WO2021210613A1 - 作業機械の測位システム、作業機械及び作業機械の測位方法 - Google Patents
作業機械の測位システム、作業機械及び作業機械の測位方法 Download PDFInfo
- Publication number
- WO2021210613A1 WO2021210613A1 PCT/JP2021/015466 JP2021015466W WO2021210613A1 WO 2021210613 A1 WO2021210613 A1 WO 2021210613A1 JP 2021015466 W JP2021015466 W JP 2021015466W WO 2021210613 A1 WO2021210613 A1 WO 2021210613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning system
- work machine
- satellite
- positioning
- antenna
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/26—Acquisition or tracking or demodulation of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/36—Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/53—Determining attitude
- G01S19/54—Determining attitude using carrier phase measurements; using long or short baseline interferometry
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/32—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
- E02F3/435—Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
Definitions
- This disclosure relates to a positioning system for work machines, a work machine, and a positioning method for work machines.
- ICT Information and Communication Technology
- GNSS Global Navigation Satellite Systems
- RTK positioning When performing realtime kinematic (RTK: Realtime Kinematic) positioning (hereinafter referred to as "RTK positioning") using GNSS in a work machine, it is necessary to perform initialization processing. However, when the distance between the fixed station and the mobile station is long, or when there is an obstacle in the vicinity of the mobile station, the calculation for estimating and determining the integer bias of each satellite does not converge. The initialization process may not be completed.
- the present disclosure has been made in view of the above, and provides a positioning system for work machines, a positioning method for work machines, and a positioning method for work machines that can appropriately execute initialization processing in RTK positioning using GNSS.
- the purpose is to appropriately execute initialization processing in RTK positioning using GNSS.
- it is a positioning system of a work machine using real-time kinematic positioning using a satellite positioning system, and the work machine is positioned at a known reference point positioned at a work site.
- a calculation unit that calculates the position of the antenna of the satellite positioning system placed on the work machine based on the position of the work machine, and a receiver of the satellite positioning system that performs positioning calculation by real-time kinematic positioning.
- Initialization processing of positioning calculation which makes the integer bias of the satellite and the position of the antenna of the positioning system of the satellite unknown, is executed using the position of the antenna of the positioning system of the satellite calculated by the calculation unit.
- a positioning system for a work machine including an initialization control unit that outputs a control command is provided.
- the initialization process can be appropriately executed in RTK positioning using GNSS.
- FIG. 1 is a perspective view showing a work machine according to the present embodiment.
- FIG. 2 is a diagram showing an cab of a work machine according to the present embodiment.
- FIG. 3 is a diagram illustrating positioning of the work machine.
- FIG. 4 is a schematic view showing a positioning system for a work machine according to the present embodiment.
- FIG. 5 is a block diagram showing an example of a positioning system for a work machine according to the present embodiment.
- FIG. 6 is a block diagram showing a computer system according to the present embodiment.
- FIG. 7 is a flowchart showing an example of the positioning method of the work machine according to the present embodiment.
- FIG. 1 is a perspective view showing a work machine 1 according to the present embodiment.
- the work machine 1 is a hydraulic excavator.
- the work machine 1 is referred to as a hydraulic excavator 1.
- the hydraulic excavator 1 includes a lower traveling body 2, an upper swivel body 3 supported by the lower traveling body 2, a working machine 4 supported by the upper swivel body 3, and a hydraulic cylinder 5 for driving the working machine 4. ..
- the lower traveling body 2 can travel while supporting the upper rotating body 3.
- the lower running body 2 has a pair of tracks. As the track rotates, the lower traveling body 2 travels.
- the upper turning body 3 can turn around the turning axis RX with respect to the lower running body 2 in a state of being supported by the lower running body 2.
- the upper swing body 3 has a driver's cab 6 on which the driver of the hydraulic excavator 1 is boarded.
- the driver's cab 6 is provided with a driver's seat 9 on which the driver sits.
- the working machine 4 includes a boom 4A connected to the upper swing body 3, an arm 4B connected to the boom 4A, and a bucket 4C connected to the arm 4B.
- the hydraulic cylinder 5 includes a boom cylinder 5A for driving the boom 4A, an arm cylinder 5B for driving the arm 4B, and a bucket cylinder 5C for driving the bucket 4C.
- the boom 4A is rotatably supported by the upper swing body 3 about the boom rotation axis AX.
- the arm 4B is rotatably supported by the boom 4A about the arm rotation shaft BX.
- the bucket 4C is rotatably supported by the arm 4B about the bucket rotation axis CX.
- the boom rotation axis AX, the arm rotation axis BX, and the bucket rotation axis CX are parallel.
- the boom rotation axis AX, the arm rotation axis BX, and the bucket rotation axis CX are orthogonal to the axis parallel to the rotation axis RX.
- the direction parallel to the swivel axis RX is referred to as the vertical direction
- the direction parallel to the boom rotation axis AX, the arm rotation axis BX, and the bucket rotation axis CX is referred to as the left-right direction, and the boom rotation.
- the direction orthogonal to both the axis AX, the arm rotation axis BX, and the bucket rotation axis CX and the rotation axis RX is referred to as a front-rear direction.
- the direction in which the work machine 4 exists is the front, and the opposite direction to the front is the rear.
- one of the left-right directions is to the right, and the opposite direction to the right is the left.
- the direction away from the ground contact surface of the lower traveling body 2 is the upper side, and the opposite direction of the upper side is the lower side.
- the driver's cab 6 is arranged in front of the upper swivel body 3.
- the driver's cab 6 is arranged on the left side of the working machine 4.
- the boom 4A of the work machine 4 is arranged on the right side of the driver's cab 6.
- FIG. 2 is a diagram showing an cab 6 of the hydraulic excavator 1 according to the present embodiment.
- the hydraulic excavator 1 includes an operation unit 10 arranged in the driver's cab 6.
- the operation unit 10 is operated for operating at least a part of the hydraulic excavator 1.
- the operation unit 10 is operated by a driver seated on the driver's seat 9.
- the operation of the hydraulic excavator 1 includes at least one of the operation of the lower traveling body 2, the operation of the upper swivel body 3, and the operation of the working machine 4.
- the operation unit 10 includes a left working lever 11 and a right working lever 12 operated for operating the upper swing body 3 and the working machine 4, and a left traveling lever 13 and a right operated for operating the lower traveling body 2.
- a traveling lever 14, a left foot pedal 15 and a right foot pedal 16 are included.
- the left work lever 11 is arranged on the left side of the operation seat 9.
- the arm 4B is dumped or excavated.
- the upper swivel body 3 turns left or right.
- the right work lever 12 is arranged on the right side of the operation seat 9.
- the bucket 4C operates in an excavation operation or a dump operation.
- the boom 4A is lowered or raised.
- the left traveling lever 13 and the right traveling lever 14 are arranged in front of the driver's seat 9.
- the left traveling lever 13 is arranged to the left of the right traveling lever 14.
- the track on the left side of the lower traveling body 2 moves forward or backward.
- the right traveling lever 14 is operated in the front-rear direction, the track on the right side of the lower traveling body 2 moves forward or backward.
- the left foot pedal 15 and the right foot pedal 16 are arranged in front of the driver's seat 9.
- the left foot pedal 15 is arranged to the left of the right foot pedal 16.
- the left foot pedal 15 is interlocked with the left traveling lever 13.
- the right foot pedal 16 is interlocked with the right traveling lever 14.
- FIG. 3 is a diagram illustrating the positioning of the hydraulic excavator 1.
- FIG. 4 is a schematic view showing the positioning system 200 of the hydraulic excavator 1 according to the present embodiment.
- FIG. 5 is a block diagram showing an example of the positioning system 200 of the hydraulic excavator 1 according to the present embodiment.
- the positioning system 200 positions the position of the hydraulic excavator 1 by using RTK positioning using GNSS, which is a satellite positioning system.
- FIG. 3 illustrates the GNSS satellite SV 1 , the GNSS satellite SV 2 , the GNSS satellite SV 3 , and the GNSS satellite SV 4 .
- the carrier phase is the sum of the amount of variation in the distance between each GNSS satellite SV and the GNSS receiver RC. How many wave numbers (referred to as “integer value bias” or “ambiguity”) are included between each GNSS satellite SV and GNSS receiver RC is when the GNSS receiver RC is in the initial state (immediately after startup). , Unknown. Therefore, the GNSS receiver RC mounted on the mobile station MS searches for the position of the mobile station that minimizes the distance error of each satellite (called convergence calculation) as an initialization process, so that the mobile station has high accuracy. Determine the position and the integer bias of each GNSS satellite SV.
- the position information received by the GNSS receiver RC is corrected to obtain the position of the mobile station.
- the correction effect by the correction information deteriorates, and the error of the position measured by the GNSS receiver RC increases.
- the highly accurate position of the mobile station MS cannot be obtained, and the initialization process may not be completed.
- the positioning system 200 first calculates the position of the mobile station MS by a method other than RTK positioning. Then, in the positioning system 200, the GNSS receiver RC mounted on the mobile station MS performs initialization processing based on the calculated position of the mobile station MS, so that unknown variables are reduced and the integer value bias is calculated. Makes it easier to converge.
- the positioning system 200 is arranged on the hydraulic excavator 1 based on the position of the cutting edge 4Cp of the working machine 4 of the hydraulic excavator 1 aligned with the known reference point PR positioned at the work site. The position of the GNSS antenna 61, which is the antenna of the satellite positioning system, is calculated.
- the positioning system 200 calculates the initialization process of the positioning calculation by making the integer bias of each GNSS satellite and the position of the GNSS antenna 61 unknown to the GNSS receiver 60 that performs the positioning calculation by RTK positioning. Outputs a control command to be executed using the position of.
- the positioning system 200 monitors the cylinder stroke sensor 5a that detects the stroke length of each cylinder of the work machine 4, the IMU (Inertial Measurement Unit) 30, the sensor controller (calculation unit) 40, and the monitor 50. It includes a controller (initialization control unit) 51, a GNSS receiver 60, and GNSS antennas 61 and 62.
- the GNSS antenna 61 is used to determine the position of the hydraulic excavator 1
- the GNSS antenna 62 is used to determine the yaw angle, which is the azimuth angle of the vehicle body of the hydraulic excavator 1.
- the cylinder stroke sensor 5a detects information indicating the posture of the work machine 4.
- the cylinder stroke sensor 5a includes a boom cylinder sensor 5Aa, an arm cylinder sensor 5Ba, and a bucket cylinder sensor 5Ca.
- the boom cylinder sensor 5Aa, the arm cylinder sensor 5Ba, and the bucket cylinder sensor 5Ca are arranged in the work machine 4.
- the boom cylinder sensor 5Aa detects boom cylinder length data indicating the stroke length, which is the amount of movement of the boom cylinder 5A.
- the arm cylinder sensor 5Ba detects arm cylinder length data indicating the stroke length, which is the amount of movement of the arm cylinder sensor 5Ba.
- the bucket cylinder sensor 5Ca detects bucket cylinder length data indicating the stroke length, which is the amount of operation of the bucket cylinder 5C.
- the cylinder stroke sensor 5a outputs each detected cylinder length data to the sensor controller 40.
- the IMU 30 is a state detection device that detects operation information indicating the operation of the hydraulic excavator 1.
- the antennas 61 and 62 are also examples of the state detection device.
- the operation information may include information indicating the posture of the hydraulic excavator 1.
- Information indicating the posture of the hydraulic excavator 1 exemplifies the roll angle, pitch angle, and yaw angle of the hydraulic excavator 1.
- the IMU 30 is attached to the upper swing body 3.
- the IMU 30 may be installed, for example, in the lower part of the driver's cab 6.
- the IMU30 detects the angular velocity and acceleration of the hydraulic excavator 1. Along with the operation of the hydraulic excavator 1, various accelerations such as an acceleration generated during traveling, an angular acceleration generated during turning, and a gravitational acceleration are generated in the hydraulic excavator 1, and the IMU 30 detects and outputs at least the gravitational acceleration.
- the gravitational acceleration is an acceleration corresponding to the drag force against gravity.
- the IMU30 includes acceleration in the X-axis direction, Y-axis direction, and Z-axis direction, and angular velocity (rotational angular velocity) around the X-axis, Y-axis, and Z-axis. Is detected.
- the global coordinate system is a coordinate system based on the origin fixed to the earth.
- the global coordinate system is defined by GNSS.
- the sensor controller 40 has a processing unit that is a processor such as a CPU (Central Processing Unit) and a storage unit that is a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
- the detection value of the IMU 30 and the detection values of the boom cylinder sensor 5Aa, the arm cylinder sensor 5Ba, and the bucket cylinder sensor 5Ca are input to the sensor controller 40.
- the position of the hydraulic excavator 1 in the global coordinates obtained by the GNSS receiver 60 is input to the sensor controller 40 via the monitor controller 51.
- the sensor controller 40 functions as a calculation unit.
- the sensor controller 40 After the initialization process of the GNSS receiver 60 is completed, the sensor controller 40 indicates the target cutting edge position indicating the target cutting edge position based on the cutting edge position data of the hydraulic excavator 1 and the current terrain data indicating the current terrain of the work site. Generate data.
- the cutting edge position data is data indicating the current position of the cutting edge 4Cp of the hydraulic excavator 1.
- the cutting edge position data is generated based on the position of the hydraulic excavator 1 in the global coordinates, the detected value of the cylinder stroke sensor 5a, and the detected value of the IMU30.
- the target cutting edge position data generates, for example, a virtual target ground in which the current terrain indicated by the current terrain data is offset downward by a predetermined distance, and the cutting edge 4 Cp is generated along the virtual target ground.
- the sensor controller 40 generates and outputs a working machine command value for controlling the operation of the working machine 4 based on the cutting edge position data and the target cutting edge position data.
- the sensor controller 40 calculates the position of the GNSS antenna 61 arranged on the work machine 1 based on the position of the cutting edge 4 Cp of the work machine 4 aligned with the known reference point PR positioned at the work site.
- the sensor controller 40 converts the position of the GNSS antenna 61 of the hydraulic excavator 1 obtained in the vehicle body coordinate system into the global coordinate system and outputs the position to the monitor controller 51 of the monitor 50.
- the sensor controller 40 determines the position of the GNSS antenna 61 based on the position of the known reference point PR and the angle representing the posture of the work machine 4 in a state where the cutting edge 4Cp of the work machine 4 is aligned with the position of the reference point PR. It may be calculated. More specifically, the sensor controller 40 detects the position of the reference point PR measured in the three-dimensional field coordinate system and the cylinder stroke detected in a state where the cutting edge 4Cp of the working machine 4 is aligned with the position of the reference point PR. Based on the detected value of the sensor 5a, the position of the GNSS antenna 61 of the hydraulic excavator 1 is obtained in the vehicle body coordinate system (Xm, Ym, Zm).
- the operating amount of the boom cylinder 5A indicated by the detected value of the boom cylinder sensor 5Aa, the operating amount of the arm cylinder 5B indicated by the detected value of the arm cylinder sensor 5Ba, and the operating amount of the bucket cylinder 5C indicated by the detected value of the bucket cylinder sensor 5Ca Therefore, information indicating the posture of the working machine 4 can be obtained.
- the information representing the posture of the work machine 4 is defined by, for example, the angle ⁇ 1 formed by the boom 4A and the upper swing body 3, the angle ⁇ 2 formed by the boom 4A and the arm 4B, and the angle ⁇ 3 formed by the arm 4B and the bucket 4C. NS.
- the sensor controller 40 may further calculate the position of the GNSS antenna 61 based on the posture angle including the roll angle pitch angle and the yaw angle of the hydraulic excavator 1. More specifically, the sensor controller 40 further determines the position of the GNSS antenna 61 of the hydraulic excavator 1 based on the detected value of the IMU 30 detected in a state where the cutting edge 4Cp of the working machine 4 is aligned with the position of the reference point PR. , Obtained by the vehicle body coordinate system.
- the attitude angle (roll angle and pitch angle) of the hydraulic excavator 1 can be obtained from the angular velocity and acceleration of the hydraulic excavator 1, which are the detected values of the IMU30.
- the yaw angle is acquired from the monitor controller 51.
- the monitor 50 displays the specified display data.
- the monitor 50 has a monitor controller 51 and a display unit 52.
- the display unit 52 may be a separate body.
- the monitor controller 51 has a processing unit that is a processor such as a CPU and a storage unit that is a storage device such as a RAM and a ROM (Read Only Memory).
- the monitor controller 51 functions as an initialization control unit.
- the monitor controller 51 calculates the initialization process of the positioning calculation in which the integer bias of each GNSS satellite and the position of the GNSS antenna 61 are unknown to the GNSS receiver 60 that performs the positioning calculation by RTK positioning.
- a control command to be executed is output using the position of the GNSS antenna 61.
- the monitor controller 51 outputs the position of the GNSS antenna 61 of the hydraulic excavator 1 converted to the global coordinate system acquired from the sensor controller 40 to the GNSS receiver 60.
- the monitor controller 51 obtains the yaw angle, which is the azimuth angle of the vehicle body, from the arrangement relationship between the antenna azimuth angle obtained by the GNSS receiver 60 and the GNSS antennas 61 and 62 on the vehicle body. Further, the obtained yaw angle is output to the sensor controller 40.
- the display unit 52 includes a flat panel display such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL display (OELD: Organic Electroluminescence Display).
- the display unit 52 can display the progress of the initialization process of the GNSS receiver 60, such as that the initialization process of the GNSS receiver 60 is being executed and that the initialization process is completed.
- the monitor 50 is connected to the sensor controller 40 and the GNSS receiver 60 so as to be able to communicate data.
- the GNSS receiver 60 functions as a global coordinate calculation device.
- the GNSS receiver 60 has a processing unit that is a processor such as a CPU and a storage unit that is a storage device such as a RAM and a ROM.
- the GNSS receiver 60 is a position detecting device that detects the current position of the hydraulic excavator 1 by using GNSS.
- the GNSS receiver 60 obtains the position of the GNSS antenna 61 in the global coordinate system shown in FIG. 1 based on the signal corresponding to the GNSS radio wave received by the GNSS antenna 61.
- An example of GNSS is GPS (Global Positioning System), but the present invention is not limited to this.
- the GNSS antenna 61 is installed on, for example, the hydraulic excavator 1.
- the GNSS antenna 61 is arranged on the upper swing body 3.
- the GNSS antenna 61 is used to detect the current position of the hydraulic excavator 1.
- the GNSS antenna 61 is connected to the GNSS receiver 60.
- the signal corresponding to the GNSS radio wave received by the GNSS antenna 61 is input to the GNSS receiver 60.
- the GNSS receiver 60 estimates and determines the integer bias of each GNSS satellite by convergence calculation, and obtains a highly accurate position of the GNSS antenna 61, which is a mobile station.
- the GNSS receiver 60 acquires the position of the GNSS antenna 61 represented by the global coordinate system acquired from the monitor controller 51 of the monitor 50 when the initialization process is executed.
- the GNSS receiver 60 estimates and determines the integer bias of each GNSS satellite by convergence calculation using the position of the GNSS antenna 61 represented by the global coordinate system.
- the GNSS receiver 60 outputs the position of the generated GNSS antenna 61 to the monitor controller 51 of the monitor 50 after the initialization process is completed.
- the GNSS receiver 60 calculates the azimuth from the satellite signals received by the positions of the GNSS antennas 61 and 62 by baseline analysis, and sets the azimuth as the antenna azimuth of the GNSS antenna 62 centered on the GNSS antenna 61. .. Further, the GNSS receiver 60 outputs the calculated antenna azimuth to the monitor controller 51.
- FIG. 6 is a block diagram showing a computer system 1000 according to the present embodiment.
- the positioning system 200 described above includes a computer system 1000.
- the computer system 1000 includes a processor 1001 such as a CPU (Central Processing Unit), a main memory 1002 including a non-volatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory). It has a storage 1003 and an interface 1004 including an input / output circuit.
- the function of the positioning system 200 described above is stored in the storage 1003 as a computer program.
- the processor 1001 reads the computer program from the storage 1003, expands it into the main memory 1002, and executes the above-described processing according to the computer program.
- the computer program may be distributed to the computer system 1000 via the network.
- the computer program or the computer system 1000 aligns the cutting edge 4Cp of the working machine 4 with the known reference point PR measured at the work site and aligns the cutting edge 4Cp of the working machine 4 according to the above-described embodiment. From the position of the reference point, the position of the GNSS antenna 61 arranged in the work machine 1 is calculated, and the GNSS receiver 60 that performs the positioning calculation by real-time kinematic positioning is attached to the integer value bias of each GNSS satellite and the GNSS antenna. It is possible to output a control command to execute the initialization process of the positioning calculation using the calculated position of the GNSS antenna 61, which makes the position of 61 an unknown number, and to execute the initialization process.
- FIG. 7 is a flowchart showing an example of the positioning method of the hydraulic excavator 1 according to the present embodiment.
- the reference point PR is measured in a three-dimensional site coordinate system, and the position is known.
- the initialization process of the GNSS receiver 60 is executed.
- the monitor 50 can display the progress of the initialization process, such as that the initialization process of the GNSS receiver 60 is being executed and that the initialization process has been completed.
- the process shown in FIG. 7 is executed by the operation of the driver.
- the driver operates the work machine 4 to align the cutting edge 4Cp of the work machine 4 with the reference point PR measured at the work site.
- the positioning system 200 executes the processes of steps SP1 to SP5 in the monitor controller 51 of the sensor controller 40 and the monitor 50. Further, in the GNSS receiver 60, steps ST1 to ST4 are executed.
- the sensor controller 40 calculates the position of the GNSS antenna 61 (step SP1). More specifically, the sensor controller 40 detects the position of the known reference point PR, the detection value of the cylinder stroke sensor 5a, and the detection value of the IMU30, which are detected in a state where the cutting edge 4Cp of the working machine 4 is aligned with the reference point PR. The position of the GNSS antenna 61 of the hydraulic excavator 1 is calculated in the vehicle body coordinate system based on at least one of the above. The sensor controller 40 outputs the calculated position of the GNSS antenna 61 to the monitor controller 51.
- the monitor controller 51 outputs the position of the GNSS antenna 61 acquired from the sensor controller 40 to the GNSS receiver 60 (step SP2).
- the GNSS receiver 60 acquires the position of the GNSS antenna 61 from the monitor controller 51 (step ST1).
- the monitor controller 51 uses the position of the GNSS antenna 61 calculated by the sensor controller 40 for the initialization process in which the integer bias of each GNSS satellite and the position of the GNSS antenna 61 are unknown to the GNSS receiver 60.
- a control command is output to execute (step SP3).
- the GNSS receiver 60 interrupts the initialization process being executed (step ST2).
- the GNSS receiver 60 redoes the initialization process based on the acquired position of the GNSS antenna 61 (step ST3).
- the monitor controller 51 determines whether or not the initialization process by the GNSS receiver 60 is completed (step SP4). When it is determined that the initialization process by the GNSS receiver 60 is completed (Yes in step SP4), the process proceeds to step SP5. If it is not determined that the initialization process by the GNSS receiver 60 is completed (No in step SP4), the process of step SP4 is executed again.
- the monitor controller 51 outputs a control command to the GNSS receiver 60 to release the fixed mode of the position of the GNSS antenna 61 (step SP5).
- the GNSS receiver 60 releases the fixed mode of the position of the GNSS antenna 61 (step ST4).
- the fixed mode is set, and the process is performed assuming that the position of the GNSS antenna 61 is fixed. While the fixed mode is set, the position of the hydraulic excavator cannot be measured by RTK positioning. When the fixed mode is released, the highly accurate position of the moving hydraulic excavator 1 can be measured by RTK positioning.
- step ST2 and step SP3 the flowchart of FIG. 7 is an example, and in other embodiments, it is not always necessary to execute all the steps.
- the initialization process of the GNSS receiver 60 is not completed has been described, it may be executed even when the initialization process of the GNSS receiver 60 is not completed. In this case, for example, it is not necessary to execute step ST2 and step SP3.
- the GNSS receiver 60 that performs the positioning calculation by RTK positioning executes the initialization processing of the positioning calculation based on the position of the GNSS antenna 61 calculated from the position of the known reference point PR.
- the position of the GNSS antenna 61 can be used to estimate and determine the integer bias of each GNSS satellite by the convergence calculation. According to this embodiment, it is possible to suppress the occurrence of a state in which the initialization process of the GNSS receiver 60 is not completed. In this embodiment, the initialization process of the GNSS receiver 60 can be appropriately executed.
- each process described as being executed by the sensor controller 40 may be executed by the monitor controller 51 of the monitor 50 or a controller other than these.
- each process described as being executed by the monitor controller 51 of the monitor 50 may be executed by the sensor controller 40 or a controller other than these.
- the functions of the sensor controller 40 and the monitor controller 51 of the monitor 50 may be implemented by one controller.
- the work of aligning the cutting edge 4Cp of the working machine 4 with the known reference point PR which is performed in the present embodiment, has been the work performed at the start of the work. In this embodiment, since the driver does not perform new work, an increase in workload can be suppressed.
- the hydraulic excavator 1 has been described as an example of the work machine, but the present invention is not limited to this, and other work machines such as a bulldozer or a wheel loader may be used.
- the cutting edge 4Cp of the working machine 4 has been described as aligning with the known reference point PR, but the present invention is not limited to this, and other parts of the working machine 4 are positioned at the known reference point PR. May be combined.
- the yaw angle has been described as being calculated by the monitor controller 51, but it may be calculated by the sensor controller 40. Specifically, the monitor controller 51 outputs the antenna azimuth obtained by the GNSS receiver 60 to the sensor controller 40, and the sensor controller 40 has a positional relationship between the antenna azimuth and the GNSS antennas 61 and 62 on the vehicle body. The yaw angle may be calculated from.
- the GNSS antenna 61 has been described as being used for determining the position of the hydraulic excavator 1, but the present invention is not limited to this.
- the GNSS antenna 62 may be used to determine the position of the hydraulic excavator 1.
- the GNSS antenna 61 may be used to obtain the yaw angle which is the azimuth angle of the vehicle body of the hydraulic excavator 1.
- a GNSS antenna other than the GNSS antenna 61 and the GNSS antenna 62 may be provided, and the position of the hydraulic excavator 1 may be determined using the GNSS antenna.
- the present invention is not limited to this, and one GNSS antenna may be used.
- the direction of the vehicle body may be calculated from the speed vector detected by one GNSS antenna.
- the work machine of the above embodiment is an example, and can be applied to work machines of other work machines such as bulldozer blades and wheel loader buckets.
- 1 Hydraulic excavator (working machine), 2 ... Lower traveling body, 3 ... Upper swivel body, 4 ... Working machine, 4A ... Boom, 4B ... Arm, 4C ... Bucket, 5 ... Hydraulic cylinder, 5A ... Boom cylinder, 5Aa ... Boom cylinder sensor, 5B ... arm cylinder, 5Ba ... arm cylinder sensor, 5C ... bucket cylinder, 5Ca ... bucket cylinder sensor, 6 ... cab, 9 ... operation seat, 10 ... operation unit, 11 ... left work lever, 12 ... right Work lever, 13 ... left travel lever, 14 ... right travel lever, 15 ... left foot pedal, 16 ... right foot pedal, 30 ... IMU, 40 ...
- sensor controller (calculation unit), 50 ... monitor, 51 ... monitor controller (initial) Control unit), 52 ... Display unit, 60 ... GNSS receiver (satellite positioning system receiver), 61 ... GNSS antenna (satellite positioning system antenna), 62 ... GNSS antenna (satellite positioning system antenna) , 200 ... Positioning system, 1000 ... Computer system, 1001 ... Processor, 1002 ... Main memory, 1003 ... Storage, 1004 ... Antenna, AX ... Boom rotation axis, BX ... Arm rotation axis, CX ... Bucket rotation axis, RX ... Swivel axis ..
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Signal Processing (AREA)
- Operation Control Of Excavators (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Component Parts Of Construction Machinery (AREA)
Abstract
衛星の測位システムを用いたRTK測位を使用した作業機械1の測位システム200であって、作業現場において測位された既知の基準点PRに位置を合わせた、作業機械1の作業機4の位置に基づいて、作業機械1に配置された衛星の測位システムのアンテナの位置を算出する算出部であるセンサコントローラ40と、RTK測位によって測位計算を行う衛星の測位システムの受信機に、各衛星の整数値バイアスと衛星の測位システムのアンテナの位置とを未知数とする、測位計算の初期化処理を、算出した衛星の測位システムのアンテナの位置を使用して実行させる制御指令を出力する初期化制御部であるモニタコントローラ51と、を備える。
Description
本開示は、作業機械の測位システム、作業機械及び作業機械の測位方法に関する。
近年、油圧ショベル等の作業機械において、ICT(Information and Communication Technology)の活用が進められている。例えば、GNSS(Global Navigation Satellite Systems)等を搭載して作業機の位置を検出し、作業機の位置情報と作業現場の現況地形を示す現況地形データとを比較し、作業機の位置又は姿勢等を演算処理して求める作業機械等がある(例えば、特許文献1参照)。
作業機械において、GNSSを用いたリアルタイムキネマティック(RTK:Realtime Kinematic)測位(以下、「RTK測位」という。)を行う場合、初期化処理を行う必要がある。ところが、固定局と移動局との間の距離が長い場合、又は、移動局の周辺に障害物がある場合等には、各衛星の整数値バイアスを推定、決定する計算が収束せずに、初期化処理が完了しないことがある。
本開示は、上記に鑑みてなされたものであり、GNSSを用いたRTK測位において、初期化処理を適切に実行可能な作業機械の測位システム、作業機械及び作業機械の測位方法を提供することを目的とする。
本開示の態様に従えば、衛星の測位システムを用いたリアルタイムキネマティック測位を使用した作業機械の測位システムであって、作業現場において測位された既知の基準点に位置を合わせた、前記作業機械の作業機の位置に基づいて、前記作業機械に配置された衛星の測位システムのアンテナの位置を算出する算出部と、リアルタイムキネマティック測位によって測位計算を行う衛星の測位システムの受信機に、各衛星の整数値バイアスと前記衛星の測位システムのアンテナの位置とを未知数とする、測位計算の初期化処理を、前記算出部が算出した前記衛星の測位システムのアンテナの位置を使用して実行させる制御指令を出力する初期化制御部と、を備える作業機械の測位システムが提供される。
本開示の態様によれば、GNSSを用いたRTK測位において、初期化処理を適切に実行できる。
以下、本開示に係る作業機械の測位システム、作業機械及び作業機械の測位方法の実施形態を図面に基づいて説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
図1は、本実施形態に係る作業機械1を示す斜視図である。本実施形態においては、作業機械1は、油圧ショベルとする。以下の説明においては、作業機械1を、油圧ショベル1という。油圧ショベル1は、下部走行体2と、下部走行体2に支持される上部旋回体3と、上部旋回体3に支持される作業機4と、作業機4を駆動する油圧シリンダ5とを備える。
下部走行体2は、上部旋回体3を支持した状態で走行可能である。下部走行体2は、一対の履帯を有する。履帯が回転することによって、下部走行体2が走行する。
上部旋回体3は、下部走行体2に支持された状態で、下部走行体2に対して旋回軸RXを中心に旋回可能である。上部旋回体3は、油圧ショベル1の運転者が搭乗する運転室6を有する。運転室6には、運転者が着座する運転シート9が設けられる。
作業機4は、上部旋回体3に連結されるブーム4Aと、ブーム4Aに連結されるアーム4Bと、アーム4Bに連結されるバケット4Cとを含む。油圧シリンダ5は、ブーム4Aを駆動するブームシリンダ5Aと、アーム4Bを駆動するアームシリンダ5Bと、バケット4Cを駆動するバケットシリンダ5Cとを含む。
ブーム4Aは、ブーム回転軸AXを中心に回転可能に上部旋回体3に支持される。アーム4Bは、アーム回転軸BXを中心に回転可能にブーム4Aに支持される。バケット4Cは、バケット回転軸CXを中心に回転可能にアーム4Bに支持される。
ブーム回転軸AXと、アーム回転軸BXと、バケット回転軸CXとは、平行である。ブーム回転軸AX、アーム回転軸BX、及びバケット回転軸CXと、旋回軸RXと平行な軸とは、直交する。以下の説明においては、旋回軸RXと平行な方向を、上下方向、といい、ブーム回転軸AX、アーム回転軸BX、及びバケット回転軸CXと平行な方向を、左右方向、といい、ブーム回転軸AX、アーム回転軸BX、及びバケット回転軸CXと旋回軸RXとの両方と直交する方向を、前後方向、という。運転シート9に着座した運転者を基準として作業機4が存在する方向が前方であり、前方の逆方向が後方である。運転シート9に着座した運転者を基準として左右方向の一方が右方であり、右方の逆方向が左方である。下部走行体2の接地面から離れる方向が上方であり、上方の逆方向が下方である。
運転室6は、上部旋回体3の前方に配置される。運転室6は、作業機4の左方に配置される。作業機4のブーム4Aは、運転室6の右方に配置される。
[運転室]
図2は、本実施形態に係る油圧ショベル1の運転室6を示す図である。油圧ショベル1は、運転室6に配置される操作部10を備える。操作部10は、油圧ショベル1の少なくとも一部の作動のために操作される。操作部10は、運転シート9に着座した運転者によって操作される。油圧ショベル1の作動は、下部走行体2の作動、上部旋回体3の作動、及び作業機4の作動の少なくとも一つを含む。
図2は、本実施形態に係る油圧ショベル1の運転室6を示す図である。油圧ショベル1は、運転室6に配置される操作部10を備える。操作部10は、油圧ショベル1の少なくとも一部の作動のために操作される。操作部10は、運転シート9に着座した運転者によって操作される。油圧ショベル1の作動は、下部走行体2の作動、上部旋回体3の作動、及び作業機4の作動の少なくとも一つを含む。
操作部10は、上部旋回体3及び作業機4の作動のために操作される左作業レバー11及び右作業レバー12と、下部走行体2の作動のために操作される左走行レバー13及び右走行レバー14と、左フットペダル15及び右フットペダル16とを含む。
左作業レバー11は、運転シート9の左方に配置される。左作業レバー11が前後方向に操作されることによって、アーム4Bがダンプ動作又は掘削動作する。左作業レバー11が左右方向に操作されることによって、上部旋回体3が左旋回又は右旋回する。右作業レバー12は、運転シート9の右方に配置される。右作業レバー12が左右方向に操作されることによって、バケット4Cが掘削動作又はダンプ動作する。右作業レバー12が前後方向に操作されることによって、ブーム4Aが下げ動作又は上げ動作する。
左走行レバー13及び右走行レバー14は、運転シート9の前方に配置される。左走行レバー13は、右走行レバー14の左方に配置される。左走行レバー13が前後方向に操作されることによって、下部走行体2の左側の履帯が前進動作又は後進動作する。右走行レバー14が前後方向に操作されることによって、下部走行体2の右側の履帯が前進動作又は後進動作する。
左フットペダル15及び右フットペダル16は、運転シート9の前方に配置される。左フットペダル15は、右フットペダル16の左方に配置される。左フットペダル15は、左走行レバー13と連動する。右フットペダル16は、右走行レバー14と連動する。左フットペダル15及び右フットペダル16が操作されることによって、下部走行体2が前進動作又は後進動作されてもよい。
[測位システム]
図3は、油圧ショベル1の測位を説明する図である。図4は、本実施形態に係る油圧ショベル1の測位システム200を示す概略図である。図5は、本実施形態に係る油圧ショベル1の測位システム200の一例を示すブロック図である。測位システム200は、衛星の測位システムであるGNSSを用いたRTK測位を使用して、油圧ショベル1の位置を測位する。
図3は、油圧ショベル1の測位を説明する図である。図4は、本実施形態に係る油圧ショベル1の測位システム200を示す概略図である。図5は、本実施形態に係る油圧ショベル1の測位システム200の一例を示すブロック図である。測位システム200は、衛星の測位システムであるGNSSを用いたRTK測位を使用して、油圧ショベル1の位置を測位する。
図3に示すように、RTK測位では、既知点PFに設置された固定局FSと移動する移動局MSとにそれぞれ搭載された衛星の測位システムの受信機であるGNSS受信機RCによって、複数のGNSS衛星SVが送信する搬送波位相を測定して、移動局MSの位置を決定する方式である。図3では、GNSS衛星SV1、GNSS衛星SV2、GNSS衛星SV3、GNSS衛星SV4を図示している。
搬送波位相は、各GNSS衛星SVとGNSS受信機RCとの間の距離の変動量を積算したものである。各GNSS衛星SVとGNSS受信機RCとの間にいくつの波数(「整数値バイアス」又は「アンビギュイティ」という。)が含まれるかは、GNSS受信機RCが初期状態(起動直後)の場合、未知である。そのため、移動局MSに搭載されたGNSS受信機RCは、初期化処理として、各衛星の距離誤差が最小になる移動局の位置を探索(収束計算という)することで、高精度な移動局の位置と各GNSS衛星SVの整数値バイアスを決定する。
固定局FSの補正情報を用いて、GNSS受信機RCが受信した位置情報を補正して移動局の位置を求める。ところが、固定局FSと移動局MSとの間の距離が長い場合、補正情報による補正効果が悪くなり、GNSS受信機RCが測定する位置の誤差が増大してしまう。上記誤差が増大することで、初期化処理中のGNSS受信機RCは位置の探索が困難となり、移動局MSの高精度な位置が求まらず、初期化処理が完了しないことがある。
そこで、測位システム200は、まず、移動局MSの位置を、RTK測位以外の方法によって算出する。そして、測位システム200は、算出した移動局MSの位置に基づいて、移動局MSに搭載されたGNSS受信機RCが初期化処理を行うことによって、未知の変数が減って、整数値バイアスの計算が収束しやすくする。本実施形態では、測位システム200は、作業現場において測位された既知の基準点PRに位置を合わせた、油圧ショベル1の作業機4の刃先4Cpの位置に基づいて、油圧ショベル1に配置された衛星の測位システムのアンテナであるGNSSアンテナ61の位置を算出する。測位システム200は、RTK測位によって測位計算を行うGNSS受信機60に、各GNSS衛星の整数値バイアスとGNSSアンテナ61の位置とを未知数とする、測位計算の初期化処理を、算出したGNSSアンテナ61の位置を使用して実行させる制御指令を出力する。
測位システム200は、作業機4の各シリンダのストローク長さを検出するシリンダストロークセンサ5aと、IMU(Inertial Measurement Unit:慣性計測装置)30と、センサコントローラ(算出部)40と、モニタ50のモニタコントローラ(初期化制御部)51と、GNSS受信機60と、GNSSアンテナ61、62と、を含む。GNSSアンテナ61は、油圧ショベル1の位置を求めるために用いられ、GNSSアンテナ62は、油圧ショベル1の車体の方位角であるヨー角を求めるために用いられる。
シリンダストロークセンサ5aは、作業機4の姿勢を表す情報を検出する。シリンダストロークセンサ5aは、ブームシリンダセンサ5Aaと、アームシリンダセンサ5Baと、バケットシリンダセンサ5Caとを含む。ブームシリンダセンサ5Aaと、アームシリンダセンサ5Baと、バケットシリンダセンサ5Caとは、作業機4に配置されている。ブームシリンダセンサ5Aaは、ブームシリンダ5Aの動作量であるストローク長さを示すブームシリンダ長データを検出する。アームシリンダセンサ5Baは、アームシリンダセンサ5Baの動作量であるストローク長さを示すアームシリンダ長データを検出する。バケットシリンダセンサ5Caは、バケットシリンダ5Cの動作量であるストローク長さを示すバケットシリンダ長データを検出する。シリンダストロークセンサ5aは、検出した各シリンダ長データを、センサコントローラ40へ出力する。
IMU30は、油圧ショベル1の動作を示す動作情報を検出する状態検出装置である。なお、アンテナ61、62も状態検出装置の一例である。本実施形態において、動作情報は、油圧ショベル1の姿勢を示す情報を含んでいてもよい。油圧ショベル1の姿勢を示す情報は、油圧ショベル1のロール角、ピッチ角及びヨー角が例示される。IMU30は、上部旋回体3に取り付けられている。IMU30は、例えば運転室6の下部に設置されてもよい。
IMU30は、油圧ショベル1の角速度及び加速度を検出する。油圧ショベル1の動作にともない、油圧ショベル1には、走行時に発生する加速度、旋回時に発生する角加速度及び重力加速度といった様々な加速度が生じるが、IMU30は少なくとも重力加速度を検出して出力する。ここで、重力加速度は、重力に対する抗力に対応した加速度である。IMU30は、例えば三次元のグローバル座標系(X、Y、Z)において、X軸方向、Y軸方向及びZ軸方向の加速度と、X軸、Y軸及びZ軸周りの角速度(回転角速度)とを検出する。
グローバル座標系とは、地球に固定された原点を基準とする座標系である。グローバル座標系は、GNSSによって規定される。
センサコントローラ40は、CPU(Central Processing Unit)等のプロセッサである処理部と、RAM(Random Access Memory)及びROM(Read Only Memory)等の記憶装置である記憶部とを有する。センサコントローラ40には、IMU30の検出値、及びブームシリンダセンサ5Aaとアームシリンダセンサ5Baとバケットシリンダセンサ5Caの検出値が入力される。センサコントローラ40には、モニタコントローラ51を介して、GNSS受信機60が求めた、油圧ショベル1のグローバル座標における位置が入力される。センサコントローラ40は、算出部として機能する。
センサコントローラ40は、GNSS受信機60の初期化処理の完了後は、油圧ショベル1の刃先位置データと、作業現場の現況地形を示す現況地形データとに基づいて、目標刃先位置を示す目標刃先位置データを生成する。刃先位置データは、油圧ショベル1の現在の刃先4Cpの位置を示すデータである。刃先位置データは、油圧ショベル1のグローバル座標における位置、シリンダストロークセンサ5aの検出値、及びIMU30の検出値に基づいて、生成される。目標刃先位置データは、例えば現況地形データにより示される現況地形を所定距離だけ下方にオフセットした仮想目標地面を生成し、刃先4Cpが当該仮想目標地面に沿うように生成される。センサコントローラ40は、刃先位置データ及び目標刃先位置データに基づいて、作業機4の動作を制御する作業機指令値を生成して出力する。
センサコントローラ40は、作業現場において測位された既知の基準点PRに位置を合わせた、作業機4の刃先4Cpの位置に基づいて、作業機械1に配置されたGNSSアンテナ61の位置を算出する。センサコントローラ40は、車体座標系で求められた油圧ショベル1のGNSSアンテナ61の位置を、グローバル座標系に変換して、モニタ50のモニタコントローラ51に出力する。
センサコントローラ40は、既知の基準点PRの位置と、作業機4の刃先4Cpを基準点PRの位置に合わせた状態における作業機4の姿勢を表す角度とに基づいて、GNSSアンテナ61の位置を算出してもよい。より詳しくは、センサコントローラ40は、三次元の現場座標系で計測された、基準点PRの位置と、作業機4の刃先4Cpを基準点PRの位置に合わせた状態で検出された、シリンダストロークセンサ5aの検出値とに基づいて、油圧ショベル1のGNSSアンテナ61の位置を、車体座標系(Xm,Ym,Zm)で求める。
ブームシリンダセンサ5Aaの検出値が示すブームシリンダ5Aの動作量と、アームシリンダセンサ5Baの検出値が示すアームシリンダ5Bの動作量と、バケットシリンダセンサ5Caの検出値が示すバケットシリンダ5Cの動作量とから、作業機4の姿勢を表す情報が得られる。作業機4の姿勢を表す情報は、例えば、ブーム4Aと上部旋回体3とのなす角度θ1、ブーム4Aとアーム4Bとのなす角度θ2、及びアーム4Bとバケット4Cとのなす角度θ3によって規定される。
センサコントローラ40は、さらに油圧ショベル1のロール角ピッチ角及びヨー角を含む姿勢角に基づいて、GNSSアンテナ61の位置を算出してもよい。より詳しくは、センサコントローラ40は、さらに、作業機4の刃先4Cpを基準点PRの位置に合わせた状態で検出された、IMU30の検出値に基づいて、油圧ショベル1のGNSSアンテナ61の位置を、車体座標系で求める。
IMU30の検出値である、油圧ショベル1の角速度及び加速度から、油圧ショベル1の姿勢角(ロール角及びピッチ角)が得られる。ヨー角は、モニタコントローラ51から取得する。
モニタ50は、規定の表示データを表示する。モニタ50は、モニタコントローラ51と、表示部52とを有する。なお、表示部52は別体でもよい。モニタコントローラ51は、CPU等のプロセッサである処理部と、RAM及びROM(Read Only Memory)等の記憶装置である記憶部とを有する。モニタコントローラ51は、初期化制御部として機能する。モニタコントローラ51は、RTK測位によって測位計算を行うGNSS受信機60に、各GNSS衛星の整数値バイアスとGNSSアンテナ61の位置とを未知数とする、測位計算の初期化処理を、センサコントローラ40が算出したGNSSアンテナ61の位置を使用して実行させる制御指令を出力する。モニタコントローラ51は、センサコントローラ40から取得した、グローバル座標系に変換された油圧ショベル1のGNSSアンテナ61の位置を、GNSS受信機60に出力する。
モニタコントローラ51は、GNSS受信機60が求めたアンテナ方位角とGNSSアンテナ61、62の車体上での配置関係から、車体の方位角であるヨー角を求める。また、求めたヨー角をセンサコントローラ40に出力する。
表示部52は、液晶ディスプレイ(LCD:Liquid Crystal Display)又は有機ELディスプレイ(OELD:Organic Electroluminescence Display)のようなフラットパネルディスプレイを含む。表示部52には、GNSS受信機60の初期化処理の実行中であること、初期化処理が終了したこと等の、GNSS受信機60の初期化処理の進行状況が表示可能である。モニタ50は、センサコントローラ40及びGNSS受信機60とデータを通信可能に接続されている。
GNSS受信機60は、グローバル座標演算装置として機能する。GNSS受信機60は、CPU等のプロセッサである処理部と、RAM及びROM等の記憶装置である記憶部とを有する。GNSS受信機60は、GNSSを利用して油圧ショベル1の現在の位置を検出する位置検出装置である。GNSS受信機60は、GNSSアンテナ61が受信したGNSS電波に応じた信号に基づいて、図1に示すグローバル座標系におけるGNSSアンテナ61の位置を求める。GNSSの一例としては、GPS(Global Positioning System)が挙げられるが、これに限定されるものではない。GNSSアンテナ61は、例えば油圧ショベル1に設置される。
GNSSアンテナ61は、上部旋回体3に配置されている。GNSSアンテナ61は、油圧ショベル1の現在位置を検出するために用いられる。GNSSアンテナ61は、GNSS受信機60と接続されている。GNSSアンテナ61が受信したGNSS電波に応じた信号は、GNSS受信機60に入力される。
GNSS受信機60は、初期化処理において、収束計算により各GNSS衛星の整数値バイアスを推定、決定して、移動局であるGNSSアンテナ61の高精度な位置を求める。GNSS受信機60は、初期化処理の実行時、モニタ50のモニタコントローラ51から取得した、グローバル座標系で表されるGNSSアンテナ61の位置を取得する。GNSS受信機60は、グローバル座標系で表されるGNSSアンテナ61の位置を使用して、収束計算により各GNSS衛星の整数値バイアスを推定、決定する。
GNSS受信機60は、初期化処理の完了後、生成したGNSSアンテナ61の位置を、モニタ50のモニタコントローラ51に出力する。
GNSS受信機60は、GNSSアンテナ61、62の位置が受信した衛星信号から基線解析によって方位角を算出して、その方位角を、GNSSアンテナ61を軸としたGNSSアンテナ62のアンテナ方位角とする。また、GNSS受信機60は、算出したアンテナ方位角をモニタコントローラ51に出力する。
[コンピュータシステム]
図6は、本実施形態に係るコンピュータシステム1000を示すブロック図である。上述の測位システム200は、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の測位システム200の機能は、コンピュータプログラムとしてストレージ1003に記憶されている。プロセッサ1001は、コンピュータプログラムをストレージ1003から読み出してメインメモリ1002に展開し、コンピュータプログラムに従って上述の処理を実行する。なお、コンピュータプログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
図6は、本実施形態に係るコンピュータシステム1000を示すブロック図である。上述の測位システム200は、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の測位システム200の機能は、コンピュータプログラムとしてストレージ1003に記憶されている。プロセッサ1001は、コンピュータプログラムをストレージ1003から読み出してメインメモリ1002に展開し、コンピュータプログラムに従って上述の処理を実行する。なお、コンピュータプログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
コンピュータプログラム又はコンピュータシステム1000は、上述の実施形態に従って、作業現場において測量された既知の基準点PRに、作業機4の刃先4Cpの位置を合わせることと、作業機4の刃先4Cpの位置を合わせた基準点の位置から、作業機械1に配置されたGNSSアンテナ61の位置を算出することと、リアルタイムキネマティック測位によって測位計算を行うGNSS受信機60に、各GNSS衛星の整数値バイアスとGNSSアンテナ61の位置とを未知数とする、測位計算の初期化処理を、算出したGNSSアンテナ61の位置を使用して実行させる制御指令を出力することと、を実行させることができる。
図7は、本実施形態に係る油圧ショベル1の測位方法の一例を示すフローチャートである。作業現場においては、基準点PRが、三次元の現場座標系で計測されて、位置が既知になっている。油圧ショベル1が起動されると、GNSS受信機60の初期化処理が実行される。モニタ50には、GNSS受信機60の初期化処理の実行中であること、初期化処理が終了したこと等の初期化処理の進行状況が表示可能である。GNSS受信機60の初期化処理が完了しない場合、例えば、運転者の操作によって、図7に示す処理が実行される。まず、運転者は、作業機4を操作して、作業現場において測量された基準点PRに、作業機4の刃先4Cpの位置を合わせる。
測位システム200は、センサコントローラ40及びモニタ50のモニタコントローラ51において、ステップSP1ないしステップSP5の処理を実行する。また、GNSS受信機60において、ステップST1ないしステップST4を実行する。
センサコントローラ40は、GNSSアンテナ61の位置を算出する(ステップSP1)。より詳しくは、センサコントローラ40は、既知の基準点PRの位置と、作業機4の刃先4Cpを基準点PRに合わせた状態で検出された、シリンダストロークセンサ5aの検出値、及びIMU30の検出値の少なくともどちらかに基づいて、油圧ショベル1のGNSSアンテナ61の位置を、車体座標系で算出する。センサコントローラ40は、算出したGNSSアンテナ61の位置を、モニタコントローラ51に出力する。
モニタコントローラ51は、センサコントローラ40から取得したGNSSアンテナ61の位置を、GNSS受信機60へ出力する(ステップSP2)。
GNSS受信機60は、モニタコントローラ51から、GNSSアンテナ61の位置を取得する(ステップST1)。
モニタコントローラ51は、GNSS受信機60に、各GNSS衛星の整数値バイアスとGNSSアンテナ61の位置とを未知数とする、初期化処理を、センサコントローラ40が算出したGNSSアンテナ61の位置を使用して実行するよう制御指令を出力する(ステップSP3)。
GNSS受信機60は、実行中の初期化処理を中断する(ステップST2)。
GNSS受信機60は、取得したGNSSアンテナ61の位置に基づいて、初期化処理のやり直しを行う(ステップST3)。
モニタコントローラ51は、GNSS受信機60による初期化処理が完了したか否かを判定する(ステップSP4)。GNSS受信機60による初期化処理が完了したと判定する場合(ステップSP4でYes)、ステップSP5へ進む。GNSS受信機60による初期化処理が完了したと判定しない場合(ステップSP4でNo)、ステップSP4の処理を再度実行する。
モニタコントローラ51は、GNSS受信機60に、GNSSアンテナ61の位置の固定モードを解除するよう制御指令を出力する(ステップSP5)。
GNSS受信機60は、GNSSアンテナ61の位置の固定モードを解除する(ステップST4)。GNSS受信機60の初期化処理中は、固定モードに設定されており、GNSSアンテナ61の位置が固定されているものとして処理が行われる。固定モードの設定中は、油圧ショベルの位置をRTK測位によって測定できない。固定モードが解除されることによって、移動する油圧ショベル1の高精度な位置をRTK測位によって測定可能になる。
このようにして、GNSS受信機60の初期化処理時に、未知の変数が減って、整数値バイアスの計算が収束しやすくなるので、GNSS受信機60の初期化処理が適切に完了する。GNSS受信機60の初期化処理の完了後、油圧ショベル1が移動しても、油圧ショベル1に搭載されたGNSSアンテナ61の高精度な位置が求められる。
なお、図7のフローチャートは一例であり、他の実施形態においては、必ずしもすべてのステップを実行しなくてもよい。例えば、GNSS受信機60の初期化処理が完了しない場合の例として説明したが、GNSS受信機60の初期化処理が完了しない時でなくても実行してもよい。この場合、例えば、ステップST2、ステップSP3を実行しなくてもよい。
[効果]
以上のように、本実施形態は、RTK測位によって測位計算を行うGNSS受信機60に、既知の基準点PRの位置から算出したGNSSアンテナ61の位置に基づいて、測位計算の初期化処理を実行させる。本実施形態によれば、GNSS受信機60では、GNSSアンテナ61の位置を使用して、収束計算により各GNSS衛星の整数値バイアスを推定、決定することができる。本実施形態によれば、GNSS受信機60の初期化処理が完了しない状態の発生を抑制することができる。本実施形態は、GNSS受信機60の初期化処理を適切に実行できる。
以上のように、本実施形態は、RTK測位によって測位計算を行うGNSS受信機60に、既知の基準点PRの位置から算出したGNSSアンテナ61の位置に基づいて、測位計算の初期化処理を実行させる。本実施形態によれば、GNSS受信機60では、GNSSアンテナ61の位置を使用して、収束計算により各GNSS衛星の整数値バイアスを推定、決定することができる。本実施形態によれば、GNSS受信機60の初期化処理が完了しない状態の発生を抑制することができる。本実施形態は、GNSS受信機60の初期化処理を適切に実行できる。
以上、実施形態を説明したが、前述した内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。例えば、センサコントローラ40が実行するものとして説明した各処理は、モニタ50のモニタコントローラ51又はこれら以外のコントローラが実行してもよい。例えば、モニタ50のモニタコントローラ51が実行するものとして説明した各処理は、センサコントローラ40又はこれら以外のコントローラが実行してもよい。例えば、センサコントローラ40及びモニタ50のモニタコントローラ51との機能を、1つのコントローラで実装してもよい。
本実施形態で行う、作業機4の刃先4Cpを既知の基準点PRに位置を合わせる作業は、従来も、作業開始時に行う作業である。本実施形態は、運転者が新たな作業を行わないので、作業負荷の増加を抑制できる。
また、上記実施形態では、作業機械として、油圧ショベル1を例に挙げて説明したが、これに限定するものではなく、ブルドーザ又はホイールローダー等、他の作業機械であってもよい。
また、上記実施形態では、作業機4の刃先4Cpを既知の基準点PRに位置を合わせるものとして説明したが、これに限定されず、作業機4の他の部分を既知の基準点PRに位置を合わせてもよい。
上記実施形態では、ヨー角をモニタコントローラ51で算出するものとして説明したが、センサコントローラ40で算出してもよい。具体的には、モニタコントローラ51が、GNSS受信機60が求めたアンテナ方位角をセンサコントローラ40に出力し、センサコントローラ40が、アンテナ方位角と、GNSSアンテナ61、62の車体上での配置関係からヨー角を算出すればよい。
上記実施形態では、GNSSアンテナ61は、油圧ショベル1の位置を求めるために用いられるものとして説明したが、これに限られない。例えば、GNSSアンテナ62を、油圧ショベル1の位置を求めるために用いてもよい。この場合、GNSSアンテナ61を、油圧ショベル1の車体の方位角であるヨー角を求めるために用いてもよい。また、GNSSアンテナ61、GNSSアンテナ62以外のGNSSアンテナを設けて、当該GNSSアンテナを用いて油圧ショベル1の位置を求めてもよい。
上記実施形態では、GNSSアンテナが2つであるものとして説明したがこれに限定されず、GNSSアンテナは1つでもよい。例えば、作業機械がブルドーザである場合、1つのGNSSアンテナが検出する速度ベクトルから車体の方位を算出してもよい。
上記実施形態の作業機は一例であり、ブルドーザのブレード、ホイールローダーのバケットなど、他の作業機械の作業機にも適用可能である。
1…油圧ショベル(作業機械)、2…下部走行体、3…上部旋回体、4…作業機、4A…ブーム、4B…アーム、4C…バケット、5…油圧シリンダ、5A…ブームシリンダ、5Aa…ブームシリンダセンサ、5B…アームシリンダ、5Ba…アームシリンダセンサ、5C…バケットシリンダ、5Ca…バケットシリンダセンサ、6…運転室、9…運転シート、10…操作部、11…左作業レバー、12…右作業レバー、13…左走行レバー、14…右走行レバー、15…左フットペダル、16…右フットペダル、30…IMU、40…センサコントローラ(算出部)、50…モニタ、51…モニタコントローラ(初期化制御部)、52…表示部、60…GNSS受信機(衛星の測位システムの受信機)、61…GNSSアンテナ(衛星の測位システムのアンテナ)、62…GNSSアンテナ(衛星の測位システムのアンテナ)、200…測位システム、1000…コンピュータシステム、1001…プロセッサ、1002…メインメモリ、1003…ストレージ、1004…インターフェース、AX…ブーム回転軸、BX…アーム回転軸、CX…バケット回転軸、RX…旋回軸。
Claims (6)
- 衛星の測位システムを用いたリアルタイムキネマティック測位を使用した作業機械の測位システムであって、
作業現場において測位された既知の基準点に位置を合わせた、前記作業機械の作業機の位置に基づいて、前記作業機械に配置された衛星の測位システムのアンテナの位置を算出する算出部と、
リアルタイムキネマティック測位によって測位計算を行う衛星の測位システムの受信機に、各衛星の整数値バイアスと前記衛星の測位システムのアンテナの位置とを未知数とする、測位計算の初期化処理を、前記算出部が算出した前記衛星の測位システムのアンテナの位置を使用して実行させる制御指令を出力する初期化制御部と、
を備える、作業機械の測位システム。 - 前記算出部は、前記基準点の位置と、前記作業機の姿勢を表す角度とに基づいて、前記衛星の測位システムのアンテナの位置を算出する、
請求項1に記載の作業機械の測位システム。 - 前記算出部は、前記作業機のロール角、ピッチ角、及びヨー角を含む姿勢角に基づいて、前記衛星の測位システムのアンテナの位置を算出する、
請求項1又は2に記載の作業機械の測位システム。 - 前記算出部は、前記基準点に位置を合わせた、前記作業機の刃先の位置に基づいて、前記衛星の測位システムのアンテナの位置を算出する、
請求項1から3のいずれか一項に記載の作業機械の測位システム。 - 前記作業機を搭載して走行する走行部と、
請求項1から請求項4のいずれか一項に記載の作業機械の測位システムと、
を備える作業機械。 - 衛星の測位システムを用いたリアルタイムキネマティック測位を使用した作業機械の測位方法であって、
作業現場において測量された既知の基準点に、作業機の一部の位置を合わせることと、
前記作業機の一部の位置を合わせた前記基準点の位置から、前記作業機械に配置された衛星の測位システムのアンテナの位置を算出することと、
リアルタイムキネマティック測位によって測位計算を行う衛星の測位システムの受信機に、各衛星の整数値バイアスと前記衛星の測位システムのアンテナの位置とを未知数とする、測位計算の初期化処理を、算出した前記衛星の測位システムのアンテナの位置を使用して実行させる制御指令を出力することと、
を含む、作業機械の測位方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/914,551 US20230144985A1 (en) | 2020-04-17 | 2021-04-14 | Positioning system for work machine, work machine, and positioning method for work machine |
CN202180024621.1A CN115335727A (zh) | 2020-04-17 | 2021-04-14 | 作业机械的定位系统、作业机械及作业机械的定位方法 |
KR1020227033596A KR102679015B1 (ko) | 2020-04-17 | 2021-04-14 | 작업 기계의 측위 시스템, 작업 기계 및 작업 기계의 측위 방법 |
DE112021001087.5T DE112021001087T5 (de) | 2020-04-17 | 2021-04-14 | Positionierungssystem für eine arbeitsmaschine, arbeitsmaschine und positionierungsverfahren für eine arbeitsmaschine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-074228 | 2020-04-17 | ||
JP2020074228A JP2021173522A (ja) | 2020-04-17 | 2020-04-17 | 作業機械の測位システム、作業機械及び作業機械の測位方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021210613A1 true WO2021210613A1 (ja) | 2021-10-21 |
Family
ID=78083664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/015466 WO2021210613A1 (ja) | 2020-04-17 | 2021-04-14 | 作業機械の測位システム、作業機械及び作業機械の測位方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230144985A1 (ja) |
JP (1) | JP2021173522A (ja) |
KR (1) | KR102679015B1 (ja) |
CN (1) | CN115335727A (ja) |
DE (1) | DE112021001087T5 (ja) |
WO (1) | WO2021210613A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102651033B1 (ko) * | 2023-05-16 | 2024-03-25 | (주)선운이앤지 | 가옥밀집으로 인한 위성신호수신장애지역에서의 간접측량이 가능한 지엔에스에스 수신장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11344552A (ja) * | 1998-06-03 | 1999-12-14 | Furuno Electric Co Ltd | 測位装置 |
JP2006214236A (ja) * | 2005-02-07 | 2006-08-17 | Hitachi Constr Mach Co Ltd | 建設機械の計測表示機構 |
JP3170466U (ja) * | 2011-07-07 | 2011-09-15 | 株式会社バイオスシステム | リアルタイムキネマティック航法衛星測位装置 |
US20120059554A1 (en) * | 2010-09-02 | 2012-03-08 | Topcon Positioning Systems, Inc. | Automatic Blade Control System during a Period of a Global Navigation Satellite System ... |
WO2015173920A1 (ja) * | 2014-05-14 | 2015-11-19 | 株式会社小松製作所 | 油圧ショベルの較正システム及び較正方法 |
JP2018009959A (ja) * | 2016-07-05 | 2018-01-18 | 国立研究開発法人宇宙航空研究開発機構 | 衛星測位システム及び衛星測位方法 |
US9943022B1 (en) * | 2017-08-02 | 2018-04-17 | Caterpillar Trimble Control Technologies Llc | Determining yaw and center-of-rotation of a rotating platform using a single position sensor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2643035B2 (ja) | 1991-06-17 | 1997-08-20 | シャープ株式会社 | 非水系二次電池用炭素負極およびその製造方法 |
JPH07144879A (ja) * | 1993-11-18 | 1995-06-06 | Mitsui Eng & Shipbuild Co Ltd | タイヤ式クレーンの走行停止制御装置 |
JP5789279B2 (ja) | 2013-04-10 | 2015-10-07 | 株式会社小松製作所 | 掘削機械の施工管理装置、油圧ショベルの施工管理装置、掘削機械及び施工管理システム |
US9256227B1 (en) * | 2014-09-12 | 2016-02-09 | Caterpillar Inc. | System and method for controlling the operation of a machine |
KR102137469B1 (ko) * | 2017-03-29 | 2020-07-24 | 히다찌 겐끼 가부시키가이샤 | 작업 기계 |
CN109790702B (zh) * | 2017-09-07 | 2021-07-06 | 日立建机株式会社 | 工程机械 |
US11480973B2 (en) * | 2019-07-15 | 2022-10-25 | Deere & Company | Robotic mower boundary detection system |
EP4222609A1 (en) * | 2020-12-17 | 2023-08-09 | Swift Navigation, Inc. | System and method for fusing dead reckoning and gnss data streams |
-
2020
- 2020-04-17 JP JP2020074228A patent/JP2021173522A/ja active Pending
-
2021
- 2021-04-14 US US17/914,551 patent/US20230144985A1/en active Pending
- 2021-04-14 KR KR1020227033596A patent/KR102679015B1/ko active IP Right Grant
- 2021-04-14 CN CN202180024621.1A patent/CN115335727A/zh active Pending
- 2021-04-14 WO PCT/JP2021/015466 patent/WO2021210613A1/ja active Application Filing
- 2021-04-14 DE DE112021001087.5T patent/DE112021001087T5/de active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11344552A (ja) * | 1998-06-03 | 1999-12-14 | Furuno Electric Co Ltd | 測位装置 |
JP2006214236A (ja) * | 2005-02-07 | 2006-08-17 | Hitachi Constr Mach Co Ltd | 建設機械の計測表示機構 |
US20120059554A1 (en) * | 2010-09-02 | 2012-03-08 | Topcon Positioning Systems, Inc. | Automatic Blade Control System during a Period of a Global Navigation Satellite System ... |
JP3170466U (ja) * | 2011-07-07 | 2011-09-15 | 株式会社バイオスシステム | リアルタイムキネマティック航法衛星測位装置 |
WO2015173920A1 (ja) * | 2014-05-14 | 2015-11-19 | 株式会社小松製作所 | 油圧ショベルの較正システム及び較正方法 |
JP2018009959A (ja) * | 2016-07-05 | 2018-01-18 | 国立研究開発法人宇宙航空研究開発機構 | 衛星測位システム及び衛星測位方法 |
US9943022B1 (en) * | 2017-08-02 | 2018-04-17 | Caterpillar Trimble Control Technologies Llc | Determining yaw and center-of-rotation of a rotating platform using a single position sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2021173522A (ja) | 2021-11-01 |
KR20220143762A (ko) | 2022-10-25 |
CN115335727A (zh) | 2022-11-11 |
DE112021001087T5 (de) | 2023-01-19 |
KR102679015B1 (ko) | 2024-06-26 |
US20230144985A1 (en) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8145391B2 (en) | Automatic blade control system with integrated global navigation satellite system and inertial sensors | |
JP7245119B2 (ja) | 建設機械 | |
WO2017119517A1 (ja) | 作業機械の制御システム、作業機械及び作業機械の制御方法 | |
JP2007147588A (ja) | 作業機械の位置計測システム | |
CN108350679A (zh) | 机动平地机的铲刀自动控制系统 | |
CN112639225B (zh) | 作业机械 | |
JP7016297B2 (ja) | 作業機械 | |
CN116057417B (zh) | 作业机械 | |
WO2021210613A1 (ja) | 作業機械の測位システム、作業機械及び作業機械の測位方法 | |
WO2021256353A1 (ja) | 建設機械 | |
JP7227111B2 (ja) | 作業機械 | |
JP7030149B2 (ja) | 作業機械 | |
EP3913146B1 (en) | Work machine with collision mitigation system | |
JP7165239B1 (ja) | 電子制御装置 | |
JP7349956B2 (ja) | 施工方法及び施工システム | |
WO2024166426A1 (ja) | 作業機械の自動制御システムおよび作業機械の制御方法 | |
JP2024041326A (ja) | 作業機械における車体座標系を設定するためのシステムおよび方法 | |
JP2024052345A (ja) | 作業機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21789096 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227033596 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21789096 Country of ref document: EP Kind code of ref document: A1 |