-16 | 2016-09-21 | 李百祺 | Wireless power transmission system, wireless power transmitting apparatus and wireless power receiving apparatus |
US9379780B2 (en) | 2010-12-16 | 2016-06-28 | Qualcomm Incorporated | Wireless energy transfer and continuous radio station signal coexistence |
US9294840B1 (en) | 2010-12-17 | 2016-03-22 | Logitech Europe S. A. | Ease-of-use wireless speakers |
US8736228B1 (en) | 2010-12-20 | 2014-05-27 | Amazon Technologies, Inc. | Charging an electronic device including traversing at least a portion of a path with an apparatus |
US20120153739A1 (en) | 2010-12-21 | 2012-06-21 | Cooper Emily B | Range adaptation mechanism for wireless power transfer |
KR101672768B1 (en) | 2010-12-23 | 2016-11-04 | 삼성전자주식회사 | System for wireless power and data transmission and reception |
US9246349B2 (en) | 2010-12-27 | 2016-01-26 | Golba Llc | Method and system for wireless battery charging utilizing ultrasonic transducer array based beamforming |
US9077188B2 (en) | 2012-03-15 | 2015-07-07 | Golba Llc | Method and system for a battery charging station utilizing multiple types of power transmitters for wireless battery charging |
US9143010B2 (en) | 2010-12-28 | 2015-09-22 | Tdk Corporation | Wireless power transmission system for selectively powering one or more of a plurality of receivers |
US10043223B2 (en) | 2010-12-30 | 2018-08-07 | International Business Machines Corporation | Managing power distribution |
JP2012143146A (en) | 2011-01-03 | 2012-07-26 | Samsung Electronics Co Ltd | Wireless power transmission apparatus and wireless power transmission system thereof |
US8395353B2 (en) | 2011-01-04 | 2013-03-12 | Primax Electronics, Ltd. | Wireless charging transmitter for portable electronic device |
US9166440B2 (en) | 2011-01-10 | 2015-10-20 | Powermat Technologies Ltd. | System for transferring power inductively to items within a container |
JP5918270B2 (en) | 2011-01-14 | 2016-05-18 | サムスン エレクトロニクス カンパニー リミテッド | Method and apparatus for transmitting user input from sink device to source device in wifi direct communication system |
US9178369B2 (en) | 2011-01-18 | 2015-11-03 | Mojo Mobility, Inc. | Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
JP5545229B2 (en) | 2011-01-26 | 2014-07-09 | 株式会社デンソー | In-vehicle power supply, roadside power supply, road-to-vehicle power transmission system |
JP5654367B2 (en) | 2011-01-28 | 2015-01-14 | パナソニックIpマネジメント株式会社 | Power supply module of non-contact power supply device, method of using power supply module of non-contact power supply device, and method of manufacturing power supply module of non-contact power supply device |
JP2012161041A (en) | 2011-02-02 | 2012-08-23 | Mitsubishi Steel Mfg Co Ltd | Antenna device |
US9887728B2 (en) | 2011-02-03 | 2018-02-06 | The Board Of Trustees Of The Leland Stanford Junior University | Single channel full duplex wireless communications |
US8797211B2 (en) | 2011-02-10 | 2014-08-05 | International Business Machines Corporation | Millimeter-wave communications using a reflector |
WO2012111271A1 (en) | 2011-02-17 | 2012-08-23 | パナソニック株式会社 | Power transmitting apparatus, power receiving apparatus, and power transmitting method |
EP2677628B1 (en) | 2011-02-18 | 2018-05-02 | LG Electronics Inc. | Device for wireless charging |
JP5703822B2 (en) | 2011-02-21 | 2015-04-22 | ソニー株式会社 | Power transmission device, power transmission method, and power transmission system |
JP5703823B2 (en) | 2011-02-21 | 2015-04-22 | ソニー株式会社 | Power transmission device, power transmission method, and power transmission system |
US8928544B2 (en) | 2011-02-21 | 2015-01-06 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence | Wideband circularly polarized hybrid dielectric resonator antenna |
US9161318B2 (en) | 2011-02-24 | 2015-10-13 | Nokia Solutions And Networks Oy | Configuring power distribution within cooperation areas of cellular communication networks |
US8909282B2 (en) | 2011-03-04 | 2014-12-09 | Qualcomm Incorporated | Systems and methods for dynamic transmission power limit back-off for specific absorption rate compliance |
KR20120102446A (en) | 2011-03-08 | 2012-09-18 | 삼성전자주식회사 | Mobile terminal, method for controlling wireless charge thereof, and wireless charging system thereof |
US9887583B2 (en) | 2011-03-10 | 2018-02-06 | Semiconductor Energy Laboratory Co., Ltd. | Power-receiving device, wireless power-feeding system including power-receiving device, and wireless communication system including power-receiving device |
US9052428B2 (en) | 2011-03-11 | 2015-06-09 | Apple Inc. | Systems, methods, and computer-readable media for thermally managing electronic devices using dynamic optical components |
WO2012125185A1 (en) | 2011-03-15 | 2012-09-20 | Intel Corporation | Mm-wave phased array antenna with beam tilting radiation pattern |
PT2689627E (en) | 2011-03-22 | 2015-08-25 | Ericsson Telefon Ab L M | Performing coordinated multipoint transmission and reception (comp) in a wireless communication network |
US9225199B2 (en) | 2011-03-22 | 2015-12-29 | Triune Ip, Llc | Variable power energy harvesting system |
KR101859191B1 (en) | 2011-03-23 | 2018-05-18 | 삼성전자주식회사 | Method and apparatus for controlling wireless power transmission and reception, and wireless power transmission system |
KR101850527B1 (en) | 2011-03-25 | 2018-04-19 | 삼성전자주식회사 | Portable Device and Wireless Power Charging system |
KR101768723B1 (en) | 2011-03-30 | 2017-08-17 | 삼성전자주식회사 | Method and system for wireless charging in a portable terminal |
US8946939B2 (en) | 2011-03-31 | 2015-02-03 | Qualcomm Incorporated | Systems and methods for detecting and protecting a wireless power communication device in a wireless power system |
CN103548205B (en) | 2011-04-07 | 2017-02-22 | Hrl实验室有限责任公司 | Tunable impedance surfaces |
US8843206B2 (en) | 2011-04-13 | 2014-09-23 | Spinal Modulation, Inc. | Telemetry antennas for medical devices and medical devices including telemetry antennas |
US10090885B2 (en) | 2011-04-13 | 2018-10-02 | Qualcomm Incorporated | Antenna alignment and vehicle guidance for wireless charging of electric vehicles |
US8759990B2 (en) | 2011-04-19 | 2014-06-24 | Eastman Kodak Company | Energy harvesting device including MEMS composite transducer |
KR101785456B1 (en) | 2011-04-25 | 2017-11-06 | 엘지전자 주식회사 | Apparatus and system for providing wireless power charge service |
US20120274154A1 (en) | 2011-04-27 | 2012-11-01 | Research In Motion Limited | Methods and apparatuses for wireless power transfer |
US9035601B2 (en) | 2011-05-05 | 2015-05-19 | Samsung Electro-Mechanics | Wireless power transfer system and methods |
KR101813131B1 (en) | 2011-05-11 | 2017-12-28 | 삼성전자주식회사 | Wireless power transmission system and method for controlling of resonance frequency and resonance impedance of wireless power transmission system |
US10326309B2 (en) | 2011-05-13 | 2019-06-18 | Samsung Electronics Co., Ltd | Wireless power system comprising power transmitter and power receiver and method for receiving and transmitting power of the apparatuses |
KR102000561B1 (en) | 2011-05-17 | 2019-10-01 | 삼성전자주식회사 | Apparatus and method for controlling wireless power transmission |
US20120292993A1 (en) | 2011-05-20 | 2012-11-22 | American Science And Technology Corporation | Energy Scavenging Power Supply |
US9244500B2 (en) | 2011-05-23 | 2016-01-26 | Intel Corporation | System integration supporting completely wireless peripheral applications |
JP5338851B2 (en) | 2011-05-23 | 2013-11-13 | 株式会社デンソー | Power transmission / reception system for vehicles |
US9297896B1 (en) | 2011-05-24 | 2016-03-29 | Garmin International, Inc. | Electronically steered weather radar |
US9590779B2 (en) | 2011-05-26 | 2017-03-07 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
KR101688948B1 (en) | 2011-05-27 | 2016-12-22 | 엘지전자 주식회사 | Establishing a data communication connection using a wireless power transmission |
US9831920B2 (en) | 2011-05-27 | 2017-11-28 | uBeam Inc. | Motion prediction for wireless power transfer |
US9214151B2 (en) | 2011-05-27 | 2015-12-15 | uBeam Inc. | Receiver controller for wireless power transfer |
TWI423601B (en) | 2011-05-30 | 2014-01-11 | Ralink Technology Corp | Rf processing circuit and wireless communication device using the same |
KR102012688B1 (en) | 2011-05-31 | 2019-08-26 | 삼성전자주식회사 | Apparatus and method for data communication using wireless power |
US8929806B2 (en) | 2011-05-31 | 2015-01-06 | Facebook, Inc. | Passively powering a wireless communications device |
US9391461B2 (en) | 2011-05-31 | 2016-07-12 | Samsung Electronics Co., Ltd. | Wireless power transmission and charging system, and power control method of wireless power transmission and charging system |
KR102040712B1 (en) | 2011-06-01 | 2019-11-27 | 삼성전자주식회사 | Wireless power transmission system, method and apparatus for communication channel allocation and power transmission in wireless power transmission system |
US9019011B2 (en) | 2011-06-01 | 2015-04-28 | Rf Micro Devices, Inc. | Method of power amplifier calibration for an envelope tracking system |
US8922442B2 (en) | 2011-06-01 | 2014-12-30 | Symbol Technologies, Inc. | Low-profile multiband antenna for a wireless communication device |
US20120182427A1 (en) | 2011-06-06 | 2012-07-19 | Aaron Marshall | System and method for providing thermal gender recognition |
JP5591760B2 (en) | 2011-06-06 | 2014-09-17 | 株式会社東芝 | Antenna unit and panel array antenna apparatus |
KR101950309B1 (en) | 2011-06-07 | 2019-02-21 | 삼성전자주식회사 | Method for controlling wireless power of receiver in wireless power transmitting/receiving system and the receiver |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US9853480B2 (en) | 2011-06-21 | 2017-12-26 | Intel Corporation | Apparatus, systems and methods for wireless charging for PC platforms and peripherals |
US9030161B2 (en) | 2011-06-27 | 2015-05-12 | Board Of Regents, The University Of Texas System | Wireless power transmission |
US9306401B2 (en) | 2011-06-29 | 2016-04-05 | Lg Electronics Inc. | Wireless power transmitter and wireless power transfer method thereof in many-to-one communication |
KR101832331B1 (en) | 2011-06-29 | 2018-02-26 | 엘지전자 주식회사 | Wireless power transmission and communication between devices |
US8989867B2 (en) | 2011-07-14 | 2015-03-24 | Cyberonics, Inc. | Implantable nerve wrap for nerve stimulation configured for far field radiative powering |
EP2735083A4 (en) | 2011-07-21 | 2015-10-07 | Ut Battelle Llc | Wireless power transfer electric vehicle supply equipment installation and validation tool |
US20130038402A1 (en) | 2011-07-21 | 2013-02-14 | Witricity Corporation | Wireless power component selection |
CN103732361B (en) | 2011-07-24 | 2017-03-01 | 株式会社牧田 | For the adapter of electric tool, electric tool system and its operational approach |
US20130026981A1 (en) | 2011-07-28 | 2013-01-31 | Broadcom Corporation | Dual mode wireless power |
US20130026982A1 (en) | 2011-07-29 | 2013-01-31 | Perry Rothenbaum | Wireless battery charging device, method and system |
US8817076B2 (en) | 2011-08-03 | 2014-08-26 | General Electric Company | Method and system for cropping a 3-dimensional medical dataset |
US8872660B2 (en) | 2011-08-13 | 2014-10-28 | Walter V. Raczynski | Powered item attachment device |
RU2596606C2 (en) | 2011-08-16 | 2016-09-10 | Конинклейке Филипс Н.В. | Dynamic resonance matching circuit for wireless energy receivers |
KR101844283B1 (en) | 2011-08-18 | 2018-04-03 | 삼성전자주식회사 | A method and an apparatus for energy sharing of wireless communication device |
US9178354B2 (en) | 2011-08-24 | 2015-11-03 | 3Dfs L.L.C. | Multipurpose, universal converter with battery control and real-time power factor correction |
WO2013028111A1 (en) | 2011-08-25 | 2013-02-28 | Telefonaktiebolaget L M Ericsson (Publ) | Charging of battery-operated devices over wireless connections |
KR101580342B1 (en) | 2011-08-29 | 2015-12-24 | 삼성전기주식회사 | Wireless power transmission system and control method thereof |
US8712355B2 (en) | 2011-08-30 | 2014-04-29 | Motorola Mobility Llc | Antenna tuning on an impedance trajectory |
KR101817194B1 (en) | 2011-08-31 | 2018-01-10 | 삼성전자주식회사 | Wireless power transmission system using solar cell module |
US20130063143A1 (en) | 2011-09-01 | 2013-03-14 | Siemens Aktiengesellschaft | Local SAR Constrained Parallel Transmission RF Pulse in Magnetic Resonance Imaging |
WO2013031025A1 (en) | 2011-09-02 | 2013-03-07 | 富士通株式会社 | Power relay |
US8643330B2 (en) | 2011-09-02 | 2014-02-04 | Tesla Motors, Inc. | Method of operating a multiport vehicle charging system |
US9448603B2 (en) | 2011-09-03 | 2016-09-20 | Leigh M. Rothschild | Transferring power to a mobile device |
KR101253670B1 (en) | 2011-09-05 | 2013-04-11 | 엘에스전선 주식회사 | Apparatus for wireless power transmission using multi antenna and Method for controlling thereof |
US20130058379A1 (en) | 2011-09-05 | 2013-03-07 | Samsung Electronics Co., Ltd. | Communication apparatus and communication method in wireless power transmission system |
KR101966302B1 (en) | 2011-09-06 | 2019-04-05 | 삼성전자주식회사 | Communication method and apparatus in wireless charge system |
KR101897543B1 (en) | 2011-09-08 | 2018-09-12 | 삼성전자주식회사 | Wireless power receiver and method for controlling thereof |
EP2755300A4 (en) | 2011-09-09 | 2015-04-22 | Chugoku Electric Power | Non-contact power supply system and non-contact power supply method |
US9252846B2 (en) | 2011-09-09 | 2016-02-02 | Qualcomm Incorporated | Systems and methods for detecting and identifying a wireless power device |
DE102011053501B4 (en) | 2011-09-12 | 2014-10-23 | Rwth Aachen | Device for modifying trajectories |
FR2980055B1 (en) | 2011-09-12 | 2013-12-27 | Valeo Systemes Thermiques | INDUCTIVE POWER TRANSMISSION DEVICE |
JP2013070477A (en) | 2011-09-21 | 2013-04-18 | Panasonic Corp | Non-contact power supply system |
KR101828837B1 (en) | 2011-09-29 | 2018-03-30 | 삼성전자주식회사 | Method and apparatus for short handover latency in wireless communication system using beam forming |
KR20130035905A (en) | 2011-09-30 | 2013-04-09 | 삼성전자주식회사 | Method for wireless charging and apparatus for the same |
US9142998B2 (en) | 2011-10-03 | 2015-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Wireless energy transfer |
KR101781650B1 (en) | 2011-10-04 | 2017-09-26 | 삼성전자주식회사 | Wireless power multi-charge method and power transmitter |
US9419444B2 (en) | 2011-10-05 | 2016-08-16 | Blackberry Limited | Wireless charging and communication with power source devices and power charge devices in a communication system |
WO2013052950A1 (en) | 2011-10-06 | 2013-04-11 | Rolls-Royce Corporation | Wireless battery charging system |
US8483899B2 (en) | 2011-10-06 | 2013-07-09 | Ford Global Technologies, Llc | Vehicle guidance system |
US9240270B2 (en) | 2011-10-07 | 2016-01-19 | Utah State University | Wireless power transfer magnetic couplers |
KR20130038553A (en) | 2011-10-10 | 2013-04-18 | 한국전자통신연구원 | Apparatus and method for recognizing location of object in location recognition system |
KR20130039031A (en) | 2011-10-11 | 2013-04-19 | 한국전자통신연구원 | Wireless power transfer device, wireless power recieve device and wireless power transfer and recieve device |
KR101722018B1 (en) | 2011-10-19 | 2017-04-03 | 삼성전자주식회사 | Multilayered circuit type antenna package |
JP5512628B2 (en) | 2011-10-19 | 2014-06-04 | 東芝テック株式会社 | Power transmission device, power transmission device, power reception device, and power transmission method |
US8358102B2 (en) | 2011-10-21 | 2013-01-22 | General Electric Company | System, charging device, and method of charging a power storage device |
US9145110B2 (en) | 2011-10-27 | 2015-09-29 | Ford Global Technologies, Llc | Vehicle wireless charger safety system |
JP5895449B2 (en) | 2011-10-28 | 2016-03-30 | 日立化成株式会社 | Non-contact power transmission device and non-contact power transmission system |
KR101349551B1 (en) | 2011-11-02 | 2014-01-08 | 엘지이노텍 주식회사 | A wireless power transmission apparatus and method thereof |
US20140252866A1 (en) | 2011-11-03 | 2014-09-11 | Jim Walsh | Presence and range detection of wireless power receiving devices and method thereof |
CA2794161A1 (en) | 2011-11-03 | 2013-05-03 | Shaw Industries Group, Inc. | Wireless energy transfer systems |
WO2013064204A1 (en) | 2011-11-04 | 2013-05-10 | Kathrein-Werke Kg | Patch radiator |
KR101338732B1 (en) | 2011-11-10 | 2013-12-06 | 엘지이노텍 주식회사 | Apparatus for transmmiting wireless power and apparatus for receiving wireless power and method for transmitting wireless power, method for receiving wireless power, method for transmitting information and method for receiving information |
US9337833B2 (en) | 2011-11-14 | 2016-05-10 | Atmel Corporation | Driven shield for shaping an electric field of a touch sensor |
US8558746B2 (en) | 2011-11-16 | 2013-10-15 | Andrew Llc | Flat panel array antenna |
US8866687B2 (en) | 2011-11-16 | 2014-10-21 | Andrew Llc | Modular feed network |
KR101968605B1 (en) | 2011-11-17 | 2019-04-15 | 삼성전자주식회사 | Method and apparatus for data communication in wireless power transfer |
JP5790434B2 (en) | 2011-11-18 | 2015-10-07 | ソニー株式会社 | Electronic device, charging control method, charging system, and data transfer system |
US9746527B2 (en) | 2011-11-21 | 2017-08-29 | Blackberry Limited | Method and apparatus for battery charge level estimation |
US20130134923A1 (en) | 2011-11-25 | 2013-05-30 | Research In Motion Limited | Apparatus, and associated method, for providing charging energy to recharge a portable power supply |
SG190477A1 (en) | 2011-11-28 | 2013-06-28 | Sony Corp | Wireless energy transfer system |
US9236756B2 (en) | 2011-12-05 | 2016-01-12 | Qualcomm Incorporated | Apparatus for wireless device charging using radio frequency (RF) energy and device to be wirelessly charged |
US9444540B2 (en) | 2011-12-08 | 2016-09-13 | Apple Inc. | System and methods for performing antenna transmit diversity |
US20140292090A1 (en) | 2011-12-09 | 2014-10-02 | Carlos Cordeiro | Implementing wireless power transfer with 60 ghz mmwave communication |
WO2013089485A1 (en) | 2011-12-15 | 2013-06-20 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting wireless power |
KR101951358B1 (en) | 2011-12-15 | 2019-02-22 | 삼성전자주식회사 | Wireless power transmitter, wireless power receiver and method for controlling each thereof |
US9743357B2 (en) | 2011-12-16 | 2017-08-22 | Joseph Akwo Tabe | Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception |
EP2795717B1 (en) | 2011-12-22 | 2019-08-28 | CommScope Technologies LLC | Capacitive blind-mate module interconnection |
KR101337437B1 (en) | 2011-12-26 | 2013-12-06 | 고려대학교 산학협력단 | Charge pumping apparatus using optimum power point tracking and Method thereof |
KR101667318B1 (en) | 2011-12-27 | 2016-10-18 | 쥬코쿠 덴료쿠 가부시키 가이샤 | Wireless power transfer system, transmission device, and controlling method of wireless power transfer system |
US9337943B2 (en) | 2011-12-28 | 2016-05-10 | Lutron Electronics Co., Inc. | Load control system having a broadcast controller with a diverse wireless communication system |
US9417677B2 (en) | 2011-12-29 | 2016-08-16 | Blackberry Limited | Power supply management for portable electronic devices |
EP2798887B1 (en) | 2011-12-30 | 2017-10-04 | Robert Bosch GmbH | Low cost proximity pairing mechanism in wireless personal area networks |
US8831528B2 (en) | 2012-01-04 | 2014-09-09 | Futurewei Technologies, Inc. | SAR control using capacitive sensor and transmission duty cycle control in a wireless device |
WO2013102908A1 (en) | 2012-01-08 | 2013-07-11 | Powermat Technologies Ltd | System and method for providing and controlling inductive power charging |
US9508488B2 (en) | 2012-01-10 | 2016-11-29 | Samsung Electronics Co., Ltd. | Resonant apparatus for wireless power transfer |
GB201200638D0 (en) | 2012-01-13 | 2012-02-29 | Sarantel Ltd | An antenna assembly |
WO2013112979A1 (en) | 2012-01-26 | 2013-08-01 | Alivecor, Inc. | Ultrasonic digital communication of biological parameters |
US8994224B2 (en) | 2012-01-27 | 2015-03-31 | Building Materials Investment Corporation | Solar roof shingles and underlayment with wireless power transfer |
JP2013162624A (en) | 2012-02-03 | 2013-08-19 | Sharp Corp | Power supply system |
WO2013114378A1 (en) | 2012-02-05 | 2013-08-08 | Humavox Ltd. | Remote charging system |
US20150015182A1 (en) | 2012-02-07 | 2015-01-15 | Puck Charger Systems Pty Ltd | System and method for charging mobile devices at a venue |
CN102542768B (en) | 2012-02-10 | 2013-10-09 | 华为终端有限公司 | Radio frequency equipment pairing method and system, and radio frequency equipment |
US9225203B2 (en) | 2012-02-15 | 2015-12-29 | Snu R&Db Foundation | Method, system and computer-readable recording medium for transferring wireless power by using antennas with high orders of spherical modes |
US8947308B2 (en) | 2012-02-17 | 2015-02-03 | Skycross, Inc. | Method and apparatus for controlling an antenna |
AU2013221336B2 (en) | 2012-02-17 | 2017-08-17 | University Of Virginia D/B/A University Of Virginia Licensing & Ventures Group | Energy harvesting and control for sensor node |
US9209523B2 (en) | 2012-02-24 | 2015-12-08 | Futurewei Technologies, Inc. | Apparatus and method for modular multi-sector active antenna system |
KR20130098546A (en) | 2012-02-28 | 2013-09-05 | 삼성전자주식회사 | Method and devices for transmitting signal from a plurality of wireless power receivers to wireless power provider |
KR102121919B1 (en) | 2012-02-29 | 2020-06-11 | 한국전자통신연구원 | Apparatus for transferring power |
KR101712041B1 (en) | 2012-02-29 | 2017-03-03 | 쥬코쿠 덴료쿠 가부시키 가이샤 | Wireless power transfer system, power transmission device, power receiving device, and control method of wireless power transfer system |
JP5844662B2 (en) | 2012-03-07 | 2016-01-20 | 日立マクセル株式会社 | Non-contact power transmission system and non-contact power transmission method |
US9397522B2 (en) | 2012-03-08 | 2016-07-19 | Ricoh Co., Ltd. | Method and system to control ambient RF energy for wireless devices |
JP5909700B2 (en) | 2012-03-09 | 2016-04-27 | パナソニックIpマネジメント株式会社 | Metal detection method, metal detection device, and metal detection method and non-contact power supply device of non-contact power supply device |
JP2013191913A (en) | 2012-03-12 | 2013-09-26 | Renesas Electronics Corp | Wireless charging circuit, wireless charging system, and semiconductor device |
US20130271069A1 (en) | 2012-03-21 | 2013-10-17 | Mojo Mobility, Inc. | Systems and methods for wireless power transfer |
JP2013198322A (en) | 2012-03-21 | 2013-09-30 | Tokai Rika Co Ltd | On-vehicle non-contact charging system |
US9722447B2 (en) | 2012-03-21 | 2017-08-01 | Mojo Mobility, Inc. | System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment |
CN103324495A (en) | 2012-03-23 | 2013-09-25 | 鸿富锦精密工业(深圳)有限公司 | Method and system for data center server boot management |
KR20130108027A (en) | 2012-03-23 | 2013-10-02 | 주식회사 엘지화학 | Method for preparing substrate for organic electronic device |
WO2013142866A1 (en) | 2012-03-23 | 2013-09-26 | Hevo Inc. | Systems and mobile application for electric wireless charging stations |
US9231655B2 (en) | 2012-04-06 | 2016-01-05 | Broadcom Corporation | System and method for power control in a physical layer device |
KR101924341B1 (en) | 2012-04-09 | 2018-12-03 | 삼성전자주식회사 | Apparatus and method for controlling wireless power transmission |
KR101428000B1 (en) | 2012-04-20 | 2014-08-08 | 전자부품연구원 | Method and system for multi contactless charging |
US9755437B2 (en) | 2012-04-25 | 2017-09-05 | Nokia Technologies Oy | Method, apparatus, and computer program product for wireless charging detection |
KR101319731B1 (en) | 2012-04-26 | 2013-10-17 | 삼성전기주식회사 | Circuit for controlling switching time of transmitting and receiving signal in wireless communication system |
US9391674B2 (en) | 2012-04-26 | 2016-07-12 | Semiconductor Energy Laboratory Co., Ltd. | Power feeding system and power feeding method |
US9143379B1 (en) | 2012-05-01 | 2015-09-22 | Time Warner Cable Enterprises Llc | Power fluctuation detection and analysis |
KR101844226B1 (en) | 2012-05-14 | 2018-05-14 | 엘지전자 주식회사 | Wireless charger which can display charable area and controlling method thereof |
JP2013243431A (en) | 2012-05-17 | 2013-12-05 | Equos Research Co Ltd | Antenna coil |
US9218031B2 (en) | 2012-05-18 | 2015-12-22 | Dell Products, Lp | System and method for providing wireless power feedback in a wireless power delivery system |
US9000987B2 (en) | 2012-05-18 | 2015-04-07 | Blackberry Limited | Compact multi-band antenna for worldwide mobile handset applications |
US9620964B2 (en) | 2012-05-23 | 2017-04-11 | Pioneer Corporation | Power transmission system and method, power transmitting apparatus and power receiving apparatus |
NZ702514A (en) | 2012-05-29 | 2016-11-25 | Humavox Ltd | Wireless charging device |
US9806420B2 (en) | 2012-06-12 | 2017-10-31 | The United States Of America As Represented By Secretary Of The Navy | Near field tunable parasitic antenna |
US20130339108A1 (en) | 2012-06-14 | 2013-12-19 | Sap Ag | Managing demand charge tariffs for electric power |
KR101920236B1 (en) | 2012-06-19 | 2018-11-20 | 삼성전자주식회사 | Method for charging battery and an electronic device thereof |
US9185501B2 (en) | 2012-06-20 | 2015-11-10 | Broadcom Corporation | Container-located information transfer module |
US9356774B2 (en) | 2012-06-22 | 2016-05-31 | Blackberry Limited | Apparatus and associated method for providing communication bandwidth in communication system |
CN103493550B (en) | 2012-06-25 | 2017-08-11 | 华为终端有限公司 | A kind of method and Wi Fi equipment of setting communication pattern |
JP5999693B2 (en) | 2012-06-29 | 2016-09-28 | 株式会社Ihiエアロスペース | Rectena |
US20140006017A1 (en) | 2012-06-29 | 2014-01-02 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for generating obfuscated speech signal |
US9509177B2 (en) | 2012-06-29 | 2016-11-29 | Broadcom Corporation | Portable device capable of wireless power reception and transmission |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US20150222126A1 (en) | 2013-05-10 | 2015-08-06 | Energous | External or internal receiver for smart mobile devices |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US20150340903A1 (en) | 2014-05-23 | 2015-11-26 | Energous Corporation | Systems and Methods for Power Payment Based on Proximity |
US20160013677A1 (en) | 2014-07-14 | 2016-01-14 | Energous Corporation | System and Method for Enabling Automatic Charging Schedules in a Wireless Power Network to One or More Devices |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US20150077037A1 (en) | 2013-05-10 | 2015-03-19 | DvineWave Inc. | Wireless power transmission utilizing alternate energy sources |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US20150001949A1 (en) | 2013-07-01 | 2015-01-01 | DvineWave Inc. | Hybrid charging method for wireless power transmission based on pocket-forming |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US20150041459A1 (en) | 2013-08-06 | 2015-02-12 | DvineWave Inc. | Wireless electrical temperature regulator for food and beverages |
US20150028694A1 (en) | 2013-07-25 | 2015-01-29 | DvineWave Inc. | Power couplings in transmitters for wireless power transmission |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US20150076917A1 (en) | 2013-05-10 | 2015-03-19 | DvineWave Inc. | Wireless power supply for logistic services |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US20150326024A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Systems and Methods for Device and Power Receiver Pairing |
US20150155738A1 (en) | 2013-05-10 | 2015-06-04 | DvineWave Inc. | Wireless power distribution system for law enforcement equipment |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US20160012695A1 (en) | 2014-07-14 | 2016-01-14 | Energous Corporation | Off-Premises Alert System and Method for Wireless Power Receivers in a Wireless Power Network |
US9876380B1 (en) | 2013-09-13 | 2018-01-23 | Energous Corporation | Secured wireless power distribution system |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US20150076927A1 (en) | 2013-05-10 | 2015-03-19 | DvineWave Inc. | Wireless power supply for rescue devices |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US20150022008A1 (en) | 2013-05-10 | 2015-01-22 | DvineWave Inc. | Home base station for multiple room coverage with multiple transmitters |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US20140354221A1 (en) | 2013-05-10 | 2014-12-04 | DvineWave Inc. | Antenna arrangement for pocket-forming |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US20140368048A1 (en) | 2013-05-10 | 2014-12-18 | DvineWave Inc. | Wireless charging with reflectors |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US20150015192A1 (en) | 2013-07-11 | 2015-01-15 | DvineWave Inc. | Wireless tracking pocket-forming |
US9450449B1 (en) | 2012-07-06 | 2016-09-20 | Energous Corporation | Antenna arrangement for pocket-forming |
US20150326143A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Synchronous Rectifier Design for Wireless Power Receiver |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US20150042265A1 (en) | 2013-05-10 | 2015-02-12 | DvineWave Inc. | Wireless powering of electronic devices |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US20150162751A1 (en) | 2013-05-10 | 2015-06-11 | DvineWave Inc. | Wireless charging of clothing and smart fabrics |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US20150022010A1 (en) | 2013-05-10 | 2015-01-22 | DvineWave Inc. | Wireless charging and powering of electronic sensors in a vehicle |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US20150077036A1 (en) | 2013-05-10 | 2015-03-19 | DvineWave Inc. | Wireless power distribution system for military applications |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US20150130285A1 (en) | 2013-05-10 | 2015-05-14 | DvineWave Inc. | Portable transmitter for wireless power transmission |
US20140375253A1 (en) | 2013-06-24 | 2014-12-25 | DvineWave Inc. | Methodology for multiple pocket-forming |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US20150102764A1 (en) | 2013-05-10 | 2015-04-16 | DvineWave Inc. | Wireless charging methods and systems for game controllers, based on pocket-forming |
US20150326072A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Boost-Charger-Boost System for Enhanced Power Delivery |
US20150102769A1 (en) | 2013-05-10 | 2015-04-16 | DvineWave Inc. | Wireless charging of tools using a toolbox transmitter |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9130397B2 (en) | 2013-05-10 | 2015-09-08 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US20140354063A1 (en) | 2013-05-10 | 2014-12-04 | DvineWave Inc. | Tracking surface for determining optimal charging position |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US20180048178A1 (en) | 2013-06-25 | 2018-02-15 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
KR101950688B1 (en) | 2012-07-09 | 2019-02-21 | 삼성전자주식회사 | Wireless power transmitter and method for controlling thereof |
US9419476B2 (en) | 2012-07-10 | 2016-08-16 | Farrokh Mohamadi | Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system |
US9870859B2 (en) | 2012-07-15 | 2018-01-16 | Access Business Group International Llc | Variable mode wireless power supply systems |
US8818444B2 (en) | 2012-07-20 | 2014-08-26 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for providing wireless base station radio with non-disruptive service power class switching |
US9302594B2 (en) | 2012-07-31 | 2016-04-05 | Qualcomm Incorporated | Selective communication based on distance from a plurality of electric vehicle wireless charging stations in a facility |
WO2014021636A1 (en) | 2012-07-31 | 2014-02-06 | 인텔렉추얼디스커버리 주식회사 | Wireless power transmission network and wireless power transmission method |
US9214730B2 (en) | 2012-07-31 | 2015-12-15 | Cambium Networks Limited | Patch antenna |
US8933902B2 (en) | 2012-08-13 | 2015-01-13 | Htc Corporation | Touch panel structure, touch and display panel structure, and integrated touch display panel structure having antenna pattern and method of forming touch panel having antenna pattern |
US9154189B2 (en) | 2012-08-17 | 2015-10-06 | Qualcomm Incorporated | Wireless power system with capacitive proximity sensing |
KR102086667B1 (en) | 2012-08-23 | 2020-03-10 | 삼성전자 주식회사 | Method and apparatus for wireless charging of user device |
US9859956B2 (en) | 2012-08-24 | 2018-01-02 | Qualcomm Incorporated | Power supply control in wireless power transfer systems |
KR20140031780A (en) | 2012-09-05 | 2014-03-13 | 삼성전자주식회사 | Wireless power transmitter for excluding cross connected wireless power receiver and method for controlling thereof |
US9722448B2 (en) | 2012-09-07 | 2017-08-01 | Qualcomm Incorporated | Protection device and method for power transmitter |
US9276440B2 (en) | 2012-09-07 | 2016-03-01 | WIPQTUS Inc. | Multi-mode multi-coupling multi-protocol ubiquitous wireless power transmitter |
US9912166B2 (en) | 2012-09-11 | 2018-03-06 | Access Business Group International Llc | Wireless power control |
JP5695619B2 (en) | 2012-09-19 | 2015-04-08 | アンリツ株式会社 | Test system and test method |
US9408147B2 (en) | 2012-09-24 | 2016-08-02 | Broadcom Corporation | Enhanced rate physical layer for Bluetooth™ low energy |
JP6008672B2 (en) | 2012-09-26 | 2016-10-19 | ローム株式会社 | Wireless power supply / reception device, wireless power reception device, and wireless power supply device |
US20140091636A1 (en) | 2012-10-02 | 2014-04-03 | Witricity Corporation | Wireless power transfer |
JP2014075927A (en) | 2012-10-04 | 2014-04-24 | Sanyo Electric Co Ltd | Non-contact power supply system, power reception apparatus, power supply stand, and non-contact power supply method |
JP6053439B2 (en) | 2012-10-05 | 2016-12-27 | キヤノン株式会社 | Power supply apparatus and program |
WO2014057343A1 (en) | 2012-10-11 | 2014-04-17 | Powermat Technologies Ltd. | Inductive power transmission system and method for concurrently transmitting digital messages |
US20140104157A1 (en) | 2012-10-15 | 2014-04-17 | Qualcomm Mems Technologies, Inc. | Transparent antennas on a display device |
KR101807899B1 (en) | 2012-10-19 | 2017-12-11 | 삼성전자주식회사 | Wireless power transmitter, wireless power receiver and method for permitting wireless power receiver of wireless power transmitter in wireless power network |
KR101807335B1 (en) | 2012-10-19 | 2018-01-10 | 삼성전자주식회사 | Wireless power receiver and method for setting a sleep mode of the wireless power receiver in wireless power network |
GB2510318A (en) | 2012-10-24 | 2014-08-06 | Microsoft Corp | Antenna device with reduced specific absorption rate (SAR) characteristics |
US20140118140A1 (en) | 2012-10-25 | 2014-05-01 | David Amis | Methods and systems for requesting the aid of security volunteers using a security network |
JP2014112063A (en) | 2012-10-31 | 2014-06-19 | Nissan Motor Co Ltd | Non-contact power supply device |
US9056552B2 (en) | 2012-10-31 | 2015-06-16 | GM Global Technology Operations LLC | Method and system for charging a plug-in electric vehicle |
US9768643B2 (en) | 2012-11-02 | 2017-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Wireless power transmission system capable of continuing power transmission while suppressing heatup of foreign objects |
CN102903746B (en) | 2012-11-07 | 2015-06-03 | 东南大学 | High-current-density lateral ultra-thin insulated gate bipolar transistor |
KR20140059492A (en) | 2012-11-08 | 2014-05-16 | 삼성전자주식회사 | Apparatus and method for outputting a location of a wireless charging device in a portabil terminal |
US10367380B2 (en) | 2012-11-09 | 2019-07-30 | California Institute Of Technology | Smart RF lensing: efficient, dynamic and mobile wireless power transfer |
US9774277B2 (en) | 2012-11-13 | 2017-09-26 | The Board Of Trustees Of The Leland Stanford Junior University | Energy harvesting |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US20140141838A1 (en) | 2012-11-16 | 2014-05-22 | UNU Electronics Inc. | Mobile device case with interchangeable display |
KR101967340B1 (en) | 2012-11-20 | 2019-08-13 | 삼성전자주식회사 | Wireless power receiver |
US9276329B2 (en) | 2012-11-22 | 2016-03-01 | Commscope Technologies Llc | Ultra-wideband dual-band cellular basestation antenna |
US9362776B2 (en) | 2012-11-27 | 2016-06-07 | Qualcomm Incorporated | Wireless charging systems and methods |
US8917210B2 (en) | 2012-11-27 | 2014-12-23 | International Business Machines Corporation | Package structures to improve on-chip antenna performance |
US9608454B2 (en) | 2012-12-03 | 2017-03-28 | WIPQTUS Inc. | Wireless power system with a self-regulating wireless power receiver |
KR102016688B1 (en) | 2012-12-10 | 2019-09-02 | 한국전자통신연구원 | Apparatus for converting energy |
WO2014091274A1 (en) | 2012-12-10 | 2014-06-19 | Intel Corporation | Modular antenna array with rf and baseband beamforming |
US9831705B2 (en) | 2012-12-12 | 2017-11-28 | Qualcomm Incorporated | Resolving communcations in a wireless power system with co-located transmitters |
US9496744B2 (en) | 2012-12-20 | 2016-11-15 | Intel Corporation | Wireless charging optimization utilizing an NFC module that detects induced current and provides an indication of induced current |
EP2747195B1 (en) | 2012-12-21 | 2017-02-08 | Stichting IMEC Nederland | Antenna arrangement for wireless powering |
TWM456517U (en) | 2012-12-24 | 2013-07-01 | Hon Hai Prec Ind Co Ltd | Electronic wrist watch having wireless charging function |
US10230267B2 (en) | 2012-12-26 | 2019-03-12 | Elwha Llc | Ad-hoc wireless sensor package |
KR101397668B1 (en) | 2012-12-27 | 2014-05-23 | 전자부품연구원 | A transmitting antenna and a transmitter for wireless power charging |
KR102066531B1 (en) | 2012-12-27 | 2020-03-02 | 전자부품연구원 | In-band communication for wireless power transfer |
US20140184163A1 (en) | 2012-12-28 | 2014-07-03 | Ripan Das | Battery charge management for electronic device |
US9735835B2 (en) | 2012-12-28 | 2017-08-15 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Power transfer architecture with charging history |
US20140183964A1 (en) | 2012-12-28 | 2014-07-03 | Broadcom Corporation | Power Transmitting Device Having Power Theft Detection and Prevention |
KR20140089038A (en) | 2013-01-02 | 2014-07-14 | 주식회사 케이티 | Method and system of power demand management in charging station for electric vehicle |
US20140191568A1 (en) | 2013-01-04 | 2014-07-10 | Mojo Mobility, Inc. | System and method for powering or charging multiple receivers wirelessly with a power transmitter |
US20140194095A1 (en) | 2013-01-06 | 2014-07-10 | Wavemarket, Inc. | System and method for message identification and notification |
US20140197691A1 (en) | 2013-01-14 | 2014-07-17 | Mitsubishi Electric Research Laboratories, Inc | Wireless Energy Transfer for Misaligned Resonators |
US9304042B2 (en) | 2013-01-18 | 2016-04-05 | Delphi Technologies, Inc. | Foreign object detection system and method suitable for source resonator of wireless energy transfer system |
US9197095B2 (en) | 2013-01-24 | 2015-11-24 | Electronics And Telecommunications Research Institute | Wireless power charging apparatus and method of charging the apparatus |
JP6128861B2 (en) | 2013-01-29 | 2017-05-17 | キヤノン株式会社 | Power supply apparatus, power supply method, and program |
US9270344B2 (en) | 2013-02-01 | 2016-02-23 | Creating Revolutions, LLC | Combination process interaction |
US9553473B2 (en) | 2013-02-04 | 2017-01-24 | Ossia Inc. | Systems and methods for optimally delivering pulsed wireless power |
US9923621B2 (en) | 2013-02-16 | 2018-03-20 | Cable Television Laboratories, Inc. | Multiple-input multiple-output (MIMO) communication system |
GB201302749D0 (en) | 2013-02-18 | 2013-04-03 | Ento July Maurice | Universal power port |
BR112015020236A2 (en) | 2013-02-22 | 2017-07-18 | Ossia Inc | method and apparatus for focused data communication |
CA2902796C (en) | 2013-02-28 | 2022-08-16 | Powermat Technologies Ltd. | Systems and methods for managing a distributed wireless power transfer network for electrical devices |
US9406220B2 (en) | 2013-03-04 | 2016-08-02 | Hello Inc. | Telemetry system with tracking receiver devices |
US20140249994A1 (en) | 2013-03-04 | 2014-09-04 | Hello Inc. | Wearable device with unique user ID and telemetry system for payments |
US20140246416A1 (en) | 2013-03-04 | 2014-09-04 | Black & Decker Inc. | Electrically heated garment |
JP6071654B2 (en) | 2013-03-06 | 2017-02-01 | 株式会社東芝 | Coil, power receiving device, and power transmitting device |
WO2014197048A2 (en) | 2013-03-11 | 2014-12-11 | Massachusetts Institute Of Technology | Superconducting three-terminal device and logic gates |
US10468914B2 (en) | 2013-03-11 | 2019-11-05 | Robert Bosch Gmbh | Contactless power transfer system |
US9083452B2 (en) | 2013-03-13 | 2015-07-14 | Qualcomm, Incorporated | Near-field equivalent source representation for SAR estimation |
US10020833B2 (en) | 2013-03-14 | 2018-07-10 | Bby Solutions, Inc. | Integrated networking equipment and diversity antenna in light bulb |
EP3444744B1 (en) | 2013-03-14 | 2022-11-16 | IMPINJ, Inc. | Powering rfid tags using multiple rfid readers |
US9983616B2 (en) | 2013-03-15 | 2018-05-29 | uBeam Inc. | Transducer clock signal distribution |
US9707593B2 (en) | 2013-03-15 | 2017-07-18 | uBeam Inc. | Ultrasonic transducer |
US9242272B2 (en) | 2013-03-15 | 2016-01-26 | uBeam Inc. | Ultrasonic driver |
US9278375B2 (en) | 2013-03-15 | 2016-03-08 | uBeam Inc. | Ultrasonic transducer control |
US9385435B2 (en) | 2013-03-15 | 2016-07-05 | The Invention Science Fund I, Llc | Surface scattering antenna improvements |
US9559544B2 (en) | 2013-03-15 | 2017-01-31 | Jay Marketing Associates, Inc. | Wireless interrogation and wireless charging of electronic devices |
US9318915B2 (en) | 2013-03-20 | 2016-04-19 | Halo2Cloud Llc | Portable power charger with wireless and direct charging connectivity |
EP2787591A3 (en) | 2013-04-05 | 2015-03-25 | Powermat Technologies Ltd. | System and Method for Determining Proximity |
US9520748B2 (en) | 2013-04-17 | 2016-12-13 | El Wha Llc | Systems and methods for providing wireless power to a power-receiving device, and related power-receiving devices |
KR102142558B1 (en) | 2013-04-17 | 2020-08-07 | 인텔렉추얼디스커버리 주식회사 | Apparatus and method for transmitting wireless power |
US9532748B2 (en) | 2013-04-22 | 2017-01-03 | Personal Neuro Devices Inc. | Methods and devices for brain activity monitoring supporting mental state development and training |
US20140325218A1 (en) | 2013-04-26 | 2014-10-30 | Toyota Jidosha Kabushiki Kaisha | Wireless Charging System Using Secure Wireless Charging Protocols |
US9543648B2 (en) | 2013-04-27 | 2017-01-10 | Commsky Technologies, Inc. | Switchable antennas for wireless applications |
US20140327320A1 (en) | 2013-05-01 | 2014-11-06 | Witricity Corporation | Wireless energy transfer |
KR102047963B1 (en) | 2013-05-02 | 2019-11-25 | 한국전자통신연구원 | Wireless charge apparatus and wirelss charge method |
KR101787796B1 (en) | 2013-05-03 | 2017-10-18 | 삼성전자주식회사 | Wireless power transmitter, wireless power receiver and method for controlling each thereof |
US9350194B2 (en) | 2013-05-08 | 2016-05-24 | Broadcom Corporation | Limiting wireless power receiver voltage |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9843763B2 (en) | 2013-05-10 | 2017-12-12 | Energous Corporation | TV system with wireless power transmitter |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US20150318729A1 (en) | 2013-05-10 | 2015-11-05 | Energous Corporation | Wireless sound tracking pocket-forming |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US20150333573A1 (en) | 2013-05-10 | 2015-11-19 | Energous Corporation | Wireless sound power distribution system for law enforcement equipment |
US20160056635A1 (en) | 2014-08-21 | 2016-02-25 | Energous Corporation | Systems and Methods for Tracking the Status and Usage Information of a Wireless Power Transmission System |
US20140368161A1 (en) | 2013-06-17 | 2014-12-18 | DvineWave Inc. | Battery life of portable electronic devices |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
TWI474573B (en) | 2013-05-14 | 2015-02-21 | Richtek Technology Corp | Wireless Power Receiver and Its Rectifier Modulation Circuit |
DE102014208991A1 (en) | 2013-05-15 | 2014-11-20 | Ford Global Technologies, Llc | Security system for wireless vehicle charging device |
JP6087740B2 (en) | 2013-05-20 | 2017-03-01 | Necトーキン株式会社 | Communication device |
FR3006505B1 (en) | 2013-05-31 | 2017-02-10 | Commissariat Energie Atomique | DEVICE FOR DISTURBING ELECTROMAGNETIC WAVE PROPAGATION AND METHOD FOR MANUFACTURING THE SAME |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US20150333528A1 (en) | 2013-06-12 | 2015-11-19 | Energous Corporation | Wireless sound powered house |
US9859719B2 (en) | 2013-06-17 | 2018-01-02 | Nokia Technologies Oy | Method and apparatus for wireless power transfer |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
WO2014202118A1 (en) | 2013-06-18 | 2014-12-24 | Telefonaktiebolaget L M Ericsson (Publ) | Inverted f-antennas at a wireless communication node |
RU2534020C1 (en) | 2013-06-19 | 2014-11-27 | Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." | Wireless charging system for mobile devices |
KR102202935B1 (en) | 2013-06-21 | 2021-01-14 | 삼성전자 주식회사 | A method and apparatus for energy efficient signal transmission in massive multi-antenna wireless communication systems |
KR102005781B1 (en) | 2013-06-27 | 2019-07-31 | 한국전자통신연구원 | Device for transferring wireless power using ultrasound |
KR102105130B1 (en) | 2013-07-05 | 2020-04-28 | 삼성전자주식회사 | Apparatus and method for matching harmonics |
US9088305B2 (en) | 2013-07-08 | 2015-07-21 | Blackberry Limited | Docking station connectivity monitor/controller |
US20150022194A1 (en) | 2013-07-18 | 2015-01-22 | Blackberry Limited | Magnetometer for aligning a portable device on a planar charging surface of an inductive charging unit |
US20150023204A1 (en) | 2013-07-19 | 2015-01-22 | General Electric Company | Systems and methods for combined wireless power charging and network pairing |
JP6276532B2 (en) | 2013-07-29 | 2018-02-07 | キヤノン株式会社 | Power receiving device, power transmitting device, control method thereof, and program |
JP5870973B2 (en) | 2013-07-29 | 2016-03-01 | 株式会社安川電機 | Linear motor |
JP6164687B2 (en) | 2013-07-30 | 2017-07-19 | みこらった株式会社 | Electric vacuum cleaner |
JP6182010B2 (en) | 2013-07-31 | 2017-08-16 | キヤノン株式会社 | Control device, control method, and program |
KR102010523B1 (en) | 2013-07-31 | 2019-08-13 | 삼성전자주식회사 | Antenna device and electronic device habing it |
CN104347915B (en) | 2013-07-31 | 2019-06-18 | 深圳光启创新技术有限公司 | Space angle filter and antenna |
KR102017491B1 (en) | 2013-08-01 | 2019-09-04 | 삼성전자주식회사 | Antenna device and electronic device with the same |
US9432480B2 (en) | 2013-08-01 | 2016-08-30 | Google Inc. | Magnetic induction network device |
US9407335B2 (en) | 2013-08-06 | 2016-08-02 | Google Technology Holdings LLC | Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks |
GB2517907B (en) | 2013-08-09 | 2018-04-11 | Drayson Tech Europe Ltd | RF Energy Harvester |
KR102126713B1 (en) | 2013-08-13 | 2020-06-25 | 삼성전자주식회사 | Controlling method and apparatus of wireless charging in wireless power transfer system |
DE102013216953A1 (en) | 2013-08-26 | 2015-02-26 | Robert Bosch Gmbh | Inductive energy transfer device and method for operating an inductive energy transfer device |
US9409490B2 (en) | 2013-09-27 | 2016-08-09 | Qualcomm Incorporated | Device alignment in inductive power transfer systems |
DE102013219528A1 (en) | 2013-09-27 | 2015-04-02 | Siemens Aktiengesellschaft | Charging an electrical energy storage of an electrically driven vehicle |
US9754139B2 (en) | 2013-09-30 | 2017-09-05 | Ricoh Co., Ltd | Real-time wireless power transfer control for passive backscattering devices |
CA2926811C (en) | 2013-10-07 | 2023-03-21 | Google Inc. | Smart-home hazard detector providing context specific features and/or pre-alarm configurations |
GB2519079B (en) | 2013-10-08 | 2020-11-04 | Nokia Technologies Oy | Method and apparatus for wireless power transfer |
US9832545B2 (en) | 2013-10-11 | 2017-11-28 | Northrop Grumman Systems Corporation | System and method for providing a distributed directional aperture |
US10263342B2 (en) | 2013-10-15 | 2019-04-16 | Northrop Grumman Systems Corporation | Reflectarray antenna system |
US9647345B2 (en) | 2013-10-21 | 2017-05-09 | Elwha Llc | Antenna system facilitating reduction of interfering signals |
US9473110B2 (en) | 2013-10-22 | 2016-10-18 | Nxp B.V. | Antenna resonance frequency control using an active rectifier or a driver stage |
US9401977B1 (en) | 2013-10-28 | 2016-07-26 | David Curtis Gaw | Remote sensing device, system, and method utilizing smartphone hardware components |
US20150116162A1 (en) | 2013-10-28 | 2015-04-30 | Skycross, Inc. | Antenna structures and methods thereof for determining a frequency offset based on a differential magnitude |
US9270130B2 (en) | 2013-10-31 | 2016-02-23 | Honda Motor Co., Ltd. | Method and system to mount a portable electronic device to wirelessly charge |
KR20150050027A (en) | 2013-10-31 | 2015-05-08 | 삼성전기주식회사 | Wireless charging device and controlling method thereof |
CN104640187B (en) | 2013-11-07 | 2019-04-05 | 中兴通讯股份有限公司 | Transmission power control method and device |
US9385560B2 (en) | 2013-11-12 | 2016-07-05 | Qualcomm Incorporated | Methods, devices and systems for self charging sensors |
WO2015077730A1 (en) | 2013-11-22 | 2015-05-28 | California Institute Of Technology | Generator unit for wireless power transfer |
US9622720B2 (en) | 2013-11-27 | 2017-04-18 | Clear Guide Medical, Inc. | Ultrasound system with stereo image guidance or tracking |
JP6369304B2 (en) | 2013-11-28 | 2018-08-08 | Tdk株式会社 | Wireless power transmission system |
US9234757B2 (en) | 2013-11-29 | 2016-01-12 | Fedex Corporate Services, Inc. | Determining node location using a variable power characteristic of a node in a wireless node network |
US9153998B2 (en) | 2013-12-02 | 2015-10-06 | Qualcomm Incorporated | Wireless power orthogonal polarization antenna array |
WO2015095182A1 (en) | 2013-12-16 | 2015-06-25 | The Regents Of The University Of California | Wireless wearable big data brain machine interface |
US20150171512A1 (en) | 2013-12-17 | 2015-06-18 | Elwha Llc | Sub-nyquist holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields |
KR102280579B1 (en) | 2013-12-19 | 2021-07-22 | 삼성전자주식회사 | Charge circuit, Charge system and wireless power receiver |
KR102012972B1 (en) | 2013-12-20 | 2019-08-23 | 주식회사 위츠 | Apparatus for transmitting and receiving wireless power |
US9176188B2 (en) | 2013-12-20 | 2015-11-03 | Texas Instruments Incorporated | Waveform calibration using built in self test mechanism |
US9420178B2 (en) | 2013-12-20 | 2016-08-16 | Qualcomm Incorporated | Thermal and power management |
JP5911608B2 (en) | 2013-12-26 | 2016-04-27 | 三菱電機エンジニアリング株式会社 | Resonant transmission power supply apparatus and resonant transmission power supply system |
JP6223471B2 (en) | 2013-12-26 | 2017-11-01 | 三菱電機エンジニアリング株式会社 | Resonant transmission power supply apparatus and resonant transmission power supply system |
JP2015128349A (en) | 2013-12-27 | 2015-07-09 | キヤノン株式会社 | Power transmission device, radio power supply system, control method and program |
US9843214B2 (en) | 2013-12-28 | 2017-12-12 | Intel Corporation | Wireless charging device for wearable electronic device |
KR20150077678A (en) | 2013-12-30 | 2015-07-08 | 전자부품연구원 | Wireless power transmitting method and wireless power transmitter performing the same |
WO2015102454A1 (en) | 2014-01-03 | 2015-07-09 | 주식회사 윌러스표준기술연구소 | Wireless power transmission apparatus and wireless power transmission method |
KR20140023409A (en) | 2014-01-06 | 2014-02-26 | 엘지이노텍 주식회사 | Wireless charging system and method of cotnrolligng the same |
US9813997B2 (en) | 2014-01-10 | 2017-11-07 | Microsoft Technology Licensing, Llc | Antenna coupling for sensing and dynamic transmission |
US20150199665A1 (en) | 2014-01-10 | 2015-07-16 | Htc Corporation | Method of Payment for Wireless Charging Service |
US10181877B2 (en) | 2014-01-21 | 2019-01-15 | Ossia Inc. | Systems and methods for wireless power and communication |
US9806558B2 (en) | 2014-01-29 | 2017-10-31 | Sk Planet Co., Ltd. | Wireless charging equipment, terminal, wireless charging system comprising the same, control method thereof and non-transitory computer readable storage medium having computer program recorded thereon |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US20150236877A1 (en) | 2014-02-14 | 2015-08-20 | Mediatek Inc. | Methods and apparatus for envelope tracking system |
US9995777B2 (en) | 2014-02-14 | 2018-06-12 | Qualcomm Incorporated | Device detection through dynamic impedance change measurement |
KR102363633B1 (en) | 2014-02-20 | 2022-02-17 | 삼성전자주식회사 | Method for controlling wireless power transmitter and wireless power transmitter |
US9345050B2 (en) | 2014-02-21 | 2016-05-17 | Sony Corporation | NFC collision avoidance with controllable NFC transmission delay timing |
EP3111530B1 (en) | 2014-02-23 | 2022-04-13 | Apple Inc. | Impedance matching for inductive power transfer systems |
US20150244187A1 (en) | 2014-02-26 | 2015-08-27 | Kabushiki Kaisha Toshiba | Electronic device |
US9847667B2 (en) | 2014-02-26 | 2017-12-19 | Htc Corporation | Method of handling wireless charging authentication |
US10283995B2 (en) | 2014-02-28 | 2019-05-07 | L'oreal | Charge current monitoring or control in a resonance-tuned inductive charger |
US9923381B2 (en) | 2014-03-04 | 2018-03-20 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Resonant tuning through rectifier time shifting |
US9559605B2 (en) | 2014-03-05 | 2017-01-31 | Ricoh Co., Ltd. | System for ambient energy harvesting |
KR101537896B1 (en) | 2014-03-14 | 2015-07-20 | 성균관대학교산학협력단 | Active rectifier for reducing reverse leakage current and wireless power receiver using the same |
US20150263548A1 (en) | 2014-03-14 | 2015-09-17 | Emily Cooper | Systems and methods for wireless power distribution allocation |
US20150262465A1 (en) | 2014-03-14 | 2015-09-17 | Wilbert Pritchett | Child Proximity Alarm Assembly |
US9772401B2 (en) | 2014-03-17 | 2017-09-26 | Qualcomm Incorporated | Systems, methods, and apparatus for radar-based detection of objects in a predetermined space |
JP2015185946A (en) | 2014-03-20 | 2015-10-22 | キヤノン株式会社 | antenna device |
US9583838B2 (en) | 2014-03-20 | 2017-02-28 | Apple Inc. | Electronic device with indirectly fed slot antennas |
US9627919B2 (en) | 2014-03-27 | 2017-04-18 | Ultrapower Llc | Electro-acoustic device charging and power supply |
US9449200B2 (en) | 2014-03-28 | 2016-09-20 | Intel Corporation | Methods, systems and apparatus to secure devices via physical and/or virtual locking |
EP3132497A4 (en) | 2014-04-18 | 2018-04-18 | TransSiP UK, Ltd. | Metamaterial substrate for circuit design |
US9319844B2 (en) | 2014-04-25 | 2016-04-19 | Aruba Networks, Inc. | Determining location based on both a detected location and a predicted location |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US9853361B2 (en) | 2014-05-02 | 2017-12-26 | The Invention Science Fund I Llc | Surface scattering antennas with lumped elements |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
WO2015175572A1 (en) | 2014-05-12 | 2015-11-19 | Micron Devices Llc | Remote rf power system with low profile transmitting antenna |
CN203826555U (en) | 2014-05-15 | 2014-09-10 | 重庆大学 | Dual-band micro strip antenna based on split resonance ring |
US10305176B2 (en) | 2014-05-20 | 2019-05-28 | University Of North Dakota | Conformal antennas for unmanned and piloted vehicles and method of antenna operation |
KR101891426B1 (en) | 2014-05-20 | 2018-08-24 | 후지쯔 가부시끼가이샤 | Wireless power transmission control method and wireless power transmission system |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US9443112B2 (en) | 2014-05-23 | 2016-09-13 | Bank Of America Corporation | Secure media container |
US9882250B2 (en) | 2014-05-30 | 2018-01-30 | Duracell U.S. Operations, Inc. | Indicator circuit decoupled from a ground plane |
US9666915B2 (en) | 2014-06-11 | 2017-05-30 | Enovate Medical, Llc | Transfer priority for a wireless transfer station |
US10600070B2 (en) | 2014-07-02 | 2020-03-24 | Sk Planet Co., Ltd. | Service providing device, terminal, wireless charging system comprising the same, control method thereof and computer readable medium having computer program recorded therefor |
CN104090265B (en) | 2014-07-04 | 2016-10-05 | 北京智谷睿拓技术服务有限公司 | Localization method and equipment |
WO2016007594A1 (en) | 2014-07-08 | 2016-01-14 | Witricity Corporation | Resonators for wireless power transfer systems |
US10090596B2 (en) | 2014-07-10 | 2018-10-02 | Google Llc | Robust antenna configurations for wireless connectivity of smart home devices |
EP3166682B1 (en) | 2014-07-10 | 2021-01-06 | Stimwave Technologies Incorporated | Circuit for an implantable device |
US10224759B2 (en) | 2014-07-15 | 2019-03-05 | Qorvo Us, Inc. | Radio frequency (RF) power harvesting circuit |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
WO2016019362A1 (en) | 2014-07-31 | 2016-02-04 | Ossia, Inc. | Techniques for determining distance between radiating objects in multipath wireless power delivery environments |
CN112510856A (en) | 2014-08-12 | 2021-03-16 | 苹果公司 | System and method for power transmission |
US8897770B1 (en) | 2014-08-18 | 2014-11-25 | Sunlight Photonics Inc. | Apparatus for distributed airborne wireless communications |
CN111193330A (en) | 2014-08-19 | 2020-05-22 | 加州理工学院 | Recovery unit for wireless power transfer and method of generating DC power from RF waves |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
KR102400669B1 (en) | 2014-08-25 | 2022-05-20 | 론프록스 코퍼레이션 | Indoor position location using delayed scanned directional reflectors |
US9929595B2 (en) | 2014-08-25 | 2018-03-27 | NuVolta Technologies | Wireless power transfer system and method |
US10141755B2 (en) | 2014-09-09 | 2018-11-27 | Halo International SEZC Ltd. | Multi-functional portable power charger |
US10559970B2 (en) | 2014-09-16 | 2020-02-11 | Qorvo Us, Inc. | Method for wireless charging power control |
US9711999B2 (en) | 2014-09-19 | 2017-07-18 | Qorvo Us, Inc. | Antenna array calibration for wireless charging |
US9564773B2 (en) | 2014-09-24 | 2017-02-07 | Intel IP Corportation | Methods and systems for optimizing location-based wireless charging |
KR101640785B1 (en) | 2014-09-25 | 2016-07-19 | 국방과학연구소 | Wideband rectenna and rectifying apparatus for rectenna |
US10090707B2 (en) | 2014-09-25 | 2018-10-02 | Supply, Inc. | Wireless power transmission |
US9407981B2 (en) | 2014-10-17 | 2016-08-02 | Apple Inc. | Audio class-compliant charging accessories for wireless headphones and headsets |
KR102349713B1 (en) | 2014-10-20 | 2022-01-12 | 삼성전자주식회사 | Operation Method of communication channel and Electronic device supporting the same |
US9386610B2 (en) | 2014-10-31 | 2016-07-05 | Aruba Networks, Inc. | Periodic high power beacon broadcasts |
CN107636931B (en) | 2014-11-05 | 2020-12-18 | 苹果公司 | Inductive power receiver |
US20160141908A1 (en) | 2014-11-14 | 2016-05-19 | Motorola Solutions, Inc | Method and apparatus for efficiency compliance in wireless charging systems |
CN107155384B (en) | 2014-12-05 | 2021-01-05 | 三菱电机工程技术株式会社 | Resonance type power transmission system, transmission device, and power supply position control system |
US9871545B2 (en) | 2014-12-05 | 2018-01-16 | Microsoft Technology Licensing, Llc | Selective specific absorption rate adjustment |
US9882413B2 (en) * | 2014-12-12 | 2018-01-30 | Qualcomm Incorporated | Wearable devices for wireless power transfer and communication |
US10461420B2 (en) | 2014-12-12 | 2019-10-29 | The Boeing Company | Switchable transmit and receive phased array antenna |
US20160294225A1 (en) | 2014-12-15 | 2016-10-06 | PogoTec, Inc. | Wireless power systems and methods suitable for charging wearable electronic devices |
US9781683B2 (en) | 2014-12-16 | 2017-10-03 | Qualcomm Incorporated | Determining transmit power limits using a combined specific absorption measurement for multiple transmitters |
US20160181849A1 (en) | 2014-12-22 | 2016-06-23 | Qualcomm Incorporated | System and method for thermal management in wireless charging devices |
US9871298B2 (en) | 2014-12-23 | 2018-01-16 | Palo Alto Research Center Incorporated | Rectifying circuit for multiband radio frequency (RF) energy harvesting |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9882398B2 (en) | 2015-01-05 | 2018-01-30 | Ossia Inc. | Techniques for reducing human exposure to wireless energy in wireless power delivery environments |
JP2016128765A (en) | 2015-01-09 | 2016-07-14 | 富士通株式会社 | Position information specification system |
US20160238365A1 (en) | 2015-01-14 | 2016-08-18 | Barry Douglas Wixey | Crown Molding Protractor |
US9722452B2 (en) | 2015-01-22 | 2017-08-01 | Visteon Global Technologies, Inc. | Integrating a wireless charging device with a human machine interface (HMI) |
US20160380466A1 (en) | 2015-02-03 | 2016-12-29 | Intel Corporation | Device dependent maximum coil current |
US9819069B2 (en) | 2015-02-11 | 2017-11-14 | Google Inc. | Multi-band antenna with a battery resonator |
GB2558781B (en) | 2015-02-13 | 2019-08-14 | Cambium Networks Ltd | Radio frequency connection arrangement |
KR20160100755A (en) | 2015-02-16 | 2016-08-24 | 엘지이노텍 주식회사 | Wireless apparatus and method for transmitting power |
KR20160102779A (en) | 2015-02-23 | 2016-08-31 | 한국전자통신연구원 | Wireless power transmission device, wireless power transmission system including thereof and wireless power transmission method thereof |
US9634402B2 (en) | 2015-03-09 | 2017-04-25 | Trimble Inc. | Polarization diversity in array antennas |
US9620996B2 (en) | 2015-04-10 | 2017-04-11 | Ossia Inc. | Wireless charging with multiple power receiving facilities on a wireless device |
US9971015B2 (en) | 2015-04-10 | 2018-05-15 | Ossia Inc. | Techniques for imaging wireless power delivery environments and tracking objects therein |
US10559971B2 (en) | 2015-04-10 | 2020-02-11 | Ossia Inc. | Wirelessly chargeable battery apparatus |
US10459114B2 (en) | 2015-05-18 | 2019-10-29 | Lasermotive, Inc. | Wireless power transmitter and receiver |
US9979221B2 (en) | 2015-06-24 | 2018-05-22 | Verizon Patent And Licensing Inc. | Contextual assistance for wireless charging |
US10110046B1 (en) | 2015-06-25 | 2018-10-23 | Marvell International Ltd. | Mobile to mobile wireless charging |
US9673665B2 (en) | 2015-06-30 | 2017-06-06 | Ossia Inc. | Energy delivery modulation in wireless power delivery environments |
JP6632239B2 (en) | 2015-07-22 | 2020-01-22 | キヤノン株式会社 | Electronic device capable of wireless communication, control method thereof, and program |
KR20170011507A (en) | 2015-07-23 | 2017-02-02 | 삼성전자주식회사 | Operating method of an electronic device and electronic device supporting the same |
US9793611B2 (en) | 2015-08-03 | 2017-10-17 | City University Of Hong Kong | Antenna |
KR102514140B1 (en) | 2015-08-12 | 2023-03-27 | 삼성전자주식회사 | Electronic device and method for controlling fan of the electronic device |
US9749017B2 (en) | 2015-08-13 | 2017-08-29 | Golba Llc | Wireless charging system |
US9802504B2 (en) | 2015-08-14 | 2017-10-31 | Jaguar Land Rover Limited | System and method for charging portable electronic devices within a vehicle |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US20170077733A1 (en) | 2015-09-10 | 2017-03-16 | Qualcomm Incorporated | Wireless power transmitting unit using metal plates |
JP6991143B2 (en) | 2015-09-11 | 2022-01-12 | ヤンク テクノロジーズ,インコーポレーテッド | Wireless charging platform via 3D phased coil array |
US9654168B2 (en) | 2015-09-11 | 2017-05-16 | Parallel Wireless, Inc. | Antenna-integrated radio with wireless fronthaul |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10462689B2 (en) | 2015-09-22 | 2019-10-29 | Veniam, Inc. | Systems and methods for monitoring a network of moving things |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10116145B2 (en) | 2015-10-16 | 2018-10-30 | uBeam Inc. | Performance adjustment for wireless power transfer devices |
US10181760B2 (en) | 2015-10-19 | 2019-01-15 | Ossia Inc. | Techniques for authenticating devices in wireless power delivery environments |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
CA3041583A1 (en) | 2015-10-29 | 2017-05-04 | PogoTec, Inc. | Hearing aid adapted for wireless power reception |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10389140B2 (en) | 2015-11-13 | 2019-08-20 | X Development Llc | Wireless power near-field repeater system that includes metamaterial arrays to suppress far-field radiation and power loss |
US9866039B2 (en) | 2015-11-13 | 2018-01-09 | X Development Llc | Wireless power delivery over medium range distances using magnetic, and common and differential mode-electric, near-field coupling |
KR102532366B1 (en) | 2015-12-03 | 2023-05-15 | 삼성전자주식회사 | Device for Performing Wireless Charging and Method thereof |
US10222875B2 (en) | 2015-12-11 | 2019-03-05 | SomniQ, Inc. | Apparatus, system, and methods for interfacing with a user and/or external apparatus by stationary state detection |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10186892B2 (en) | 2015-12-24 | 2019-01-22 | Energous Corporation | Receiver device with antennas positioned in gaps |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
KR20170089668A (en) | 2016-01-27 | 2017-08-04 | 엘지전자 주식회사 | A watch-type mobile terminal comprising an antenna |
US10011182B2 (en) | 2016-03-24 | 2018-07-03 | Ford Global Technologies, Llc | Inductive charger alignment systems for vehicles |
KR101846954B1 (en) | 2016-06-13 | 2018-04-10 | 주식회사 맵스 | Wireless power transmitting unit capable auto-tunning in response to impedance variance of load |
EP3264597B1 (en) | 2016-06-30 | 2020-08-26 | Nxp B.V. | Doherty amplifier circuits |
CN106329116A (en) | 2016-08-31 | 2017-01-11 | 武汉虹信通信技术有限责任公司 | Small-scale LTE multi-array antenna |
US10277043B2 (en) * | 2016-09-23 | 2019-04-30 | Apple Inc. | Wireless charging mats for portable electronic devices |
GB2556620A (en) | 2016-09-27 | 2018-06-06 | Zoneart Networks Ltd | Antenna array |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
DE112017006442T5 (en) | 2016-12-21 | 2019-09-19 | Intel Corporation | WIRELESS COMMUNICATION TECHNOLOGY, DEVICES AND METHOD |
WO2018129281A1 (en) | 2017-01-05 | 2018-07-12 | Ohio State Innovation Foundation | Systems and methods for wirelessly charging a hearing device |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10008777B1 (en) | 2017-04-13 | 2018-06-26 | Tekcem | Method for automatically adjusting a tunable passive antenna and a tuning unit, and apparatus for radio communication using this method |
US11038374B2 (en) | 2017-04-18 | 2021-06-15 | Infineon Technologies Austria Ag | Flexible bridge amplifier for wireless power |
US20180309314A1 (en) | 2017-04-24 | 2018-10-25 | Qualcomm Incorporated | Wireless power transfer protection |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US11283296B2 (en) | 2017-05-26 | 2022-03-22 | Nucurrent, Inc. | Crossover inductor coil and assembly for wireless transmission |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
RU2658332C1 (en) | 2017-08-04 | 2018-06-20 | Самсунг Электроникс Ко., Лтд. | Wireless power transmission system for a multi-path environment |
US10574286B2 (en) | 2017-09-01 | 2020-02-25 | Qualcomm Incorporated | High selectivity TDD RF front end |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US20190326782A1 (en) | 2018-04-24 | 2019-10-24 | Apple Inc. | Wireless Charging System With Metallic Object Detection |
US10742074B2 (en) | 2018-06-15 | 2020-08-11 | Lg Innotek Co., Ltd. | Method and apparatus for controlling wireless power transmission |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
US11152820B2 (en) * | 2018-10-05 | 2021-10-19 | Douglas Weisband | Charge sharing battery pack for telephone |
US11482879B2 (en) * | 2018-10-11 | 2022-10-25 | Mpowerd Inc. | Solar-powered charging devices |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
US11916405B2 (en) * | 2019-01-02 | 2024-02-27 | Ge Hybrid Technologies, Llc | Wireless power transmission apparatus with multiple controllers |
US11031827B2 (en) | 2019-01-18 | 2021-06-08 | Ossia Inc. | Optimizing pairing of a wireless power transmission system with a wireless power receiver client |
WO2020160015A1 (en) | 2019-01-28 | 2020-08-06 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
-
2021
- 2021-04-12 US US17/228,621 patent/US11799324B2/en active Active
- 2021-04-13 WO PCT/US2021/027140 patent/WO2021211621A1/en unknown
- 2021-04-13 CN CN202180022816.2A patent/CN115336138A/en active Pending
- 2021-04-13 EP EP21787881.8A patent/EP4136738A4/en active Pending
-
2023
- 2023-09-13 US US18/466,624 patent/US20240079910A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160248160A1 (en) | 2005-01-21 | 2016-08-25 | Ruckus Wireless, Inc. | Pattern shaping of rf emission patterns |
KR100819604B1 (en) * | 2005-07-27 | 2008-04-03 | 엘에스전선 주식회사 | Wireless Charger Decreased in Variation of Charging Efficiency |
US20100201202A1 (en) | 2008-05-13 | 2010-08-12 | Qualcomm Incorporated | Wireless power transfer for furnishings and building elements |
US20160204643A1 (en) * | 2013-08-15 | 2016-07-14 | Humavox Ltd. | Wireless Charging Device |
US20150380972A1 (en) | 2014-06-27 | 2015-12-31 | Andrew David Fort | Devices and methods for charging medical devices |
US20170005481A1 (en) * | 2015-07-02 | 2017-01-05 | Qualcomm Incorporated | Controlling field distribution of a wireless power transmitter |
US20180331581A1 (en) * | 2015-12-24 | 2018-11-15 | Energous Corporation | Near-Field Antenna for Wireless Power Transmission with Four Coplanar Antenna Elements that Each Follows a Respective Meandering Pattern |
KR20180114721A (en) * | 2017-04-11 | 2018-10-19 | 엘지이노텍 주식회사 | A wireless power module |
Non-Patent Citations (1)
Title |
---|
See also references of EP4136738A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240079910A1 (en) | 2024-03-07 |
CN115336138A (en) | 2022-11-11 |
US11799324B2 (en) | 2023-10-24 |
EP4136738A4 (en) | 2024-04-10 |
EP4136738A1 (en) | 2023-02-22 |
US20210320529A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11799324B2 (en) | Wireless-power transmitting device for creating a uniform near-field charging area | |
US12100971B2 (en) | Systems and methods for determining a keep-out zone of a wireless power transmitter | |
US11539243B2 (en) | Systems and methods for miniaturized antenna for wireless power transmissions | |
US10714984B2 (en) | Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves | |
US11637456B2 (en) | Near-field antennas for accumulating radio frequency energy at different respective segments included in one or more channels of a conductive plate | |
US10879740B2 (en) | Electronic device with antenna elements that follow meandering patterns for receiving wireless power from a near-field antenna | |
US10211680B2 (en) | Method for 3 dimensional pocket-forming | |
US20220171045A1 (en) | Systems and methods for using one or more sensors to detect and classify objects in a keep-out zone of a wireless-power transmission field, and antennas with integrated sensor arrangements | |
US20220181916A1 (en) | Wireless-Power Transmitters With Antenna Elements Having Multiple Power-Transfer Points That Each Only Transfer Electromagnetic Energy Upon Coupling With A Wireless-Power Receiver, And Methods Of Use Thereof | |
US11863001B2 (en) | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns | |
US20220255360A1 (en) | Battery module configured to enable smart rings of various sizes to have radio-frequency wireless charging capabilities, and a wireless charger device to wirelessly deliver power to the smart rings | |
US20220158495A1 (en) | Asymmetric spiral antennas for wireless power transmission and reception | |
WO2019055783A1 (en) | Systems and methods for receiving both horizontal and vertical polarized wireless power transmissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21787881 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021787881 Country of ref document: EP Effective date: 20221114 |