WO2021210241A1 - コイル用絶縁接着部材および電気機器 - Google Patents

コイル用絶縁接着部材および電気機器 Download PDF

Info

Publication number
WO2021210241A1
WO2021210241A1 PCT/JP2021/003168 JP2021003168W WO2021210241A1 WO 2021210241 A1 WO2021210241 A1 WO 2021210241A1 JP 2021003168 W JP2021003168 W JP 2021003168W WO 2021210241 A1 WO2021210241 A1 WO 2021210241A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
adhesive member
stator
insulating adhesive
resin layer
Prior art date
Application number
PCT/JP2021/003168
Other languages
English (en)
French (fr)
Inventor
孝仁 村木
知弘 安達
中山 健一
博光 岡本
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021210241A1 publication Critical patent/WO2021210241A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • the present invention relates to an insulating adhesive member for a coil and an electric device.
  • liquid epoxy resins and unsaturated polyester resins have been widely used for fixing coils of electric devices (rotary electric machines, etc.) from the viewpoint of impregnation property and adhesive strength (see, for example, Patent Document 1).
  • a dedicated device is required for applying the liquid resin, and further, dripping during application and adhesion to unnecessary parts occur, which causes a problem in improving workability.
  • a coil fixing method using a foamed resin has been studied (see, for example, Patent Documents 2 and 3).
  • the application of the foamed resin solves the problems that the liquid resin has, such as dripping during coating, but the bubbles are generated in the resin, so that the strength is lowered and the strength is lowered.
  • New problems such as the occurrence of partial discharge when a high voltage is applied arise.
  • the decrease in adhesive strength is suppressed by adjusting the curing process.
  • no countermeasures have been taken against the generation of partial discharge due to bubbles, and there is a problem when applied to a high voltage motor.
  • an object of the present invention is to realize high withstand voltage resistance in an insulating adhesive member for a coil using a foamed resin.
  • thermoplastic resin layer containing a filler and a thermosetting resin layer provided on both sides of the thermoplastic resin layer and containing a foaming agent. It is an insulating adhesive member for a coil.
  • Another aspect of the present invention for achieving the above object is an electric device including the above-described insulating and adhesive member for a coil of the present invention.
  • a high withstand voltage can be realized in an insulating adhesive member for a coil using a foamed resin.
  • FIG. 1 Cross-sectional view of an example of the insulating adhesive member for a coil of the present invention
  • the developed view of the insulating adhesive member for a coil of FIG. Cross-sectional view showing the shape of the insulating adhesive member for a coil Sectional drawing which shows an example of the electric apparatus (rotary electric machine) of this invention
  • the present inventors are composed of a thermoplastic resin layer and a foamed insulating portion in contact with the thermoplastic resin layer, and the thermoplastic resin layer is a coil. It has been found that a stator of a rotary electric machine having a flat surface portion along the flat surface of the above and a bent portion along the curved surface of the coil, and the flat surface portion has a higher filler content than the bent portion is preferable.
  • the resin composition according to the present invention will be described in detail.
  • FIG. 1 is a cross-sectional view of an example of the insulating and adhesive member for a coil of the present invention.
  • the insulating adhesive member 301 for a coil of the present embodiment is provided on both sides of a thermoplastic resin layer 401 including a filler 402 and a thermoplastic resin layer 401, and is a thermosetting resin containing a foaming agent 404. It has a three-layer laminated structure including a layer (foam adhesive layer) 403.
  • the thermosetting resin layer 403, which is the surface of the three-layer structure, serves as an adhesive surface with other members.
  • the thermosetting resin layer 403 serves as an adhesive surface for the stator coil and the stator slot.
  • the thermoplastic resin layer 401 including the filler ensures high withstand voltage of the insulating and adhesive member for the coil.
  • thermosetting resin layer 403 having the foaming agent 404 even if a partial discharge occurs due to the application of a high voltage and the thermosetting resin layer 403 burns out, the thermoplastic resin layer Since the filler 402, which is an inorganic substance existing in 401, stops the progress of burning, it is possible to prevent short-circuiting to the core and other coils, and it is possible to realize high withstand voltage characteristics.
  • thermosetting resin layer 403 is provided on both side surfaces of the thermoplastic resin layer 401 in FIG. 1, the number of layers of the thermoplastic resin layer 401 and the thermosetting resin layer 403 can be changed as necessary. You may.
  • the thermoplastic resin layer 401 and the thermosetting resin layer 403 may be laminated on the outer surface of the thermosetting resin layer 403 of FIG. 1 to form a seven-layer structure.
  • thermoplastic resin layer 401 and the thermosetting resin layer 403 will be described in more detail.
  • thermoplastic resin layer 401 is not particularly limited, and vinyl resins such as polyethylene and polypropylene, polylactide, polycaproic acid, polybutylene succinate, and polyethylene terephthalate are used.
  • vinyl resins such as polyethylene and polypropylene, polylactide, polycaproic acid, polybutylene succinate, and polyethylene terephthalate
  • Polybutylene terephthalate and polyester resin such as polyethylene naphthalate, Nylon 6 and Nylon 66, Nylon 6T and Nomex consisting of m-phenylenediamine and isophthalic acid (“Nomex” is EI de Yupon de Numur.
  • polyester resins such as polyethylene naphthalate are preferable from the viewpoint of heat resistance and processability.
  • the filler 402 dispersed in the thermoplastic resin layer 401 preferably has a flat shape, and examples thereof include mica, talc, kaolin, silitin, calcium carbonate, and boron nitride.
  • thermosetting resin layer 403 examples include epoxy resin, unsaturated polyester resin, vinyl ester resin, and urethane resin, and from the viewpoint of heat resistance, Epoxy resins, unsaturated polyester resins and vinyl ester resins are preferred.
  • the epoxy resin is not particularly limited, and is a bisphenol type epoxy resin such as bisphenol A type, bisphenol F type, and dimer acid-modified bisphenol A type, a novolak type epoxy resin such as phenol novolac type and cresol novolac type, and a biphenyl type epoxy. Examples thereof include resins and triphenylmethane type epoxy resins. Only one type of these epoxy resins may be used, or two or more types may be mixed and used as appropriate. Examples of the epoxy resin curing agent include acid anhydride, phenol, phenol novolac, and dicyandiamide.
  • the unsaturated polyester resin is not particularly limited, and is obtained by dissolving a condensate obtained from a dibasic acid and a polyhydric alcohol in a radically polymerizable monomer.
  • the dibasic acid used as a raw material for the unsaturated polyester resin include ⁇ , ⁇ -unsaturated dibasic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, and itaconic anhydride, and phthalic acid and phthalic anhydride.
  • Polyhydric alcohols used as raw materials for unsaturated polyester resins include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, and 1, , 3-Butandiol, Addition of Bisphenol A with Propylene Oxide or Ethylene Oxide, Glycerin, Trimethylol Propane, 1,3-Propanediol, 1,2-Cyclohexaneglycol, 1,3-Cyclohexaneglycol, 1,4-Cyclohexane Glycol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin glycol, tris (2-hydroxyethyl) isocyanurate and the like can be used.
  • amino alcohols such as ethanolamine may be used. Only one kind of these polyhydric alcohols may be used, or two or more kinds may be mixed as appropriate. If necessary, a dicyclopentadiene compound may be incorporated into the resin skeleton.
  • epoxy compound used as a raw material for the vinyl ester resin a compound having at least two epoxy groups in the molecule is used.
  • examples of such epoxy compounds include epibis-type glycidyl ether-type epoxy resins obtained by a condensation reaction between bisphenols such as bisphenol A, bisphenol F, and bisphenol S and epihalohydrin, and phenols such as phenol, cresol, and bisphenol.
  • glycidyl ether type epoxy resin obtained by condensation reaction of 4,4'-biphenol, 2,6-naphthalenediol, hydrogenated bisphenol and glycols with epihalohydrin, and condensate reaction of hydranthin or cyanuric acid with epihalohydrin.
  • Amin glycidyl ether type epoxy resin or the like can be used. However, it is not particularly limited to these compounds. Only one kind of these epoxy compounds may be used, or two or more kinds may be mixed and used as appropriate.
  • unsaturated monobasic acid used as a raw material for the vinyl ester resin for example, acrylic acid, methacrylic acid, crotonic acid and the like can be used. Further, a half ester such as maleic acid or itaconic acid may be used. However, it is not particularly limited to these. Only one type of these unsaturated monobasic acids may be used, or two or more types may be mixed and used as appropriate.
  • optional components may be added to the above-mentioned resin composition, if necessary.
  • the optional component include a radically polymerizable monomer, a polymerization initiator, a curing accelerator, a polymerization inhibitor, an adhesive strength improver and the like.
  • Radical-polymerizable monomers include styrene, vinyltoluene, vinylnaphthalene, ⁇ -methylstyrene, vinylpyrrolidone, acrylamide, acrylonitrile, allyl alcohol, allylphenyl ether, (meth) acrylic acid ester, vinyl acetate, vinylpyrrolidone, (meth). ) Acrylamide, maleic acid diester, fumaric acid diester and the like. However, it is not particularly limited to these compounds.
  • Styrene, vinyltoluene, and (meth) acrylic acid ester are preferably used.
  • the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, and isodecyl.
  • the polymerization initiators are benzoyl peroxide, lauroyl peroxide, t-butyl peroxide benzoate, t-amyl peroxide benzoate, t-amylperoxyneodecanoate, t-butylperoxyneodecanoate, t.
  • curing accelerator examples include metal salts of naphthenic acid or octyl acid (metal salts such as cobalt, zinc, zirconium, manganese and calcium). Only one kind of these may be used, or two or more kinds may be mixed as appropriate.
  • polymerization inhibitor examples include quinones such as hydroquinone, paratert-butylcatechol and pyrogallol. Only one kind of these may be used, or two or more kinds may be mixed as appropriate.
  • Examples of the adhesive strength improving agent include p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyltriethoxysilane. Only one kind of these may be used, or two or more kinds may be mixed as appropriate.
  • the foaming agent 404 contained in the thermoplastic resin layer 401 is preferably a microcapsule type foaming agent.
  • the microcapsule type foaming agent is not particularly limited, and may be any structure having a core-shell structure in which a volatile solvent is wrapped in an acrylic resin, for example.
  • the synthesis method is not particularly limited, and an interfacial polymerization method, an in situ method, or the like can be applied.
  • silica, alumina, etc. may be added as a filler in order to increase heat resistance and strength.
  • FIG. 2 is a cross-sectional view in which the coil insulating adhesive member of the present invention and the stator coil are bonded
  • FIG. 3 is a developed view of the coil insulating adhesive member of FIG.
  • the coil insulating adhesive member is bent along the shape of the stator coil 60.
  • the stator coil 60 has a square columnar shape
  • the coil insulating adhesive member 301 is bent along the square columnar stator coil 60 into a square shape having a flat portion and a corner portion (bent portion).
  • the dotted line shown in FIG. 3 is a bent portion, and the coil insulating adhesive member 301 is bent along this portion.
  • the content of the filler in the corner portion is smaller than the content of the filler in the flat portion. If a large amount of filler is contained in the corner portion, the filler may break through the resin layer and easily break when the coil insulating adhesive member 301 is bent. Therefore, the content of the filler in the corner portion is made smaller than the content of the filler in the flat portion to prevent breakage during bending.
  • the longitudinal direction of the filler 402 is arranged along the circumferential direction of the coil insulating adhesive member 301.
  • the withstand voltage characteristics can be improved by arranging the fillers 402 along the circumferential direction of the coil insulating adhesive member instead of the thickness direction of the coil insulating adhesive member.
  • FIG. 4 is a cross-sectional view showing the shape of the insulating adhesive member for the coil.
  • the shape of the insulating adhesive member for a coil of the present invention is not particularly limited and may be various shapes.
  • the cross section of FIG. 4 (a) is U-shaped
  • the cross section of FIG. 4 (b) is square
  • the cross section of FIG. 4 (c) is B
  • the cross section of FIG. 4 (d) is S. Can be done.
  • the shape shown in FIG. (C) shape having a B-shaped cross section
  • thermoplastic resin layer 401 is produced by dispersing the filler on the thermoplastic resin film while avoiding the bent portion, and then laminating another thermoplastic resin film.
  • the bonding method is not particularly limited, and can be selected according to the thermoplastic resin such as an adhesive or heat melting. Further, if necessary, various types of thermoplastic resin films may be laminated on the present thermoplastic resin layer.
  • thermosetting resin layer 403 is produced by uniformly stirring and mixing a microcapsule type foaming agent and an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, and other components as a base material. Further, a solvent may be added if necessary.
  • thermosetting resin layer 403 By applying the thermosetting resin layer 403 to the thermoplastic resin layer 401 produced by the above method, the insulating adhesive member 301 for the coil is manufactured.
  • the coil insulating adhesive member 301 described above can be used for bonding electrical equipment parts, for example, for fixing a stator winding of a rotary electric machine.
  • axial direction shall refer to the direction along the rotation axis of the rotary electric machine.
  • circumferential direction shall indicate a direction along the rotation direction of the rotary electric machine.
  • the “diameter direction” shall refer to the radial direction (radial direction) when the rotation axis of the rotating electric machine is centered.
  • the “inner circumference side” refers to the inside in the radial direction (inner diameter side), and the “outer circumference side” refers to the opposite direction, that is, the outer diameter side (outer diameter side).
  • FIG. 5 is a cross-sectional view showing an example of the electric device (rotary electric machine) of the present invention.
  • the rotary electric machine 10 includes a rotor 11, a stator 20, and a housing 50 for accommodating them.
  • the stator 20 is fixed to the inner peripheral side of the housing 50.
  • a rotor 11 is rotatably supported on the inner peripheral side of the stator 20.
  • the housing 50 constitutes an outer cover of an electric motor, which is formed into a cylindrical shape by cutting an iron-based material such as carbon steel, casting a cast steel or an aluminum alloy, or by pressing.
  • the housing 50 is also referred to as a frame or a frame.
  • a liquid-cooled jacket 130 is fixed to the outer peripheral side of the housing 50.
  • the inner peripheral wall of the liquid-cooled jacket 130 and the outer peripheral wall of the housing 50 form a refrigerant passage 153 for a liquid refrigerant RF such as oil, and the refrigerant passage 153 is formed so as not to leak.
  • the liquid-cooled jacket 130 houses the bearings 144 and 145, and is also referred to as a bearing bracket.
  • the refrigerant RF passes through the refrigerant passage 153 and flows out from the refrigerant outlets 154 and 155 toward the stator 20 to cool the stator 20. Further, the refrigerant RF is stored in the refrigerant (oil) storage space 150.
  • the rotor 11 is composed of a rotor core 12 and a rotating shaft 13.
  • the rotor core 12 is made by laminating thin plates of silicon steel plate.
  • the rotating shaft 13 is fixed to the center of the rotor core 12.
  • the rotating shaft 13 is rotatably held by bearings 144 and 145 attached to the liquid-cooled jacket 130, and rotates at a predetermined position in the stator 20 and at a position facing the stator 20.
  • the rotor 11 is provided with a permanent magnet 18 and an end ring (not shown).
  • a welding side coil end 62 which is a coil end of the stator coil, is provided at one end of the stator 20 in the axial direction.
  • the weld-side coil end 62 has joints 200-203 joined by welding.
  • an anti-weld side coil end 61 which is a coil end of the stator coil 60, is provided.
  • FIG. 6 is a diagram showing the stator 20 of FIG.
  • the stator 20 has a stator core 21 and a stator coil 60.
  • the stator core 21 is made by laminating thin plates of silicon steel plate.
  • a large number of stator coils 60 are wound in slots 15 provided on the inner peripheral portion of the stator core 21.
  • the heat generated from the stator coil 60 is transferred to the housing 50 via the stator core 21, and is dissipated by the refrigerant RF circulating in the liquid-cooled jacket 130.
  • the stator coil 60 uses a conductor (copper wire in this embodiment) having an insulating coating having a substantially rectangular cross section.
  • a conductor copper wire in this embodiment
  • insulating coating having a substantially rectangular cross section.
  • the above-described coil insulating adhesive member 301 of the present invention is arranged in each slot 15 to ensure electrical insulation and adhesion between the stator core 21 and the stator coil 60.
  • An annular insulating paper 300 is further arranged to insulate the coils between the stator coils 60.
  • the segment-shaped stator coil 60 is inserted into the slot 15 in which the insulating adhesive member 301 for the coil is arranged and welded to obtain the stator coil 60. Then, induction heating and / or energization heating of the coil is used to fix the stator core 21 and the stator coil 60, and the thermosetting resin constituting the insulating and adhesive member 301 for the coil is heated and cured.
  • the coil insulating adhesive member 301 is formed into a mouth shape, a B shape, or an S shape so as to wrap a copper wire.
  • the stator 20 is inserted inside the housing 50 and attached to the inner peripheral wall of the housing 50 in advance, and then the rotor 11 is inserted into the stator 20 and the bearing 144 is inserted into the rotating shaft 13. , 145 can be fitted and assembled to the liquid-cooled jacket 130.
  • the electric device of the present invention can realize high withstand voltage by the effect of the insulating adhesive member 301 for the coil of the present invention.
  • Examples 1 and 2 and Comparative Examples 1 and 2 were produced, and their effects were verified.
  • the configurations of Examples 1 and 2 and Comparative Examples 1 and 2 are as follows.
  • Example 1 polyethylene naphthalate was used as the thermoplastic resin, and bisphenol A type epoxy resin JER1004 (Mitsubishi Chemical Co., Ltd.) was used on both sides of the thermoplastic resin layer in which mica was dispersed so as not to cover the bent portion when bending along the coil.
  • 90 parts by mass of (manufactured by the company), 10 parts by mass of thermoplastic anhydride thermoplastic TMEG-S (manufactured by Shin Nihon Rika Co., Ltd.) and 10 parts by mass of thermosetting microcapsules (manufactured by Kureha Co., Ltd.) are mixed and applied, dried, and dried.
  • a thermosetting resin layer was provided.
  • Example 2 polyphenylene sulfide was used as the thermoplastic resin, and bisphenol A type epoxy resin JER1004 (Mitsubishi Chemical Co., Ltd.) was used on both sides of a thermoplastic resin film in which boron nitride was dispersed so as not to cover the bent portion when bending along the coil.
  • 90 parts by mass of (manufactured by the company), 10 parts by mass of thermoplastic anhydride thermoplastic TMEG-S (manufactured by Shin Nihon Rika Co., Ltd.) and 10 parts by mass of thermosetting microcapsules (manufactured by Kureha Co., Ltd.) are mixed and applied, dried, and dried.
  • a thermosetting resin layer was provided.
  • Comparative Example 1 as a thermoplastic resin, 90 parts by mass of bisphenol A type epoxy resin JER1004 (manufactured by Mitsubishi Chemical Co., Ltd.) on both sides of a polyethylene naphthalate film containing no filler, polyfunctional acid anhydride Ricacid-S (New Japan) 10 parts by mass of Rika Co., Ltd.) and 10 parts by mass of heat-expandable microcapsules (manufactured by Kureha Co., Ltd.) were mixed and coated and dried to provide a thermosetting resin layer.
  • JER1004 manufactured by Mitsubishi Chemical Co., Ltd.
  • polyfunctional acid anhydride Ricacid-S New Japan
  • heat-expandable microcapsules manufactured by Kureha Co., Ltd.
  • Comparative Example 2 is a bisphenol A type epoxy resin JER1004 (manufactured by Mitsubishi Chemical Co., Ltd.) 90 on both sides of a thermoplastic resin film containing polyethylene naphthalate as a thermoplastic resin and mica uniformly dispersed so as to be applied to a bent portion.
  • a thermoplastic resin film containing polyethylene naphthalate as a thermoplastic resin and mica uniformly dispersed so as to be applied to a bent portion.
  • thermoplastic anhydride thermoplastic TMEG-S manufactured by Shin Nihon Rika Co., Ltd.
  • 10 parts by mass of heat-expandable microcapsules manufactured by Kureha Co., Ltd.
  • the withstand voltage characteristics and adhesive strength of the insulated and adhesive member for coil of Examples 1 and 2 and Comparative Examples 1 and 2 produced were evaluated.
  • As a coil an amidoimide-coated enamel wire was used, and a simulated core made by processing an iron material into a slot shape was used.
  • the withstand voltage resistance of the coil heat-bonded using Example 1 is 13 kV and the shear adhesive force is 4.7 MPa
  • the withstand voltage resistance of the coil heat-bonded using Example 2 is 13 kV and the shear adhesive force is 4. It was 9 MPa, and both had good withstand voltage characteristics (13 kV or more) and shear adhesive strength (4.7 MPa or more) at the same time.
  • Comparative Example 1 the withstand voltage was 10 kV and the shear adhesive force was 4.7 MPa, and in Comparative Example 2, the withstand voltage was 12.5 kV and the shear adhesive force was 3.8 MPa.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, it was found that the withstand voltage resistance was improved by the presence of the filler, and from the comparison between Example 1 and Comparative Example 2, the filler was adhered by not being dispersed in the bent portion. It can be seen that the decrease in force is suppressed. From the above, it was shown that the withstand voltage can be improved without lowering the adhesive force by using the insulating adhesive member for the coil of this example.
  • the permanent magnet type reluctance motor has been described, but since the feature of the present invention relates to the coil insulation of the stator, the rotor is not a permanent magnet type but an induction type or a synchro. It can also be applied to egg reluctance, claw pole type, etc. Further, although the winding method is a wave winding method, any winding method having the same characteristics can be applied. In addition, although the explanation is given for the adduction type, the same applies to the abduction type.
  • the present invention is not limited to the above-described examples, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

発泡樹脂を用いたコイル用絶縁接着部材において、高い耐電圧性を実現する。 本発明のコイル用絶縁接着部材(301)は、フィラ(402)を含む熱可塑性樹脂層(401)と、熱可塑性樹脂層(401)の両面に設けられ、発泡剤(404)を含む熱硬化性樹脂層(403)と、を有することを特徴とする。

Description

コイル用絶縁接着部材および電気機器
 本発明は、コイル用絶縁接着部材および電気機器に関する。
 従来、電気機器(回転電機など)のコイルの固定には、含浸性や接着力の観点から、液状のエポキシ樹脂や不飽和ポリエステル樹脂が広く用いられている(例えば、特許文献1参照)。しかし、液状樹脂の塗布には専用の装置が必要であり、さらに塗布時の垂れ落ちや不要部分への付着などが生じ、作業性の向上に課題がある。一方、近年この課題を解決する手段の一つとして、発泡樹脂を用いたコイル固定法が検討されてきている(例えば、特許文献2および3参照)。
特開2015-19457号公報 特開2018-21203号公報 特開2018-129991号公報
 特許文献2の技術では、発泡樹脂の適用により、塗布時の垂れ落ちといった、液状樹脂が有していた課題は解決されているものの、樹脂内に気泡が生成しているため、強度の低下および高電圧印加時の部分放電の発生といった新たな課題が生じる。特許文献3の技術では、硬化プロセスの調整により、接着強度の低下を抑制している。しかしながら、気泡に由来する部分放電の発生に対する対策されておらず、高電圧モータへの適用時に課題がある。
 本発明は、上記事情に鑑み、発泡樹脂を用いたコイル用絶縁接着部材において、高い耐電圧性を実現することを目的とする。
 上記目的を達成するための本発明の一態様は、フィラを含む熱可塑性樹脂層と、熱可塑性樹脂層の両面に設けられ、発泡剤を含む熱硬化性樹脂層と、を備えることを特徴とするコイル用絶縁接着部材である。
 また、上記目的を達成するための本発明の他の態様は、上述した本発明のコイル用絶縁接着部材を備えることを特徴とする電気機器である。
 本発明のより具体的な構成は、特許請求の範囲に記載される。
 本発明によれば、発泡樹脂を用いたコイル用絶縁接着部材において、高い耐電圧性を実現することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明のコイル用絶縁接着部材の一例の断面図 本発明のコイル用絶縁接着部材とコイル導体とを接着した断面図 図2のコイル用絶縁接着部材を展開した図 コイル用絶縁接着部材の形状を示す断面図 本発明の電気機器(回転電機)の一例を示す断面図 図5の固定子20を示す図
 本発明者らは、前述の課題を解決するため鋭意研究を重ねた結果、熱可塑性樹脂層と、当該熱可塑性樹脂層に接する発泡絶縁部と、により構成され、前記熱可塑性樹脂層は、コイルの平面に沿った平面部と、前記コイルの曲面に沿った折り曲げ部を有し、前記平面部は、前記折り曲げ部よりもフィラの含有量を多くする回転電機のステータが好ましいことを見出した。以下、本発明に係る樹脂組成物を詳細に説明する。
 [コイル用絶縁接着部材] 図1は本発明のコイル用絶縁接着部材の一例の断面図である。図1に示すように、本実施形態のコイル用絶縁接着部材301は、フィラ402を含む熱可塑性樹脂層401と、熱可塑性樹脂層401の両面に設けられ、発泡剤404を含む熱硬化性樹脂層(発泡接着層)403とを備える3層の積層構造を有する。3層構造の表面である熱硬化性樹脂層403が他の部材との接着面となる。例えば、熱硬化性樹脂層403が固定子コイルおよび固定子スロットとの接着面となる。また、フィラを含む熱可塑性樹脂層401が、コイル用絶縁接着部材の高い耐電圧性を確保する。
 より具体的には、発泡剤404を有する熱硬化性樹脂層403中の気泡において、高電圧印加によって部分放電が発生して熱硬化性樹脂層403の焼損が進行したとしても、熱可塑性樹脂層401に存在する無機物であるフィラ402が焼損の進展を食い止めるため、コアや他コイルへの短絡を防ぐことができ、高い耐電圧特性を実現することができる。
 なお、図1では熱可塑性樹脂層401の両側面に熱硬化性樹脂層403を設けた構成としているが、必要に応じて、熱可塑性樹脂層401および熱硬化性樹脂層403の層数を変更してもよい。例えば、図1の熱硬化性樹脂層403のさらに外側面に熱可塑性樹脂層401および熱硬化性樹脂層403を積層し、7層の構成としてもよい。
 以下、熱可塑性樹脂層401および熱硬化性樹脂層403の構成について、より詳細に説明する。
 (1)熱可塑性樹脂層の構成 熱可塑性樹脂層401を構成する熱可塑性樹脂は特に限定されるものではなく、ポリエチレンやポリプロピレンなどのビニル樹脂や、ポリラクチド、ポリカプロン酸、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポリエチレンナフタレートなどのポリエステル樹脂、ナイロン6やナイロン66、ナイロン6Tおよびm-フェニレンジアミンとイソフタル酸からなるノ―メックス(「ノーメックス」は、イー・アイ・デユポン・ドゥ・ヌムール・アンド・カンパニーの登録商標)などのポリアミド樹脂、ポリフェニレンスルフィドやポリエーテルエーテルケトン、ポリイミドといった各種エンジニアプラスチックなどが挙げられる。これらの中でも、耐熱性や加工性の観点から、ポリエチレンナフタレートなどのポリエステル樹脂が好ましい。
 熱可塑性樹脂層401に分散されるフィラ402としては、扁平状の形状を示すものが好ましく、マイカ、タルク、カオリン、シリチン、炭酸カルシウムおよび窒化ホウ素などが挙げられる。
 (2)熱硬化性樹脂層の構成 熱硬化性樹脂層403を構成する熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂やビニルエステル樹脂、ウレタン樹脂が挙げられ、耐熱性の観点から、エポキシ樹脂や不飽和ポリエステル樹脂およびビニルエステル樹脂が好ましい。
 エポキシ樹脂は、特に限定されるものではなく、ビスフェノールA型、ビスフェノールF型、ダイマー酸変性ビスフェノールA型などのビスフェノール型エポキシ樹脂、フェノールノボラック型、クレゾールノボラック型などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などが挙げられる。これらエポキシ樹脂は、1種類のみを用いてもよいし、適宜、2種類以上を混合して用いてもよい。また、エポキシ樹脂の硬化剤としては、酸無水物やフェノール、フェノールノボラックおよびジシアンジアミドなどが挙げられる。
 不飽和ポリエステル樹脂は、特に限定されるのもではなく、二塩基酸と多価アルコールから得られる縮合物をラジカル重合性単量体に溶解して得られる。不飽和ポリエステル樹脂の原料として用いられる二塩基酸としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等のα,β-不飽和二塩基酸や、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,10-デカンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4´-ビフェニルジカルボン酸およびこれらのジアルキルエステル等の飽和二塩基酸等を用いることができる。しかし、特にこれらの化合物に限定されるものではない。これらの二塩基酸等は、1種類のみを用いてもよいし、適宜、2種類以上を混合して用いてもよい。
 不飽和ポリエステル樹脂の原料として用いられる多価アルコール類としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、グリセリン、トリメチロールプロパン、1,3-プロパンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4´-ジオール、2,6-デカリングリコールおよびトリス(2-ヒドロキシエチル)イソシアヌレート等を用いることができる。しかし、特にこれらの化合物に限定されるものではない。また、エタノールアミン等のアミノアルコール類を用いてもよい。これら多価アルコール類は、1種類のみを用いてもよいし、適宜、2種類以上を混合してもよい。また必要により、ジシクロペンタジエン系化合物を樹脂骨格中に組み入れてもよい。
 ビニルエステル樹脂の原料として用いられるエポキシ化合物としては、分子中に少なくとも2個のエポキシ基を有する化合物が用いられる。このようなエポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール類とエピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂や、フェノール、クレゾール、ビスフェノール等のフェノール類とホルマリンとの縮合物であるノボラックとエピハロヒドリンとの縮合反応により得られるノボラックタイプグリシジルエーテル型エポキシ樹脂や、テトラヒドロフタル酸、ヘキサヒドロフタル酸とエピハロヒドリンとの縮合反応により得られるグリシジルエステル型エポキシ樹脂、4,4´-ビフェノール、2,6-ナフタレンジオール、水添ビスフェノールやグリコール類とエピハロヒドリンとの縮合反応により得られるグリシジルエーテル型エポキシ樹脂や、ヒダントインやシアヌール酸とエピハロヒドリンとの縮合反応により得られる含アミングリシジルエーテル型エポキシ樹脂等を用いることができる。しかし、特にこれらの化合物に限定されるものではない。これらエポキシ化合物は、1種類のみを用いてもよく、適宜2種類以上を混合して用いてもよい。
 ビニルエステル樹脂の原料として用いられる不飽和一塩基酸としては、例えば、アクリル酸、メタアクリル酸、クロトン酸等を用いることができる。また、マレイン酸、イタコン酸等のハーフエステル等を用いてもよい。しかし、特にこれらに限定されるものではない。これら不飽和一塩基酸は、1一種類のみを用いてもよく、適宜2種類以上を混合して用いてもよい。
 上述した樹脂組成物には、必要に応じて、その他任意成分を添加してもよい。任意成分としては、例えば、ラジカル重合性単量体や重合開始剤、硬化促進剤、重合禁止剤および接着力向上剤等が挙げられる。
 ラジカル重合性単量体は、スチレン、ビニルトルエン、ビニルナフタレン、α-メチルスチレン、ビニルピロリドン、アクリルアミド、アクリロニトリル、アリルアルコール、アリルフェニルエーテル、(メタ)アクリル酸エステル、酢酸ビニル、ビニルピロリドン、(メタ)アクリルアミド、マレイン酸ジエステルおよびフマル酸ジエステル等が挙げられる。しかし、特にこれらの化合物に限定されるものではない。
 好ましくはスチレン、ビニルトルエン、(メタ)アクリル酸エステル(例えば、メタクリレート、アクリレート)を用いる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロトリエン(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、アルキルオキシポリプロピレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、カプロラクトン変成テトラフルフリル(メタ)アクリレート、エトキシカルボニルメチル(メタ)アクリレート、2-エチルヘキシルカルビトールアクリレート、1,4-ブタンジオール(メタ)アクリレート、アクリルニトリルブタジエンメタクリレート、ジシクロペンテニルオキシエチルメタクリレートや、2-メタクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエトキシエチルイソシアネートなどのイソシナト基を有する(メタ)アクリレート、2-(0-[1‘メチルプロピリデンアミノ]カルボキシアミノ)エチルメタクリレートおよび2-(1’[2,4ジメチルピラゾニル]カルボキシアミノ)エチルメタクリレートなどの熱潜在性を有するイソシアネート誘導基を有する(メタ)アクリレート等が挙げられる。これら化合物は、1種類のみを用いてもよく、適宜2種類以上を混合して用いてもよい。好ましくは、光重合開始剤の分解を阻害せず、反応性が高い、(メタ)アクリレート類が好ましい。
 重合開始剤は、過酸化ベンゾイル、過酸化ラウロイル、過酸化安息香酸t-ブチル、過酸化安息香酸t-アミル、t-アミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-アミルパーオキシイソブチレート、ジ(t-ブチル)パーオキシド、ジクミルパーオキシド、クメンヒドロパーオキシド、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキシド、ジ(s-ブチル)パーオキシカーボネートおよびメチルエチルケトンパーオキシド等を用いることができる。これらの化合物は、1種類のみを用いてもよく、適宜2種類以上を混合して用いてもよい。これらの化合物の中でも、硬化温度の観点から、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン等の、1時間半減温度が100℃から150℃の範囲の化合物が望ましい。
 硬化促進剤としては、ナフテン酸又はオクチル酸の金属塩(コバルト、亜鉛、ジルコニウム、マンガンおよびカルシウム等の金属塩)が挙げられる。これらは1種類のみを用いてもよく、適宜2種類以上を混合してもよい。
 重合禁止剤としては、ハイドロキノン、パラターシャリーブチルカテコールおよびピロガロール等のキノン類が挙げられる。これらは1種類のみを用いてもよく、適宜2種類以上を混合してもよい。
 接着力向上剤としては、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランおよび3-メタクリロキシプロピルトリエトキシシラン等が挙げられる。これらは1種類のみを用いてもよく、適宜2種類以上を混合してもよい。
 熱可塑性樹脂層401に含まれる発泡剤404は、マイクロカプセル型の発泡剤であることが好ましい。マイクロカプセル型発泡剤は、特に限定されるものではなく、例えば、揮発性溶剤をアクリル樹脂で包んだコア-シェル構造を有する構造であれば良い。合成法も特の限定されることは無く、界面重合法、in situ法などが適用可能である。
 さらに、耐熱性や強度を高めるために、フィラとして、シリカやアルミナなどを添加しても良い。
 図2は本発明のコイル用絶縁接着部材と固定子コイルとを接着した断面図であり、図3は図2のコイル用絶縁接着部材を展開した図である。固定子コイルを固定子スロットに固定する際には、図2に示すように、コイル用絶縁接着部材は固定子コイル60の形状に沿って折り曲げられた形状にされる。図2では固定子コイル60は四角柱状であり、コイル用絶縁接着部材301が四角柱状の固定子コイル60に沿って、平坦部および角部(折り曲げ部)を有する角形に折り曲げられている。図3に示す点線は折り曲げ部分であり、この部分に沿ってコイル用絶縁接着部材301が折り曲げられる。
 このとき、角部のフィラの含有量が、平坦部のフィラの含有量よりも少ないことを特徴とする。角部にフィラが多く含まれると、コイル用絶縁接着部材301の折り曲げ加工時にフィラが樹脂層を突き破って破断しやすくなる恐れがある。このため、角部のフィラの含有量を平坦部のフィラの含有量よりも少なくして、折り曲げ加工時の破断を防止している。
 また、フィラ402の長手方向が、コイル用絶縁接着部材301の周方向に沿って配列されていることが好ましい。フィラ402の長手方向がコイル用絶縁接着部材の厚さ方向ではなく、コイル用絶縁接着部材の周方向に沿って配列させることによって、耐電圧特性を向上することができる。
 図4はコイル用絶縁接着部材の形状を示す断面図である。本発明のコイル用絶縁接着部材の形状は、特に限定されるものではなく、様々な形状とすることができる。例えば、図4(a)の断面コ字状、図4(b)の断面ロ字状、図4(c)の断面B字状および図4(d)の断面S字状の形状とすることができる。図(c)の形状(断面B字状の形状)が、特に適用が想定される形状である。
 (3)樹脂組成物の製造方法 次に、上述した本発明のコイル用絶縁接着部材の製造方法について説明する。熱可塑性樹脂層401は、熱可塑性樹脂フィルム上に、折り曲げ部を避けてフィラーを分散したのち、もう1枚の熱可塑性樹脂フィルムを貼り合わせることにより作製される。貼り合わせの手法は特に限定されるものではなく、接着剤や熱溶融など熱可塑性樹脂に合わせて選択できる。また、必要に応じて本熱可塑性樹脂層の上にさらに多種の熱可塑性樹脂フィルムを貼り合わせても良い。
 熱硬化性樹脂層403は、マイクロカプセル型発泡剤と、母材となるエポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂およびその他成分を、均一に攪拌・混合して製造する。また、必要に応じて溶剤を加えても良い。
 熱硬化性樹脂層403を上述した方法で作製した熱可塑性樹脂層401に塗布することにより、コイル用絶縁接着部材301が製造される。
 上述したコイル用絶縁接着部材301は、電気機器の部品の接着、例えば、回転電機の固定子巻線の固着用途に用いることができる。
 [電気機器] 次に、本発明の電気機器について説明する。以下では、電気機器として回転電機を例にするが、以下に説明する実施形態は、あくまでも一例であり、これらの実施例に限定されるものではない。なお、以下の説明では、回転電機の一例として、ハイブリット自動車に用いられる電動機を用いる。
 以下の説明において、「軸方向」は、回転電機の回転軸に沿った方向を指すものとする。また、「周方向」は、回転電機の回転方向に沿った方向を指すものとする。「径方向」は、回転電機の回転軸を中心としたときの動径方向(半径方向)を指すものとする。「内周側」は径方向内側(内径側)を指し、「外周側」はその逆方向、すなわち径方向外側(外径側)を指すものとする。
 図5は本発明の電気機器(回転電機)の一例を示す断面図である。図5に示すように、回転電機10は、回転子11と、固定子20と、これらを収容するハウジング50を備える。
 より具体的には、ハウジング50の内周側には、固定子20が固定されている。固定子20の内周側には、回転子11が回転可能に支持されている。ハウジング50は、炭素鋼など鉄系材料の切削により、または、鋳鋼やアルミニウム合金の鋳造により、または、プレス加工によって円筒状に成形した、電動機の外被を構成している。ハウジング50は、枠体或いはフレームとも称されている。
 ハウジング50の外周側には、液冷ジャケット130が固定されている。液冷ジャケット130の内周壁とハウジング50の外周壁とで、油などの液状の冷媒RFの冷媒通路153が構成され、この冷媒通路153は液漏れしないように形成されている。液冷ジャケット130は、軸受144,145を収納しており、軸受ブラケットとも称されている。
直接液体冷却の場合、冷媒RFは、冷媒通路153を通り、冷媒出口154,155から固定子20へ向けて流出し、固定子20を冷却する。また、冷媒RFは、冷媒(油)貯蔵空間150に貯蔵される。
 回転子11は、回転子鉄心12と、回転軸13とから構成されている。回転子鉄心12は、珪素鋼板の薄板が積層されて作られている。回転軸13は、回転子鉄心12の中心に固定されている。回転軸13は、液冷ジャケット130に取り付けられた軸受144,145により回転自在に保持されており、固定子20内の所定の位置で、固定子20に対向した位置で回転する。また、回転子11には、永久磁石18と、エンドリング(図示せず)が設けられている。
 固定子20の軸方向の一端には、固定子コイルのコイルエンドである、溶接側コイルエンド62が設けられている。溶接側コイルエンド62は、溶接によって接合された接合部200~203を有する。一方、固定子20の軸方向の他端には、固定子コイル60のコイルエンドである、反溶接側コイルエンド61が設けられている。
 図6は図5の固定子20を示す図である。図6に示すように、固定子20は、固定子鉄心21と、固定子コイル60とを有する。固定子鉄心21は、珪素鋼板の薄板が積層されて作られている。固定子コイル60は、固定子鉄心21の内周部に多数個設けられているスロット15に巻回されている。固定子コイル60からの発熱は、固定子鉄心21を介して、ハウジング50に伝熱され、液冷ジャケット130内を流通する冷媒RFにより、放熱される。
 固定子コイル60は、断面が略矩形形状の絶縁被膜を有する導体(本実施例では銅線)を使用している。断面略矩形形状のコイル導体を用いることで、スロット内の占積率を向上させ、回転電機の効率が向上する。
 また、上述した本発明のコイル用絶縁接着部材301が各スロット15に配設され、固定子鉄心21と固定子コイル60との電気的絶縁および接着を確実にしている。固定子コイル60間のコイルの絶縁のため、さらに環状絶縁紙300が配置されている。
 セグメント状の固定子コイル60をコイル用絶縁接着部材301が配設されたスロット15に挿入し、溶接することにより、固定子コイル60となる。その後、固定子鉄心21と固定子コイル60を固着するために誘導加熱および/またはコイルへの通電加熱を用い、コイル用絶縁接着部材301を構成する熱硬化性樹脂を加熱して硬化する。コイル用絶縁接着部材301は、銅線を包装するように口字形状やB字形状、S字形状に成形されている。
 回転電機の組立は、予め、固定子20をハウジング50の内側に挿入してハウジング50の内周壁に取付けておき、その後、固定子20内に回転子11を挿入し、回転軸13に軸受144,145が嵌合するようにして液冷ジャケット130に組み付けることで実施できる。
 本発明の電気機器は、本発明のコイル用絶縁接着部材301の効果によって、高い耐電圧性を実現することができる。
 実施例1~2および比較例1~2のコイル用絶縁接着部材を作製し、その効果を検証した。実施例1~2および比較例1~2の構成は、以下の通りである。
 実施例1は、熱可塑性樹脂としてポリエチレンナフタレートを用い、コイルに沿って折り曲げる際の折り曲げ部位にかからないようにマイカを分散した熱可塑性樹脂層の両面に、ビスフェノールA型エポキシ樹脂JER1004(三菱ケミカル株式会社製)90質量部、多官能酸無水物リカシッドTMEG-S(新日本理化株式会社製)10質量部および熱膨張性マイクロカプセル(株式会社クレハ製)10質量部を混合塗布して乾燥し、熱硬化性樹脂層を設けた。
 実施例2は、熱可塑性樹脂としてポリフェニレンスルフィドを用い、コイルに沿って折り曲げる際の折り曲げ部位にかからないように窒化ホウ素を分散した熱可塑性樹脂フィルムの両面に、ビスフェノールA型エポキシ樹脂JER1004(三菱ケミカル株式会社製)90質量部、多官能酸無水物リカシッドTMEG-S(新日本理化株式会社製)10質量部および熱膨張性マイクロカプセル(株式会社クレハ製)10質量部を混合塗布して乾燥し、熱硬化性樹脂層を設けた。
 続いて、比較例1おおよび比較例2の構成を説明する。比較例1は、熱可塑性樹脂として、フィラを含有しないポリエチレンナフタレートフィルムの両面にビスフェノールA型エポキシ樹脂JER1004(三菱ケミカル株式会社製)90質量部、多官能酸無水物リカシッドTMEG-S(新日本理化株式会製)10質量部、熱膨張性マイクロカプセル(株式会クレハ製)10質量部を混合塗布して乾燥し、熱硬化性樹脂層を設けた。
 比較例2は、熱可塑性樹脂としてポリエチレンナフタレートと、折り曲げ部位にもかかるように一様に分散したマイカを含む熱可塑性樹脂フィルムの両面にビスフェノールA型エポキシ樹脂JER1004(三菱ケミカル株式会社製)90質量部、多官能酸無水物リカシッドTMEG-S(新日本理化株式会社製)10質量部および熱膨張性マイクロカプセル(株式会社クレハ製)10質量部を混合塗布して乾燥し、熱硬化性樹脂層を設けた。
 [コイル用絶縁接着部材の評価] 作製した実施例1~2および比較例1~2のコイル用絶縁接着部材の耐電圧特性および接着力を評価した。コイルとしてアミドイミド被覆のエナメル線を、鉄材をスロット形状に加工した模擬コアを用いた。実施例1を用いて加熱接着したコイルの耐電圧性は、13kV、せん断接着力は4.7MPa、実施例2を用いて加熱接着したコイルの耐電圧性は、13kV、せん断接着力は4.9MPaであり、いずれも良好な耐電圧特性(13kV以上)およびせん断接着力(4.7MPa以上)を両立して実現できた。
 一方、比較例1では、耐電圧性は、10kV、せん断接着力は4.7MPa、比較例2では、耐電圧性は、12.5kV、せん断接着力は3.8MPaであった。
 実施例1と比較例1との比較より、フィラの存在により耐電圧性が向上していることがわかり、実施例1と比較例2との比較より、折り曲げ部位にフィラを分散させないことにより接着力の低下が抑制されていることがわかる。以上から、本実施例のコイル用絶縁接着部材を用いることにより、接着力を低下させることなく、耐電圧性を向上できることが示された。
 以上、説明したように、本発明によれば、発泡樹脂を用いたコイル用絶縁接着部材において、高い耐電圧性を実現できることが示された。
 上述した説明おいては、永久磁石式の回転電機において説明を行ったが、本発明の特徴は固定子のコイル絶縁に関するものであるため、回転子は永久磁石式でなく、インダクション式や、シンクロナスリラクタンス、爪磁極式等にも適用可能である。また、巻線方式においては波巻方式であるが、同様の特徴を持つ巻線方式であれば、適用可能である。また、内転型で説明を行っているが、外転型でも同様に適用可能である。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10…回転電機、11…回転子、12…回転子鉄心、13…回転軸、15…スロット、18…永久磁石、20…固定子、21…固定子鉄心、40…コイル、50…ハウジング、60…固定子コイル、61…反溶接側コイルエンド、62…溶接側コイルエンド、130…液冷ジャケット、144…軸受、145…軸受、150…冷媒(油)貯蔵空間、153…冷媒通路、154…冷媒出口、155…冷媒出口、300…環状絶縁紙、301…コイル用絶縁接着部材(スロットライナー)、401…熱可塑性樹脂、402…フィラ、403…熱硬化性樹脂、404…発泡剤、405…折り曲げ部位、406…気泡、RF…冷媒

Claims (7)

  1.  フィラを含む熱可塑性樹脂層と、
     前記熱可塑性樹脂層の両面に設けられ、発泡剤を含む熱硬化性樹脂層と、を備えることを特徴とするコイル用絶縁接着部材。
  2.  前記コイル用絶縁接着部材は、平坦部および角部を有する角形であり、
     前記角部のフィラの含有量が、前記平坦部のフィラの含有量よりも少ないことを特徴とする請求項1に記載のコイル用絶縁接着部材。
  3.  前記フィラは扁平形状であり、前記フィラの長手方向が前記コイル用絶縁接着部材の周方向に沿って配列されていることを特徴とする請求項2に記載のコイル用絶縁接着部材。
  4.  前記コイル用絶縁接着部材は、断面B字状の形状を有することを特徴とする請求項1から3のいずれか1項に記載のコイル用絶縁接着部材。
  5.  前記熱硬化性樹脂層がエポキシ樹脂組成物であることを特徴とする請求項1から3のいずれか1項に記載のコイル用絶縁接着部材。
  6.  請求項1から3のいずれか1項に記載のコイル用絶縁接着部材を備えることを特徴とする電気機器。
  7.  前記電気機器は回転電機であり、
     前記回転電機は、固定子を備え、
     前記固定子は、固定子鉄心と、前記固定子鉄心に設けられたスロットと、前記スロットに収容された固定子コイルと、を有し、
     前記スロットと前記固定子コイルとの間に前記コイル用絶縁接着部材が設けられていることを特徴とする請求項6に記載の電気機器。
PCT/JP2021/003168 2020-04-14 2021-01-29 コイル用絶縁接着部材および電気機器 WO2021210241A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020072105A JP2021170565A (ja) 2020-04-14 2020-04-14 コイル用絶縁接着部材および電気機器
JP2020-072105 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021210241A1 true WO2021210241A1 (ja) 2021-10-21

Family

ID=78084219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003168 WO2021210241A1 (ja) 2020-04-14 2021-01-29 コイル用絶縁接着部材および電気機器

Country Status (2)

Country Link
JP (1) JP2021170565A (ja)
WO (1) WO2021210241A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023101093A (ja) * 2022-01-07 2023-07-20 日立Astemo株式会社 回転電機の固定子
JP2024068838A (ja) * 2022-11-09 2024-05-21 日立Astemo株式会社 固定子及び回転電機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041354A (ja) * 1998-05-16 2000-02-08 Asea Brown Boveri Ag 高電圧絶縁ステ―タ巻線
JP2008220095A (ja) * 2007-03-06 2008-09-18 Toshiba Corp 回転電機のコイル絶縁物
JP2009195009A (ja) * 2008-02-14 2009-08-27 Hitachi Ltd 回転電機
JP2010141960A (ja) * 2008-12-09 2010-06-24 Toyota Motor Corp 絶縁部材
JP2011244596A (ja) * 2010-05-18 2011-12-01 Toyota Motor Corp 電動機のステータの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041354A (ja) * 1998-05-16 2000-02-08 Asea Brown Boveri Ag 高電圧絶縁ステ―タ巻線
JP2008220095A (ja) * 2007-03-06 2008-09-18 Toshiba Corp 回転電機のコイル絶縁物
JP2009195009A (ja) * 2008-02-14 2009-08-27 Hitachi Ltd 回転電機
JP2010141960A (ja) * 2008-12-09 2010-06-24 Toyota Motor Corp 絶縁部材
JP2011244596A (ja) * 2010-05-18 2011-12-01 Toyota Motor Corp 電動機のステータの製造方法

Also Published As

Publication number Publication date
JP2021170565A (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021210241A1 (ja) コイル用絶縁接着部材および電気機器
JPH0377203A (ja) 電気絶縁線輪、回転電機及びその製造方法
JP7092617B2 (ja) 回転電機の固定子の製造方法
WO2012144361A1 (ja) 回転機コイルおよびその製造方法
JP6375224B2 (ja) 熱硬化性樹脂組成物および該組成物を用いた回転電機
JPH0982136A (ja) 高熱伝導半導電性プリプレグシート,固定子コイル及びそれを用いた回転電機と回転電機固定子の製造方法
JP6057852B2 (ja) 回転電機用部材、回転電機、および、樹脂組成物
CN110892019B (zh) 不饱和聚酯树脂组合物及使用其的电气设备
WO2023132102A1 (ja) 回転電機の固定子
WO2022054381A1 (ja) 絶縁紙、回転電機用固定子および回転電機
WO2024100963A1 (ja) 固定子及び回転電機
JP6871140B2 (ja) 熱硬化性樹脂組成物シート、ステータ、ステータの製造方法
JP5766352B2 (ja) 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法
JP7397876B2 (ja) 絶縁シート、ステータおよびステータの製造方法
WO2016017563A1 (ja) 回転電機の固定子、およびこれを備えた回転電機
CN219286193U (zh) 电抗器及家用电器
WO2012157481A1 (ja) 高耐熱性熱硬化性樹脂組成物およびそれを用いた電気機器
JP3771235B2 (ja) コイルの製造方法およびコイル
JPH083337A (ja) プリプレグ
JP2009077567A (ja) 高熱伝導コイルおよびそれに使用される含浸用黒色ワニス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788208

Country of ref document: EP

Kind code of ref document: A1