KR20110135540A - Method and apparatus for receiving wireless power - Google Patents

Method and apparatus for receiving wireless power Download PDF

Info

Publication number
KR20110135540A
KR20110135540A KR1020100055320A KR20100055320A KR20110135540A KR 20110135540 A KR20110135540 A KR 20110135540A KR 1020100055320 A KR1020100055320 A KR 1020100055320A KR 20100055320 A KR20100055320 A KR 20100055320A KR 20110135540 A KR20110135540 A KR 20110135540A
Authority
KR
South Korea
Prior art keywords
wireless power
receiver
transmitters
transmitter
receiving
Prior art date
Application number
KR1020100055320A
Other languages
Korean (ko)
Inventor
이인선
황찬수
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020100055320A priority Critical patent/KR20110135540A/en
Publication of KR20110135540A publication Critical patent/KR20110135540A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: A method and apparatus for receiving a wireless power is provided to increase transmitting and receiving efficiency in wireless power by receiving wireless power from a plurality of transmitters. CONSTITUTION: In a method and apparatus for receiving a wireless power, a plurality of transmitters transmitting wireless power are detected. The efficiency of receiving signal transmitted from the plural transmitter. A plurality of connection request messages are transmitted to the plural transmitters. The wireless power is received to perform a test and the transmission efficiency of the wireless power. More than two transmits transmitting wireless power are selected. The wireless power is received from the selected more than two transmitter.

Description

무선 전력 수신을 위한 수신기 및 그의 무선 전력 수신 방법{Method and Apparatus for receiving wireless power}Receiver and method for receiving wireless power thereof for receiving wireless power {Method and Apparatus for receiving wireless power}

기술분야는 무선 전력 수신을 위한 수신기 및 그의 무선 전력 수신 방법에 관한 것으로서, 복수 개의 송신기로부터 무선 전력을 동시에 수신할 수 있는 무선 전력 수신을 위한 수신기 및 그의 무선 전력 수신 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a receiver for wireless power reception and a method for receiving wireless power thereof, and more particularly, to a receiver for wireless power reception and a method for receiving wireless power thereof capable of simultaneously receiving wireless power from a plurality of transmitters.

휴대용 전자제품의 특성 상, 배터리 성능이 중요한 문제로 대두되고 있다. 일반적으로, 휴대용 전자제품은 전력선(Power Line)을 이용하여 전력(power)을 제공받는다. 반면, 무선 전력 전송 기술(Wireless Power Transmission)이 휴대용 전자제품에 적용되면, 휴대용 전자제품은 이동 중에도 전력선 없이 전력을 제공받을 수 있다. 그러나, 휴대용 전자제품 주변에 무선 전력을 송신하는 송신기가 복수 개 있는 경우, 복수 개의 송신기와 휴대용 전자제품 간의 동기화가 이루어지지 않아, 무선 전력의 전송 효율은 저하된다.Due to the nature of portable electronics, battery performance is an important issue. In general, portable electronic products are provided with power using a power line. On the other hand, when wireless power transmission technology is applied to portable electronic products, the portable electronic products can receive power without a power line on the go. However, when there are a plurality of transmitters transmitting wireless power around the portable electronic products, synchronization between the plurality of transmitters and the portable electronic products is not achieved, and the transmission efficiency of the wireless power is lowered.

일 측면에 있어서, 무선 전력을 전송하는 복수 개의 송신기들을 인지하는 단계; 상기 복수 개의 송신기들 중 상기 수신기에게 상기 무선 전력을 전송할 두 개 이상의 송신기를 선택하는 단계; 및 상기 선택된 두 개 이상의 송신기로부터 상기 무선 전력을 수신하는 단계를 포함하는 수신기의 무선 전력 수신 방법이 제공된다. In one aspect, recognizing a plurality of transmitters for transmitting wireless power; Selecting two or more transmitters of the plurality of transmitters to transmit the wireless power to the receiver; And receiving the wireless power from the selected two or more transmitters.

상기 인지하는 단계는, 시분할 또는 주파수 분할에 의한 인 밴드 시그널링(In-band signaling) 방식을 이용한다. The recognizing step uses an in-band signaling scheme by time division or frequency division.

상기 선택하는 단계는, 상기 복수 개의 송신기들로부터 전송되는 신호들 각각의 수신 효율을 측정하는 단계; 상기 측정된 수신 효율을 포함하는 접속(Association) 요청 메시지를 상기 복수 개의 송신기들에게 전송하는 단계; 상기 복수 개의 송신기들로부터 테스트를 위한 무선 전력을 수신하여 상기 무선 전력의 전송 효율을 측정하는 단계; 및 상기 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택하는 단계를 포함한다.The selecting may include measuring a reception efficiency of each of the signals transmitted from the plurality of transmitters; Transmitting an association request message including the measured reception efficiency to the plurality of transmitters; Receiving wireless power for a test from the plurality of transmitters to measure transmission efficiency of the wireless power; And selecting at least two transmitters to transmit the wireless power by using the measured transmission efficiency of the wireless power.

상기 접속 요청 메시지는 상기 복수 개의 송신기들과 상기 수신기와의 매칭을 위한 메시지이며, 상기 수신기가 상기 무선 전력을 수신하는 주기 정보 및 상기 수신기가 수신할 무선 전력의 용량 정보를 더 포함한다. The access request message is a message for matching the plurality of transmitters and the receiver, and further includes period information at which the receiver receives the wireless power and capacity information of wireless power to be received by the receiver.

상기 인지하는 단계는, 상기 수신기와 상기 복수 개의 송신기들 간의 거리를 기반으로 상기 복수 개의 송신기들을 인지한다.The recognizing step may recognize the plurality of transmitters based on a distance between the receiver and the plurality of transmitters.

상기 선택하는 단계는, 상기 거리가 측정된 복수 개의 송신기들에게 접속(Association) 요청 메시지를 전송하는 단계; 상기 복수 개의 송신기들로부터 테스트를 위한 무선 전력을 수신하여 상기 테스트를 위한 무선 전력의 전송 효율을 측정하는 단계; 및 상기 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택하는 단계를 포함한다.The selecting may include transmitting an association request message to a plurality of transmitters having the measured distance; Receiving wireless power for a test from the plurality of transmitters to measure a transmission efficiency of the wireless power for the test; And selecting at least two transmitters to transmit the wireless power by using the measured transmission efficiency of the wireless power.

상기 수신기는 GPS(Global Positioning System) 및 WiFi(Wireless Fidelity)의 네트워크 중 적어도 하나를 이용하여 상기 거리를 측정한다. The receiver measures the distance using at least one of a GPS (Global Positioning System) and a WiFi (Wireless Fidelity) network.

상기 인지하는 단계는, 상기 복수 개의 송신기들로부터 전송되는 신호들을 수신하는 단계; 및 상기 수신된 신호들의 개수로 상기 송신기들을 인지하는 단계를 포함한다.The recognizing may include receiving signals transmitted from the plurality of transmitters; And recognizing the transmitters by the number of received signals.

다른 측면에 있어서, 상기 무선 전력을 전송하는 복수 개의 송신기들을 인지하고, 상기 인지된 복수 개의 송신기들 중 상기 수신기에게 상기 무선 전력을 전송할 두 개 이상의 송신기를 선택하는 제어부; 및 상기 선택된 두 개 이상의 송신기로부터 상기 무선 전력을 수신하는 수신부를 포함하는 무선 전력 수신을 위한 수신기가 제공된다.In another aspect, the controller for recognizing a plurality of transmitters for transmitting the wireless power, and selecting at least two transmitters to transmit the wireless power to the receiver of the recognized plurality of transmitters; And a receiver configured to receive the wireless power from the selected two or more transmitters.

상기 제어부는, 시분할 또는 주파수 분할에 의한 인 밴드 시그널링(In-band signaling) 방식을 이용하여 상기 복수 개의 송신기들을 인지한다.The controller recognizes the plurality of transmitters by using in-band signaling by time division or frequency division.

상기 복수 개의 송신기들로부터 전송되는 신호들의 수신 효율을 각각 측정하는 제1측정부; 상기 측정된 수신 효율을 포함하는 접속(Association) 요청 메시지를 상기 복수 개의 송신기들에게 전송하는 통신부; 및 상기 복수 개의 송신기들로부터 전송되는 테스트를 위한 무선 전력의 전송 효율을 측정하는 제2측정부를 더 포함하며, 상기 제어부는, 상기 제2측정부에서 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택한다. A first measuring unit measuring a reception efficiency of signals transmitted from the plurality of transmitters, respectively; A communication unit which transmits an association request message including the measured reception efficiency to the plurality of transmitters; And a second measuring unit measuring a transmission efficiency of wireless power for a test transmitted from the plurality of transmitters, wherein the controller is configured to perform the wireless operation using the transmission efficiency of wireless power measured by the second measuring unit. Select two or more transmitters to transmit power.

상기 접속 요청 메시지는 상기 복수 개의 송신기들과 상기 수신기와의 매칭을 위한 메시지이며, 상기 제어부는, 상기 수신기가 상기 무선 전력을 수신하는 주기 정보 및 상기 수신기가 수신할 무선 전력의 용량 정보를 더 포함하는 상기 접속 요청 메시지를 생성한다. The access request message is a message for matching the plurality of transmitters and the receiver, and the controller further includes period information of the receiver receiving the wireless power and capacity information of the wireless power to be received by the receiver. To generate the connection request message.

상기 제어부는, 상기 수신기와 상기 복수 개의 송신기들 간의 거리를 기반으로 상기 복수 개의 송신기들을 인지한다.The controller recognizes the plurality of transmitters based on a distance between the receiver and the plurality of transmitters.

상기 거리를 측정하는 제1측정부; 접속(Association) 요청 메시지를 상기 거리가 측정된 복수 개의 송신기들에게 전송하는 통신부; 및 상기 복수 개의 송신기들로부터 전송되는 테스트를 위한 무선 전력의 전송 효율을 측정하는 제2측정부를 더 포함하며, 상기 제어부는, 상기 제2측정부에서 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택한다.A first measuring unit measuring the distance; A communication unit which transmits an association request message to a plurality of transmitters of which the distance is measured; And a second measuring unit measuring a transmission efficiency of wireless power for a test transmitted from the plurality of transmitters, wherein the controller is configured to perform the wireless operation using the transmission efficiency of wireless power measured by the second measuring unit. Select two or more transmitters to transmit power.

상기 거리는, GPS(Global Positioning System) 및 WiFi(Wireless Fidelity)의 네트워크 중 적어도 하나를 이용하여 측정된다.The distance is measured using at least one of a GPS (Global Positioning System) and a network of WiFi (Wireless Fidelity).

무선 전력 수신을 위한 수신기 및 그의 무선 전력 수신 방법이 제공된다. 무선 전력 수신을 위한 수신기는 무선 파워를 복수 개의 송신기로부터 동시에 수신할 수 있다. 따라서, 무선 전력의 송수신 효율은 높아진다. A receiver for wireless power reception and a method of wireless power reception thereof are provided. A receiver for wireless power reception may simultaneously receive wireless power from a plurality of transmitters. Therefore, the transmission and reception efficiency of the wireless power is increased.

또한, 무선 전력 수신을 위한 수신기는 무선 전력에 필요한 송신기의 개수 및 전송량을 직접 결정할 수 있으므로, 보다 효율적으로 무선 전력을 수신 및 충전할 수 있다.In addition, since the receiver for wireless power reception can directly determine the number and transmission amount of transmitters required for wireless power, it is possible to receive and charge wireless power more efficiently.

도 1은 예시적인 실시 예에 따른 무선 전력 전송 시스템을 나타낸다.
도 2는 무선 전력 송수신을 위한 시스템의 일 예를 도시한 도면이다.
도 3은 도 2에 도시된 제1WP 수신기의 일 예를 도시한 블록도이다.
도 4는 무선 전력 송수신을 위한 시스템의 다른 예를 도시한 도면이다.
도 5는 도 4에 도시된 제2WP 수신기의 일 예를 도시한 블록도이다.
도 6은 제1WP 수신기의 무선 전력 수신 방법의 일 예를 설명하기 위한 흐름도이다.
도 7은 제2WP 수신기의 무선 전력 수신 방법의 다른 예를 설명하기 위한 흐름도이다.
도 8은 본 발명의 일 실시예에 따른 meta-structured 공진기를 나타낸 도면이다.
도 9는 도 8에 도시된 공진기의 등가 회로를 나타낸 도면이다.
도 10은 본 발명의 다른 일 실시예에 따른 meta-structured 공진기를 나타낸 도면이다.
도 11은 도 10의 커패시터의 삽입 위치를 상세하게 나타내는 도면이다.
1 illustrates a wireless power transfer system according to an exemplary embodiment.
2 is a diagram illustrating an example of a system for wireless power transmission and reception.
3 is a block diagram illustrating an example of the first WP receiver illustrated in FIG. 2.
4 is a diagram illustrating another example of a system for wireless power transmission and reception.
FIG. 5 is a block diagram illustrating an example of the second WP receiver illustrated in FIG. 4.
6 is a flowchart illustrating an example of a method of receiving wireless power of a first WP receiver.
7 is a flowchart illustrating another example of a method of receiving wireless power of a second WP receiver.
8 is a diagram illustrating a meta-structured resonator according to an embodiment of the present invention.
FIG. 9 is a diagram illustrating an equivalent circuit of the resonator illustrated in FIG. 8.
10 illustrates a meta-structured resonator according to another embodiment of the present invention.
11 is a view showing in detail the insertion position of the capacitor of FIG.

이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 무선 전력전송 시스템에 이용되는 무선 전력전송 기술을 설명한다. 무선전력전송 기술은 크게 전자기 유도 방식, 전파 수신 방식, 전장 혹은 자장의 공진방식 등 3가지 방식으로 구분할 수 있다. First, the wireless power transmission technology used in the wireless power transmission system will be described. Wireless power transmission technology can be classified into three types of electromagnetic induction method, radio wave reception method, electric field or magnetic field resonance method.

첫째, 전자기 유도 방식은 서로 다른 두 개의 코일을 가까이 접근 시킨 후 한쪽 코일에 교류 전류를 흐르게 하면 자속이 발생하게 되고 이를 통해 다른 코일 한쪽에도 기전력이 발생하는 현상을 이용한다. 전자기 유도방식은 전력 이용 효율이 대략 60~98%에 이르는 등 고효율 및 실용화가 가장 많이 진행되어 있다.First, the electromagnetic induction method uses a phenomenon in which magnetic flux is generated when an alternating current flows in one coil after approaching two different coils close to each other, and thus electromotive force is generated in the other coil. The electromagnetic induction method has the most high efficiency and practical use, such as the power utilization efficiency is approximately 60-98%.

둘째, 전파 수신 방식은 전파 에너지를 안테나로 수신하여 이용하는 것으로 교류 전파 파형을 정류회로를 통해 직류로 변환하여 전력을 얻는다. 전파수신방식은 가장 긴 거리간(수 m 이상) 무선전력전송이 가능하다.Second, in the radio wave reception method, radio wave energy is received and used by an antenna to convert an AC radio wave waveform into a direct current through a rectifier circuit to obtain power. Radio reception method is capable of transmitting wireless power over the longest distance (above several meters).

셋째, 공진방식은 전장 혹은 자장의 공진을 이용한 것으로 기기간에 동일 주파수로 공진하여 에너지를 전달한다. 자장의 공진을 이용하는 경우 LC공진기 구조를 활용한 자계공진(magnetic resonance coupling)을 이용하여 전력을 발생시킨다. 자계공진방식은 사용 주파수의 파장에 비해 짧은 거리의 근접장(near field)효과를 이용하는 기술로써, 전파 수신 방식과는 달리 비방사형(non-radiative) 에너지 전송이며, 송수신부간의 공진주파수를 일치시켜 전력을 전송한다. 자계공진방식을 통해 전력 전송효율은 약 50~60% 정도로 높아지며, 이 정도의 효율은 전파 방사를 통한 전파 수신형 보다 상당히 높은 것이다. 송수신기간 거리는 약 수 m로써, 비록 전파 수신 방식보다는 근거리에서 사용되는 기술이나, 수 mm 이내의 전자 유도형 방식보다는 매우 먼 거리에서도 전력 전송이 가능하게 된다.Third, the resonance method uses resonance of an electric field or a magnetic field, and transmits energy by resonating at the same frequency between devices. In case of using the resonance of the magnetic field, electric power is generated by using magnetic resonance coupling using the LC resonator structure. The magnetic resonance method is a technology that uses a near field effect of a short distance compared to the wavelength of the used frequency. Unlike the radio wave reception method, it is a non-radiative energy transmission, and matches the resonance frequency between the transmitter and the receiver. Send it. The magnetic resonance method increases the power transmission efficiency by about 50 ~ 60%, which is much higher than the radio wave reception type through radio wave radiation. Although the transmission / reception period distance is about several meters, although the technique used in the near field rather than the radio wave reception method, the power transmission is possible at a far distance than the electromagnetic induction type within a few mm.

도 1은 예시적인 실시 예에 따른 무선 전력 전송 시스템을 나타낸다. 1 illustrates a wireless power transfer system according to an exemplary embodiment.

도 1의 예에서, 무선 전력 전송 시스템을 통해 전송되는 무선 전력은 공진 전력(resonance power)이라 가정한다. In the example of FIG. 1, it is assumed that the wireless power transmitted through the wireless power transmission system is resonance power.

도 1을 참조하면, 무선 전력 전송 시스템은 소스와 타겟으로 구성되는 소스-타겟 구조이다. 즉, 무선 전력 전송 시스템은 소스에 해당하는 공진 전력 전송 장치(110)와 타겟에 해당하는 공진 전력 수신 장치(120)를 포함한다. Referring to FIG. 1, a wireless power transmission system is a source-target structure consisting of a source and a target. That is, the wireless power transmission system includes a resonance power transmitter 110 corresponding to a source and a resonance power receiver 120 corresponding to a target.

공진 전력 전송 장치(110)는 외부의 전압 공급기로부터 에너지를 수신하여 공진 전력을 발생시키는 소스부(111) 및 소스 공진기(115)를 포함한다. 또한, 공진 전력 전송 장치(110)는 공진주파수 또는 임피던스 매칭을 수행하는 매칭 제어부(Matching control)(113)를 더 포함하여 구성될 수 있다. The resonance power transmitter 110 includes a source unit 111 and a source resonator 115 that generate energy by receiving energy from an external voltage supply device. In addition, the resonance power transmission apparatus 110 may further include a matching control 113 that performs resonance frequency or impedance matching.

소스부(111)는 외부의 전압 공급기로부터 에너지를 수신하여 공진 전력을 발생시킨다. 소스부(111)는 외부 장치로부터 입력되는 교류 신호의 신호 레벨을 원하는 레벨로 조정하기 위한 AC-AC Converter, AC-AC Converter로부터 출력되는 교류 신호를 정류함으로써 일정 레벨의 DC 전압을 출력하는 AC-DC Converter, AC-DC Converter에서 출력되는 DC 전압을 고속 스위칭함으로써 수 MHz ~ 수십MHz 대역의 AC 신호를 생성하는 DC-AC Inverter를 포함할 수 있다.The source unit 111 receives energy from an external voltage supply to generate resonance power. The source unit 111 rectifies an AC signal output from an AC-AC converter or an AC-AC converter for adjusting a signal level of an AC signal input from an external device to a desired level, thereby outputting a DC voltage having a predetermined level. It can include a DC-AC Inverter that generates an AC signal of several MHz to several tens of MHz band by fast switching the DC voltage output from the DC converter and the AC-DC converter.

매칭 제어부(Matching control)(113)는 소스 공진기(115)의 공진 대역폭(Resonance Bandwidth) 또는 소스 공진기(115)의 임피던스 매칭 주파수를 설정한다. 매칭 제어부(Matching control)(113)는 소스 공진 대역폭 설정부(도시 되지 않음) 또는 소스 매칭 주파수 설정부(도시 되지 않음) 중 적어도 하나를 포함한다. 소스 공진 대역폭 설정부는 소스 공진기(115)의 공진 대역폭(Resonance Bandwidth)을 설정한다. 소스 매칭 주파수 설정부는 소스 공진기(115)의 임피던스 매칭 주파수를 설정한다. 이때, 소스 공진기의 공진 대역폭(Resonance Bandwidth) 또는 소스 공진기의 임피던스 매칭 주파수 설정에 따라서 소스 공진기(115)의 Q-factor가 결정될 수 있다.The matching control 113 sets the resonance bandwidth of the source resonator 115 or the impedance matching frequency of the source resonator 115. The matching control unit 113 includes at least one of a source resonance bandwidth setting unit (not shown) or a source matching frequency setting unit (not shown). The source resonant bandwidth setting unit sets a resonance bandwidth of the source resonator 115. The source matching frequency setting unit sets the impedance matching frequency of the source resonator 115. In this case, the Q-factor of the source resonator 115 may be determined according to the resonance bandwidth of the source resonator or the impedance matching frequency of the source resonator.

소스 공진기(115)는 전자기(electromagnetic) 에너지를 타겟 공진기로 전달(transferring)한다. 즉, 소스 공진기(115)는 타겟 공진기(121)와의 마그네틱 커플링(101)을 통해 공진 전력을 타겟 장치(120)로 전달한다. 이때, 소스 공진기(115)는 설정된 공진 대역폭 내에서 공진한다.The source resonator 115 transfers electromagnetic energy to the target resonator. That is, the source resonator 115 transmits the resonance power to the target device 120 through the magnetic coupling 101 with the target resonator 121. At this time, the source resonator 115 resonates within the set resonance bandwidth.

공진 전력 수신 장치(120)는 타겟 공진기(121), 공진주파수 또는 임피던스 매칭을 수행하는 Matching control부(123) 및 수신된 공진 전력을 부하로 전달하기 위한 타겟부(125)를 포함한다. The resonance power receiver 120 includes a target resonator 121, a matching control unit 123 for performing resonance frequency or impedance matching, and a target unit 125 for transferring the received resonance power to a load.

타겟 공진기(121)는 소스 공진기(115)로부터 전자기(electromagnetic) 에너지를 수신한다. 이때, 타겟 공진기(121)는 설정된 공진 대역폭 내에서 공진한다.The target resonator 121 receives electromagnetic energy from the source resonator 115. At this time, the target resonator 121 resonates within the set resonance bandwidth.

Matching control부(123)는 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth) 또는 타겟 공진기(121)의 임피던스 매칭 주파수 중 적어도 하나를 설정한다. Matching control부(123)는 타겟 공진 대역폭 설정부(도시 되지 않음) 또는 타겟 매칭 주파수 설정부(도시 되지 않음) 중 적어도 하나를 포함한다. 타겟 공진 대역폭 설정부는 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth)을 설정한다. 타겟 매칭 주파수 설정부는 타겟 공진기(121)의 임피던스 매칭 주파수를 설정한다. 이때, 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth) 또는 타겟 공진기(121)의 임피던스 매칭 주파수 설정에 따라서 타겟 공진기(121)의 Q-factor가 결정될 수 있다.The matching control unit 123 sets at least one of a resonance bandwidth of the target resonator 121 or an impedance matching frequency of the target resonator 121. The matching control unit 123 includes at least one of a target resonance bandwidth setting unit (not shown) or a target matching frequency setting unit (not shown). The target resonance bandwidth setting unit sets a resonance bandwidth of the target resonator 121. The target matching frequency setting unit sets the impedance matching frequency of the target resonator 121. In this case, the Q-factor of the target resonator 121 may be determined according to the resonance bandwidth of the target resonator 121 or the impedance matching frequency of the target resonator 121.

타겟부(125)는 수신된 공진 전력을 부하로 전달한다. 이때, 타겟부(125)는 소스 공진기(115)로부터 타겟 공진기(121)로 수신되는 AC 신호를 정류하여 DC 신호를 생성하는 AC-DC Converter와, DC 신호의 신호 레벨을 조정함으로써 정격 전압을 디바이스(device) 또는 부하(load)로 공급하는 DC-DC Converter를 포함할 수 있다. The target unit 125 transfers the received resonance power to the load. At this time, the target unit 125 rectifies an AC signal received from the source resonator 115 to the target resonator 121 to generate a DC signal, and an AC-DC converter to adjust the signal level of the DC signal to adjust the device voltage. It may include a DC-DC converter that supplies a device or a load.

소스 공진기(115) 및 타겟 공진기(121)는 헬릭스(helix) 코일 구조의 공진기 또는 스파이럴(spiral) 코일 구조의 공진기, 또는 meta-structured 공진기로 구성될 수 있다.The source resonator 115 and the target resonator 121 may be configured as a helix coil structure resonator, a spiral coil structure resonator, or a meta-structured resonator.

도 1을 참조하면, 큐-펙터의 제어 과정은, 소스 공진기(115)의 공진 대역폭(Resonance Bandwidth) 및 타겟 공진기(121)의 공진 대역폭을 설정하고, 소스 공진기(115)와 타겟 공진기(121) 사이의 마그네틱 커플링을 통해 전자기(electromagnetic) 에너지를 상기 소스 공진기(115)로부터 상기 타겟 공진기(121)로 전달(transferring)하는 것을 포함한다. 이때, 소스 공진기(115)의 공진 대역폭은 타겟 공진기(121)의 공진 대역폭 보다 넓거나 좁게 설정될 수 있다. 즉, 소스 공진기(115)의 공진 대역폭이 타겟 공진기(121)의 공진 대역폭 보다 넓거나 좁게 설정됨으로써, 소스 공진기의 BW-factor와 상기 타겟 공진기의 BW-factor는 서로 불평형(unbalance) 관계가 유지된다. Referring to FIG. 1, the control process of the cue-factor sets the resonance bandwidth of the source resonator 115 and the resonance bandwidth of the target resonator 121, and the source resonator 115 and the target resonator 121. And transferring electromagnetic energy from the source resonator 115 to the target resonator 121 through magnetic coupling therebetween. In this case, the resonance bandwidth of the source resonator 115 may be set to be wider or narrower than the resonance bandwidth of the target resonator 121. That is, since the resonance bandwidth of the source resonator 115 is set wider or narrower than the resonance bandwidth of the target resonator 121, the BW-factor of the source resonator and the BW-factor of the target resonator are maintained in an unbalanced relationship with each other. .

공진 방식의 무선 전력 전송에서, 공진 대역폭은 중요한 factor이다. 소스 공진기(115)와 타겟 공진기(121) 사이의 거리 변화, 공진 임피던스의 변화, 임피던스 미스 매칭, 반사 신호 등을 모두 고려한 Q-factor를 Qt라 할 때, Qt는 수학식 1과 같이 공진 대역폭과 반비례 관계를 갖는다. In resonant wireless power transmission, the resonance bandwidth is an important factor. When Qt is a Q-factor that considers the distance change between the source resonator 115 and the target resonator 121, the change in the resonance impedance, the impedance mismatch, the reflected signal, and the like, Qt is equal to the resonance bandwidth as shown in Equation 1 below. Have an inverse relationship.

Figure pat00001
Figure pat00001

수학식 1에서, f0는 중심주파수,

Figure pat00002
는 대역폭,
Figure pat00003
는 공진기 사이의 반사 손실, BWS는 소스 공진기(115)의 공진 대역폭, BWD는 타겟 공진기(121)의 공진 대역폭을 나타낸다. 본 명세서에서 BW-factor는 1/ BWS 또는 1/BWD를 의미한다.In Equation 1, f0 is the center frequency,
Figure pat00002
Is the bandwidth,
Figure pat00003
Is the reflection loss between the resonators, BW S is the resonance bandwidth of the source resonator 115, BW D is the resonance bandwidth of the target resonator 121. In the present specification, the BW-factor means 1 / BW S or 1 / BW D.

한편, 소스 공진기(115)와 타겟 공진기(121) 간의 거리가 달라지거나, 둘 중 하나의 위치가 변하는 등의 외부 영향에 의하여, 소스 공진기(115)와 타겟 공진기(121) 간의 임피던스 미스 매칭이 발생할 수 있다. 임피던스 미스 매칭은 전력 전달의 효율을 감소시키는 직접적인 원인이 될 수 있다. 매칭 제어부(Matching control)(113)는 전송신호의 일부가 반사되어 돌아오는 반사파를 감지함으로써, 임피던스 미스 매칭이 발생한 것으로 판단하고, 임피던스 매칭을 수행할 수 있다. 또한, 매칭 제어부(Matching control)(113)는 반사파의 파형 분석을 통해 공진 포인트를 검출함으로써, 공진 주파수를 변경할 수 있다. 여기서, 매칭 제어부(Matching control)(113)는 반사파의 파형에서 진폭(amplitude)이 최소인 주파수를 공진 주파수로 결정할 수 있다.On the other hand, impedance mismatching between the source resonator 115 and the target resonator 121 may occur due to external influences such as a change in distance between the source resonator 115 and the target resonator 121 or a change in one of the two positions. Can be. Impedance mismatch can be a direct cause of reducing the efficiency of power delivery. The matching control 113 may determine that impedance mismatch has occurred by sensing a reflected wave in which a part of the transmission signal is reflected and return, and perform impedance matching. In addition, the matching control 113 may change the resonance frequency by detecting the resonance point through the waveform analysis of the reflected wave. Here, the matching control 113 may determine a frequency having a minimum amplitude as the resonance frequency in the waveform of the reflected wave.

도 2는 무선 전력 송수신을 위한 시스템의 일 예를 도시한 도면이다.2 is a diagram illustrating an example of a system for wireless power transmission and reception.

도 2를 참조하면, 무선 전력 송수신을 위한 시스템은 제1WP 수신기(200), 제1무선 전력(WP: Wireless Power) 송신기(300) 및 제2WP 송신기(400)를 포함한다.2, a system for wireless power transmission and reception includes a first WP receiver 200, a first wireless power (WP) transmitter 300, and a second WP transmitter 400.

제1WP 수신기(200), 제1WP 송신기(300) 및 제2WP 송신기(400)는 도 1을 참조하여 설명한 무선 전력 전송 시스템에서 사용될 수 있다. 제1WP 수신기(200)는 무선 전력 충전이 가능한 모든 장치일 수 있다.The first WP receiver 200, the first WP transmitter 300, and the second WP transmitter 400 may be used in the wireless power transmission system described with reference to FIG. 1. The first WP receiver 200 may be any device capable of wireless power charging.

제1WP 송신기(300)는 도 1의 무선 전력 송신 기술을 이용하여 제1공진 주파수를 통해 제1무선 전력을 발생시킨다. 제1커버리지(C1)는 제1WP 수신기(200)가 제1무선 전력을 수신할 수 있는 영역이다.The first WP transmitter 300 generates the first wireless power through the first resonant frequency using the wireless power transmission technique of FIG. 1. The first coverage C1 is an area in which the first WP receiver 200 can receive the first wireless power.

제2WP 송신기(400)는 도 1의 무선 전력 송신 기술을 이용하여 제2공진 주파수를 통해 제2무선 전력을 발생시킨다. 제2커버리지(C2)는 제1WP 수신기(200)가 제2무선 전력을 수신할 수 있는 영역이다.The second WP transmitter 400 generates the second wireless power through the second resonant frequency using the wireless power transmission technique of FIG. 1. The second coverage C2 is an area in which the first WP receiver 200 can receive the second wireless power.

제1WP 송신기(300) 및 제2WP 송신기(400)는 시분할 또는 주파수 분할에 의한 인 밴드 시그널링(In-band signaling) 방식을 이용하여 통신한다. 즉, 제1WP 송신기(300) 및 제2WP 송신기(400)는 무선 전력의 송수신에 필요한 정보를 기설정된 신호에 실어 제1WP 수신기(200)에게 전송한다.The first WP transmitter 300 and the second WP transmitter 400 communicate using an in-band signaling scheme by time division or frequency division. That is, the first WP transmitter 300 and the second WP transmitter 400 transmit information necessary for the transmission and reception of wireless power to a first signal to the first WP receiver 200.

한편, 도 2에 도시된 바와 같이, 제1WP 수신기(200)는 제1커버리지(C1)와 제2커버리지(C2)의 중첩 영역에 위치할 수 있다. 이러한 경우, 제1WP 수신기(200)는 제1WP 송신기(300) 및 제2WP 송신기(400)로부터 제1무선 전력과 제2무선 전력을 수신할 수 있다. 이로써, 제1WP 수신기(200)는 무선 전력의 수신 효율을 높일 수 있다. 이러한 무선 전력의 동시 송수신이 가능하기 위해서, 제1WP 송신기(300) 및 제2WP 송신기(400)는 동일한 주파수로 무선 전력을 전송할 수 있다. 또한, 제1WP 수신기(200)는 동시에 3개 이상의 WP 송신기로부터 무선 전력을 제공받아 충전할 수 있다. 이하에서는 제1WP 송신기(300) 및 제2WP 송신기(400)를 예로 들어 설명한다.Meanwhile, as shown in FIG. 2, the first WP receiver 200 may be located in an overlapping region of the first coverage C1 and the second coverage C2. In this case, the first WP receiver 200 may receive the first wireless power and the second wireless power from the first WP transmitter 300 and the second WP transmitter 400. As a result, the first WP receiver 200 may increase the reception efficiency of wireless power. In order to simultaneously transmit and receive the wireless power, the first WP transmitter 300 and the second WP transmitter 400 may transmit the wireless power at the same frequency. In addition, the first WP receiver 200 may be charged with wireless power from three or more WP transmitters at the same time. Hereinafter, the first WP transmitter 300 and the second WP transmitter 400 will be described as an example.

도 3은 도 2에 도시된 제1WP 수신기의 일 예를 도시한 블록도이다.3 is a block diagram illustrating an example of the first WP receiver illustrated in FIG. 2.

도 3에 도시된 제1WP 수신기(200)는 현재 제1WP 송신기(300)에서만 제1무선 전력을 수신하거나, 또는 제1WP 송신기(300) 및 제2WP 송신기(400)로부터 제1무선 전력과 제2무선 전력을 동시에 수신하거나, 제2무선 전력만을 수신하거나 또는 무선 전력을 전혀 수신하고 있지 않을 수 있다.The first WP receiver 200 shown in FIG. 3 currently receives the first wireless power only from the first WP transmitter 300, or the first wireless power and the second wireless power from the first and second WP transmitters 300 and 400. The wireless power may be simultaneously received, only the second wireless power may be received, or the wireless power may not be received at all.

도 3을 참조하면, 제1WP 수신기(200)는 제1기능 블록(210), 제1통신부(220), 제1측정부(230), 제1제어부(240), 제1수신부(250), 제2측정부(260) 및 제1충전부(270)를 포함할 수 있다.Referring to FIG. 3, the first WP receiver 200 includes a first functional block 210, a first communication unit 220, a first measurement unit 230, a first control unit 240, a first receiver 250, The second measuring unit 260 and the first charging unit 270 may be included.

제1기능 블록(210)은 제1WP 수신기(200)의 고유 기능을 수행할 수 있다. 예를 들어, 제1WP 수신기(200)가 DMB(Digital Multimedia Broadcasting) 기능을 가지는 모바일 폰인 경우, 제1기능 블록(210)은 DMB 시청을 위한 동작을 수행하는 모듈을 포함할 수 있다.The first functional block 210 may perform a unique function of the first WP receiver 200. For example, when the first WP receiver 200 is a mobile phone having a digital multimedia broadcasting (DMB) function, the first functional block 210 may include a module that performs an operation for viewing DMB.

제1WP 송신기(300) 및 제2WP 송신기(400)는 In-band signaling 방식을 이용하여 각각 제1비컨(beacon)과 제2비컨을 전송한다. 제1비컨과 제2비컨에는 제1WP 송신기(300) 및 제2WP 송신기(400)의 식별정보(identity)가 포함되어 있다. 시간 분할에 의한 In-band signaling 방식이 이용되는 경우, 제1통신부(220)는 제1WP 송신기(300)로부터 제1비컨을 수신한 후, 제2WP 송신기(400)로부터 제2비컨을 수신할 수 있다. 다른 예로, 주파수 분할에 의한 In-band signaling 방식이 이용되는 경우, 서로 다른 주파수로 제1비컨과 제2비컨을 수신할 수 있다.The first WP transmitter 300 and the second WP transmitter 400 transmit a first beacon and a second beacon, respectively, using an in-band signaling scheme. The first beacon and the second beacon include identification information of the first WP transmitter 300 and the second WP transmitter 400. When in-band signaling based on time division is used, the first communication unit 220 may receive the first beacon from the first WP transmitter 300 and then receive the second beacon from the second WP transmitter 400. have. As another example, when an in-band signaling method using frequency division is used, the first beacon and the second beacon may be received at different frequencies.

제1측정부(230)는 제1비컨의 수신 효율을 측정하며, 제2비컨의 수신 효율을 측정한다. 이하에서는, '제1비컨의 수신 효율'을 '제1수신 효율'이라 하며, '제2비컨의 수신 효율'을 '제2수신 효율'이라 한다.The first measurement unit 230 measures the reception efficiency of the first beacon, and measures the reception efficiency of the second beacon. Hereinafter, 'receiving efficiency of the first beacon' is referred to as 'first reception efficiency', and 'receiving efficiency of the second beacon' is referred to as 'second reception efficiency'.

제1제어부(240)는 무선 전력을 전송하는 복수 개의 WP 송신기들을 인지하고, 인지된 복수 개의 WP 송신기들 중 제1WP 수신기(200)에게 무선 전력을 전송할 WP 송신기를 하나 이상 선택할 수 있다. 그리고, 제1제어부(240)는 WP 송신기를 두 개 이상 선택하고, 선택된 두 개 이상의 WP 송신기로부터 무선 전력을 수신하도록 제1수신부(250)를 제어할 수 있다.The first controller 240 may recognize a plurality of WP transmitters transmitting wireless power and select one or more WP transmitters to transmit wireless power to the first WP receiver 200 among the recognized plurality of WP transmitters. In addition, the first controller 240 may select two or more WP transmitters, and control the first receiver 250 to receive wireless power from the selected two or more WP transmitters.

자세히 설명하면, 제1제어부(240)는 제1측정부(230)에서 측정되는 제1수신 효율과 제2수신 효율을 주기적으로 확인할 수 있다. In detail, the first controller 240 periodically checks the first reception efficiency and the second reception efficiency measured by the first measurement unit 230.

그리고, 제1제어부(240)는 제1접속 요청 메시지(ARM: Association Request Message)을 생성한다. 제1ARM은 제1WP 송신기(300)와 제1WP 수신기(200) 간의 매칭(matching)을 위한 메시지로서, 측정된 제1수신 효율, 제1WP 수신기(200)가 제1무선 전력을 수신하기 위한 주기 정보 및 무선 전력의 용량 정보 중 적어도 하나를 포함할 수 있다. 무선 전력의 용량 정보는 제1WP 수신기(200)가 필요로 하는 전체 무선 전력의 용량 중 제1WP 송신기(300)가 제공할 용량을 나타낼 수 있다. 또는, 무선 전력의 용량 정보는 제1WP 수신기(200)가 필요로 하는 무선 전력의 전체 용량을 나타낼 수 있다.In addition, the first controller 240 generates a first association request message (ARM). The first ARM is a message for matching between the first WP transmitter 300 and the first WP receiver 200. The measured first reception efficiency and period information for receiving the first wireless power by the first WP receiver 200 are measured. And capacity information of wireless power. The capacity information of the wireless power may indicate a capacity that the first WP transmitter 300 provides among the capacity of the entire wireless power required by the first WP receiver 200. Alternatively, the capacity information of the wireless power may indicate the total capacity of the wireless power required by the first WP receiver 200.

또한, 제1제어부(240)는 제2ARM을 생성한다. 제2ARM은 제2WP 송신기(400)와 제1WP 수신기(200) 간의 매칭을 위한 메시지로서, 측정된 제2수신 효율, 제1WP 수신기(200)가 제2무선 전력을 수신하기 위한 주기 정보 및 무선 전력의 용량 정보 중 적어도 하나를 포함할 수 있다. 또한, 제1ARM 및 제2ARM은 테스트 송전을 위한 무선 전력의 전송을 요청할 수 있다.In addition, the first controller 240 generates a second ARM. The second ARM is a message for matching between the second WP transmitter 400 and the first WP receiver 200. The measured second reception efficiency, period information for the first WP receiver 200 to receive the second wireless power, and wireless power are measured. It may include at least one of the capacity information of. In addition, the first ARM and the second ARM may request transmission of wireless power for test transmission.

제1제어부(240)는 제1ARM을 제1WP 송신기(300)에게 전송하고, 제2ARM을 제2WP 송신기(400)에게 전송하도록 제1통신부(220)를 제어할 수 있다.The first controller 240 may control the first communication unit 220 to transmit the first ARM to the first WP transmitter 300 and the second ARM to the second WP transmitter 400.

제1WP 송신기(300)는 수신되는 제1ARM에 포함된 정보를 이용하여 제1WP 수신기(200)와의 매칭을 수행하고, 테스트를 위한 제1무선 전력을 제1WP 수신기(200)에게 전송한다. 매칭 과정은 예를 들어, 주기 정보에 맞춰 무선 전력을 전송하기 위하여 무선 전력의 전송 주기를 조정하는 과정을 포함할 수 있다.The first WP transmitter 300 performs matching with the first WP receiver 200 by using the information included in the received first ARM, and transmits the first wireless power for the test to the first WP receiver 200. The matching process may include, for example, adjusting a transmission period of the wireless power to transmit the wireless power according to the period information.

제2WP 송신기(400)는 수신되는 제2ARM에 포함된 정보를 이용하여 제1WP 수신기(200)와의 매칭을 수행하고, 테스트를 위한 제2무선 전력을 제1WP 수신기(200)에게 전송한다.The second WP transmitter 400 performs matching with the first WP receiver 200 by using the information included in the received second ARM, and transmits the second wireless power for the test to the first WP receiver 200.

제1수신부(250)는 제1WP 송신기(300)로부터 테스트를 위한 제1무선 전력을 수신하고, 제2WP 송신기(400)로부터 테스트를 위한 제2무선 전력을 수신할 수 있다. 제1무선 전력 및 제2무선 전력의 수신을 위하여, 제1수신부(250)는 제1공진 주파수와 제2공진 주파수를 기형성해 둘 수 있다. 제1공진 주파수 및 제2공진 주파수는 각각 제1무선 전력과 제2무선 전력을 수신하는데 필요한 주파수이다. 제1수신부(250)는 하나 이상의 공진기로 구현될 수 있다.The first receiver 250 may receive the first wireless power for the test from the first WP transmitter 300 and the second wireless power for the test from the second WP transmitter 400. In order to receive the first wireless power and the second wireless power, the first receiver 250 may predefine a first resonant frequency and a second resonant frequency. The first resonant frequency and the second resonant frequency are frequencies required to receive the first wireless power and the second wireless power, respectively. The first receiver 250 may be implemented with one or more resonators.

제2측정부(260)는 수신되는 테스트를 위한 제1무선 전력의 전송 효율과 테스트를 위한 제2무선 전력의 전송 효율을 측정할 수 있다. 전송 효율은 수신 효율을 의미할 수 있다. The second measuring unit 260 may measure the transmission efficiency of the first wireless power for the received test and the transmission efficiency of the second wireless power for the test. Transmission efficiency may mean reception efficiency.

제1제어부(240)는 테스트 결과를 기반으로 무선 전력을 수신할 WP 송신기를 선택할 수 있다. 예를 들어, 제1제어부(240)는 제2측정부(260)에서 측정된 테스트를 위한 제1무선 전력의 전송 효율이 기준값보다 작으면, 제1WP 송신기(300)를 배제할 수 있다. 반면, 제1무선 전력의 전송 효율이 기준값보다 크면, 제1제어부(240)는 제1WP 송신기(300)는 무선 전력 송신에 적합한 것으로 판단하고 제1WP 송신기(300)를 선택할 수 있다.The first controller 240 may select a WP transmitter to receive the wireless power based on the test result. For example, if the transmission efficiency of the first wireless power for the test measured by the second measurement unit 260 is smaller than the reference value, the first controller 240 may exclude the first WP transmitter 300. On the other hand, if the transmission efficiency of the first wireless power is greater than the reference value, the first controller 240 may determine that the first WP transmitter 300 is suitable for wireless power transmission and select the first WP transmitter 300.

이는 제2WP 송신기(400)에 대해서도 동일하다. 즉, 테스트를 위한 제2무선 전력의 전송 효율이 기준값보다 크면, 제1제어부(240)는 제2WP 송신기(400)는 무선 전력 송신에 적합한 것으로 판단하고 제2WP 송신기(400)를 선택할 수 있다. 제1제어부(240)는 제1WP 수신기(200)가 원하는 무선 전력을 수신하는데 충분한 개수의 WP 송신기를 선택할 수 있다. The same is true for the second WP transmitter 400. That is, if the transmission efficiency of the second wireless power for the test is greater than the reference value, the first controller 240 may determine that the second WP transmitter 400 is suitable for wireless power transmission and select the second WP transmitter 400. The first controller 240 may select a number of WP transmitters sufficient for the first WP receiver 200 to receive the desired wireless power.

테스트 결과, 제1WP 송신기(300) 및 제2WP 송신기(400) 모두 무선 전력의 송신에 적합한 것으로 판단되면, 제1제어부(240)는 테스트 결과, 측정된 전송 효율, 상술한 주기 정보 및 필요한 무선 전력의 용량을 보고하는 보고서를 작성한다. 그리고, 제1제어부(240)는 제1WP 송신기(300) 및 제2WP 송신기(400)에게 보고서를 전송하도록 제1통신부(220)를 제어한다.As a result of the test, when it is determined that both the first WP transmitter 300 and the second WP transmitter 400 are suitable for the transmission of the wireless power, the first controller 240 determines the test result, the measured transmission efficiency, the above-described period information, and the required wireless power. Write a report reporting the capacity of the patient. In addition, the first controller 240 controls the first communication unit 220 to transmit a report to the first WP transmitter 300 and the second WP transmitter 400.

제1WP 송신기(300) 및 제2WP 송신기(400)는 보고서를 기반으로 제1WP 수신기(200)와의 매칭을 수행한다. 그리고, 제1WP 송신기(300) 및 제2WP 송신기(400)는 각각 제1무선 전력 및 제2무선 전력을 전송 주기에 맞춰 제1수신부(250)에게 전송한다.The first WP transmitter 300 and the second WP transmitter 400 perform matching with the first WP receiver 200 based on the report. The first WP transmitter 300 and the second WP transmitter 400 respectively transmit the first wireless power and the second wireless power to the first receiver 250 in accordance with the transmission period.

제1충전부(270)는 제1수신부(250)에 의해 수신되는 제1무선 전력과 제2무선 전력을 정류한다. 제1충전부(270)는 정류된 제1무선 전력 및 제2무선 전력을 이용하여 충전을 시작한다. 제1충전부(270)는 주지된 배터리일 수 있다.The first charger 270 rectifies the first wireless power and the second wireless power received by the first receiver 250. The first charging unit 270 starts charging using the rectified first wireless power and the second wireless power. The first charging unit 270 may be a known battery.

도 4는 무선 전력 송수신을 위한 시스템의 다른 예를 도시한 도면이다.4 is a diagram illustrating another example of a system for wireless power transmission and reception.

도 4를 참조하면, 무선 전력 송수신을 위한 시스템은 제2WP 수신기(500), 제3WP 송신기(600), 제4WP 송신기(700) 및 네트워크(800)를 포함한다.Referring to FIG. 4, the system for wireless power transmission and reception includes a second WP receiver 500, a third WP transmitter 600, a fourth WP transmitter 700, and a network 800.

제2WP 수신기(500), 제3WP 송신기(600) 및 제4WP 송신기(700)는 도 1을 참조하여 설명한 무선 전력 전송 시스템에서 사용될 수 있다. 제2WP 수신기(500)는 무선 전력 충전이 가능한 통신 장치일 수 있다. 따라서, 제2WP 수신기(500)는 유무선 통신에 필요한 모듈을 포함할 수 있다.The second WP receiver 500, the third WP transmitter 600, and the fourth WP transmitter 700 may be used in the wireless power transmission system described with reference to FIG. 1. The second WP receiver 500 may be a communication device capable of wireless power charging. Therefore, the second WP receiver 500 may include a module necessary for wired and wireless communication.

제3WP 송신기(600)는 도 1의 무선 전력 송신 기술을 이용하여 제3공진 주파수를 통해 제3무선 전력을 발생시킨다. 제3커버리지(C3)는 제2WP 수신기(500)가 제3무선 전력을 수신할 수 있는 영역이다.The third WP transmitter 600 generates the third wireless power through the third resonant frequency using the wireless power transmission technique of FIG. 1. The third coverage C3 is an area in which the second WP receiver 500 can receive the third wireless power.

제4WP 송신기(700)는 도 1의 무선 전력 송신 기술을 이용하여 제4공진 주파수를 통해 제4무선 전력을 발생시킨다. 제4커버리지(C4)는 제2WP 수신기(500)가 제4무선 전력을 수신할 수 있는 영역이다.The fourth WP transmitter 700 generates the fourth wireless power through the fourth resonant frequency using the wireless power transmission technique of FIG. 1. The fourth coverage C4 is an area in which the second WP receiver 500 can receive the fourth wireless power.

네트워크(800)는 제2WP 수신기(500)가 통신시 사용하는 통신망이다. 제2WP 수신기(500)는 네트워크(800)를 이용하여 복수 개의 WP 송신기들과 제2WP 수신기(500) 간의 거리를 측정할 수 있다. 제2WP 수신기(500)는 측정된 각 거리를 기반으로, 제2WP 수신기(500)에게 무선 전력을 전송할 WP 송신기를 하나 이상 선택할 수 있다. The network 800 is a communication network used by the second WP receiver 500 for communication. The second WP receiver 500 may measure the distance between the plurality of WP transmitters and the second WP receiver 500 using the network 800. The second WP receiver 500 may select one or more WP transmitters to transmit wireless power to the second WP receiver 500 based on each measured distance.

한편, 도 4에 도시된 바와 같이, 제2WP 수신기(500)는 제3커버리지(C3)와 제4커버리지(C4)의 중첩 영역에 위치할 수 있다. 이러한 경우, 제2WP 수신기(500)는 제3WP 송신기(600) 및 제4WP 송신기(700)로부터 제1무선 전력과 제2무선 전력을 동시에 수신할 수 있다. 제2WP 수신기(500)는 동시에 3개 이상의 WP 송신기로부터 무선 전력을 제공받을 수 있으나, 이하에서는 제3WP 송신기(600) 및 제4WP 송신기(700)를 예로 들어 설명한다.As illustrated in FIG. 4, the second WP receiver 500 may be positioned in an overlapping region of the third coverage C3 and the fourth coverage C4. In this case, the second WP receiver 500 may simultaneously receive the first wireless power and the second wireless power from the third WP transmitter 600 and the fourth WP transmitter 700. The second WP receiver 500 may receive wireless power from three or more WP transmitters at the same time. Hereinafter, the third WP transmitter 600 and the fourth WP transmitter 700 will be described as an example.

도 5는 도 4에 도시된 제2WP 수신기의 일 예를 도시한 블록도이다.FIG. 5 is a block diagram illustrating an example of the second WP receiver illustrated in FIG. 4.

도 5를 참조하면, 제2WP 수신기(500)는 제2기능 블록(510), 제2통신부(520), 제3측정부(530), 제2제어부(540), 제2수신부(550), 제4측정부(560) 및 제2충전부(570)를 포함할 수 있다.Referring to FIG. 5, the second WP receiver 500 includes a second functional block 510, a second communication unit 520, a third measuring unit 530, a second control unit 540, a second receiving unit 550, It may include a fourth measuring unit 560 and the second charging unit 570.

제2기능 블록(510)은 제2WP 수신기(500)의 고유 기능을 수행할 수 있다. The second functional block 510 may perform a unique function of the second WP receiver 500.

제2WP 수신기(500)가 전용 통신기기(Dedicated Communication Device)인 경우, 제2통신부(520)는 제2WP 수신기(500)에서 지원하는 통신 방식을 이용하여 통신할 수 있다. 예를 들어, 제2통신부(520)가 WiFi(Wireless Fidelity)를 지원하는 경우, 제2통신부(520)는 WiFi 방식에 따라 네트워크(800)와 통신할 수 있다.When the second WP receiver 500 is a dedicated communication device, the second communication unit 520 may communicate using a communication scheme supported by the second WP receiver 500. For example, when the second communication unit 520 supports Wireless Fidelity (WiFi), the second communication unit 520 may communicate with the network 800 according to a WiFi method.

또한, 제3WP 송신기(600), 제4WP 송신기(700) 및 제2WP 수신기(500)에 WiFi 또는 블루투스(Bluetooth)를 지원하는 모듈이 구비된 경우, 제2WP 수신기(500)는 WiFi의 비컨 또는 블루투스의 비컨을 제3WP 송신기(600) 및 제4WP 송신기(700)로부터 수신할 수 있다. In addition, when the third WP transmitter 600, the fourth WP transmitter 700, and the second WP receiver 500 are provided with a module supporting WiFi or Bluetooth, the second WP receiver 500 may be a beacon or a Bluetooth of WiFi. The beacon of may be received from the third WP transmitter 600 and the fourth WP transmitter 700.

제3측정부(530)는 GPS(Global Positioning System) 또는 WiFi(Wireless Fidelity) 측위 기법 중 적어도 하나를 이용하여, 제2WP 수신기(500)의 주변에 위치하는 WP 송신기들과의 거리를 측정할 수 있다. 예를 들어, 제3측정부(530)는 제3WP 송신기(600) 및 제4WP 송신기(700)로부터 각각 수신되는 제3비컨 및 제4비컨을 기반으로, 제2WP 수신기(500)와 제3WP 송신기(600)의 거리, 제2WP 수신기(500)와 제4WP 송신기(700)의 거리를 측정할 수 있다.The third measuring unit 530 may measure a distance from the WP transmitters positioned around the second WP receiver 500 using at least one of a global positioning system (GPS) or a wireless fidelity (WiFi) positioning technique. have. For example, the third measuring unit 530 is based on the third beacon and the fourth beacon received from the third WP transmitter 600 and the fourth WP transmitter 700, respectively, the second WP receiver 500 and the third WP transmitter. A distance of 600 and a distance between the second WP receiver 500 and the fourth WP transmitter 700 may be measured.

제2제어부(540)는 무선 전력을 전송하는 복수 개의 WP 송신기들을 인지하고, 인지된 복수 개의 WP 송신기들 중 제2WP 수신기(500)에게 무선 전력을 전송할 WP 송신기를 하나 이상 선택할 수 있다. 그리고, 제2제어부(540)는 WP 송신기를 두 개 이상 선택하고, 선택된 두 개 이상의 WP 송신기로부터 무선 전력을 수신하도록 제2수신부(550)를 제어할 수 있다.The second controller 540 may recognize a plurality of WP transmitters transmitting wireless power, and select one or more WP transmitters to transmit wireless power to the second WP receiver 500 among the recognized plurality of WP transmitters. The second controller 540 may select two or more WP transmitters and control the second receiver 550 to receive wireless power from the selected two or more WP transmitters.

제2제어부(540)는 측정된 거리를 기반으로 제3ARM 및 제4ARM을 생성한다. 제3ARM은 제3WP 송신기(600)와 제2WP 수신기(500) 간의 매칭을 위한 메시지로서, 측정된 거리를 고려하여 생성된다. 제3ARM은 측정된 거리, 제2WP 수신기(500)가 제3무선 전력을 수신하기 위한 주기 정보 및 무선 전력의 용량 정보 중 적어도 하나를 포함할 수 있다.The second controller 540 generates a third ARM and a fourth ARM based on the measured distance. The third ARM is a message for matching between the third WP transmitter 600 and the second WP receiver 500 and is generated in consideration of the measured distance. The third ARM may include at least one of the measured distance, period information for the second WP receiver 500 to receive the third wireless power, and capacity information of the wireless power.

또한, 제4ARM은 제4WP 송신기(700)와 제2WP 수신기(500) 간의 매칭을 위한 메시지로서, 제2WP 수신기(500)가 측정된 거리, 제4무선 전력을 수신하기 위한 주기 정보 및 무선 전력의 용량 정보 중 적어도 하나를 포함할 수 있다. 또한, 제3ARM 및 제4ARM은 테스트 송전을 위한 제3무선 전력 및 제4무선 전력의 전송을 요청할 수 있다.In addition, the fourth ARM is a message for matching between the fourth WP transmitter 700 and the second WP receiver 500. The fourth ARM includes a distance measured by the second WP receiver 500, period information for receiving the fourth wireless power, and wireless power. It may include at least one of the capacity information. In addition, the third ARM and the fourth ARM may request transmission of the third wireless power and the fourth wireless power for test transmission.

제2제어부(540)는 제3ARM을 제3WP 송신기(600)에게 전송하고, 제4ARM을 제4WP 송신기(700)에게 전송하도록 제2통신부(520)를 제어할 수 있다. The second controller 540 may control the second communication unit 520 to transmit the third ARM to the third WP transmitter 600 and to transmit the fourth ARM to the fourth WP transmitter 700.

제3WP 송신기(600)는 수신되는 제3ARM에 포함된 정보를 이용하여 제2WP 수신기(500)와의 매칭을 수행하고, 테스트를 위한 제3무선 전력을 제2WP 수신기(500)에게 전송한다. The third WP transmitter 600 performs matching with the second WP receiver 500 by using the information included in the received third ARM, and transmits the third wireless power for the test to the second WP receiver 500.

제4WP 송신기(700)는 수신되는 제4ARM에 포함된 정보를 이용하여 제2WP 수신기(500)와의 매칭을 수행하고, 테스트를 위한 제4무선 전력을 제2WP 수신기(500)에게 전송한다.The fourth WP transmitter 700 performs matching with the second WP receiver 500 by using the information included in the received fourth ARM, and transmits the fourth wireless power for the test to the second WP receiver 500.

제2수신부(550)는 제3WP 송신기(600)로부터 테스트를 위한 제3무선 전력을 수신하고, 제4WP 송신기(700)로부터 테스트를 위한 제4무선 전력을 수신할 수 있다. 제2수신부(250)는 예를 들어, 하나 이상의 공진기로 구현될 수 있으며, 제1수신부(250)와 거의 동일하므로 상세한 설명은 생략한다.The second receiver 550 may receive a third wireless power for a test from the third WP transmitter 600, and receive a fourth wireless power for a test from the fourth WP transmitter 700. For example, the second receiver 250 may be implemented as one or more resonators, and since the second receiver 250 is substantially the same as the first receiver 250, a detailed description thereof will be omitted.

제2측정부(260)는 테스트를 위한 제3무선 전력의 전송 효율과 테스트를 위한 제4무선 전력의 전송 효율을 측정할 수 있다. The second measurement unit 260 may measure the transmission efficiency of the third wireless power for the test and the transmission efficiency of the fourth wireless power for the test.

제2제어부(540)는 테스트 결과를 기반으로 무선 전력을 수신할 WP 송신기를 선택할 수 있다. 제2제어부(540)는 제2WP 수신기(500)가 원하는 무선 전력을 수신하는데 충분한 개수의 WP 송신기를 선택할 수 있다. The second controller 540 may select a WP transmitter to receive the wireless power based on the test result. The second controller 540 may select a sufficient number of WP transmitters for the second WP receiver 500 to receive the desired wireless power.

테스트 결과, 제3WP 송신기(600) 및 제4WP 송신기(700) 모두 무선 전력의 송신에 적합한 것으로 판단되면, 제2제어부(540)는 테스트 결과, 측정된 전송 효율, 상술한 주기 정보 및 필요한 무선 전력의 용량을 보고하는 보고서를 작성한다. 그리고, 제2제어부(540)는 제3WP 송신기(600) 및 제4WP 송신기(700)에게 보고서를 전송하도록 제2통신부(520)를 제어한다.As a result of the test, when it is determined that both the 3 WP transmitter 600 and the 4 WP transmitter 700 are suitable for the transmission of the wireless power, the second controller 540 determines the test result, the measured transmission efficiency, the above-described period information, and the required wireless power. Write a report reporting the capacity of the patient. The second controller 540 controls the second communication unit 520 to transmit a report to the third and fourth WP transmitters 600 and 700.

제3WP 송신기(600) 및 제4WP 송신기(700)는 보고서를 기반으로 제2WP 수신기(500)와의 매칭을 수행한다. 그리고, 제3WP 송신기(600) 및 제4WP 송신기(700)는 각각 제3무선 전력 및 제4무선 전력을 전송 주기에 맞춰 제2수신부(550)에게 전송한다.The third and fourth WP transmitters 600 and 700 perform matching with the second WP receiver 500 based on the report. The third WP transmitter 600 and the fourth WP transmitter 700 transmit the third wireless power and the fourth wireless power to the second receiver 550 in accordance with the transmission period.

제2충전부(570)는 제2수신부(550)에 의해 수신되는 제3무선 전력과 제4무선 전력을 정류하고, 정류된 제3무선 전력 및 제4무선 전력을 이용하여 충전을 시작한다.The second charger 570 rectifies the third wireless power and the fourth wireless power received by the second receiver 550, and starts charging using the rectified third wireless power and the fourth wireless power.

도 6은 제1WP 수신기의 무선 전력 수신 방법의 일 예를 설명하기 위한 흐름도이다. 6 is a flowchart illustrating an example of a method of receiving wireless power of a first WP receiver.

도 6의 제1WP 수신기, 제1WP 송신기 및 제2WP 송신기는 도 2의 제1WP 수신기(200), 제1WP 송신기(300) 및 제2WP 송신기(400)일 수 있다.The first WP receiver, the first WP transmitter, and the second WP transmitter of FIG. 6 may be the first WP receiver 200, the first WP transmitter 300, and the second WP transmitter 400 of FIG. 2.

605단계에서, 제1WP 수신기는 제1WP 송신기로부터 제1비컨을 수신한다.In step 605, the first WP receiver receives the first beacon from the first WP transmitter.

610단계에서, 제1WP 수신기는 수신된 제1비컨의 수신 효율을 측정한다.In operation 610, the first WP receiver measures the reception efficiency of the received first beacon.

615단계에서, 제1WP 수신기는 제2WP 송신기로부터 제2비컨을 수신한다.In step 615, the first WP receiver receives the second beacon from the second WP transmitter.

620단계에서, 제1WP 수신기는 수신된 제2비컨의 수신 효율을 측정한다.In operation 620, the first WP receiver measures the reception efficiency of the received second beacon.

625단계에서, 제1WP 수신기는 제1ARM 및 제2ARM을 생성한다. 제1ARM은 제1WP 송신기와 제1WP 수신기 간의 매칭을 위한 메시지이며, 제2ARM은 제2WP 송신기와 제1WP 수신기 간의 매칭을 위한 메시지이다. 제1ARM 및 제2ARM은 테스트 송전을 요청하는 내용을 포함한다.In operation 625, the first WP receiver generates a first ARM and a second ARM. The first ARM is a message for matching between the first WP transmitter and the first WP receiver, and the second ARM is a message for matching between the second WP transmitter and the first WP receiver. The first ARM and the second ARM include contents for requesting a test transmission.

630단계에서, 제1WP 수신기는 제1ARM을 제1WP 송신기에게 전송한다.In operation 630, the first WP receiver transmits the first ARM to the first WP transmitter.

635단계에서, 제1WP 수신기는 제2ARM을 제2WP 송신기에게 전송한다.In step 635, the first WP receiver transmits the second ARM to the second WP transmitter.

이에 의해, 제1WP 송신기는 제1ARM에 포함된 정보를 이용하여 제1WP 수신기와의 매칭을 수행하고, 테스트를 위한 제1무선 전력을 제1WP 수신기에게 전송한다. 제2WP 송신기는 제2ARM에 포함된 정보를 이용하여 제1WP 수신기와의 매칭을 수행하고, 테스트를 위한 제2무선 전력을 제1WP 수신기에게 전송한다.As a result, the first WP transmitter performs matching with the first WP receiver using the information included in the first ARM, and transmits the first wireless power for the test to the first WP receiver. The second WP transmitter performs matching with the first WP receiver by using information included in the second ARM, and transmits a second wireless power for testing to the first WP receiver.

640단계에서, 제1WP 수신기는 제1WP 송신기로부터 테스트를 위한 제1무선 전력을 수신한다.In operation 640, the first WP receiver receives first wireless power for testing from the first WP transmitter.

645단계에서, 제1WP 수신기는 제2WP 송신기로부터 테스트를 위한 제2무선 전력을 수신한다.In step 645, the first WP receiver receives a second wireless power for testing from the second WP transmitter.

650단계에서, 제1WP 수신기는 테스트를 위한 제1무선 전력의 전송 효율을 측정한다.In operation 650, the first WP receiver measures the transmission efficiency of the first wireless power for the test.

655단계에서, 제1WP 수신기는 테스트를 위한 제2무선 전력의 전송 효율을 측정한다.In operation 655, the first WP receiver measures the transmission efficiency of the second wireless power for the test.

660단계에서, 제1WP 수신기는 650단계 및 655단계의 테스트 결과를 기반으로 무선 전력을 수신할 WP 송신기를 두 개 이상 선택할 수 있다. 예를 들어, 제1WP 수신기는 제1WP 수신기는 제1WP 송신기 및 제2WP 송신기를 모두 선택할 수 있다.In operation 660, the first WP receiver may select two or more WP transmitters to receive the wireless power based on the test results of operations 650 and 655. For example, the first WP receiver may select both the first WP transmitter and the second WP transmitter.

665단계에서, 제1WP 수신기는 테스트 결과, 측정된 전송 효율, 상술한 주기 정보 및 필요한 무선 전력의 용량을 보고하는 보고서를 작성한다.In operation 665, the first WP receiver generates a report that reports the test result, the measured transmission efficiency, the above-described period information, and the required amount of wireless power.

670단계 및 675단계에서, 제1WP 수신기는 작성된 보고서를 제1WP 송신기 및 제2WP 송신기에게 전송한다. 제1WP 송신기 및 제2WP 송신기는 보고서를 기반으로 제1WP 수신기와의 매칭을 수행한다.In steps 670 and 675, the first WP receiver transmits the generated report to the first and second WP transmitters. The first WP transmitter and the second WP transmitter perform matching with the first WP receiver based on the report.

680단계에서, 제1WP 수신기는 제1WP 송신기로부터 제1무선 전력을 수신한다.In operation 680, the first WP receiver receives the first wireless power from the first WP transmitter.

685단계에서, 제1WP 수신기는 제2WP 송신기로부터 제2무선 전력을 수신한다.In operation 685, the first WP receiver receives the second wireless power from the second WP transmitter.

690단계에서, 제1WP 수신기는 수신된 제1무선 전력 및 제2무선 전력을 이용하여 충전을 시작한다.In operation 690, the first WP receiver starts charging using the received first wireless power and the second wireless power.

도 7은 제2WP 수신기의 무선 전력 수신 방법의 다른 예를 설명하기 위한 흐름도이다.7 is a flowchart illustrating another example of a method of receiving wireless power of a second WP receiver.

도 7의 제2WP 수신기, 제3WP 송신기 및 제4WP 송신기는 도 4의 제2WP 수신기(500), 제3WP 송신기(600) 및 제4WP 송신기(700)일 수 있다.The second WP receiver, the third WP transmitter, and the fourth WP transmitter of FIG. 7 may be the second WP receiver 500, the third WP transmitter 600, and the fourth WP transmitter 700 of FIG. 4.

705단계에서, 제2WP 수신기는 제2WP 수신기와 제3WP 송신기의 거리, 제2WP 수신기와 제4WP 송신기의 거리를 측정한다. 제2WP 수신기는 제3WP 송신기 및 제4WP 송신기로부터 전송되는 제3비컨 및 제4비컨을 기반으로 거리를 측정할 수 있다. 제3비컨 및 제4비컨은 WiFi 네트워크를 통해 또는 블루투스와 같은 통신 방식을 통해 수신될 수 있다.In step 705, the second WP receiver measures the distance between the second WP receiver and the third WP transmitter and the distance between the second WP receiver and the fourth WP transmitter. The second WP receiver may measure the distance based on the third beacon and the fourth beacon transmitted from the third and fourth WP transmitters. The third and fourth beacons may be received via a WiFi network or via a communication scheme such as Bluetooth.

710단계에서, 제2WP 수신기는 측정된 거리를 기반으로, 무선 전력을 제공할 수 있는 WP 송신기들을 파악한다.In operation 710, the second WP receiver identifies WP transmitters capable of providing wireless power based on the measured distance.

715단계에서, 제2WP 수신기는 제3ARM 및 제4ARM을 생성한다. 제3ARM은 제2WP 송신기와 제2WP 수신기 간의 매칭을 위한 메시지이며, 제4ARM은 제4WP 송신기와 제2WP 수신기 간의 매칭을 위한 메시지이다. 제3ARM 및 제4ARM은 테스트 송전을 요청하는 내용을 포함한다.In operation 715, the second WP receiver generates a third ARM and a fourth ARM. The third ARM is a message for matching between the second WP transmitter and the second WP receiver, and the fourth ARM is a message for matching between the fourth WP transmitter and the second WP receiver. The third ARM and the fourth ARM include contents for requesting a test transmission.

720단계에서, 제2WP 수신기는 제3ARM을 제3WP 송신기에게 전송한다.In step 720, the second WP receiver transmits the third ARM to the third WP transmitter.

725단계에서, 제2WP 수신기는 제4ARM을 제4WP 송신기에게 전송한다.In step 725, the second WP receiver transmits the fourth ARM to the fourth WP transmitter.

제3WP 송신기는 제3ARM에 포함된 정보를 이용하여 제2WP 수신기와의 매칭을 수행하고, 테스트를 위한 제3무선 전력을 제2WP 수신기에게 전송한다. 제4WP 송신기는 제4ARM에 포함된 정보를 이용하여 제2WP 수신기와의 매칭을 수행하고, 테스트를 위한 제4무선 전력을 제2WP 수신기에게 전송한다.The third WP transmitter performs matching with the second WP receiver using information included in the third ARM, and transmits a third wireless power for testing to the second WP receiver. The fourth WP transmitter performs matching with the second WP receiver using information included in the fourth ARM, and transmits a fourth wireless power for testing to the second WP receiver.

730단계에서, 제2WP 수신기는 제3WP 송신기로부터 테스트를 위한 제3무선 전력을 수신한다.In operation 730, the second WP receiver receives a third wireless power for testing from the third WP transmitter.

735단계에서, 제2WP 수신기는 제4WP 송신기로부터 테스트를 위한 제4무선 전력을 수신한다.In step 735, the second WP receiver receives the fourth wireless power for testing from the fourth WP transmitter.

740단계에서, 제2WP 수신기는 테스트를 위한 제3무선 전력의 전송 효율을 측정하고, 테스트를 위한 제4무선 전력의 전송 효율을 측정한다.In operation 740, the second WP receiver measures the transmission efficiency of the third wireless power for the test and measures the transmission efficiency of the fourth wireless power for the test.

745단계에서, 제2WP 수신기는 740단계 및 745단계의 테스트 결과를 기반으로 무선 전력을 수신할 WP 송신기를 하나 이상 선택할 수 있다. 예를 들어, 제2WP 수신기는 제3WP 송신기 및 제4WP 송신기를 모두 선택할 수 있다.In operation 745, the second WP receiver may select one or more WP transmitters to receive the wireless power based on the test results of operations 740 and 745. For example, the second WP receiver may select both the third WP transmitter and the fourth WP transmitter.

750단계에서, 제2WP 수신기는 테스트 결과, 측정된 전송 효율, 상술한 주기 정보 및 필요한 무선 전력의 용량을 보고하는 보고서를 작성한다.In operation 750, the second WP receiver generates a report that reports the test result, the measured transmission efficiency, the above-described period information, and the required amount of wireless power.

755단계 및 760단계에서, 제2WP 수신기는 작성된 보고서를 제3WP 송신기 및 제4WP 송신기에게 전송한다. 제3WP 송신기 및 제4WP 송신기는 보고서를 기반으로 제2WP 수신기와의 매칭을 수행한다.In steps 755 and 760, the second WP receiver transmits the generated report to the third and fourth WP transmitters. The third and fourth WP transmitters perform matching with the second WP receiver based on the report.

765단계에서, 제2WP 수신기는 제3WP 송신기로부터 제3무선 전력을 수신한다.In step 765, the second WP receiver receives the third wireless power from the third WP transmitter.

775단계에서, 제2WP 수신기는 제4WP 송신기로부터 제4무선 전력을 수신한다.In step 775, the second WP receiver receives the fourth wireless power from the fourth WP transmitter.

780단계에서, 제2WP 수신기는 수신된 제3무선 전력 및 제4무선 전력을 이용하여 충전을 시작한다.In step 780, the second WP receiver starts charging using the received third wireless power and fourth wireless power.

한편, 본 발명의 실시 예에 따른 공진기는 헬릭스(helix) 코일 구조의 공진기, 또는 스파이럴(spiral) 코일 구조의 공진기, 또는 meta-structured 공진기로 구성될 수 있다. 공진기는 무선 전력의 송신 및 수신에 사용될 수 있다.Meanwhile, the resonator according to the embodiment of the present invention may be configured as a helix coil structure resonator, a spiral coil structure resonator, or a meta-structured resonator. The resonator can be used for the transmission and reception of wireless power.

도 8은 본 발명의 일 실시예에 따른 meta-structured 공진기를 나타낸 도면이다.8 is a diagram illustrating a meta-structured resonator according to an embodiment of the present invention.

도 8을 참조하면, meta-structured 공진기는 전송 선로(810) 및 커패시터(820)를 포함한다. 여기서 커패시터(820)는 전송 선로(810)의 특정 위치에 직렬로 삽입되고, 전계(electric field)는 커패시터에 갇히게 된다. Referring to FIG. 8, the meta-structured resonator includes a transmission line 810 and a capacitor 820. Here, the capacitor 820 is inserted in series at a specific position of the transmission line 810, and the electric field is trapped in the capacitor.

또한, 도 8에 도시된 바와 같이 meta-structured 공진기는 3차원 구조의 형태를 갖는다. 도 8에 도시된 것과 달리 공진기는 전송 선로가 x, z평면에 배치된 2차원 구조로의 구현될 수 있다.In addition, the meta-structured resonator has a form of a three-dimensional structure, as shown in FIG. Unlike the illustrated in FIG. 8, the resonator may be implemented in a two-dimensional structure in which transmission lines are arranged in x and z planes.

커패시터(820)는 집중 소자(lumped element 및 분산 소자(distributed element), 예를 들어 interdigital 커패시터나 높은 유전율을 갖는 기판을 가운데다 둔 gap 커패시터 등의 형태로 전송 선로(810)에 삽입된다. 커패시터(820)가 전송 선로(810)에 삽입됨에 따라 상기 공진기는 메타물질(metamaterial)의 특성을 가질 수 있다.The capacitor 820 is inserted into the transmission line 810 in the form of a lumped element and a distributed element, for example, an interdigital capacitor or a gap capacitor centered on a substrate having a high dielectric constant. As the 820 is inserted into the transmission line 810, the resonator may have a metamaterial characteristic.

여기서, 메타물질이란 자연에서 발견될 수 없는 특별한 전기적 성질을 갖는 물질로서, 인공적으로 설계된 구조를 갖는다. 자연계에 존재하는 모든 물질들의 전자기 특성은 고유의 유전율 또는 투자율을 가지며, 대부분의 물질들은 양의 유전율 및 양의 투자율을 갖는다. 대부분의 물질들에서 전계, 자계 및 포인팅 벡터에는 오른손 법칙이 적용되므로, 이러한 물질들을 RHM(Right Handed Material)이라고 한다. 그러나, 메타물질은 1보다 작은 유전율 또는 투자율을 가진 물질로서, 유전율 또는 투자율의 부호에 따라 ENG(epsilon negative) 물질, MNG(mu negative) 물질, DNG(double negative) 물질, NRI(negative refractive index) 물질, LH(left-handed) 물질 등으로 분류된다.Here, the metamaterial is a material having special electrical properties that cannot be found in nature, and has an artificially designed structure. The electromagnetic properties of all materials in nature have inherent permittivity or permeability, and most materials have positive permittivity and positive permeability. In most materials, the right-hand rule applies to electric fields, magnetic fields and pointing vectors, so these materials are called RHM (Right Handed Material). However, metamaterials are materials with a permittivity or permeability of less than 1, and according to the sign of permittivity or permeability, ENG (epsilon negative) material, MNG (mu negative) material, DNG (double negative) material, NRI (negative refractive index) Substances, and left-handed (LH) substances.

이 때, 집중 소자로서 삽입된 커패시터의 커패시턴스가 적절히 정해지는 경우, 상기 공진기는 메타물질의 특성을 가질 수 있다. 특히, 커패시터의 커패시턴스를 적절히 조절함으로써, 공진기는 음의 투자율을 가질 수 있으므로, 본 발명의 일실시예에 따른 공진기는 MNG 공진기로 불려질 수 있다.At this time, when the capacitance of the capacitor inserted as the lumped element is properly determined, the resonator may have the characteristics of the metamaterial. In particular, by appropriately adjusting the capacitance of the capacitor, the resonator may have a negative permeability, so that the resonator according to an embodiment of the present invention may be referred to as an MNG resonator.

상기 MNG 공진기는 전파 상수(propagation constant)가 0일 때의 주파수를 공진 주파수로 갖는 영번째 공진(Zeroth-Order Resonance) 특성을 가질 수 있다. MNG 공진기는 영번째 공진 특성을 가질 수 있으므로, 공진 주파수는 MNG 공진기의 물리적인 사이즈에 대해 독립적일 수 있다. 즉, 아래에서 다시 설명하겠지만, MNG 공진기에서 공진 주파수를 변경하기 위해서는 커패시터를 적절히 설계하는 것으로 충분하므로, MNG 공진기의 물리적인 사이즈를 변경하지 않을 수 있다.The MNG resonator may have a zero-order resonance characteristic having a frequency when the propagation constant is 0 as a resonance frequency. Since the MNG resonator may have a zeroth resonance characteristic, the resonant frequency may be independent of the physical size of the MNG resonator. That is, as will be described again below, in order to change the resonant frequency in the MNG resonator, it is sufficient to design the capacitor appropriately, so that the physical size of the MNG resonator may not be changed.

또한, 근접 필드(near field)에서 전계는 전송 선로(810)에 삽입된 직렬 커패시터(820)에 집중되므로, 직렬 커패시터(820)로 인하여 근접 필드에서는 자계(magnetic field)가 도미넌트(dominant)해진다. In addition, in the near field, the electric field is concentrated on the series capacitor 820 inserted in the transmission line 810, so that the magnetic field is dominant in the near field due to the series capacitor 820.

또한, MNG 공진기는 집중 소자로의 커패시터(820)을 이용하여 높은 큐-팩터(Q-Factor)를 가질 수 있으므로, 전력 전송의 효율을 향상시킬 수 있다.In addition, since the MNG resonator may have a high Q-Factor using the capacitor 820 as the lumped element, the efficiency of power transmission may be improved.

또한, MNG 공진기는 임피던스 매칭을 위한 매칭기(830)를 포함할 수 있다. 이 때, 매칭기(830)는 MNG 공진기와의 결합을 위해 자계의 강도를 적절히 조절 가능(tunable)하고, 매칭기(830)에 의해 MNG 공진기의 임피던스는 조절된다. 그리고, 전류는 커넥터(840)를 통하여 MNG 공진기로 유입되거나 MNG 공진기로부터 유출된다.In addition, the MNG resonator may include a matcher 830 for impedance matching. At this time, the matcher 830 properly tunable the strength of the magnetic field for coupling with the MNG resonator, and the impedance of the MNG resonator is adjusted by the matcher 830. The current flows into or out of the MNG resonator through the connector 840.

또한, 도 8에 명시적으로 도시되지 아니하였으나, MNG 공진기를 관통하는 마그네틱 코어가 더 포함될 수 있다. 이러한 마그네틱 코어는 전력 전송 거리를 증가시키는 기능을 수행할 수 있다. In addition, although not explicitly illustrated in FIG. 8, a magnetic core penetrating the MNG resonator may be further included. Such a magnetic core may perform a function of increasing a power transmission distance.

본 발명의 MNG 공진기가 갖는 특성들에 대해서는 아래에서 자세히 설명한다.The characteristics of the MNG resonator of the present invention will be described in detail below.

도 9은 도 8에 도시된 공진기의 등가 회로를 나타낸 도면이다.FIG. 9 is a diagram illustrating an equivalent circuit of the resonator illustrated in FIG. 8.

도 8에 도시된 공진기는 도 9에 도시된 등가 회로로 모델링될 수 있다. 도 9의 등가 회로에서 CL은 도 8의 전송 선로의 중단부에 집중 소자의 형태로 삽입된 커패시터를 나타낸다.The resonator shown in FIG. 8 may be modeled with the equivalent circuit shown in FIG. 9. In the equivalent circuit of FIG. 9, C L represents a capacitor inserted in the form of a lumped element at the middle of the transmission line of FIG. 8.

이 때, 도 8에 도시된 무선 전력 전송을 위한 공진기는 영번째 공진 특성을 갖는다. 즉, 전파 상수가 0인 경우, 무선 전력 전송을 위한 공진기는

Figure pat00004
를 공진 주파수로 갖는다고 가정한다. 이 때, 공진 주파수
Figure pat00005
는 하기 수학식 2와 같이 표현될 수 있다. 여기서, MZR은 Mu Zero Resonator를 의미한다.At this time, the resonator for wireless power transmission shown in FIG. 8 has a zeroth resonance characteristic. That is, when the propagation constant is 0, the resonator for wireless power transmission
Figure pat00004
Suppose we have a resonant frequency. At this time, the resonance frequency
Figure pat00005
May be expressed as Equation 2 below. Here, MZR means Mu Zero Resonator.

Figure pat00006
Figure pat00006

상기 수학식 2를 참조하면, 공진기의 공진 주파수

Figure pat00007
Figure pat00008
에 의해 결정될 수 있고, 공진 주파수
Figure pat00009
와 공진기의 물리적인 사이즈는 서로 독립적일 수 있음을 알 수 있다. 따라서, 공진 주파수
Figure pat00010
와 공진기의 물리적인 사이즈가 서로 독립적이므로, 공진기의 물리적인 사이즈는 충분히 작아질 수 있다.Referring to Equation 2, the resonant frequency of the resonator
Figure pat00007
Is
Figure pat00008
Can be determined by the resonant frequency
Figure pat00009
It can be seen that the physical size of the and the resonator may be independent of each other. Thus, resonant frequency
Figure pat00010
Since the physical sizes of the and resonators are independent of each other, the physical sizes of the resonators can be sufficiently small.

도 10은 본 발명의 다른 일 실시예에 따른 meta-structured 공진기를 나타낸 도면이다.10 illustrates a meta-structured resonator according to another embodiment of the present invention.

도 10을 참조하면, meta-structured 공진기는 전송선로부(1010) 및 커패시터(1020)를 포함한다. 또한, 본 발명의 일 실시 예에 따른 공진기는, 피딩부(1030)를 더 포함하여 구성될 수 있다. Referring to FIG. 10, the meta-structured resonator includes a transmission line unit 1010 and a capacitor 1020. In addition, the resonator according to an embodiment of the present disclosure may further include a feeding unit 1030.

전송선로부(1010)는 복수의 전송 선로 쉬트(Sheet)가 병렬로 배치된다. 복수의 전송 선로 쉬트가 병렬로 배치되는 구성은, 도 11을 통하여 보다 상세하기 설명하기로 한다. In the transmission line unit 1010, a plurality of transmission line sheets are arranged in parallel. A configuration in which a plurality of transmission line sheets are arranged in parallel will be described in more detail with reference to FIG. 11.

커패시터(1020)는, 전송선로부(1010)의 특정 위치에 삽입된다. 이때, 커패시터(1020)는 전송선로부(1010)의 중단에 직렬로 삽입될 수 있다. 이때, 공진기에 생성되는 전계(electric field)는 커패시터(1020)에 갇히게 된다.The capacitor 1020 is inserted at a specific position of the transmission line unit 1010. In this case, the capacitor 1020 may be inserted in series at the interruption of the transmission line unit 1010. At this time, the electric field generated in the resonator is trapped in the capacitor 1020.

커패시터(1020)는 집중 소자(lumped element 및 분산 소자(distributed element), 예를 들어 interdigital 커패시터나 높은 유전율을 갖는 기판을 가운데다 둔 gap 커패시터 등의 형태로 전송 선로부(1010)에 삽입될 수 있다. 커패시터(1020)가 전송 선로부(1010)에 삽입됨에 따라, 공진기는 메타물질(metamaterial)의 특성을 가질 수 있다.The capacitor 1020 may be inserted into the transmission line unit 1010 in the form of a lumped element and a distributed element, for example, an interdigital capacitor or a gap capacitor centered on a substrate having a high dielectric constant. As the capacitor 1020 is inserted into the transmission line unit 1010, the resonator may have a metamaterial characteristic.

피딩부(1030)는 MNG 공진기에 전류를 공급(feeding)하는 기능을 수행할 수 있다. 이때, 피딩부(1030)는, 공진기로 공급되는 전류를 복수의 전송 선로 쉬트로 균등하게 분배되도록 설계될 수 있다.The feeding unit 1030 may perform a function of supplying current to the MNG resonator. In this case, the feeding unit 1030 may be designed to distribute the current supplied to the resonator evenly to the plurality of transmission line sheets.

도 11은 도 10의 커패시터(1020)의 삽입 위치를 상세하게 나타내는 도면이다. FIG. 11 is a diagram illustrating an insertion position of the capacitor 1020 of FIG. 10 in detail.

도 11을 참조하면, 커패시터(1020)는 전송선로부(1010)의 중단부에 삽입된다. 이때, 전송선로부(1010)의 중단부는 커패시터(1020)가 삽입될 수 있도록 오픈(open)된 형태일 수 있으며, 각각의 전송 선로 쉬트들(1010-1, 1010-2, 1010-n)은 중단부에서 서로 병렬 연결된 형태로 구성될 수 있다.Referring to FIG. 11, the capacitor 1020 is inserted into the interruption portion of the transmission line unit 1010. In this case, the interruption portion of the transmission line unit 1010 may be open so that the capacitor 1020 may be inserted, and each of the transmission line sheets 1010-1, 1010-2, and 1010-n may be It can be configured in the form of parallel to each other at the stop.

본 발명의 실시 예에 따른 방법들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.Methods according to an embodiment of the present invention can be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.

그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

200: 제1WP 수신기 210: 제1기능 블록
220: 제1통신부 230: 제1측정부
240: 제1제어부 250: 제1수신부
260: 제2측정부 270: 제1충전부
200: first WP receiver 210: first functional block
220: first communication unit 230: first measurement unit
240: first controller 250: first receiver
260: second measuring unit 270: first charging unit

Claims (16)

수신기의 무선 전력 수신 방법에 있어서,
무선 전력을 전송하는 복수 개의 송신기들을 인지하는 단계;
상기 복수 개의 송신기들 중 상기 수신기에게 상기 무선 전력을 전송할 두 개 이상의 송신기를 선택하는 단계; 및
상기 선택된 두 개 이상의 송신기로부터 상기 무선 전력을 수신하는 단계
를 포함하는 수신기의 무선 전력 수신 방법.
In the wireless power receiving method of the receiver,
Recognizing a plurality of transmitters for transmitting wireless power;
Selecting two or more transmitters of the plurality of transmitters to transmit the wireless power to the receiver; And
Receiving the wireless power from the selected two or more transmitters
Wireless power receiving method of a receiver comprising a.
제1항에 있어서,
상기 인지하는 단계는,
시분할 또는 주파수 분할에 의한 인 밴드 시그널링(In-band signaling) 방식을 이용하는, 수신기의 무선 전력 수신 방법.
The method of claim 1,
Recognizing the step,
A wireless power reception method of a receiver using an in-band signaling scheme by time division or frequency division.
제2항에 있어서,
상기 선택하는 단계는,
상기 복수 개의 송신기들로부터 전송되는 신호들 각각의 수신 효율을 측정하는 단계;
상기 측정된 수신 효율을 포함하는 접속(Association) 요청 메시지를 상기 복수 개의 송신기들에게 전송하는 단계;
상기 복수 개의 송신기들로부터 테스트를 위한 무선 전력을 수신하여 상기 무선 전력의 전송 효율을 측정하는 단계; 및
상기 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택하는 단계
를 포함하는 수신기의 무선 전력 수신 방법.
The method of claim 2,
The selecting step,
Measuring reception efficiency of each of the signals transmitted from the plurality of transmitters;
Transmitting an association request message including the measured reception efficiency to the plurality of transmitters;
Receiving wireless power for a test from the plurality of transmitters to measure transmission efficiency of the wireless power; And
Selecting two or more transmitters to transmit the wireless power using the measured transmission efficiency of the wireless power;
Wireless power receiving method of a receiver comprising a.
제3항에 있어서,
상기 접속 요청 메시지는 상기 복수 개의 송신기들과 상기 수신기와의 매칭을 위한 메시지이며, 상기 수신기가 상기 무선 전력을 수신하는 주기 정보 및 상기 수신기가 수신할 무선 전력의 용량 정보를 더 포함하는 수신기의 무선 전력 수신 방법.
The method of claim 3,
The access request message is a message for matching the plurality of transmitters and the receiver, and further includes period information at which the receiver receives the wireless power and capacity information of wireless power to be received by the receiver. Power receiving method.
제1항에 있어서,
상기 인지하는 단계는,
상기 수신기와 상기 복수 개의 송신기들 간의 거리를 기반으로 상기 복수 개의 송신기들을 인지하는, 수신기의 무선 전력 수신 방법.
The method of claim 1,
Recognizing the step,
And recognizing the plurality of transmitters based on a distance between the receiver and the plurality of transmitters.
제5항에 있어서,
상기 선택하는 단계는,
상기 거리가 측정된 복수 개의 송신기들에게 접속(Association) 요청 메시지를 전송하는 단계;
상기 복수 개의 송신기들로부터 테스트를 위한 무선 전력을 수신하여 상기 테스트를 위한 무선 전력의 전송 효율을 측정하는 단계; 및
상기 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택하는 단계
를 포함하는 수신기의 무선 전력 수신 방법.
The method of claim 5,
The selecting step,
Transmitting an association request message to the plurality of transmitters whose distances are measured;
Receiving wireless power for a test from the plurality of transmitters to measure a transmission efficiency of the wireless power for the test; And
Selecting two or more transmitters to transmit the wireless power using the measured transmission efficiency of the wireless power;
Wireless power receiving method of a receiver comprising a.
제5항에 있어서,
상기 수신기는 GPS(Global Positioning System) 및 WiFi(Wireless Fidelity)의 네트워크 중 적어도 하나를 이용하여 상기 거리를 측정하는, 수신기의 무선 전력 수신 방법.
The method of claim 5,
The receiver measures the distance using at least one of a GPS (Global Positioning System) and a network of WiFi (Wireless Fidelity), wireless power receiving method of the receiver.
제1항에 있어서,
상기 인지하는 단계는,
상기 복수 개의 송신기들로부터 전송되는 신호들을 수신하는 단계; 및
상기 수신된 신호들의 개수로 상기 송신기들을 인지하는 단계
를 포함하는 수신기의 무선 전력 수신 방법.
The method of claim 1,
Recognizing the step,
Receiving signals transmitted from the plurality of transmitters; And
Acknowledging the transmitters by the number of received signals
Wireless power receiving method of a receiver comprising a.
제1항 내지 제8항 중 어느 한 항의 방법을 컴퓨터에서 실행하기 위한 프로그램을 기록하는 컴퓨터 판독 가능한 기록 매체.A computer-readable recording medium for recording a program for executing the method of any one of claims 1 to 8 on a computer. 무선 전력 수신을 위한 수신기에 있어서,
상기 무선 전력을 전송하는 복수 개의 송신기들을 인지하고, 상기 인지된 복수 개의 송신기들 중 상기 수신기에게 상기 무선 전력을 전송할 두 개 이상의 송신기를 선택하는 제어부; 및
상기 선택된 두 개 이상의 송신기로부터 상기 무선 전력을 수신하는 수신부
를 포함하는 무선 전력 수신을 위한 수신기.
A receiver for receiving wireless power,
A controller for recognizing a plurality of transmitters transmitting the wireless power and selecting at least two transmitters to transmit the wireless power to the receiver among the recognized plurality of transmitters; And
Receiving unit for receiving the wireless power from the selected two or more transmitters
Receiver for wireless power reception comprising a.
제10항에 있어서,
상기 제어부는,
시분할 또는 주파수 분할에 의한 인 밴드 시그널링(In-band signaling) 방식을 이용하여 상기 복수 개의 송신기들을 인지하는, 무선 전력 수신을 위한 수신기.
The method of claim 10,
The control unit,
And recognizing the plurality of transmitters using an in-band signaling scheme by time division or frequency division.
제11항에 있어서,
상기 복수 개의 송신기들로부터 전송되는 신호들의 수신 효율을 각각 측정하는 제1측정부;
상기 측정된 수신 효율을 포함하는 접속(Association) 요청 메시지를 상기 복수 개의 송신기들에게 전송하는 통신부; 및
상기 복수 개의 송신기들로부터 전송되는 테스트를 위한 무선 전력의 전송 효율을 측정하는 제2측정부
를 더 포함하며,
상기 제어부는, 상기 제2측정부에서 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택하는, 무선 전력 수신을 위한 수신기.
The method of claim 11,
A first measuring unit measuring a reception efficiency of signals transmitted from the plurality of transmitters, respectively;
A communication unit which transmits an association request message including the measured reception efficiency to the plurality of transmitters; And
A second measuring unit measuring a transmission efficiency of wireless power for a test transmitted from the plurality of transmitters
More,
The controller selects two or more transmitters to transmit the wireless power using the transmission efficiency of the wireless power measured by the second measurement unit.
제12항에 있어서,
상기 접속 요청 메시지는 상기 복수 개의 송신기들과 상기 수신기와의 매칭을 위한 메시지이며,
상기 제어부는, 상기 수신기가 상기 무선 전력을 수신하는 주기 정보 및 상기 수신기가 수신할 무선 전력의 용량 정보를 더 포함하는 상기 접속 요청 메시지를 생성하는 무선 전력 수신을 위한 수신기.
The method of claim 12,
The access request message is a message for matching the plurality of transmitters and the receiver.
The control unit is a receiver for wireless power generation to generate the connection request message further comprises period information for the receiver to receive the wireless power and capacity information of the wireless power to be received by the receiver.
제10항에 있어서,
상기 제어부는, 상기 수신기와 상기 복수 개의 송신기들 간의 거리를 기반으로 상기 복수 개의 송신기들을 인지하는, 무선 전력 수신을 위한 수신기.
The method of claim 10,
The controller recognizes the plurality of transmitters based on a distance between the receiver and the plurality of transmitters.
제14항에 있어서,
상기 거리를 측정하는 제1측정부;
접속(Association) 요청 메시지를 상기 거리가 측정된 복수 개의 송신기들에게 전송하는 통신부; 및
상기 복수 개의 송신기들로부터 전송되는 테스트를 위한 무선 전력의 전송 효율을 측정하는 제2측정부
를 더 포함하며,
상기 제어부는, 상기 제2측정부에서 측정된 무선 전력의 전송 효율을 이용하여 상기 무선 전력을 전송할 송신기를 두 개 이상 선택하는, 무선 전력 수신을 위한 수신기.
The method of claim 14,
A first measuring unit measuring the distance;
A communication unit which transmits an association request message to a plurality of transmitters of which the distance is measured; And
A second measuring unit measuring a transmission efficiency of wireless power for a test transmitted from the plurality of transmitters
More,
The controller selects two or more transmitters to transmit the wireless power using the transmission efficiency of the wireless power measured by the second measurement unit.
제14항에 있어서,
상기 거리는, GPS(Global Positioning System) 및 WiFi(Wireless Fidelity)의 네트워크 중 적어도 하나를 이용하여 측정되는, 무선 전력 수신을 위한 수신기.
The method of claim 14,
The distance is measured using at least one of a GPS (Global Positioning System) and a network of WiFi (Wireless Fidelity), the receiver for wireless power reception.
KR1020100055320A 2010-06-11 2010-06-11 Method and apparatus for receiving wireless power KR20110135540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100055320A KR20110135540A (en) 2010-06-11 2010-06-11 Method and apparatus for receiving wireless power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100055320A KR20110135540A (en) 2010-06-11 2010-06-11 Method and apparatus for receiving wireless power

Publications (1)

Publication Number Publication Date
KR20110135540A true KR20110135540A (en) 2011-12-19

Family

ID=45502452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100055320A KR20110135540A (en) 2010-06-11 2010-06-11 Method and apparatus for receiving wireless power

Country Status (1)

Country Link
KR (1) KR20110135540A (en)

Cited By (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014313A1 (en) * 2012-07-19 2014-01-23 Samsung Electronics Co., Ltd. Methods and device for controlling power transmission using nfc
KR101396311B1 (en) * 2012-09-06 2014-05-22 주식회사 메이드포 Wireless Electric Power transmission system with sensing means of transmission efficency
WO2014209588A1 (en) * 2013-06-25 2014-12-31 Energous Corporation Hybrid wi-fi and power router transmitter
WO2016171456A1 (en) * 2015-04-22 2016-10-27 엘지이노텍(주) Network-based wireless power control method, and wireless power control device and system
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9882395B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9881733B2 (en) 2012-09-07 2018-01-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
KR20180015276A (en) * 2012-04-03 2018-02-12 퀄컴 인코포레이티드 System and method for wireless power control communication using bluetooth low energy
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
KR20210126787A (en) * 2019-04-10 2021-10-20 오시아 인크. Simplified Wireless Power Receiver Architecture
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180015276A (en) * 2012-04-03 2018-02-12 퀄컴 인코포레이티드 System and method for wireless power control communication using bluetooth low energy
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10298024B2 (en) 2012-07-06 2019-05-21 Energous Corporation Wireless power transmitters for selecting antenna sets for transmitting wireless power based on a receiver's location, and methods of use thereof
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
WO2014014313A1 (en) * 2012-07-19 2014-01-23 Samsung Electronics Co., Ltd. Methods and device for controlling power transmission using nfc
US9806768B2 (en) 2012-07-19 2017-10-31 Samsung Electronics Co., Ltd. Methods and device for controlling power transmission using NFC
KR101396311B1 (en) * 2012-09-06 2014-05-22 주식회사 메이드포 Wireless Electric Power transmission system with sensing means of transmission efficency
US9881733B2 (en) 2012-09-07 2018-01-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9941705B2 (en) 2013-05-10 2018-04-10 Energous Corporation Wireless sound charging of clothing and smart fabrics
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US11722177B2 (en) 2013-06-03 2023-08-08 Energous Corporation Wireless power receivers that are externally attachable to electronic devices
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10291294B2 (en) 2013-06-03 2019-05-14 Energous Corporation Wireless power transmitter that selectively activates antenna elements for performing wireless power transmission
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
WO2014209588A1 (en) * 2013-06-25 2014-12-31 Energous Corporation Hybrid wi-fi and power router transmitter
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10396588B2 (en) 2013-07-01 2019-08-27 Energous Corporation Receiver for wireless power reception having a backup battery
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10523058B2 (en) 2013-07-11 2019-12-31 Energous Corporation Wireless charging transmitters that use sensor data to adjust transmission of power waves
US10305315B2 (en) 2013-07-11 2019-05-28 Energous Corporation Systems and methods for wireless charging using a cordless transceiver
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10498144B2 (en) 2013-08-06 2019-12-03 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices in response to commands received at a wireless power transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10516301B2 (en) 2014-05-01 2019-12-24 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10186911B2 (en) 2014-05-07 2019-01-22 Energous Corporation Boost converter and controller for increasing voltage received from wireless power transmission waves
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10396604B2 (en) 2014-05-07 2019-08-27 Energous Corporation Systems and methods for operating a plurality of antennas of a wireless power transmitter
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10014728B1 (en) 2014-05-07 2018-07-03 Energous Corporation Wireless power receiver having a charger system for enhanced power delivery
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10298133B2 (en) 2014-05-07 2019-05-21 Energous Corporation Synchronous rectifier design for wireless power receiver
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US11233425B2 (en) 2014-05-07 2022-01-25 Energous Corporation Wireless power receiver having an antenna assembly and charger for enhanced power delivery
US9882395B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10554052B2 (en) 2014-07-14 2020-02-04 Energous Corporation Systems and methods for determining when to transmit power waves to a wireless power receiver
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US10490346B2 (en) 2014-07-21 2019-11-26 Energous Corporation Antenna structures having planar inverted F-antenna that surrounds an artificial magnetic conductor cell
US9882394B1 (en) 2014-07-21 2018-01-30 Energous Corporation Systems and methods for using servers to generate charging schedules for wireless power transmission systems
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9899844B1 (en) 2014-08-21 2018-02-20 Energous Corporation Systems and methods for configuring operational conditions for a plurality of wireless power transmitters at a system configuration interface
US10790674B2 (en) 2014-08-21 2020-09-29 Energous Corporation User-configured operational parameters for wireless power transmission control
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
WO2016171456A1 (en) * 2015-04-22 2016-10-27 엘지이노텍(주) Network-based wireless power control method, and wireless power control device and system
EP3288151A4 (en) * 2015-04-22 2019-02-13 LG Innotek Co., Ltd. Network-based wireless power control method, and wireless power control device and system
US11670970B2 (en) 2015-09-15 2023-06-06 Energous Corporation Detection of object location and displacement to cause wireless-power transmission adjustments within a transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11056929B2 (en) 2015-09-16 2021-07-06 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US11777328B2 (en) 2015-09-16 2023-10-03 Energous Corporation Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10483768B2 (en) 2015-09-16 2019-11-19 Energous Corporation Systems and methods of object detection using one or more sensors in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10177594B2 (en) 2015-10-28 2019-01-08 Energous Corporation Radiating metamaterial antenna for wireless charging
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10594165B2 (en) 2015-11-02 2020-03-17 Energous Corporation Stamped three-dimensional antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10511196B2 (en) 2015-11-02 2019-12-17 Energous Corporation Slot antenna with orthogonally positioned slot segments for receiving electromagnetic waves having different polarizations
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10447093B2 (en) 2015-12-24 2019-10-15 Energous Corporation Near-field antenna for wireless power transmission with four coplanar antenna elements that each follows a respective meandering pattern
US10186892B2 (en) 2015-12-24 2019-01-22 Energous Corporation Receiver device with antennas positioned in gaps
US10141771B1 (en) 2015-12-24 2018-11-27 Energous Corporation Near field transmitters with contact points for wireless power charging
US10516289B2 (en) 2015-12-24 2019-12-24 Energous Corportion Unit cell of a wireless power transmitter for wireless power charging
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10277054B2 (en) 2015-12-24 2019-04-30 Energous Corporation Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate
US10958095B2 (en) 2015-12-24 2021-03-23 Energous Corporation Near-field wireless power transmission techniques for a wireless-power receiver
US11689045B2 (en) 2015-12-24 2023-06-27 Energous Corporation Near-held wireless power transmission techniques
US10879740B2 (en) 2015-12-24 2020-12-29 Energous Corporation Electronic device with antenna elements that follow meandering patterns for receiving wireless power from a near-field antenna
US10491029B2 (en) 2015-12-24 2019-11-26 Energous Corporation Antenna with electromagnetic band gap ground plane and dipole antennas for wireless power transfer
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10218207B2 (en) 2015-12-24 2019-02-26 Energous Corporation Receiver chip for routing a wireless signal for wireless power charging or data reception
US11451096B2 (en) 2015-12-24 2022-09-20 Energous Corporation Near-field wireless-power-transmission system that includes first and second dipole antenna elements that are switchably coupled to a power amplifier and an impedance-adjusting component
US11114885B2 (en) 2015-12-24 2021-09-07 Energous Corporation Transmitter and receiver structures for near-field wireless power charging
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10355534B2 (en) 2016-12-12 2019-07-16 Energous Corporation Integrated circuit for managing wireless power transmitting devices
US10476312B2 (en) 2016-12-12 2019-11-12 Energous Corporation Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered to a receiver
US11594902B2 (en) 2016-12-12 2023-02-28 Energous Corporation Circuit for managing multi-band operations of a wireless power transmitting device
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10840743B2 (en) 2016-12-12 2020-11-17 Energous Corporation Circuit for managing wireless power transmitting devices
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US11063476B2 (en) 2017-01-24 2021-07-13 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11637456B2 (en) 2017-05-12 2023-04-25 Energous Corporation Near-field antennas for accumulating radio frequency energy at different respective segments included in one or more channels of a conductive plate
US11245191B2 (en) 2017-05-12 2022-02-08 Energous Corporation Fabrication of near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11218795B2 (en) 2017-06-23 2022-01-04 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10714984B2 (en) 2017-10-10 2020-07-14 Energous Corporation Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11710987B2 (en) 2018-02-02 2023-07-25 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11967760B2 (en) 2018-06-25 2024-04-23 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a location to provide usable energy to a receiving device
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11699847B2 (en) 2018-06-25 2023-07-11 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11527918B2 (en) 2019-04-10 2022-12-13 Ossia Inc. Simplified wireless power receiver architecture
JP2022137022A (en) * 2019-04-10 2022-09-21 オシア インク. Simplified wireless power receiver architecture
KR20210126787A (en) * 2019-04-10 2021-10-20 오시아 인크. Simplified Wireless Power Receiver Architecture
US11990770B2 (en) 2019-04-10 2024-05-21 Ossia Inc. Simplified wireless power receiver architecture
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11715980B2 (en) 2019-09-20 2023-08-01 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Similar Documents

Publication Publication Date Title
KR20110135540A (en) Method and apparatus for receiving wireless power
JP6023785B2 (en) Wireless power transmission control method and wireless power transmission device
KR101640772B1 (en) Apparatus and method inducing wireless power receiver to power transmission area
KR101829257B1 (en) Wireless power transmission system based on cell division
US9088167B2 (en) Wireless power transmission system using solar cell module
AU2011332142B2 (en) Wireless power utilization in a local computing environment
KR20120050011A (en) Resonance power transmission system and method to control resonance power transmitting and receiving
KR101358280B1 (en) Method and Apparatus
US20120303980A1 (en) Wireless power utilization in a local computing environment
KR101110325B1 (en) wireless charging system
KR20110131954A (en) Wireless power transmission apparatus and method
KR20120019090A (en) Method and apparatus of tracking of resonance impedance in resonance power transfer system
KR20130015836A (en) Wireless power transmission system, method and apparatus for power control in power transmission system
US9178388B2 (en) Wireless power transmission apparatus
KR20130022185A (en) Sauce apparatus and method that control magnetic field using two sauce resonators in wireless resonant power transfer system
KR20130013396A (en) Wireless power transmission system, method and apparatus for resonance frequency tracking in wireless power transmission system
KR101171937B1 (en) Multi-node wireless power transmission system and wirelss chargeable device using magnetic resonance induction
KR20120102316A (en) System for wireless power transmission and reception
KR20120134999A (en) Wireless power transmission and charging system, power control and communication method of wireless power transmission and charging system
KR101173947B1 (en) Method of sending switching instruction in multi-node wireless power transmission
KR20120077444A (en) Multi-node wireless power transmission system and charging method therof based on battery information
KR101635972B1 (en) Wireless Power Transmission Apparatus and Method, Mobile Terminal and Method for Receiving Wireless Power
KR20120005112A (en) Adaptive wireless power transmit apparatus and method for mobile device in wireless power transmission systems
KR101587546B1 (en) Wireless Power Transmission Apparatus and Method
KR20110136015A (en) Adaptive frequency hopping apparatus and method for electromagnetic interference suppression in wireless power transmission systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal