KR20040077228A - Wireless charging system using rectenna - Google Patents

Wireless charging system using rectenna Download PDF

Info

Publication number
KR20040077228A
KR20040077228A KR1020030012701A KR20030012701A KR20040077228A KR 20040077228 A KR20040077228 A KR 20040077228A KR 1020030012701 A KR1020030012701 A KR 1020030012701A KR 20030012701 A KR20030012701 A KR 20030012701A KR 20040077228 A KR20040077228 A KR 20040077228A
Authority
KR
South Korea
Prior art keywords
antenna
rack
charging system
voltage
wireless charging
Prior art date
Application number
KR1020030012701A
Other languages
Korean (ko)
Inventor
배대환
Original Assignee
배대환
(주)이노트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배대환, (주)이노트론 filed Critical 배대환
Priority to KR1020030012701A priority Critical patent/KR20040077228A/en
Publication of KR20040077228A publication Critical patent/KR20040077228A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter
    • H02J7/025Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter using non-contact coupling, e.g. inductive, capacitive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0025Near field system adaptations
    • H04B5/0037Near field system adaptations for power transfer

Abstract

PURPOSE: A wireless charging system is provided to charge a battery by receiving waves radiated from a remote place with the minimization of power transmission trouble according to environmental changes. CONSTITUTION: A wireless charging system comprises a transmission unit for radiating high frequency power to the air; a direct current converting unit for receiving, through the use of a rectenna, the high frequency power radiated from the transmission unit, and converting the high frequency power into a direct current voltage of a predetermined level; and a voltage stabilizer circuit(26) for stabilizing the direct current voltage into a constant voltage, and outputting the result.

Description

렉테나를 이용한 무선 충전 시스템{WIRELESS CHARGING SYSTEM USING RECTENNA} Lek wireless charging system {WIRELESS CHARGING SYSTEM USING RECTENNA} using antenna

본 발명은 전원 충전 시스템에 관한 것으로, 특히 렉테나(rectenna)를 이용하여 충전지에 전압·전류를 충전시키는 무선 충전 시스템에 관한 것이다. The present invention relates to a wireless charging system for charging a, more particularly, rack antenna voltage and current to the battery using the (rectenna) for power charging system.

통상적으로 휴대용 무선 전화기(radio portable telephone), 개인 휴대 정보 단말기(personal digital assistant, PDA) 및 휴대용 캠코더(portable camcorder) 등과 같은 휴대용 단말기 등은 배터리(battery)에 충전된 전압을 동력원(power source)으로 사용하고 있다. Typically in a mobile terminal such as the power source (power source) by the voltage charged in the battery (battery) such as a portable wireless telephone (radio portable telephone), a personal digital assistant (personal digital assistant, PDA), and portable camcorders (portable camcorder) and use. 상기와 같은 휴대용 단말기에 사용되는 배터리는 재충전이 가능한 축전지가 이용되고 있다. Battery used in portable terminals such as the above have been used a rechargeable battery available. 따라서, 상기와 같은 휴대용 단말기에 사용되는 축전지에 전압·전류를 충전시키기 위해서는 별도의 충전장치(charging system)가 필요로 하게 된다. Therefore, in order to charge the voltage and current to the secondary battery used for the portable terminal as described above it is (charging system) separate charging device will require. 이러한 충전장치는 이 기술분야에 종사하는 자들에게 널리 알려져 있다. The charging device is well known to those working in the art.

가장 널리 보급된 충전시스템은 상용전압(AC 110VAC~220VAC)을 희망하는 전압레벨로 다운시켜 전파정류하고, 상기 전파정류된 전압을 축전지에 공급하여 충전하는 방법이다. The most widespread method for full-wave rectification to charge the system down to a voltage level desired for commercial voltage (AC 110VAC ~ 220VAC), and charging by supplying the electric wave rectified voltage to the battery. 이러한 충전시스템은 전파정류된 직류전압의 출력단자와 배터리의 단자들을 직접적으로 접촉(connection)하여 충전기의 전압·전류가 배터리에 공급되도록 구성되어 있다. This charging system voltage and current of the direct contact (connection) of the output terminals and the battery terminal of the full wave rectified DC voltage charger is configured to be supplied to the battery. 이를 도면을 참조하여 설명하면 하기와 같다. If this description with reference to the drawings as follows.

도 1 및 도 2는 종래의 기술에 의해 만들어진 충전 시스템을 설명하기 위한 도면이다. 1 and 2 are views for explaining a charging system made by conventional techniques. 도면 중, 참조부호 12는 상용전원을 입력하기 위한 파워코드(power code)이고, 14는 상기 파워코드 12를 통해 입력되는 상용교류전원을 소정 레벨의 전압으로 전압 강하시킨 후 정류하여 직류전압을 발생시키는 충전기이다. In the figure, reference numeral 12 is a power cord (power code) for inputting commercial power supply 14 generates a DC voltage rectified after the voltage drop to a voltage of a predetermined the commercial AC power input through the power cord 12 level It is that the charger. 상기 충전기 14에는 휴대 단말기의 배터리의 양전극과 음전극이 접촉시키기 위한 전극 연결자(electrode connector) 16들을 갖는다. The charger 14, the connector has the electrode (electrode connector) 16 for the positive electrode and the negative electrode of the battery contacts of the wireless terminal. 참조번호 18은 축전이 가능한 배터리로부터 공급되는 전압·전류에 의해 동작되는 휴대용 단말기이다. Reference numeral 18 is a mobile terminal operated by the voltage and current that is supplied from the power storage is available battery. 도면에서는 휴대용단말기를 이동통신전화기의 예를 들어 나타내었다. In the drawing it is shown an example of the mobile phone to the mobile terminal. 상기와 같은 휴대용 단말기 18의 뒷면(back plan)에 결합되어진 배터리의 전극이 상기 충전기 14의 전극연결자 16들에 결합되면, 이미 잘 알려진 바와 같이 충전기 14에서 소정의 레벨로 다운되어 전파정류된 직류전압이 상기 배터리로 공급되어 배터리에 전류를 충전하게 된다. When the electrode of the battery been coupled to the mobile back on the device 18 (back plan) as described above coupled to electrode connector 16 of the charger 14, is down the charger 14. As well known to a predetermined level of full-wave rectified DC voltage It is supplied to said battery is charging current to the battery.

그러나, 상기 도 1 및 도 2와 같이 구성된 종래의 기술에 의한 충전 시스템은 충전기의 파워코드 12의 길이가 한정되어 있어서 전원콘센트와 충전기간의 거리 제약을 받는 문제가 발생하여 충전하는 시간동안에는 휴대용 단말기의 이용이 곤란하게 된다. However, while the Fig. 1 and the charging system according to a prior art is configured as shown in Figure 2 is the time to charge in a limited length of the power cord 12 of the charger is a problem to receive the distance constraint between the electrical outlet and a charger generation of the mobile terminal use is difficult. 또한, 충전기 14의 전극연결자 16들과 휴대용 단말기 18의 전극간의 접촉 불량이 야기되어 전력손실을 초래하며, 이러한 이유에 의한 고장이 발생되는 문제가 있었다. Moreover, poor contact between the charger 14 of electrode connector 16 and the portable terminal 18 of the electrode is caused and results in a power loss, there is a problem in the breakdown due to such reasons occurred.

상기와 같은 문제점들 중, 충전기 14의 전극연결자 16들과 휴대용 단말기 18의 전극간의 접촉 불량을 개선하기 위하여 충전시스템의 전압단자와 배터리의 전극을 비접촉 상태로 충전하는 자기 유도 결합 방식과, 비방사유전체(NRD : Non Radiative Dielectric Wave Guide tech)이론을 응용한 비접촉 충전 시스템이 있다. Of the above problems, a magnetic inductive coupling scheme, the non reason for charging the electrode of the voltage terminal and a battery charging system with a non-contact manner in order to improve the poor contact between the charger 14, the electrode connector 16 and the portable terminal 18 of the electrode there is a non-contact charging system applied to: (Non Radiative Dielectric Wave Guide tech NRD) theoretical whole. 이를 도 3을 참조하면 하기와 같다. If this reference to FIG. 3 as follows.

도 3은 종래의 또다른 기술에 의한 충전 시스템을 간략하게 나타낸다. Figure 3 shows an overview of the charging system according to another conventional technique. 도 1 및 도 2의 구성과 다른 점은 충전기 14와 휴대용 단말기 18들 각각에는 전극 연결자 16들과 전극을 접촉하는 접점부분이 없다는 점이고, 충전기 14와 휴대용 단말기 18의 배터리간의 전압 충전은 자기 유도 결합 또는 비방사 유전체 이론에 의한 무선 충전을 한다는 점이다. 1 and the configuration different from the voltage charged between the battery charger 14 and mobile terminal 18 of the electrode connector 16 and the electrode jeomyigo that the contact parts, the charger 14 and the portable terminal 18 to contact each of the Figure 2 is the magnetic induction coupling or is that the wireless charge according to the non-radiative dielectric theory.

그러나, 자기 유도 결합에 의한 비접촉 결합 충전 시스템은 트랜스포머(transformer)들의 자유 유도 결합에 의해 전압을 배터리에 충전시키는 것으로 송신기와 수신기간의 유도 결합 거리에 제한에 대한 문제와 부피가 크고 전력 소모가 많게 되는 문제가 있었다. However, the magnetic non-contact coupling according to the inductively coupled charging system has a problem with the volume of the inductive coupling limits the distance between the transmitter and the receiver to be for charging the battery voltage by the free induction coupling of the transformer (transformer) large power consumption, a lot that there is a problem. 또한, 고주파 대역에서 전기의 성질이 변하는 비방사유전체(NRD) 이론을 응용한 무선충전방식은 30 GHz이상의 고주파를 사용하므로 기존의 공중파중계기에 설치할 경우 경제적인 부담과 공간 매질변화(비, 안개, 수증기에 의한)에 따른 전력 손실이 야기되므로 환경적으로 많은 제약을 받는 문제가 있었다. The wireless charging system of the application of the non reason full (NRD) theory changing the nature of the electricity from the high-frequency band is used more than 30 GHz high frequency and therefore, if installed on an existing over-the-air repeaters economic burden and space medium change (rain, fog, since the power loss caused by the by the steam) it caused there is a problem receiving a number of environmental constraints.

따라서, 본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로 공간을 매체로 한 전력의 이동 시 환경 변화(비, 안개, 수증기 등)에 따른 전력 송신 장해를 최소화하여 원격지에서 방사되는 전파를 수신하여 배터리를 충전하는 무선 충전 시스템을 제공함에 있다. Accordingly, it is an object of the invention is the radio wave radiated from a remote location to minimize power transmission interference in a space to have devised a medium environmental changes during the movement of electric power (rain, fog, steam, etc.) in order to solve the above receives is the wireless charging system for charging a battery to provide.

본 발명의 다른 목적은 렉테나를 이용하여 원격지에서 방사되는 전파를 수신하여 배터리를 충전하는 무선 충전 회로를 제공함에 있다. Another object of the present invention to provide a wireless charging circuit for charging a battery to provide to receive radio waves radiated from a remote location using a rack antenna.

상기와 같은 목적을 달성하기 위한 본 발명은 안테나 어레이를 통해 소정 전력의 전파를 방사하는 송신부와, 상기 공중 전파되는 고주파 전력을 렉테나에 의해 수신하여 소정 레벨의 직류 전압으로 변환하여 출력하는 직류전력 변환부 및 상기직류 전압을 일정한 전압으로 안정화시켜 출력하는 전압안정화회로를 포함함을 특징으로 한다. The present invention for achieving the above object, the transmission unit in which a radio wave of a predetermined power through the antenna array, the DC power output by receiving a high-frequency power in which the air spread by the rack antenna converts a DC voltage of a predetermined level, It characterized in that it comprises a conversion unit and a voltage stabilizing circuit for stabilizing the output of the DC voltage to a constant voltage.

상기 고주파전력을 송신하는 송신기는 공중파 중계기에서 송신하는 기본 송신시스템을 그대로 채택하여 사용할 수 있다. A transmitter for transmitting the high-frequency power may be used as the base employed in the transmission system for transmitting over-the-air repeaters. 따라서 별도의 부가 장비가 필요 없게된다. Thus a separate additional equipment is not required. 또한 데이터를 전송하는 것이 아니므로 본 발명에서는 별도의 변조장치 및 신호의 품질을 논의하지 않는다. In addition, not to send data it does not discuss the quality of a separate modulator and a signal in the present invention. 다만 송신하고자하는 고주파전력의 효율을 위하여 송신안테나의 구성은 배열 안테나(antenna array)의 형태로 제작되는 것이 바람직하다. However, a configuration of the transmitting antenna for the high frequency power efficiency to be transmitted is preferably produced in the form of an array antenna (antenna array).

수신부에 해당하는 상기 직류전력 변환부는 송신기의 배열 안테나로부터 방사된 고주파전력을 수신하는 수신용 배열 렉테나; The direct current power conversion corresponding to the receiving section for receiving a number of high-frequency power radiated from an array antenna of the transmitter arrangement credit rack antenna; 상기 수신용 배열 렉테나에서 수신된 고주파전력을 직류화하는 RF정류기; RF to DC rectifier screen the high frequency power received by the receiving antenna array rack; 평활회로 및 부하에서 발생되는 교류분(ripple) 및 전도성 전자파장해를 억제하기 위한 RF블로킹 필터(blocking filter)와; RF blocking filter for suppressing the minute flow (ripple) and the conductive EMI generated by the smoothing circuit and the load (blocking filter) and; 상기 RF정류기에서 반파 또는 전파로 정류된 고주파전력을 직류전압으로 바꾸기 위한 평활회로와; A smoothing circuit for switching the high frequency electric power rectified by half-wave or radio wave from the RF rectifier into a DC voltage; 상기 직류전력을 배터리 충전용 전압으로 변환시키는 상기 전압안정화회로를 포함하여 구성된다. It is configured to include the voltage stabilizing circuit for converting the direct-current power for the battery charge voltage.

또한 상기 고주파전력 송신기는 공중파 중계기에서 정보 및 방송신호의 전력을 그대로 이용할 수 있다. In addition, the high-frequency power transmitter can be used as it is the power of the information and a broadcast signal from the terrestrial repeater.

상기와 같이 구성된 무선 충전 시스템은, 공중파 중계기 등과 같은 송신기의 배열 안테나에서 방사되는 고주파 전력을 배열 렉테나로 수신하고, 정류 및 필터링하여 정전압으로 안정화시켜 배터리 전극 연결자로 제공함으로써 파워코드 등에 의한 길이의 제약을 받지 않게 된다. Wireless charging system configured as described above, receives a high-frequency power radiated from an array antenna of a transmitter, such as over-the-air repeater arrangement rack antenna and, by stabilizing the constant voltage by rectifying and filtering of the length due to a power cord by providing as the battery electrode is connected It is not independent.

도 1 및 도 2는 종래의 기술에 의한 배터리 충전 시스템을 설명하기 위한 도면. 1 and 2 are views for explaining the battery charging system according to a prior art.

도 3은 종래의 또다른 기술에 의한 배터리 충전 시스템을 설명하기 위한 도면. Figure 3 is a diagram illustrating a battery charging system according to another conventional technique.

도 4는 본 발명의 바람직한 실시에에 따른 렉테나를 이용한 무선 충전 시스템의 블록 구성도를 타나낸 도면. 4 is a view that appears to embellish a block diagram illustrating a wireless charging system using a rack antenna according to a preferred embodiment of the present invention.

도 5는 도 4의 구성 중, 배열 렉테나를 이용한 직류 전압 변환부의 상세한 구성을 나타낸 도면이다. 5 is a view showing a detailed configuration direct current-to-voltage conversion unit with, the array antenna of the rack structure of FIG.

이하 본 발명의 바람직한 실시예가 더욱 상세하게 설명된다. An example follows a preferred embodiment of the present invention will be described in more detail. 하기의 실시예는 설명을 위한 것이라는 것이며 당업자에게 본 발명의 사상을 충분하게 전달하기 위한 것임에 유의하여야 하며, 이들 실시예들은 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 기술적 사상에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속한 기술분야에 종사하는 자들에게 있어서 자명한 것이다. Practice of the following examples will that for the purpose of description and should be aware of the will to sufficiently transfer to one of ordinary skill in the art the scope of the invention, these embodiments are, according to the technical features of the present invention it serves to explain the invention in more detail the scope of the present invention is not limited to these examples will be apparent according to those engaged in the art that the present invention; 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지공용에 대한 기술적 구성들에 대한 상세한 설명들이 생략됨에 유의하여야 한다. It should also be noted that they omit detailed description of the technical construction of the known public that may unnecessarily obscure the subject matter of the present invention.

도 4는 본 발명의 바람직한 실시예에 따른 렉테나를 이용한 무선충전시스템을 나타낸 구성도 이다. Figure 4 is a block diagram illustrating the wireless charging system using a rack antenna according to an embodiment of the present invention. 도 1에 도시된 고주파 전력 송신부 20은 디지털 정보 혹은 아날로그 정보를 변조하고, 상기 변조된 정보를 전력증폭된 고주파전력을 최종 출력 노드에 접속된 배열안테나 22를 통해 공간으로 방사한다. A high frequency power transmission unit 20 shown in Figure 1 is radiated into space via the array antenna 22 connected to the high-frequency power-modulated digital information or analog information, and power amplifying the modulated information to the final output node. 이때, 상기 고주파 전력 송신부 20으로부터 출력되는 정보는 변조되지 않은 정보일 수 도 있음에 유의 유의하여야 한다. At this point, the information outputted from the high frequency power transmission unit 20. It should be noted note that even be a non-modulated information.

상기 고주파 전력 송신부 20은 공중파 중계기, 예를 들면, CDMA(code division multiple access of cellular mobile radio system)의 중계기를 그대로 이용할 수 있다. The high frequency power transmission unit 20 can be used as a repeater in the repeater-air, for example, CDMA (code division multiple access of cellular mobile radio system). 공중파 중계기를 그대로 이용하는 경우 공간으로 방사되는 고주파전력의 효율 증대를 위하여 안테나는 도 5와 같이 배열 안테나로 구현되는 것이 바람직하다. When using an over-the-air repeaters as to increase the efficiency of the high-frequency power radiated by the antenna space it is preferably implemented as an array antenna as shown in FIG.

상기 고주파 전력 송신부 20의 배열 안테나 22로부터 방사되는 고주파 전력은 공간상에서 이격되어진 원격지의 휴대용 단말기(도시하지 않았음)에 내장되어 수신기에 연결된 배열 렉테나 24로 수신되어진다. The high-frequency power radiated from the high-frequency array antenna 22 of the power transmission unit 20 is built into the mobile terminal (not shown) of the remote been separated in space is being received by an array antenna rack 24 connected to the receiver.

상기 배열 렉테나 24는 수신된 고주파 전력을 정류하여 직류전압으로 변환하고, 상기 변환된 직류전압을 필터링하여 그에 포함된 고주파 및 불요파 성분을 제어하여 전압안정화회로 26으로 공급한다. The array antenna 24 is a rack by rectifying the received high-frequency electric power is converted into direct-current voltage, and supplying to filter the converted DC voltage into a high frequency and a voltage stabilizing circuit 26 to control the spurious components contained therein.

상기 전압 안정화 회로 26은 상기 정류되어 평활된 직류전압의 레벨을 정전압으로 안정화시켜 출력노드에 연결된 충전 배터리(rechargeable battery) 28의 전극으로 공급하여 상기 충전 배터리 28을 충전한다. The voltage stabilizing circuit 26 to charge the charging battery 28 to stabilize the level of the smoothed direct-current voltage is rectified by the constant voltage supplied to the electrode 28 of the charged battery (rechargeable battery) coupled to the output node.

상기한 바와 같이, 공중파 중계기로 구성되는 고주파 전력 송신기 20가 배열 안테나 22를 통해 공중으로 고주파 전력을 방사하면, 휴대용 단말기의 내부에 탑재(혹은 내장, 설치)된 배열 렉테나 14가 고주파 전력을 수신하여 직류전압을 검파(정류) 및 필터링하여 직류전압으로 변환하여 전압안정화회로 26로 공급함으로써 휴대용 단말기에 연결된 충전배터리 28에 전압이 충전되게 됨을 알 수 있다. , When the high-frequency power transmitter 20 consisting of over-the-air repeaters emitting a high-frequency power into the air through the array antenna 22, mounted inside a portable terminal (or a built-in, installation) arranged rack antenna 14 receives a high-frequency power, as described above and by applying a DC voltage to a detector (rectifier), and a voltage stabilizing circuit 26 converts a DC voltage by filtering it can be seen that the voltage to be charged in the charging battery 28 is connected to the portable terminal.

도 4의 구성에서는 충전 배터리 28의 과충전을 방지하기 위한 구성이 도시되어 있지 않으나, 충전 배터리 28의 전압레벨을 감지하여 전압안정화회로 26의 출력을 "온/오프"스위칭하여 배터리의 과충전을 방지하는 과충전방지회로가 추가될 수 있음을 인식하여야 한다. In FIG. 4 configuration, but the configuration for preventing the excessive charging of the charging battery 28 is not shown, detects the voltage level of the charge battery 28, the output of the voltage stabilizer circuit 26, the "on / off" switch for preventing the overcharge of the battery it should be appreciated that the overcharge protection circuit can be added.

상기와 같은 동작은 수신기, 즉 휴대용 단말기의 내부에 내장되어지는 배열렉테나 24, 전압안정화회로 26 및 충전배터리 28들간의 상세한 연결 구성을 나타내는 하기 도 5의 동작을 참조함으로써 보다 명확하게 이해될 것이다. Operation as described above will be more clearly understood by the receiver, that is, see the operation shown in Fig. 5 for showing a detailed connection configurations between which is embedded inside a mobile terminal arranged rack antenna 24, voltage stabilizing circuit 26 and battery charge 28 .

도 5는 도 4의 구성 중, 배열 렉테나를 이용한 직류 전압 변환부의 상세한 구성을 나타낸 도면이다. 5 is a view showing a detailed configuration direct current-to-voltage conversion unit with, the array antenna of the rack structure of FIG. 도 5를 참조하면, 배열 렉테나 24는 적어도 하나 이상의 렉테나가 매트릭스 형태로 배열 접속되어 구성되어 있다. 5, the array antenna rack 24 is at least one rack connected to antenna configuration arranged in a matrix form. 하나의 렉테나는 이격된 두개의 안테나 31과 33의 사이에는 고주파 전력을 정류하기 위한 쇼트키 다이오드 30의 애노드와 캐소드가 접속되며, 상기 쇼트키 다이오드 30의 애노드와 캐소드 사이에는 리플(ripple) 및 전도성 전자파 장해를 억제하기 위한 RF 블록킹 필터 32와 상기 쇼트키 다이오드 30에서 반파 혹은 전파 정류된 고주파 전력을 직류전력으로 변환하기 위한 평활회로 34가 접속되어 구성된다. Between one rack antenna is between the spaced-apart the two antennas 31 and 33, is connected to the anode and the cathode of the Schottky diode 30 for rectifying the high frequency power, of the Schottky diode 30, the anode and the cathode ripple (ripple) and Electromagnetic conductivity is a half wave or full wave rectified high-frequency power from the Schottky diode 30 and the RF-blocking filter 32 for suppressing the disturbance 34 is connected to a smoothing circuit for converting the direct current power configuration. 이때, 다수의 렉테나들은 하나 이상의 컬럼(column)과 로우(row)의 방향으로 배열되어 매트릭스의 형태를 갖는다. At this time, a plurality of rack antenna are arranged in the direction of one or more columns (column) and row (row) in the form of a matrix. 각 컬럼에 배열된 쇼트키 다이오드 30들은 병렬 접속된 형태를 갖는다. The Schottky diode 30 arranged in each column have the parallel-connected form.

상기와 같은 매트릭스형태 배열 렉테나 24중 첫 번째 컬럼에 위치된 렉테나들내의 다수의 쇼트키 다이오드 30들의 애노드는 전압안정화회로 26의 음전극에 접속되며, 최종 컬럼에 위치된 렉테나들내의 쇼트키 다이오드 30들의 캐소드는 상기 전압안정화회로 26의 양전극에 접속되어진다. A plurality of Schottky diode the anode of 30 in the matrix shape arranged rack antenna 24 of the rack located at the first column antenna as described above is connected to the negative electrode of the voltage stabilizing circuit 26, Schottky within the the rack antenna located at the end column the cathode of diode 30 will be connected to the positive electrode of the voltage stabilizing circuit 26. 그리고, 상기 첫 번째 컬럼 및 최종 컬럼의 사이에 위치된 렉테나들내의 쇼트키 다이오드 30들의 캐소드와 애노드는 이웃하는 컬럼에 위치된 쇼트키 다이오드 30들의 애노드와 캐소드에 접속되어 있다. Then, the cathode and the anode of the first column and the rack antenna of the Schottky diode 30 in the position between the end columns are connected to the anode and the cathode of the Schottky diode 30 is located in a neighboring column.

상기 배열 렉테나 24는 다수의 렉테나들이 매트릭스 어레이 형태로 접속되어 있어 원하는 전력량의 직류 전압을 얻을 수 있게된다. The array antenna rack 24 is connected to a plurality of matrix array type rekte outing it is possible to obtain a DC voltage of a desired amount of power. 또한, 안테나 31과 33의 사이에 접속된 쇼트키 다이오드 30의 접속 위치를 조정하여 안테나들 31, 33과 쇼트키 다이오드 30간의 임피던스 정합을 취하여야 한다. In addition, adjusting the connection position of the Schottky diode 30 connected between the antenna 31 and 33 to be taken by the impedance matching between the antennas 31, 33 and Schottky diode 30.

도 5와 같이 구성되는 배열 렉테나 24는 유전체 기판상에 형성된 도전성 키판을 적절하게 설계하여 마이크로 스트립 라인(microstrip Line) 구조로 형성하는 것이 바람직하다. FIG rack antenna array 24 is configured as shown in FIG. 5 by properly designing the conductive kipan formed on the dielectric substrate is preferably formed of a microstrip line (microstrip Line) structure.

지금 도 4와 같이 구성된 고주파 전력 송신부 20에서 출력하는 고주파 전력이 배열 안테나 22에 의해 송신되어 도 5와 같이 구성된 배열 렉테나 24로 입사되면, 상기 배열 렉테나 24내의 안테나 31, 33들이 상기 고주파 전력을 수신하게 된다. If now incident on the array rack antenna 24 configured as shown in Fig transmitted by the high-frequency power transmitter high-frequency power is arranged an antenna 22 for outputting 20 configured as shown in FIG 5, the antenna 31, in the array rack antenna 24, 33 to the high-frequency power a is received. 이때, 상기 안테나 31 및 33의 사이에 접속된 쇼트키 다이오드 30들이 극간의 기생 용량값을 최소화하여 직류 전압으로 검파한다. At this time, the Schottky diode 30 connected between the antenna 31 and 33 to minimize the parasitic capacitance of the gap is detected by a DC voltage. 즉, 쇼트키 다이오드 30들이 안테나 31 및 33을 통해 수신되는 고주파 전력을 정류한다. That is, the Schottky diode 30 that rectifies the high-frequency electric power received through the antenna 31 and 33.

상기 쇼트키 다이오드 30들의 애노드와 캐소드 사이에 접속된 RF 블록킹 필터 32와 평활회로 34들은 정류된 직류전압에 포함된 리플 성분 및 전도성 전자파 장해신호를 억제/제거하여 고주파 전력의 레벨에 따른 직류전압을 전압 안정화 회로 26으로 제공한다. An RF blocking filter 32 and smoothing circuit connected between the Schottky diode 30, the anode and the cathode of 34 are inhibited / removes the ripple component and the conductive electromagnetic interference signals contained in the rectified DC voltage to a DC voltage according to the level of the high-frequency power providing a voltage stabilization circuit 26.

상기 전압 안정화 회로 26은 상기 배열 렉테나 24로부터 출력되는 직류 전압의 레벨을 안정화시켜 소정의 레벨로 클램프된 정전압을 휴대용 단말기에 결합된 충전용 배터리 28의 음전극과 양전극으로 제공하여 배터리 28내의 배터리 셀에 전압이 충전되도록 한다. The voltage stabilizer circuit 26 is a battery cell in the battery 28 to provide a constant voltage to stabilize the level of the DC voltage output from the array rack antenna 24 clamped to a predetermined level with a negative electrode and a positive electrode of the rechargeable batteries 28 for coupling to the mobile terminal such that the voltage is charged.

상기한 바와 같이 본 발명은 배열 렉테나 24에 의해 공중파 중계기 등과 같은 고주파 전력 송신부로부터 방사된 고주파 전력을 수신하여 소정 레벨의 직류 전압으로 변환후 불요파를 제거하여 충전 배터리의 충전 전압으로 제공함으로써 휴대용 단말기의 배터리의 충전을 보다 자유스럽게 할 수 있다. The present invention as described above, is portable by removing the unnecessary wave after conversion into a DC voltage of a predetermined level to receive the radio frequency power emitted from the high-frequency power transmitter, such as over-the-air repeaters by an array rack antenna 24 provided in the charge voltage of the charged battery the handset battery charge can be carefully than freedom.

상기한 실시예에서는 충전 배터리의 과충전을 방지하는 기술적 구성에 대해 논의하지 않았지만, 이 분야의 통상의 지식을 가진 자라면 충전 배터리의 충전 전압 레벨을 검출하여 전압 안정화 회로의 출력을 적절하게 스위칭시키는 구성이 더 부가될 수 있음에 유의 하여야 한다. In the above embodiment did not discuss the technical configuration for preventing the overcharge of the rechargeable batteries, those skilled in the art configured to properly switch the output of the voltage stabilizing circuit for detecting the charge voltage level of the battery charging this should be noted that more could be added.

이상에서 설명한 바와 같이 렉테나를 이용한 무선충전시스템에 의하면 유선 충전시스템에 발생된 거리상의 제약과 공간에서의 전력손실을 해결할 수 있다. According to the wireless charging system using a rack antenna as described above can solve the power loss at a geographical distance constraints and space it occurs in the wired charging system. 또한, 거리의 제약이나 공간손실에 의한 영향으로부터 벗어나 어느 장소에서든지 항상 전자기기 및 이동통신기기를 사용할 수 있어 배터리의 용량이 문제시되는 휴대용 단말기 등을 보다 편리하게 이용할 수 있게된다. In addition, free from influence by the space limitations or loss of the distance from any place always can use the electronic device and the mobile communication device it is possible to more conveniently use the mobile terminal such that the capacity of the battery problematic.

Claims (6)

  1. 무선 충전 시스템에 있어서, A wireless charging system,
    고주파 전력을 공중으로 방사하는 송신부와, And to emit a high-frequency power to the transmitting aerial,
    상기 공중 전파되는 고주파 전력을 렉테나에 의해 수신하여 소정 레벨의 직류 전압으로 변환 출력하는 직류전압 변환부 및, DC voltage converter for receiving the high-frequency power in which the air spread by the rack antenna and outputting the converted direct-current voltage of a predetermined level and,
    상기 직류 전압을 일정한 전압으로 안정화시켜 출력하는 전압안정화회로를 포함함을 특징으로 하는 렉테나를 이용한 무선 충전 시스템. Wireless charging system using a rack antenna, characterized in that it comprises a voltage stabilizing circuit for stabilizing the direct current voltage to output a constant voltage.
  2. 제1항에 있어서, According to claim 1,
    상기 송신부는 고주파 전력을 배열 안테나를 통해 방사 출력함을 특징으로 하는 렉테나를 이용한 무선 충전 시스템. Wherein the transmitter is a wireless charging system using a rack antenna, characterized in that the radiation output from the high frequency power array antenna.
  3. 제1항 또는 제2항에 있어서, 상기 직류 전압 변환부 및 전압 안정화 회로는 휴대용 단말기의 내부에 내장됨을 특징으로 하는 렉테나를 이용한 무선 충전 시스템. 3. A method according to claim 1 or 2, wherein the direct current voltage converter and a voltage stabilizing circuit is a wireless charging system using a rack antenna, characterized in that embedded in the interior of the mobile terminal.
  4. 제3항에 있어서, 상기 직류전력 변환부는 송신기의 배열 안테나로부터 방사된 고주파전력을 수신하는 배열 렉테나를 구비함을 특징으로 하는 렉테나를 이용한 무선 충전 시스템. 4. The method of claim 3 wherein the DC power converter comprises: a wireless charging system using a rack, characterized in that the antenna arrangement includes a rack antenna for receiving a high-frequency power radiated from an array antenna of a transmitter.
  5. 제4항에 있어서, 상기 배열 렉테나는 이격된 두개의 안테나들 사이에는 고주파 전력을 정류하기 위한 쇼트키 다이오드의 애노드와 캐소드가 접속되며, 상기 쇼트키 다이오드의 애노드와 캐소드 사이에는 리플 및 전도성 전자파 장해를 억제하기 위한 RF 블록킹 필터 및 상기 쇼트키 다이오드에서 정류된 고주파 전력을 직류전력으로 변환하기 위한 평활회로가 접속되어 구성된 렉테나들이 매트릭스 형태로 접속되어 구성함을 특징으로 하는 렉테나를 이용한 무선 충전 시스템. The method of claim 4 wherein the array rack antenna is, the ripple and the conductive electromagnetic wave between the spaced-apart the two antennas are connected to the anode and the cathode of the Schottky diode for rectifying a high-frequency power, and between the anode and the cathode of the Schottky diode wireless charging using a rack antenna, characterized in that the RF blocking filter and smoothing circuit is connected are connected in rekte outing matrix form consisting configured for converting the high frequency electric power rectified by the Schottky diode to the direct-current power for suppressing the disturbance system.
  6. 제5항에 있어서, 상기 렉테나의 안테나들은 유전체 키판상에서 마이크로 스트립 라인의 구조로 형성됨을 특징으로 하는 렉테나를 이용한 무선 충전 시스템. The method of claim 5, wherein the rack antenna antennas wireless charging system using a rack antenna, characterized by a structure formed of a microstrip line on the dielectric kipan.
KR1020030012701A 2003-02-28 2003-02-28 Wireless charging system using rectenna KR20040077228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030012701A KR20040077228A (en) 2003-02-28 2003-02-28 Wireless charging system using rectenna

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020030012701A KR20040077228A (en) 2003-02-28 2003-02-28 Wireless charging system using rectenna
PCT/KR2003/000746 WO2004077550A1 (en) 2003-02-28 2003-04-14 Wireless battery charging system using rectenna
AU2003225376A AU2003225376A1 (en) 2003-02-28 2003-04-14 Wireless battery charging system using rectenna

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR20-2003-0006003U Division KR200314273Y1 (en) 2003-02-28 2003-02-28 Wireless charging system using rectenna

Publications (1)

Publication Number Publication Date
KR20040077228A true KR20040077228A (en) 2004-09-04

Family

ID=32923765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030012701A KR20040077228A (en) 2003-02-28 2003-02-28 Wireless charging system using rectenna

Country Status (3)

Country Link
KR (1) KR20040077228A (en)
AU (1) AU2003225376A1 (en)
WO (1) WO2004077550A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700944B1 (en) * 2005-01-19 2007-03-28 삼성전자주식회사 Apparatus and method for charging rf derelict power in portable terminal
KR100700459B1 (en) * 2006-06-20 2007-03-29 에스케이텔레시스 주식회사 Outdoor device for processing received signal of base station in mobile communication system and base station in mobile communication system
KR100751875B1 (en) * 2006-05-12 2007-08-24 순천대학교 산학협력단 wireless power device with an antenna for receiving power using electromagnetic waves
KR100912063B1 (en) * 2007-07-26 2009-08-12 한국전기연구원 Apparatus of high efficiency wureless power supply using dual frequency bands
KR101232038B1 (en) * 2011-01-12 2013-02-12 쓰리에이로직스(주) Wireless charger and method thereof
KR101627465B1 (en) 2015-06-23 2016-06-03 성균관대학교산학협력단 Rf energy harvesting method in contention based random access network
KR20160075913A (en) 2014-12-19 2016-06-30 (주) 세노텍 Wireless power transfer and receieve device and method thereof
KR101685819B1 (en) 2015-06-03 2016-12-12 성균관대학교산학협력단 Energy harvesting method based on rf signal in mobile communication system and mobile communication system using rf energy harvesting
KR101686172B1 (en) 2015-08-17 2016-12-13 세바아이엔티 주식회사 Charging apparatus for electric device using radio wave

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
FR2883428B1 (en) * 2005-03-18 2008-03-14 Michel Burri Method for recharging a battery of an electronic equipment with the aid of an electronic charger and an equipment suitable for such a process
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
DE102006033956A1 (en) * 2006-07-22 2008-01-31 Deutsche Telekom Ag Communication device emergency power supply method, involves providing emergency energy storage, particularly in addition to power supply, in communication device for normal communication
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
CN103187629B (en) 2007-08-09 2016-08-24 高通股份有限公司 Increase factor of the resonator q
WO2009036405A1 (en) 2007-09-13 2009-03-19 Nigelpower, Llc Maximizing power yield from wireless power magnetic resonators
WO2009039113A1 (en) 2007-09-17 2009-03-26 Nigel Power, Llc Transmitters and receivers for wireless energy transfer
CN101842963B (en) 2007-10-11 2014-05-28 高通股份有限公司 Wireless power transfer using magneto mechanical systems
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9438045B1 (en) * 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9450449B1 (en) 2012-07-06 2016-09-20 Energous Corporation Antenna arrangement for pocket-forming
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9521926B1 (en) 2013-06-24 2016-12-20 Energous Corporation Wireless electrical temperature regulator for food and beverages
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9876380B1 (en) 2013-09-13 2018-01-23 Energous Corporation Secured wireless power distribution system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10218207B2 (en) 2015-12-24 2019-02-26 Energous Corporation Receiver chip for routing a wireless signal for wireless power charging or data reception
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
WO2019043565A1 (en) * 2017-08-31 2019-03-07 U.S. Screen Corporation Inductive rechargeable roller shade or screen system
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063050A (en) * 2001-01-26 2002-08-01 최덕현 Cordless charging system for mobile-phone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700944B1 (en) * 2005-01-19 2007-03-28 삼성전자주식회사 Apparatus and method for charging rf derelict power in portable terminal
US7606540B2 (en) 2005-01-19 2009-10-20 Samsung Electronics Co., Ltd. Apparatus and method for using ambient RF power in a portable terminal
KR100751875B1 (en) * 2006-05-12 2007-08-24 순천대학교 산학협력단 wireless power device with an antenna for receiving power using electromagnetic waves
KR100700459B1 (en) * 2006-06-20 2007-03-29 에스케이텔레시스 주식회사 Outdoor device for processing received signal of base station in mobile communication system and base station in mobile communication system
KR100912063B1 (en) * 2007-07-26 2009-08-12 한국전기연구원 Apparatus of high efficiency wureless power supply using dual frequency bands
KR101232038B1 (en) * 2011-01-12 2013-02-12 쓰리에이로직스(주) Wireless charger and method thereof
KR20160075913A (en) 2014-12-19 2016-06-30 (주) 세노텍 Wireless power transfer and receieve device and method thereof
KR101685819B1 (en) 2015-06-03 2016-12-12 성균관대학교산학협력단 Energy harvesting method based on rf signal in mobile communication system and mobile communication system using rf energy harvesting
KR101627465B1 (en) 2015-06-23 2016-06-03 성균관대학교산학협력단 Rf energy harvesting method in contention based random access network
KR101686172B1 (en) 2015-08-17 2016-12-13 세바아이엔티 주식회사 Charging apparatus for electric device using radio wave

Also Published As

Publication number Publication date
AU2003225376A1 (en) 2004-09-17
WO2004077550A1 (en) 2004-09-10

Similar Documents

Publication Publication Date Title
US9130407B2 (en) Signaling charging in wireless power environment
US9667085B2 (en) Wireless charger for electronic device
US7084605B2 (en) Energy harvesting circuit
JP5681167B2 (en) Wireless power transmission scheduling
KR101570594B1 (en) Systems and methods for detecting and protecting a wireless power communication device in a wireless power system
EP1500167B1 (en) Energy source communication employing slot antenna
US9153998B2 (en) Wireless power orthogonal polarization antenna array
KR100751875B1 (en) wireless power device with an antenna for receiving power using electromagnetic waves
CN104901432B (en) Adaptive tuning the impedance of the wireless power transmitter
EP2396867B1 (en) Wireless power from renewable energy
Olgun et al. Design of an efficient ambient WiFi energy harvesting system
JP5889857B2 (en) Passive receiver for wireless transmission
US8547057B2 (en) Systems and methods for selective wireless power transfer
US8947041B2 (en) Bidirectional wireless power transmission
KR101768404B1 (en) Packaging and details of a wireless power device
JP5366058B2 (en) Wireless power transmission system
EP1962406B1 (en) Electronic device
EP2186180B1 (en) Intelligent device and power source interaction
US20150028694A1 (en) Power couplings in transmitters for wireless power transmission
KR100566220B1 (en) Contactless battery charger
KR101939418B1 (en) Receiver for near field communication and wireless power functionalities
KR101646305B1 (en) Parasitic devices for wireless power transfer
US20120104997A1 (en) Wireless charging device
US8823319B2 (en) Adaptive power control for wireless charging of devices
US9252846B2 (en) Systems and methods for detecting and identifying a wireless power device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application