US20150041459A1 - Wireless electrical temperature regulator for food and beverages - Google Patents

Wireless electrical temperature regulator for food and beverages Download PDF

Info

Publication number
US20150041459A1
US20150041459A1 US13/960,560 US201313960560A US2015041459A1 US 20150041459 A1 US20150041459 A1 US 20150041459A1 US 201313960560 A US201313960560 A US 201313960560A US 2015041459 A1 US2015041459 A1 US 2015041459A1
Authority
US
United States
Prior art keywords
wireless electrical
receptacle
temperature
receiver
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/960,560
Inventor
Michael A. Leabman
Gregory Scott Brewer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energous Corp
Original Assignee
DvineWave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DvineWave Inc filed Critical DvineWave Inc
Priority to US13/960,560 priority Critical patent/US20150041459A1/en
Assigned to DvineWave Inc. reassignment DvineWave Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEABMAN, MICHAEL A.
Priority to PCT/US2014/049673 priority patent/WO2015020991A1/en
Priority to US14/586,314 priority patent/US9450449B1/en
Priority to US14/586,016 priority patent/US9521926B1/en
Publication of US20150041459A1 publication Critical patent/US20150041459A1/en
Assigned to ENERGOUS CORPORATION reassignment ENERGOUS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DvineWave Inc.
Assigned to ENERGOUS CORPORATION reassignment ENERGOUS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BREWER, GREGORY S.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3476Packages provided with an electrical circuit, e.g. resistances, for heating the contents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls

Definitions

  • the present disclosure relates to an accessory for managing desired temperatures for consumable goods, such as beverages and food, and more particularly to an electric accessory using wireless power transmission to manage temperature in beverages and food.
  • Some foods or beverages when consumed are generally preferred hot. These foods and beverages may not be desirable once they have cooled off.
  • the use of devices for heating and maintaining food and beverages at a desired temperature is known in the art. These devices typically include insulating elements to limit the rate of heat loss from heated food or liquids. However, some of these devices are generally not able to keep food or beverages hot for an extended period of time. Other devices may be able to keep food or beverages hot by applying a heat source; however, these devices may require a constant electric power source or a controlled flame in order to keep consumables at a desired temperature. Such devices may be tedious and may represent a burden to consumers. For example, a consumer may need to find available power sources, such as a power outlet in a wall to connect the device to. In another example, a flame may use to heat food or beverages, but may be inconvenient, uncomfortable or hard to manage. Therefore, a need exists for a convenient and easy to implement device for maintaining food or beverages at desirable temperatures.
  • a cup system whereby liquids, such as beverages, may be controllably heated to, or maintained at, a desired temperature using wireless power transmission.
  • the system includes a cup coupled with a heating component that may induce heat into beverages.
  • the heating component may receive electrical energy from a transmitter through a wireless receiver.
  • a plate system whereby foods may be controllably heated to or maintained at a desired temperature using wireless power transmission.
  • the system includes a plate coupled with a heating component that may induce heat into food.
  • the heating component may receive electrical energy from a transmitter through a wireless receiver.
  • a method for wireless electrical temperature regulation comprising the steps of: emitting power RF waves from a transmitter generating pockets of energy through pocket-forming to converge in 3-d space; coupling receivers to a food or beverage receptacle; capturing the pockets of energy at the receivers; and powering or charging a heating or cooling regulating component connected to the receiver within the receptacle.
  • FIG. 1 illustrates wireless power transmission using pocket-forming, according to an embodiment.
  • FIG. 2 illustrates a component level embodiment for a transmitter, according to an embodiment.
  • FIG. 3 illustrates a component level embodiment for a receiver, according to an embodiment.
  • FIG. 4 illustrates an example component of a temperature control cup adapted to a wireless power source receiver, according to an embodiment.
  • FIG. 5 illustrates an example component of a temperature control plate adapted to a wireless power source receiver, according to an embodiment.
  • Pocket-forming may refer to generating two or more RF waves which converge in 3-d space, forming controlled constructive and destructive interference patterns.
  • “Pockets of energy” may refer to areas or regions of space Where energy or power may accumulate in the form of constructive interference patterns of RF waves.
  • Null-space may refer to areas or regions of space where pockets of energy do not form because of destructive interference patterns of RE waves.
  • Transmitter may refer to a device, including a chip which may generate two or more RE signals, at least one RF signal being phase shifted and gain adjusted with respect to other RF signals, substantially all of which pass through one or more RF antenna such that focused RE signals are directed to a target.
  • Receiveiver may refer to a device which may include at least one antenna, at least one rectifying circuit and at least one power converter for powering or charging an electronic device using RE waves.
  • Adaptive pocket-forming may refer to dynamically adjusting pocket-forming to regulate power on one or more targeted receivers.
  • FIG. 1 illustrates wireless power transmission 100 using pocket-forming.
  • a transmitter 102 may transmit controlled Radio Frequency (RF) waves 104 which may converge in 3-d space. These RE waves may be controlled through phase and/or relative amplitude adjustments to form constructive and destructive interference patterns (pocket-forming). Pockets of energy 106 may form at constructive interference patterns and can be 3-dimensional in shape whereas null-spaces may be generated at destructive interference patterns.
  • a receiver 108 may then utilize pockets of energy produced by pocket-forming for charging or powering an electronic device, for example a laptop computer 110 and thus effectively providing wireless power transmission 100 ,
  • adaptive pocket-forming may be used to regulate power on electronic devices.
  • FIG. 2 illustrates a component level embodiment for a transmitter 200 which may be utilized to provide wireless power transmission 100 as described in FIG. 1 .
  • Transmitter 200 may include a housing 202 where at least two or more antenna elements 204 , at least one RF integrated circuit (RFIC) 206 , at least one digital signal processor (DSP) or micro-controller 208 , and one optional communications component 210 may be included.
  • Housing 202 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber.
  • Antenna elements 204 may include suitable antenna types for operating in frequency bands such as 900 MHz, 2.5 GHz or 5.8 GHz as these frequency bands conform to Federal Communications Commission (FCC) regulations part 18 (Industrial, Scientific and Medical equipment).
  • FCC Federal Communications Commission
  • Antenna elements 204 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations.
  • Suitable antenna types may include, for example, patch antennas with heights from about 1 ⁇ 8 inches to about 6 inch and widths from about 1 ⁇ 8 inches to about 6 inch.
  • Other antenna elements 204 types can be used, for example meta-materials, dipole antennas among others.
  • RFIC 206 may include as proprietary chip for adjusting phases and/or relative magnitudes of RF signals which may serve as inputs for antenna elements 204 for controlling pocket-forming. These RF signals may be produced using an external power supply 212 and a local oscillator chip (not shown) using a suitable piezoelectric material.
  • Micro-controller 208 may then process information send by a receiver through its own antenna elements for determining optimum times and locations for pocket-forming. In some embodiments, the foregoing may he achieved through communications component 210 .
  • Communications component 210 may be based on standard wireless communication protocols which may include Bluetooth, Wi-Fi or ZigBee. In addition, communications component 210 may be used to transfer other information such as an identifier for the device or user, battery level, location or other such information. Other communications component 210 may be possible which may include radar, infrared cameras or sound devices for sonic triangulation for determining the device's position.
  • FIG. 3 illustrates a component level embodiment for a receiver 300 which can be used for powering or charging an electronic device as exemplified in wireless power transmission 100 .
  • Receiver 300 may include a housing 302 where at least one antenna element 304 , one rectifier 306 , one power converter 308 and an optional communications component 310 may be included.
  • Housing 302 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber.
  • Housing 302 may be an external hardware that may be added to different electronic equipment, for example in the form of cases, or can be embedded within electronic equipment as well.
  • Antenna element 304 may include suitable antenna types for operating in frequency bands similar to the bands described for transmitter 200 from FIG. 2 .
  • Antenna element 304 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Using multiple polarizations can be beneficial in devices where there may not be a preferred orientation during usage or whose orientation may vary continuously through time, for example a smartphone or portable gaming system. On the contrary, for devices with well-defined orientations, for example a two-handed video game controller, there might be a preferred polarization for antennas which may dictate a ratio for the number of antennas of a given polarization. Suitable antenna types may include patch antennas with heights from about 1 ⁇ 8 inches to about 6 inch and widths from about 1 ⁇ 8 inches to about 6 inch.
  • Patch antennas may have the advantage that polarization may depend on connectivity, i.e. depending on which side the patch is fed, the polarization may change. This may further prove advantageous as a receiver, such as receiver 300 , may dynamically modify its antenna polarization to optimize wireless power transmission.
  • Rectifier 306 may include diodes or resistors, inductors or capacitors to rectify the alternating current (AC) voltage generated by antenna element 304 to direct current (DC) voltage. Rectifier 306 may be placed as close as is technically possible to antenna element 304 to minimize losses. After rectifying AC voltage, DC voltage may be regulated using power converter 308 .
  • Power converter 308 can be a DC-DC converter which may help provide a constant voltage output, regardless of input, to an electronic device, or as in this embodiment to a battery 312 .
  • Typical voltage outputs can be from about 5 volts to about 10 volts.
  • communications component 310 similar to that of transmitter 200 from FIG. 2 , may be included in receiver 300 to communicate with a transmitter or to other electronic equipment.
  • FIG. 4 is an example embodiment of a receiver 300 coupled with a cup 400 .
  • Cup 400 may include a temperature regulating component 402 .
  • temperature regulating component 402 may include an electrical resistance which may dissipate electrical energy as heat which can then be induced into a hot beverage in order to maintain the beverage at a desired temperature.
  • temperature regulating component 402 may be a thermoelectric cooler which may operate by the Peltier effect. Other methods, such as gas expansion or magnetic cooling may be used as well.
  • a receiver 300 may be used to provide electrical energy to temperature regulating component 402 .
  • Cup 400 may include an external layer 404 which may serve as an thermal insulator.
  • Cup 400 may also contain additional control components such as an electrical switch for turning heat on and off or for regulating temperature.
  • Cup 400 may include at least one or more receiver 300 components.
  • Cup 400 may also include a sensor that may determine the temperature of a beverage. Sensor information may then be sent by communications component 310 from receiver 300 to a transmitter 200 . The information may then be analyzed by micro-controller 208 in order to adjust accordingly and transmit the appropriate amount of energy to the electrical resistor and subsequently transfer the energy as heat to temperature regulating component 402 .
  • FIG. 5 is another example embodiment of a receiver 300 coupled with a plate 500 .
  • Plate 500 may include a temperature regulating component 402 .
  • temperature regulating component 402 may include an electrical resistance which may dissipate electrical energy as heat which can then be induced into a food in order to maintain the food at a desired temperature.
  • temperature regulating component 402 may be a thermoelectric cooler which may operate by the Peltier effect. Other methods, such as gas expansion or magnetic cooling may be used as well.
  • a receiver 300 may be used to provide electrical energy to an electrical resistor (not shown in FIG. 5 ), which may in turn transfer it as heat to temperature regulating component 402 .
  • Plate 500 may include an external layer 404 which may serve as an thermal insulator. Plate 500 may also contain additional control components such as an electrical switch for turning heat on and off or for regulating temperature. Plate 500 may include at least one or more receiver 300 components.
  • Plate 500 may also include a sensors that may determine the temperature of food. Sensor information may then be sent by communications component 210 to a transmitter 200 . The information may then be analyzed by micro-controller 208 in order to adjust accordingly and transmit the appropriate amount of energy to the electrical resistor and subsequently transferred as heat to temperature regulating component 402 .
  • small rechargeable batteries such as those used in small watches may be included in electrical heaters as those described in FIG. 4 and FIG. 5 . Batteries may be charged from pockets of energy 106 and may serve to power temperature regulating component 402 when out of range from a transmitter 200 .
  • the coffee shop is a coffee shop in which hot beverages are served using cups 400 described in FIG. 4 .
  • the cups 400 may be made of cheap materials, such as cardboard, for discardable purposes or made of more sophisticated materials like plastic or metal for reusable purposes.
  • the coffee shop may have a wireless transmitter 200 .
  • Pockets of energy 106 may be formed by transmitter 200 and sent to receivers 300 in cups 400 that are within the scope of the wireless power transmission. Cups 400 may then apply heat to the beverages in order to keep them hot depending on the customers preferences.
  • Plates 500 may be made of cheap materials, such as cardboard, for discardable purposes or made of more sophisticated materials like plastic or metal for reusable purposes.
  • the restaurant may have a wireless transmitter 200 .
  • Pockets of energy 106 may be formed by transmitter 200 and sent to receivers 300 in plates 500 that are within the scope of the wireless power transmission. Plates 500 may then apply heat in order to keep the food hot depending on the customers preferences.
  • Cups 400 are made of cheap materials, such as cardboard, for discardable purposes or made of more sophisticated materials like plastic, glass or metal for reusable purposes.
  • the bar may have a wireless transmitter 200 .
  • Pockets of energy 106 may be formed by transmitter 200 and sent to receivers 300 in cups 400 that are within the scope of the wireless power transmission. Cups 400 may then cool drinks depending on the customers preferences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A cup or plate for heating food or beverages is disclosed. The cup/plate contains a heating component, which may keep consumable goods, such as food and beverages at a desired temperature. An insulated external layer may be placed between the heating component and the external portion of the cup/plate. A wireless power receiver may be coupled to the heater component to receive an electrical power source and transfer it to the heater component. A transmitter element may form pockets of energy at the location of the different receivers to be used as power sources.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present disclosure is related to U.S. Non-Provisional patent application Ser. Nos. 13/891,430 filed May 10, 2013, entitled “Methodology For Pocket-forming”; Ser. No. 13/925,469 filed Jun. 24, 2013, entitled “Methodology for Multiple Pocket-Forming”; Ser. No. 13/946,082 filed Jul. 19, 2013, entitled “Method for 3 Dimensional Pocket-forming”; Ser. No. 13/891,399 filed Jul. 22, 2013, entitled “Receivers for Wireless Power Transmission”; and Ser. No. 13/891,445 filed Jul. 22, 2013, entitled “Transmitters for Wireless Power Transmission” the entire contents of which are incorporated herein by these references.
  • FIELD OF INVENTION
  • The present disclosure relates to an accessory for managing desired temperatures for consumable goods, such as beverages and food, and more particularly to an electric accessory using wireless power transmission to manage temperature in beverages and food.
  • BACKGROUND OF THE INVENTION
  • Some foods or beverages when consumed are generally preferred hot. These foods and beverages may not be desirable once they have cooled off. The use of devices for heating and maintaining food and beverages at a desired temperature is known in the art. These devices typically include insulating elements to limit the rate of heat loss from heated food or liquids. However, some of these devices are generally not able to keep food or beverages hot for an extended period of time. Other devices may be able to keep food or beverages hot by applying a heat source; however, these devices may require a constant electric power source or a controlled flame in order to keep consumables at a desired temperature. Such devices may be tedious and may represent a burden to consumers. For example, a consumer may need to find available power sources, such as a power outlet in a wall to connect the device to. In another example, a flame may use to heat food or beverages, but may be inconvenient, uncomfortable or hard to manage. Therefore, a need exists for a convenient and easy to implement device for maintaining food or beverages at desirable temperatures.
  • SUMMARY OF THE INVENTION
  • Disclosed here is a cup system whereby liquids, such as beverages, may be controllably heated to, or maintained at, a desired temperature using wireless power transmission. The system includes a cup coupled with a heating component that may induce heat into beverages. The heating component may receive electrical energy from a transmitter through a wireless receiver.
  • In another embodiment a plate system is disclosed whereby foods may be controllably heated to or maintained at a desired temperature using wireless power transmission. The system includes a plate coupled with a heating component that may induce heat into food. The heating component may receive electrical energy from a transmitter through a wireless receiver.
  • A method for wireless electrical temperature regulation, comprising the steps of: emitting power RF waves from a transmitter generating pockets of energy through pocket-forming to converge in 3-d space; coupling receivers to a food or beverage receptacle; capturing the pockets of energy at the receivers; and powering or charging a heating or cooling regulating component connected to the receiver within the receptacle.
  • Numerous other aspects, features and benefits of the present disclosure may be made apparent from the following detailed description taken together with the drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present disclosure are described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale. Unless indicated as representing prior art, the figures represent aspects of the present disclosure.
  • FIG. 1 illustrates wireless power transmission using pocket-forming, according to an embodiment.
  • FIG. 2 illustrates a component level embodiment for a transmitter, according to an embodiment.
  • FIG. 3 illustrates a component level embodiment for a receiver, according to an embodiment.
  • FIG. 4 illustrates an example component of a temperature control cup adapted to a wireless power source receiver, according to an embodiment.
  • FIG. 5 illustrates an example component of a temperature control plate adapted to a wireless power source receiver, according to an embodiment.
  • DETAILED DESCRIPTION OF THE DRAWINGS Definitions
  • “Pocket-forming” may refer to generating two or more RF waves which converge in 3-d space, forming controlled constructive and destructive interference patterns.
  • “Pockets of energy” may refer to areas or regions of space Where energy or power may accumulate in the form of constructive interference patterns of RF waves.
  • “Null-space” may refer to areas or regions of space where pockets of energy do not form because of destructive interference patterns of RE waves.
  • “Transmitter” may refer to a device, including a chip which may generate two or more RE signals, at least one RF signal being phase shifted and gain adjusted with respect to other RF signals, substantially all of which pass through one or more RF antenna such that focused RE signals are directed to a target.
  • “Receiver” may refer to a device which may include at least one antenna, at least one rectifying circuit and at least one power converter for powering or charging an electronic device using RE waves.
  • “Adaptive pocket-forming” may refer to dynamically adjusting pocket-forming to regulate power on one or more targeted receivers.
  • DESCRIPTION OF THE DRAWINGS
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, which may not be to scale or to proportion, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings and claims, are not meant to be limiting. Other embodiments may be used and/or and other changes may be made without departing from the spirit or scope of the present disclosure.
  • FIG. 1 illustrates wireless power transmission 100 using pocket-forming. A transmitter 102 may transmit controlled Radio Frequency (RF) waves 104 which may converge in 3-d space. These RE waves may be controlled through phase and/or relative amplitude adjustments to form constructive and destructive interference patterns (pocket-forming). Pockets of energy 106 may form at constructive interference patterns and can be 3-dimensional in shape whereas null-spaces may be generated at destructive interference patterns. A receiver 108 may then utilize pockets of energy produced by pocket-forming for charging or powering an electronic device, for example a laptop computer 110 and thus effectively providing wireless power transmission 100, In some embodiments, there can be multiple transmitters 102 and/or multiple receivers 108 for powering various electronic devices, for example smartphones, tablets, music players, toys and others at the same time. In other embodiments, adaptive pocket-forming may be used to regulate power on electronic devices.
  • FIG. 2 illustrates a component level embodiment for a transmitter 200 which may be utilized to provide wireless power transmission 100 as described in FIG. 1. Transmitter 200 may include a housing 202 where at least two or more antenna elements 204, at least one RF integrated circuit (RFIC) 206, at least one digital signal processor (DSP) or micro-controller 208, and one optional communications component 210 may be included. Housing 202 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Antenna elements 204 may include suitable antenna types for operating in frequency bands such as 900 MHz, 2.5 GHz or 5.8 GHz as these frequency bands conform to Federal Communications Commission (FCC) regulations part 18 (Industrial, Scientific and Medical equipment). Antenna elements 204 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Suitable antenna types may include, for example, patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Other antenna elements 204 types can be used, for example meta-materials, dipole antennas among others. RFIC 206 may include as proprietary chip for adjusting phases and/or relative magnitudes of RF signals which may serve as inputs for antenna elements 204 for controlling pocket-forming. These RF signals may be produced using an external power supply 212 and a local oscillator chip (not shown) using a suitable piezoelectric material. Micro-controller 208 may then process information send by a receiver through its own antenna elements for determining optimum times and locations for pocket-forming. In some embodiments, the foregoing may he achieved through communications component 210. Communications component 210 may be based on standard wireless communication protocols which may include Bluetooth, Wi-Fi or ZigBee. In addition, communications component 210 may be used to transfer other information such as an identifier for the device or user, battery level, location or other such information. Other communications component 210 may be possible which may include radar, infrared cameras or sound devices for sonic triangulation for determining the device's position.
  • FIG. 3 illustrates a component level embodiment for a receiver 300 which can be used for powering or charging an electronic device as exemplified in wireless power transmission 100. Receiver 300 may include a housing 302 where at least one antenna element 304, one rectifier 306, one power converter 308 and an optional communications component 310 may be included. Housing 302 can be made of any suitable material which may allow for signal or wave transmission and/or reception, for example plastic or hard rubber. Housing 302 may be an external hardware that may be added to different electronic equipment, for example in the form of cases, or can be embedded within electronic equipment as well. Antenna element 304 may include suitable antenna types for operating in frequency bands similar to the bands described for transmitter 200 from FIG. 2. Antenna element 304 may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization, or other suitable polarizations as well as suitable polarization combinations. Using multiple polarizations can be beneficial in devices where there may not be a preferred orientation during usage or whose orientation may vary continuously through time, for example a smartphone or portable gaming system. On the contrary, for devices with well-defined orientations, for example a two-handed video game controller, there might be a preferred polarization for antennas which may dictate a ratio for the number of antennas of a given polarization. Suitable antenna types may include patch antennas with heights from about ⅛ inches to about 6 inch and widths from about ⅛ inches to about 6 inch. Patch antennas may have the advantage that polarization may depend on connectivity, i.e. depending on which side the patch is fed, the polarization may change. This may further prove advantageous as a receiver, such as receiver 300, may dynamically modify its antenna polarization to optimize wireless power transmission. Rectifier 306 may include diodes or resistors, inductors or capacitors to rectify the alternating current (AC) voltage generated by antenna element 304 to direct current (DC) voltage. Rectifier 306 may be placed as close as is technically possible to antenna element 304 to minimize losses. After rectifying AC voltage, DC voltage may be regulated using power converter 308. Power converter 308 can be a DC-DC converter which may help provide a constant voltage output, regardless of input, to an electronic device, or as in this embodiment to a battery 312. Typical voltage outputs can be from about 5 volts to about 10 volts. Lastly, communications component 310, similar to that of transmitter 200 from FIG. 2, may be included in receiver 300 to communicate with a transmitter or to other electronic equipment.
  • FIG. 4 is an example embodiment of a receiver 300 coupled with a cup 400. Cup 400 may include a temperature regulating component 402. For a cup 400 intended to keep a hot beverage warm, temperature regulating component 402 may include an electrical resistance which may dissipate electrical energy as heat which can then be induced into a hot beverage in order to maintain the beverage at a desired temperature. For a cup 400 intended to keep a beverage cold, temperature regulating component 402 may be a thermoelectric cooler which may operate by the Peltier effect. Other methods, such as gas expansion or magnetic cooling may be used as well. A receiver 300 may be used to provide electrical energy to temperature regulating component 402. Cup 400 may include an external layer 404 which may serve as an thermal insulator. Cup 400 may also contain additional control components such as an electrical switch for turning heat on and off or for regulating temperature. Cup 400 may include at least one or more receiver 300 components.
  • Cup 400 may also include a sensor that may determine the temperature of a beverage. Sensor information may then be sent by communications component 310 from receiver 300 to a transmitter 200. The information may then be analyzed by micro-controller 208 in order to adjust accordingly and transmit the appropriate amount of energy to the electrical resistor and subsequently transfer the energy as heat to temperature regulating component 402.
  • FIG. 5 is another example embodiment of a receiver 300 coupled with a plate 500. Plate 500 may include a temperature regulating component 402. For a plate 500 intended to keep food warm temperature regulating component 402 may include an electrical resistance which may dissipate electrical energy as heat which can then be induced into a food in order to maintain the food at a desired temperature. For a plate 500 intended to keep food cold, temperature regulating component 402 may be a thermoelectric cooler which may operate by the Peltier effect. Other methods, such as gas expansion or magnetic cooling may be used as well. A receiver 300 may be used to provide electrical energy to an electrical resistor (not shown in FIG. 5), which may in turn transfer it as heat to temperature regulating component 402. Plate 500 may include an external layer 404 which may serve as an thermal insulator. Plate 500 may also contain additional control components such as an electrical switch for turning heat on and off or for regulating temperature. Plate 500 may include at least one or more receiver 300 components.
  • Plate 500 may also include a sensors that may determine the temperature of food. Sensor information may then be sent by communications component 210 to a transmitter 200. The information may then be analyzed by micro-controller 208 in order to adjust accordingly and transmit the appropriate amount of energy to the electrical resistor and subsequently transferred as heat to temperature regulating component 402.
  • In another embodiment, small rechargeable batteries such as those used in small watches may be included in electrical heaters as those described in FIG. 4 and FIG. 5. Batteries may be charged from pockets of energy 106 and may serve to power temperature regulating component 402 when out of range from a transmitter 200.
  • EXAMPLES Example #1
  • is a coffee shop in which hot beverages are served using cups 400 described in FIG. 4. The cups 400 may be made of cheap materials, such as cardboard, for discardable purposes or made of more sophisticated materials like plastic or metal for reusable purposes. The coffee shop may have a wireless transmitter 200. Pockets of energy 106 may be formed by transmitter 200 and sent to receivers 300 in cups 400 that are within the scope of the wireless power transmission. Cups 400 may then apply heat to the beverages in order to keep them hot depending on the customers preferences.
  • Example #2
  • is a restaurant in which food is served using plates 500 described in FIG. 5. Plates 500 may be made of cheap materials, such as cardboard, for discardable purposes or made of more sophisticated materials like plastic or metal for reusable purposes. The restaurant may have a wireless transmitter 200. Pockets of energy 106 may be formed by transmitter 200 and sent to receivers 300 in plates 500 that are within the scope of the wireless power transmission. Plates 500 may then apply heat in order to keep the food hot depending on the customers preferences.
  • Example #3
  • is a Bar in which cold drinks are served using cups 400 described in FIG. 4. Cups 400 may be made of cheap materials, such as cardboard, for discardable purposes or made of more sophisticated materials like plastic, glass or metal for reusable purposes. The bar may have a wireless transmitter 200. Pockets of energy 106 may be formed by transmitter 200 and sent to receivers 300 in cups 400 that are within the scope of the wireless power transmission. Cups 400 may then cool drinks depending on the customers preferences.

Claims (21)

Having thus described the invention, I claim:
1. A method for wireless electrical temperature regulation, comprising the steps of:
Emitting power RF waves from a transmitter generating pockets of energy through pocket-forming to converge in 3-d space;
coupling receivers to a food or beverage receptacle;
capturing the pockets of energy at the receivers; and
powering or charging a heating or cooling regulating component connected to the receiver within the receptacle.
2. The method for wireless electrical temperature regulation of claim 1, wherein the heating regulating component is an electrical resistance to dissipate electrical energy as heat within the receptacle.
3. The method for wireless electrical temperature regulation of claim 1, wherein the receptacle is a cup for heating a beverage.
4. The method for wireless electrical temperature regulation of claim 1, wherein the container is a plate for heating the food.
5. The method for wireless electrical temperature regulation of claim 1, wherein the cooling regulating component is a thermoelectric cooler within the receptacle operated by the Peltier effect.
6. The method for wireless electrical temperature regulation of claim 1, wherein the receiver communicates to the transmitter through short RF signals sent through antenna elements within the receiver to regulate heating or cooling power.
7. The method for wireless electrical temperature regulation of claim 6, wherein the short RF signals are standard wireless communication protocols including Bluetooth, Wi-Fi, ZigBee or FM radio.
8. The method for wireless electrical temperature regulation of claim 1, further includes the step of utilizing adaptive pocket-forming to regulate the pockets of energy to power the receiver for heating or cooling the receptacle.
9. The method for wireless electrical temperature regulation of claim 1, further including the step of regulating the temperature of the receptacle with an electrical switch on a housing of the receptacle for turning heat or cooling on or off.
10. The method for wireless electrical temperature regulation of claim 3, wherein the cup includes an external layer to serve as a thermal insulator.
11. The method for wireless electrical temperature regulation of claim 1, wherein the temperature regulating component uses gas expansion or magnetic cooling.
12. A wireless electrical temperature regulator, comprising:
a transmitter for pocket-forming to send controlled radio frequency waves to converge into pockets of energy in 3-d space; and
a receiver for capturing the pockets of energy to charge or power the temperature regulator within a receptacle housing to heat or cool a food or a beverage.
13. The wireless electrical temperature regulator of claim 12, wherein the receiver is embedding in the housing with an electric switch to turn on and off the power.
14. The wireless electrical temperature regulator of claim 12, wherein the temperature regulator includes an electrical resistance to dissipate electrical energy as heat.
15. The wireless electrical temperature regulator of claim 12, wherein the temperature regulator includes a thermoelectric cooler.
16. The wireless electrical temperature regulator of claim 12, wherein the temperature regulator uses the Peltier effect to heat or cool the receptacle.
17. The wireless electrical temperature regulator of claim 15, wherein the temperature regulator utilizes gas expansion or magnetic cooling to regulate the temperature of the receptacle.
18. An apparatus for wireless electrical temperature regulation, comprising:
a pocket-forming transmitter for transmitting power RF waves to form pockets of energy to power the apparatus;
a receiver connected to a receptacle for capturing the pockets of energy; and
a temperature regulating component connected to the receiver for heating or cooling the receptacle, containing a food or beverage.
19. The apparatus for wireless electrical temperature regulation of claim 18, further including an electrical switch connected to the receiver for turning on or off the power to the temperature regulating component.
20. The apparatus for wireless electrical temperature regulation of claim 18, wherein the receptacle includes a sensor to determine and to set the temperature for the food or beverage.
21. The apparatus for wireless electrical temperature regulation of claim 18, wherein the temperature regulating component utilizes the Peltier effect, gas expansion or magnetic cooling to regulate the temperature of the receptacle.
US13/960,560 2012-07-06 2013-08-06 Wireless electrical temperature regulator for food and beverages Abandoned US20150041459A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/960,560 US20150041459A1 (en) 2013-08-06 2013-08-06 Wireless electrical temperature regulator for food and beverages
PCT/US2014/049673 WO2015020991A1 (en) 2013-08-06 2014-08-05 Wireless electrical temperature regulator for food and beverages
US14/586,314 US9450449B1 (en) 2012-07-06 2014-12-30 Antenna arrangement for pocket-forming
US14/586,016 US9521926B1 (en) 2013-06-24 2014-12-30 Wireless electrical temperature regulator for food and beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/960,560 US20150041459A1 (en) 2013-08-06 2013-08-06 Wireless electrical temperature regulator for food and beverages

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/586,016 Continuation-In-Part US9521926B1 (en) 2013-06-24 2014-12-30 Wireless electrical temperature regulator for food and beverages

Publications (1)

Publication Number Publication Date
US20150041459A1 true US20150041459A1 (en) 2015-02-12

Family

ID=52447732

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/960,560 Abandoned US20150041459A1 (en) 2012-07-06 2013-08-06 Wireless electrical temperature regulator for food and beverages

Country Status (2)

Country Link
US (1) US20150041459A1 (en)
WO (1) WO2015020991A1 (en)

Cited By (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042265A1 (en) * 2013-05-10 2015-02-12 DvineWave Inc. Wireless powering of electronic devices
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9882394B1 (en) 2014-07-21 2018-01-30 Energous Corporation Systems and methods for using servers to generate charging schedules for wireless power transmission systems
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9882395B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
WO2020248437A1 (en) * 2019-06-10 2020-12-17 吉成无线(深圳)有限公司 Wireless heating attachment
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11569691B2 (en) 2018-09-05 2023-01-31 Kabushiki Kaisha Toshiba Electronic apparatus and method
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
US12057715B2 (en) 2012-07-06 2024-08-06 Energous Corporation Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103562A1 (en) * 2010-11-02 2012-05-03 Clayton Alexander Heated or cooled dishwasher safe dishware and drinkware
US20120193999A1 (en) * 2007-06-14 2012-08-02 Omnilectric, Inc. Wireless power transmission system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724541A1 (en) * 2005-05-18 2006-11-22 Electrolux Home Products Corporation N.V. Food temperature setting using RFID technology
KR100755144B1 (en) * 2006-06-02 2007-09-04 엘지전자 주식회사 Refrigerator for wireless data communication with sensor for detecting condition of stored food
US8304935B2 (en) * 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US20110056215A1 (en) * 2009-09-10 2011-03-10 Qualcomm Incorporated Wireless power for heating or cooling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193999A1 (en) * 2007-06-14 2012-08-02 Omnilectric, Inc. Wireless power transmission system
US20120103562A1 (en) * 2010-11-02 2012-05-03 Clayton Alexander Heated or cooled dishwasher safe dishware and drinkware
US20130200064A1 (en) * 2010-11-02 2013-08-08 Piatto Technologies, Inc. Heated or cooled dishwasher safe dishware and drinkware

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12057715B2 (en) 2012-07-06 2024-08-06 Energous Corporation Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10298024B2 (en) 2012-07-06 2019-05-21 Energous Corporation Wireless power transmitters for selecting antenna sets for transmitting wireless power based on a receiver's location, and methods of use thereof
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US9941705B2 (en) 2013-05-10 2018-04-10 Energous Corporation Wireless sound charging of clothing and smart fabrics
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US20150042265A1 (en) * 2013-05-10 2015-02-12 DvineWave Inc. Wireless powering of electronic devices
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US11722177B2 (en) 2013-06-03 2023-08-08 Energous Corporation Wireless power receivers that are externally attachable to electronic devices
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10291294B2 (en) 2013-06-03 2019-05-14 Energous Corporation Wireless power transmitter that selectively activates antenna elements for performing wireless power transmission
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10396588B2 (en) 2013-07-01 2019-08-27 Energous Corporation Receiver for wireless power reception having a backup battery
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10305315B2 (en) 2013-07-11 2019-05-28 Energous Corporation Systems and methods for wireless charging using a cordless transceiver
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10523058B2 (en) 2013-07-11 2019-12-31 Energous Corporation Wireless charging transmitters that use sensor data to adjust transmission of power waves
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US10498144B2 (en) 2013-08-06 2019-12-03 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices in response to commands received at a wireless power transmitter
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10516301B2 (en) 2014-05-01 2019-12-24 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9882395B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10014728B1 (en) 2014-05-07 2018-07-03 Energous Corporation Wireless power receiver having a charger system for enhanced power delivery
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US11233425B2 (en) 2014-05-07 2022-01-25 Energous Corporation Wireless power receiver having an antenna assembly and charger for enhanced power delivery
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US10186911B2 (en) 2014-05-07 2019-01-22 Energous Corporation Boost converter and controller for increasing voltage received from wireless power transmission waves
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10396604B2 (en) 2014-05-07 2019-08-27 Energous Corporation Systems and methods for operating a plurality of antennas of a wireless power transmitter
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10298133B2 (en) 2014-05-07 2019-05-21 Energous Corporation Synchronous rectifier design for wireless power receiver
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10554052B2 (en) 2014-07-14 2020-02-04 Energous Corporation Systems and methods for determining when to transmit power waves to a wireless power receiver
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9882394B1 (en) 2014-07-21 2018-01-30 Energous Corporation Systems and methods for using servers to generate charging schedules for wireless power transmission systems
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10490346B2 (en) 2014-07-21 2019-11-26 Energous Corporation Antenna structures having planar inverted F-antenna that surrounds an artificial magnetic conductor cell
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9899844B1 (en) 2014-08-21 2018-02-20 Energous Corporation Systems and methods for configuring operational conditions for a plurality of wireless power transmitters at a system configuration interface
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10790674B2 (en) 2014-08-21 2020-09-29 Energous Corporation User-configured operational parameters for wireless power transmission control
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US11670970B2 (en) 2015-09-15 2023-06-06 Energous Corporation Detection of object location and displacement to cause wireless-power transmission adjustments within a transmission field
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US11056929B2 (en) 2015-09-16 2021-07-06 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10483768B2 (en) 2015-09-16 2019-11-19 Energous Corporation Systems and methods of object detection using one or more sensors in wireless power charging systems
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11777328B2 (en) 2015-09-16 2023-10-03 Energous Corporation Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10177594B2 (en) 2015-10-28 2019-01-08 Energous Corporation Radiating metamaterial antenna for wireless charging
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10594165B2 (en) 2015-11-02 2020-03-17 Energous Corporation Stamped three-dimensional antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10511196B2 (en) 2015-11-02 2019-12-17 Energous Corporation Slot antenna with orthogonally positioned slot segments for receiving electromagnetic waves having different polarizations
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US11114885B2 (en) 2015-12-24 2021-09-07 Energous Corporation Transmitter and receiver structures for near-field wireless power charging
US10218207B2 (en) 2015-12-24 2019-02-26 Energous Corporation Receiver chip for routing a wireless signal for wireless power charging or data reception
US10447093B2 (en) 2015-12-24 2019-10-15 Energous Corporation Near-field antenna for wireless power transmission with four coplanar antenna elements that each follows a respective meandering pattern
US11689045B2 (en) 2015-12-24 2023-06-27 Energous Corporation Near-held wireless power transmission techniques
US10516289B2 (en) 2015-12-24 2019-12-24 Energous Corportion Unit cell of a wireless power transmitter for wireless power charging
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US10186892B2 (en) 2015-12-24 2019-01-22 Energous Corporation Receiver device with antennas positioned in gaps
US10958095B2 (en) 2015-12-24 2021-03-23 Energous Corporation Near-field wireless power transmission techniques for a wireless-power receiver
US10879740B2 (en) 2015-12-24 2020-12-29 Energous Corporation Electronic device with antenna elements that follow meandering patterns for receiving wireless power from a near-field antenna
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10141771B1 (en) 2015-12-24 2018-11-27 Energous Corporation Near field transmitters with contact points for wireless power charging
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US11451096B2 (en) 2015-12-24 2022-09-20 Energous Corporation Near-field wireless-power-transmission system that includes first and second dipole antenna elements that are switchably coupled to a power amplifier and an impedance-adjusting component
US10277054B2 (en) 2015-12-24 2019-04-30 Energous Corporation Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate
US10491029B2 (en) 2015-12-24 2019-11-26 Energous Corporation Antenna with electromagnetic band gap ground plane and dipole antennas for wireless power transfer
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US10355534B2 (en) 2016-12-12 2019-07-16 Energous Corporation Integrated circuit for managing wireless power transmitting devices
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US12027899B2 (en) 2016-12-12 2024-07-02 Energous Corporation Circuit for managing wireless power transmitting devices
US10840743B2 (en) 2016-12-12 2020-11-17 Energous Corporation Circuit for managing wireless power transmitting devices
US10476312B2 (en) 2016-12-12 2019-11-12 Energous Corporation Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered to a receiver
US11594902B2 (en) 2016-12-12 2023-02-28 Energous Corporation Circuit for managing multi-band operations of a wireless power transmitting device
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US11063476B2 (en) 2017-01-24 2021-07-13 Energous Corporation Microstrip antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11637456B2 (en) 2017-05-12 2023-04-25 Energous Corporation Near-field antennas for accumulating radio frequency energy at different respective segments included in one or more channels of a conductive plate
US11245191B2 (en) 2017-05-12 2022-02-08 Energous Corporation Fabrication of near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using
US11218795B2 (en) 2017-06-23 2022-01-04 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10714984B2 (en) 2017-10-10 2020-07-14 Energous Corporation Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11710987B2 (en) 2018-02-02 2023-07-25 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US12107441B2 (en) 2018-02-02 2024-10-01 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11967760B2 (en) 2018-06-25 2024-04-23 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a location to provide usable energy to a receiving device
US11699847B2 (en) 2018-06-25 2023-07-11 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11569691B2 (en) 2018-09-05 2023-01-31 Kabushiki Kaisha Toshiba Electronic apparatus and method
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
WO2020248437A1 (en) * 2019-06-10 2020-12-17 吉成无线(深圳)有限公司 Wireless heating attachment
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11799328B2 (en) 2019-09-20 2023-10-24 Energous Corporation Systems and methods of protecting wireless power receivers using surge protection provided by a rectifier, a depletion mode switch, and a coupling mechanism having multiple coupling locations
US12074459B2 (en) 2019-09-20 2024-08-27 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11715980B2 (en) 2019-09-20 2023-08-01 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
US12100971B2 (en) 2019-12-31 2024-09-24 Energous Corporation Systems and methods for determining a keep-out zone of a wireless power transmitter
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Also Published As

Publication number Publication date
WO2015020991A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
US20150041459A1 (en) Wireless electrical temperature regulator for food and beverages
US9521926B1 (en) Wireless electrical temperature regulator for food and beverages
US10305315B2 (en) Systems and methods for wireless charging using a cordless transceiver
US9143000B2 (en) Portable wireless charging pad
KR101967341B1 (en) Car Wireless Power Transmitters and Receivers
US9973008B1 (en) Wireless power receiver with boost converters directly coupled to a storage element
US9941705B2 (en) Wireless sound charging of clothing and smart fabrics
US20150162751A1 (en) Wireless charging of clothing and smart fabrics
US20150042265A1 (en) Wireless powering of electronic devices
US10224758B2 (en) Wireless powering of electronic devices with selective delivery range
US20140357309A1 (en) Protocols for wireless power transmission
US9819230B2 (en) Enhanced receiver for wireless power transmission
JP5100355B2 (en) Temperature control device
US9438045B1 (en) Methods and systems for maximum power point transfer in receivers
KR102524092B1 (en) Wireless power transfer system communication protocol
JP6162719B2 (en) Electromagnetic induction cooking system
US20140008993A1 (en) Methodology for pocket-forming
US20150340910A1 (en) Enhanced Transmitter for Wireless Power Transmission
US10389183B2 (en) Multi-mode wireless power receiving device and method
US20150102764A1 (en) Wireless charging methods and systems for game controllers, based on pocket-forming
US20170245679A1 (en) Wireless Heat Devices
US20150326070A1 (en) Methods and Systems for Maximum Power Point Transfer in Receivers
US20150022010A1 (en) Wireless charging and powering of electronic sensors in a vehicle
US20100301678A1 (en) Electric device, wireless power transmission device, and power transmission method thereof
JP2015220992A (en) Heating container

Legal Events

Date Code Title Description
AS Assignment

Owner name: DVINEWAVE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEABMAN, MICHAEL A.;REEL/FRAME:030994/0005

Effective date: 20130806

AS Assignment

Owner name: ENERGOUS CORPORATION, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:DVINEWAVE INC.;REEL/FRAME:037208/0205

Effective date: 20140121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ENERGOUS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BREWER, GREGORY S.;REEL/FRAME:044047/0729

Effective date: 20170927