WO2021208325A1 - 透明线圈板及其制作方法、透明电磁感应板及显示设备 - Google Patents

透明线圈板及其制作方法、透明电磁感应板及显示设备 Download PDF

Info

Publication number
WO2021208325A1
WO2021208325A1 PCT/CN2020/112247 CN2020112247W WO2021208325A1 WO 2021208325 A1 WO2021208325 A1 WO 2021208325A1 CN 2020112247 W CN2020112247 W CN 2020112247W WO 2021208325 A1 WO2021208325 A1 WO 2021208325A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
coil
induction
transparent conductive
conductive film
Prior art date
Application number
PCT/CN2020/112247
Other languages
English (en)
French (fr)
Inventor
陈运燊
Original Assignee
深圳市鸿合创新信息技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿合创新信息技术有限责任公司 filed Critical 深圳市鸿合创新信息技术有限责任公司
Publication of WO2021208325A1 publication Critical patent/WO2021208325A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • This application relates to the technical field of touch display devices, and in particular to a transparent coil board and a manufacturing method thereof, a transparent electromagnetic induction board and a display device.
  • the electromagnetic induction board is the commonly used handwriting board technology.
  • the principle is to form an electromagnetic field in a certain space by forming an X, Y direction circuit through the wiring under the handwriting board to induce the position of the pen tip with a coil to work.
  • This technology is currently widely used, mainly due to its good performance, which can write smoothly and feel good.
  • the basic principle of the electromagnetic screen is to recognize sliding by the magnetic field changes generated by the electromagnetic pen and the sensor below the panel.
  • the induction coil made by the electromagnetic induction board is to make the first induction line and the second induction line intermittently on both sides of the PET substrate.
  • the intermittent induction wire is punched at both ends to form a through hole, and then a conductive material is filled in the through hole to connect the induction wires on both sides of the substrate to form a complete induction coil.
  • the intermittent induction lines on both sides need to be connected, which requires a finer punching process and higher equipment requirements.
  • the production efficiency is low when the copper sink is filled.
  • the induction wires on both sides of the PET substrate used in the traditional manufacturing process of electromagnetic induction panels are also non-transparent metal wires, there will be a large number of metal wires and metal lap points in the induction area of the electromagnetic induction panel, which makes electromagnetic induction
  • the sensing area of the board is poorly visible, and the electromagnetic induction board is thick and heavy as a whole, and cannot be placed in the front of the display screen. Therefore, the traditional electromagnetic induction board is usually placed behind the display screen.
  • the electromagnetic induction board and the electromagnetic pen are separated from the display screen, the electromagnetic induction will be interfered by the display screen, and the induction effect is not good.
  • an embodiment of the present application provides a method for manufacturing a transparent coil plate, including:
  • a number of via holes are formed on the transparent conductive film
  • Pasting and covering the transparent conductive film on the transparent conductive substrate wherein the insulating layer of the transparent conductive film is adjacent to the conductive layer of the transparent conductive substrate, and a plurality of via holes correspond to the first and last positions of the first transparent induction line;
  • the conductive layer of the transparent conductive film is processed into a plurality of second transparent sensing lines arranged in parallel, wherein the first and last positions of the plurality of second transparent sensing lines correspond to a plurality of via holes, and the first and second transparent sensing lines are adjacent to each other.
  • the ends correspond in turn to form a spiral coil-like structure
  • Conductive fillers are formed in a plurality of via holes to electrically connect the abutting ends of the first transparent induction line and the second transparent induction line to form a complete spiral coil loop.
  • the conductive layer of the transparent conductive substrate is an indium tin oxide film or a nano silver wire film formed on the transparent substrate.
  • the thickness of the transparent conductive film may be 5um.
  • the transparent conductive film is a transfer-type transparent conductive film; after processing the conductive layer of the transparent conductive film into a plurality of second transparent induction lines arranged in parallel, the method further includes:
  • Curing transfer type transparent conductive film Curing transfer type transparent conductive film.
  • the conductive filler may be conductive silver glue.
  • a conductive filler may be formed in the via hole by a printing process.
  • the embodiment of the present application also provides a method for manufacturing a transparent electromagnetic induction panel, which includes:
  • the terminals of the two transparent coil boards are respectively electrically connected to the corresponding flexible circuit boards.
  • the embodiment of the present application also provides a transparent coil board, including: a transparent conductive substrate, a transparent conductive film pasted on the conductive layer of the transparent conductive substrate, and a plurality of parallel-arranged first transparent conductive films formed by the conductive layer of the transparent conductive substrate An induction line, and a plurality of parallel-arranged second transparent induction lines formed by a conductive layer of a transparent conductive film, wherein the insulating layer of the transparent conductive film is adjacent to the conductive layer of the transparent conductive substrate;
  • the transparent conductive film has a plurality of via holes, and the first and last positions of the first transparent induction line and the first and last positions of the second transparent induction line correspond to the via holes to form a spiral coil-like structure;
  • a conductive filler is arranged in the via hole, and the conductive filler electrically connects the abutting ends of the first transparent induction wire and the second transparent induction wire to form a complete spiral coil loop.
  • the embodiment of the application also provides a transparent electromagnetic induction board, which includes two transparent coil boards as described above; the two transparent coil boards are attached to each other, the coil directions of the two transparent coil boards are perpendicular to each other, and the two transparent coil boards The terminals are respectively electrically connected to the corresponding flexible circuit board.
  • An embodiment of the present application also provides a display device, which includes a display screen and the transparent electromagnetic induction panel as described above, and the transparent electromagnetic induction panel is placed at the front end of the display screen.
  • the method for manufacturing the coil plate provided by the present application does not require induction wires on both sides of the PET substrate, but only needs to attach the transparent conductive film to another conductive substrate, and the process equipment requirements are relatively simple. At the same time, because the thickness of the transparent conductive film is small and the via holes are relatively shallow, the via holes can be directly filled with conductive metal through a printing process, without the need for a copper sinking process, and the efficiency is greatly improved.
  • the electromagnetic induction board formed by the transparent coil board produced in the present application can be placed at the front end of the display screen, so that when the electromagnetic pen touches, the interference of the display screen is reduced, and the induced magnetic field changes better.
  • the induction area of the electromagnetic induction board formed by the transparent coil board produced in the present application only leaves part of the metal lap points, and the electromagnetic induction board has good transparency and visibility, which improves the user experience.
  • Figure 1 is a schematic view of the front structure of an existing electromagnetic induction panel
  • Fig. 2 is a schematic side sectional view of the structure of a conventional electromagnetic induction panel
  • 3 to 12 are schematic diagrams of the manufacturing process of the transparent coil plate provided by an embodiment of the application.
  • FIG. 13 is a flowchart of a method for manufacturing a transparent coil plate provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a transparent electromagnetic induction panel provided by an embodiment of the application.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “outer”, etc. are based on the orientation or positional relationship shown in the drawings, or the The orientation or positional relationship usually placed when the application product is used is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or component referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be understood as a restriction on this application.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing description, and cannot be understood as indicating or implying relative importance.
  • Fig. 1 shows a schematic diagram of the front structure of an existing electromagnetic induction panel.
  • Fig. 2 shows a schematic side sectional view of a conventional electromagnetic induction panel.
  • the first induction wire 12 and the second induction wire 13 are intermittently formed on both sides of the substrate 15 to make the induction coil of the electromagnetic induction board. Holes are punched at both ends of each intermittent sensing line to form a through hole 11. Then, the conductive material 14 is filled in the through hole 11 to connect the induction lines on both sides of the substrate, thereby forming a complete induction coil.
  • the substrate 15 used in the traditional electromagnetic induction board is generally a thicker PET substrate, and the induction lines on both sides of the substrate 15 are also non-transparent metal wires, this causes a large number of metal wires and metal overlaps in the induction area of the electromagnetic induction board.
  • the contact points make the sensing area of the electromagnetic induction panel poorly visible, and the electromagnetic induction panel is thick and heavy as a whole, and cannot be placed in the front of the display screen. Therefore, the traditional electromagnetic induction panel is usually placed behind the display screen.
  • the electromagnetic induction board and the electromagnetic pen are separated from the display screen, the electromagnetic induction will be interfered by the display screen, and the induction effect is not good.
  • this application has produced a thin and transparent transparent electromagnetic induction panel that can be placed in the front end of the display screen.
  • FIG. 3 to 12 are schematic diagrams of the manufacturing process of the transparent coil plate in an embodiment provided by this application.
  • FIG. 13 is a flowchart of a method for manufacturing a transparent coil plate in an embodiment provided by this application. As shown in Figures 3 to 13, the manufacturing method includes:
  • S101 referring to FIGS. 3 and 4, process the conductive layer of the transparent conductive substrate 21 into a plurality of first transparent sensing lines 211 arranged in parallel;
  • a plurality of via holes 221 are formed on the transparent conductive film 22;
  • the transparent conductive film 22 is pasted on the transparent conductive substrate 21, wherein the insulating layer 223 of the transparent conductive film 22 is adjacent to the conductive layer of the transparent conductive substrate 21, and a plurality of vias 221 correspond to the first transparent
  • the leading and trailing positions of the sensing line 211 that is, the leading and trailing positions of each section of the first transparent sensing line 211 are correspondingly provided with vias 221;
  • the conductive layer 222 of the transparent conductive film 22 is processed into a plurality of second transparent sensing lines 226 arranged in parallel, wherein the first and last positions of the plurality of second transparent sensing lines 226 correspond to a plurality of via holes 221, and That is, each section of the second transparent induction wire 226 is provided with a via 221 corresponding to the head and tail positions, and the first and the second transparent induction wires 211 and 226 have their abutting ends corresponding to each other in order to form a spiral coil-like structure;
  • conductive fillers 23 are formed in the plurality of via holes 221 to electrically connect the end-to-end adjacent ends of the first transparent induction line 211 and the second transparent induction line 226 to form a complete spiral coil loop.
  • the conductive layer of the transparent conductive substrate 21 in step S101 may be a conductive transparent film material such as an indium tin oxide (ITO) film, a silver nanowire (SNW) film, or the like.
  • ITO indium tin oxide
  • SNW silver nanowire
  • the formation process of the conductive layer can be selected according to the characteristics of the conductive film used. For example, an indium tin oxide (ITO) film can be sputtered on a PET substrate to form a transparent conductive substrate, or a transparent conductive substrate with a conductive layer can be directly used.
  • the formation process of the conductive layer of the transparent conductive substrate 21 is not specifically limited here.
  • the formation process of the first transparent sensing line 211 can also be selected according to the specific processing characteristics of the conductive layer used.
  • the indium tin oxide (ITO) conductive film adopts an etching process when forming the first transparent sensing line 211.
  • the silver nanowire (SNW, silver nanowire) film uses a laser laser process when forming the first transparent sensing line 211.
  • the specific processing technology of the first transparent induction wire 211 is not limited here.
  • the first transparent sensing line 211 formed as described above is a conductive pattern structure in which excess portions of the conductive layer of the transparent conductive substrate are removed.
  • first and last ends of the first transparent sensing wire 211 formed above are overlapping areas to facilitate the subsequent overlapping process between the two-sided sensing wires.
  • the transparent conductive film 22 is a transfer type transparent conductive film (TCTF).
  • the transfer type transparent conductive film (TCTF) has a dry film on one side and a transparent conductive layer on the other side. It can be directly attached to other substrates without the aid of OCA optical glue.
  • the transfer type transparent conductive film (TCTF) itself is a thin film with a small overall thickness, while the transparent conductive layer on the transfer type transparent conductive film (TCTF) can be processed to form a transparent conductive pattern, so this type of transfer type is selected
  • the transparent conductive film can not only effectively reduce the overall thickness of the transparent coil plate, but also can achieve insulation isolation between the transparent induction wires on both sides of the transparent coil plate.
  • a laser process can be selected to form the via 221 on the transparent conductive film 22.
  • Corresponding to the first and last positions of the first transparent sensing line 211 via the via 221 can facilitate the subsequent formation of the conductive filler 23 in the via 221 to achieve electrical connection between the sensing lines on both sides.
  • the first protective film 225 and the second protective film 224 are respectively attached to the upper and lower sides. Therefore, when the transparent conductive film 22 is pasted on the transparent conductive substrate 21, the second protective film should be applied first. 224 is removed, and during pasting, the insulating surface of the transfer-type transparent conductive film 22 should be adjacent to the first transparent sensing line 211 on the transparent conductive substrate 21, so that the first transparent sensing line 211 and the second transparent sensing line 226 are between To achieve insulation isolation.
  • the transparent conductive film 22 is a transfer type transparent conductive film
  • the transfer type transparent conductive film itself is a dry film, it needs to avoid UV light before curing. Therefore, the conductive layer 222 treatment process of the transparent conductive film 22 in step 104 can be A yellow light process is adopted, that is, pasting ⁇ exposing ⁇ development ⁇ etching, and finally a plurality of parallel-arranged second transparent sensing lines 226 are formed.
  • the remaining first protective film 225 needs to be removed.
  • the above-mentioned second transparent sensing line 226 is a conductive pattern structure in which the conductive layer 222 of the transparent conductive film 22 removes excess portions.
  • the conductive filler 23 in step S105 can be, for example, conductive silver paste or other conductive filler material.
  • the second transparent sensing line 226 realizes contact.
  • the via hole can be directly filled with conductive filler through a printing process.
  • the method further includes: curing the transfer-type transparent conductive film.
  • the transfer type transparent conductive film is a negative photoresist film, after being pasted on the transparent conductive substrate 21, it is processed to form the second transparent induction line 226, which can be irradiated with UV light to make it completely cured.
  • the thickness of the transfer-type transparent conductive film should be moderate.
  • the thickness of the transfer-type transparent conductive film can be 5um, that is, 5 microns. .
  • the manufacturing method of the transparent coil board provided in this embodiment only needs to attach the transparent conductive film to another conductive substrate, and the process equipment requirements are relatively simple.
  • the via holes can be directly filled with conductive metal through a printing process, without the need for a copper sinking process, and the efficiency is greatly improved.
  • the transparent coil board produced in this embodiment is relatively light and thin, and only the conductive structure in the via hole is visible in the induction area, and the rest of the induction coil is a transparent structure. Therefore, the electromagnetic induction board made of the transparent coil board can be placed on the display screen. At the front end, when the electromagnetic pen touches, it reduces the interference of the display screen, the induced magnetic field changes better, and only some metal lap points are left in the window area, and the electromagnetic induction board has good transparency and visibility, which improves the user experience.
  • This embodiment provides a method for manufacturing a transparent electromagnetic induction panel, including:
  • Two transparent coil plates manufactured by the manufacturing method of Embodiment 1 are attached to each other, wherein the coil directions of the two transparent coil plates are perpendicular to each other;
  • the terminals of the two transparent coil boards are electrically connected to the corresponding flexible circuit boards 6 respectively.
  • the terminals of the transparent coil plate are the terminals of the coil loop drawn from the first transparent induction wire 211 and the second transparent induction wire 226 on both sides of the spiral coil circuit.
  • the forming process of the terminals of the transparent coil board and the forming process of the conductive filler 23 in the via 221 can be performed by a printing process together. Finally, two terminals on the outer edge of the coil loop are formed, and then the two terminals of the coil loop are electrically connected to the flexible circuit board (FPC).
  • FPC flexible circuit board
  • the transparent electromagnetic induction plate produced by the method for manufacturing the transparent electromagnetic induction plate provided by this embodiment is relatively light and thin, and only the conductive structure in the via 221 is visible in the induction area, and the rest of the induction coil is a transparent structure.
  • the magnetic induction board is placed in the front of the display screen, so that when the electromagnetic pen touches, it reduces the interference of the display screen, the induced magnetic field changes better, and only some metal lap points are left in the window area.
  • the electromagnetic induction board has good transparency and visibility, which improves the user experience .
  • this embodiment provides a transparent coil board, including: a transparent conductive substrate 21, a transparent conductive film 22 attached to the conductive layer of the transparent conductive substrate 21, and a conductive layer formed by the transparent conductive substrate 21 Multiple sections of the first transparent sensing line 211 arranged in parallel, and multiple sections of the second transparent sensing line 226 arranged in parallel formed by the conductive layer 222 of the transparent conductive film 22.
  • the insulating layer 223 of the transparent conductive film 22 is adjacent to the conductive layer of the transparent conductive substrate 21.
  • the transparent conductive film has a plurality of via holes 221.
  • the head and tail positions of the first transparent induction wire 211 and the head and tail positions of the second transparent induction wire 226 correspond to the through holes 221 to form a spiral coil-like structure.
  • a conductive filler 23 is provided in the via 221.
  • the conductive filler 23 electrically connects the abutting ends of the first transparent induction wire 211 and the second transparent induction wire 226 to form a complete spiral coil loop.
  • the transparent coil plate of this embodiment can be made by the manufacturing method of this application.
  • the transparent coil plate of this embodiment please refer to the embodiment of the above-mentioned manufacturing method, which will not be repeated here.
  • the transparent coil board provided by this embodiment is relatively light and thin, and only the conductive structure in the via 221 is visible in the induction area, and the remaining induction coil parts are transparent structures. Therefore, the electromagnetic induction board made of the transparent coil board can be placed on the display screen. At the front end, when the electromagnetic pen touches, it reduces the interference of the display screen, the induced magnetic field changes better, and only some metal lap points are left in the window area, and the electromagnetic induction board has good transparency and visibility, which improves the user experience.
  • FIG. 14 is a schematic structural diagram of a transparent electromagnetic induction panel in an embodiment provided by this application. As shown in Fig. 14, the transparent electromagnetic induction panel includes an insulating cover plate 5 and two transparent coil plates according to the third embodiment.
  • the coil directions of the two transparent coil plates are perpendicular to each other.
  • Two transparent coil plates are respectively used as the X-direction coil plate 7 and the Y-direction coil plate 3 of the transparent electromagnetic induction plate, and are attached to each other to form the main body of the transparent electromagnetic induction plate.
  • the insulating cover plate 5 is attached to the conductive surface of the main body of the transparent electromagnetic induction plate.
  • the terminals of the two transparent coil boards are electrically connected to the corresponding flexible circuit board 6 respectively.
  • the X-direction coil plate 7 and the Y-direction coil plate 3 are bonded and bonded with OCA optical glue 4, and then the X-direction coil plate 7 and the Y-direction coil plate 3 are formed
  • the main body of the electromagnetic induction board is attached to the insulating cover 5 with OCA optical glue 4, and finally the terminals of the X-direction coil board 7 and the Y-direction coil board 3 are electrically connected to their corresponding flexible circuit boards 6.
  • the transparent electromagnetic induction board obtained in this embodiment is based on the transparent coil board provided in the present application. Only the conductive structure connecting the induction wires on both sides of the induction area is visible, and the remaining induction coil parts are transparent structures. Therefore, the electromagnetic induction board can be placed on the display screen. In the front, when the electromagnetic pen is touched, the interference of the display screen is reduced, the change of the induced magnetic field is better, and only some metal lap points are left in the window area, and the electromagnetic induction board has good transparency and visibility, which improves the user experience.
  • This embodiment provides a display device, including a display screen and the transparent electromagnetic induction panel of the fourth embodiment.
  • the transparent electromagnetic induction board is placed in the front of the display screen.
  • the transparent electromagnetic induction panel of the display device provided by this embodiment, only the conductive structure connecting the induction lines on both sides is visible in the induction area, and the remaining induction coil parts are transparent structures. Therefore, the electromagnetic induction panel can be placed in front of the display screen to make the electromagnetic pen touch During control, the interference of the display screen is reduced, the induced magnetic field changes are better, and only some metal lap points are left in the window area, and the electromagnetic induction board has good transparency and visibility, which improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种透明线圈板及其制作方法、透明电磁感应板及显示设备。制作方法包括将透明导电基板(21)的导电层处理为多段平行排列的第一透明感应线(211);在透明导电薄膜(22)上形成若干过孔(221);将透明导电薄膜(22)贴覆在透明导电基板(21)上,将透明导电薄膜(22)的导电层(222)处理为多段平行排列的第二透明感应线(226),第一透明感应线(211)和第二透明感应线(226)的首尾邻接端依次对应;在若干过孔(221)内形成导电填充物(23),使第一透明感应线(211)和第二透明感应线(226)的首尾邻接端电连接,形成完整的螺旋线圈回路。该制作方法工艺设备要求简单,不需要沉铜工艺,效率高;且最终形成的透明电磁感应板可以放置在显示屏前端,使得电磁笔触控时,减少显示屏的干扰。

Description

透明线圈板及其制作方法、透明电磁感应板及显示设备
相关申请的交叉引用
本申请要求享有于2020年04月17日提交的名称为“透明线圈板及其制作方法、透明电磁感应板及显示设备”的中国专利申请202010306084.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及触控显示设备技术领域,尤其涉及一种透明线圈板及其制作方法、透明电磁感应板及显示设备。
背景技术
目前市场上智能交互显示设备种类越来越多,其中,电磁感应板是现在普遍采用的手写板技术。其原理是通过在手写板下方的布线形成X、Y方向电路通电后,在一定空间范围内形成电磁场,来感应带有线圈的笔尖的位置进行工作。这种技术目前被广泛使用,主要是其良好的性能决定的,可以流畅的书写,手感很好。
电磁屏幕的基本原理是靠电磁笔操作过程中和面板下方的感应器产生的磁场变化来识别滑动。
目前,电磁感应板制作感应线圈是在PET基板的两面做断续的第一感应线和第二感应线。断续的感应线首尾两端打孔,形成通孔,然后对通孔内填充导电物,连接基板两面的感应线,从而形成一个完整感应线圈。该种传统制作工艺,两面断续的感应线需相连,要求打孔工艺比较精细,设备要求较高。同时,因为基板厚度相对比较厚,沉铜填充时,制作效率低。
此外,由于传统的制作电磁感应板工艺所用的PET基板的两面的感应线也是非透明的金属导线,这就造成电磁感应板的感应区会存在大量的金 属导线和金属搭接点,使得电磁感应板的感应区可视性差,且电磁感应板整体也较厚重,不能放置在显示屏前端,因此传统的电磁感应板通常放在显示屏后面。然而,由于电磁感应板与电磁笔之间隔了显示屏,因此电磁感应会受到显示屏的干扰,感应效果不佳。
发明内容
为克服相关技术中存在的问题,本申请实施例中提供一种透明线圈板的制作方法,包括:
将透明导电基板的导电层处理为多段平行排列的第一透明感应线;
在透明导电薄膜上形成若干过孔;
将透明导电薄膜贴覆在透明导电基板上,其中,透明导电薄膜的绝缘层邻接透明导电基板的导电层,若干过孔对应第一透明感应线的首尾位置;
将透明导电薄膜的导电层处理为多段平行排列的第二透明感应线,其中,多段第二透明感应线的首尾位置对应若干过孔,且第一透明感应线和第二透明感应线的首尾邻接端依次对应,形成螺旋线圈状结构;
在若干过孔内形成导电填充物,使第一透明感应线和第二透明感应线的首尾邻接端电连接,形成完整的螺旋线圈回路。
在本申请的实施例中,透明导电基板的导电层为形成在透明基板上的氧化铟锡薄膜或纳米银丝薄膜。
在本申请的实施例中,透明导电薄膜的厚度可为5um。
本申请的前述任一个实施例中,透明导电薄膜为转印型透明导电薄膜;将透明导电薄膜的导电层处理为多段平行排列的第二透明感应线之后,还包括:
固化转印型透明导电薄膜。
本申请的前述任一个实施例中,导电填充物可为导电银胶。
本申请的前述任一个实施例中,过孔内可通过印刷工艺形成导电填充物。
本申请实施例中还提供一种透明电磁感应板的制作方法,包括:
将两块如上的方法制作的透明线圈板相互贴合,其中,两块透明线圈板的线圈方向相互垂直;
将两块透明线圈板的接线端分别电连接至对应的柔性电路板上。
本申请实施例中还提供一种透明线圈板,包括:透明导电基板、贴覆在透明导电基板的导电层上的透明导电薄膜、由透明导电基板的导电层形成的多段平行排列的第一透明感应线,以及由透明导电薄膜的导电层形成的多段平行排列的第二透明感应线,其中,透明导电薄膜的绝缘层邻接透明导电基板的导电层;
透明导电薄膜具有若干过孔,第一透明感应线的首尾位置和第二透明感应线的首尾位置对应过孔而形成螺旋线圈状结构;
过孔内设置导电填充物,导电填充物使第一透明感应线和第二透明感应线的首尾邻接端电连接而形成完整的螺旋线圈回路。
本申请实施例中还提供一种透明电磁感应板,包括两块如上所述的透明线圈板;两块透明线圈板相互贴合,两块透明线圈板的线圈方向相互垂直,两块透明线圈板的接线端分别电连接至对应的柔性电路板。
本申请实施例中还提供一种显示设备,包括显示屏及如上所述的透明电磁感应板,透明电磁感应板置于显示屏前端。
与现有技术相比,本申请具有以下有益的技术效果:
本申请提供的线圈板制作方法不需要在PET基板两面做感应线,只需将透明导电薄膜贴合在另一导电基板上,工艺设备要求较为简单。同时,因为透明导电薄膜厚度很小,其过孔较浅,可以直接通过印刷工艺将过孔填满导电金属,不需要沉铜工艺,效率大大提高。
本申请制作的透明线圈板所形成的电磁感应板可以放置在显示屏前端,使得电磁笔触控时,减少了显示屏的干扰,感应磁场变化更优。
本申请制作的透明线圈板所形成的电磁感应板的感应区只遗留部分金属搭接点,电磁感应板透明可视性好,提升用户体验。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术 效果,其中:
图1为现有电磁感应板的主视结构示意图;
图2为现有电磁感应板的侧面剖视结构示意图;
图3至图12为本申请一实施例提供的透明线圈板的制作过程示意图;
图13为本申请一实施例提供的透明线圈板制作方法的流程图;
图14为本申请一实施例提供的透明电磁感应板结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定, 术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
图1示出了现有电磁感应板的主视结构示意图。图2示出了现有电磁感应板的侧面剖视结构示意图。如图1和图2所示,目前,电磁感应板制作感应线圈需在基板15的两面做断续的第一感应线12和第二感应线13。每一条断续的感应线首尾两端打孔,形成通孔11。然后对通孔11内填充导电物14,连接基板两面的感应线,从而形成一个完整感应线圈。
由于传统的电磁感应板所用基板15一般为较厚的PET基板,且基板15的两面的感应线也是非透明的金属导线,这就造成电磁感应板的感应区会存在大量的金属导线和金属搭接点,使得电磁感应板的感应区可视性差,且电磁感应板整体也较厚重,不能放置在显示屏前端,因此传统的电磁感应板通常放在显示屏后面。然而,由于电磁感应板与电磁笔之间隔了显示屏,使电磁感应会受到显示屏的干扰,感应效果不佳。
本申请为解决上述技术问题,从而制作了轻薄且透明的可以置于显示屏前端的透明电磁感应板。
下面将结合具体实施例对本申请的技术方案加以解释。
实施例一
图3至图12为本申请提供的一实施例中的透明线圈板的制作过程示意图。图13为本申请提供的一实施例中的透明线圈板制作方法的流程图。如图3至图13所示,该制作方法包括:
S101、参照图3和图4,将透明导电基板21的导电层处理为多段平行排列的第一透明感应线211;
S102、参照图5和图6,在透明导电薄膜22上形成若干过孔221;
S103、参照图7和图8,将透明导电薄膜22贴覆在透明导电基板21上,其中,透明导电薄膜22的绝缘层223邻接透明导电基板21的导电层,若干过孔221对应第一透明感应线211的首尾位置,也即每段第一透 明感应线211的首尾位置对应设置有过孔221;
S104、参照图9和图10,将透明导电薄膜22的导电层222处理为多段平行排列的第二透明感应线226,其中,多段第二透明感应线226的首尾位置对应若干过孔221,也即每段第二透明感应线226的首尾位置对应设置有过孔221,并且第一透明感应线211和第二透明感应线226的首尾邻接端依次对应,形成螺旋线圈状结构;
S105、参照图11和图12,在若干过孔221内均形成导电填充物23,使第一透明感应线211和第二透明感应线226的首尾邻接端电连接,形成完整的螺旋线圈回路。
其中,步骤S101中透明导电基板21的导电层可以为氧化铟锡(ITO)薄膜、纳米银丝(SNW,silvernano wire)薄膜等具有导电性的透明薄膜材料。导电层的形成工艺可以根据所采用的导电薄膜的特点进行选择,例如可以将氧化铟锡(ITO)薄膜溅镀在PET基板上形成透明导电基板,也可以直接使用已经形成了导电层的透明导电基板21。对于透明导电基板21的导电层的形成工艺这里不做具体限定。
相应的,第一透明感应线211的形成过程也可以根据所使用的导电层的具体加工特点进行选择,例如,氧化铟锡(ITO)导电薄膜在形成第一透明感应线211时采用蚀刻工艺,而纳米银丝(SNW,silvernano wire)薄膜在形成第一透明感应线211时采用激光镭射工艺等。这里对第一透明感应线211的具体加工处理工艺不做限定。
因此,上述形成的第一透明感应线211为透明导电基板的导电层去除多余部分的导电图形结构。
此外,以上所形成的第一透明感应线211的首尾两端为搭接区域,以便后续的两面感应线之间的搭接过程。
在一实施例中,步骤S102中,透明导电薄膜22为转印型透明导电薄膜(TCTF)。转印型透明导电薄膜(TCTF)一侧为干膜,另一侧是透明导电层,其无需借助OCA光学胶,可以直接贴覆到其它基板上。转印型透明导电薄膜(TCTF)本身为薄膜状,整体厚度较小,而转印型透明导电薄膜(TCTF)上的透明导电层可以进行处理后形成透明导电图形,因此选用该 种转印型透明导电薄膜既能有效减小透明线圈板的整体厚度,且能够实现透明线圈板两面透明感应线之间的绝缘隔离。
在透明导电薄膜22上形成过孔221时,可以选择激光工艺在透明导电薄膜22上形成过孔221。将过孔221对应第一透明感应线211的首尾位置,能够方便后续在过孔221内形成导电填充物23后,实现两面感应线之间的电性连接。
由于透明导电薄膜22在使用前,其上下面分别贴有第一保护膜225和第二保护膜224,因此将透明导电薄膜22贴覆在透明导电基板21上时,应先将第二保护膜224去除,且在贴覆时,转印型透明导电薄膜22的绝缘面应邻接透明导电基板21上的第一透明感应线211,使得第一透明感应线211与第二透明感应线226之间实现绝缘隔离。
当透明导电薄膜22为转印型透明导电薄膜,由于转印型透明导电薄膜本身为干膜,其固化前都需要避免UV光照射,因此步骤104中透明导电薄膜22的导电层222处理工艺可以采用通过黄光工艺,也即经过贴覆→曝光→显影→蚀刻最终形成多段平行排列的第二透明感应线226。此外,在进行步骤S104之前,还需将剩余的第一保护膜225去除。
因此,上述第二透明感应线226为透明导电薄膜22的导电层222去除多余部分的导电图形结构。
步骤S105中的导电填充物23例如可以采用导电银胶等具有导电性质的填充材料。在进行填充时,应注意保证填充后使第一透明感应线211和第二透明感应线226的邻接端实现电连接,也即导电填充物23的两端头分别与相应的第一透明感应线211、第二透明感应线226实现接触。此外,由于采用转印型透明导电薄膜时,其厚度很小,过孔221较浅,因此可以直接通过印刷工艺将过孔内填满导电填充物。
当透明导电薄膜22采用转印型透明导电薄膜时,将透明导电薄膜22的导电层处理为多段平行排列的第二透明感应线226之后,还包括:固化转印型透明导电薄膜。
由于转印型透明导电薄膜是负性光阻薄膜,贴覆到透明导电基板21后,经处理制成第二透明感应线226后,可以经过照射UV光,使其彻底 固化。
在一种实现方式中,为了方便形成过孔221和印刷导电银胶等导电物,应使转印型透明导电薄膜的厚度适中,例如转印型透明导电薄膜的厚度可以选择5um,即5微米。
综上,本实施例提供的透明线圈板的制作方法,只需将透明导电薄膜贴合在另一导电基板上,工艺设备要求较为简单。同时,因为透明导电薄膜厚度很小,其过孔较浅,可以直接通过印刷工艺将过孔填满导电金属,不需要沉铜工艺,效率大大提高。本实施例制作得到的透明线圈板较为轻薄,且其感应区只有过孔内的导电结构可见,其余感应线圈部分为透明结构,因此可以将上述透明线圈板制成的电磁感应板放置在显示屏前端,使得电磁笔触控时,减少了显示屏的干扰,感应磁场变化更优,并且视窗区只遗留部分金属搭接点,电磁感应板透明可视性好,提升用户体验。
实施例二
本实施例提供一种透明电磁感应板的制作方法,包括:
将两块实施例一的制作方法制作的透明线圈板相互贴合,其中,两块透明线圈板的线圈方向相互垂直;
将两块透明线圈板的接线端分别电连接至对应的柔性电路板6上。
其中,透明线圈板的接线端为从螺旋线圈回路两侧的第一透明感应线211和第二透明感应线226引出的线圈回路的接线端。
此外,透明线圈板的接线端的形成工艺与过孔221内导电填充物23的形成工艺可以一同采用印刷工艺进行。最终形成线圈回路外边缘的两接线端,然后再将线圈回路两接线端电连接至柔性电路板(FPC)上。
本实施例提供的透明电磁感应板的制作方法制作得到的透明电磁感应板较为轻薄,且其感应区只有过孔221内的导电结构可见,其余感应线圈部分为透明结构,因此可以将上述透明电磁感应板放置在显示屏前端,使得电磁笔触控时,减少了显示屏的干扰,感应磁场变化更优,并且视窗区只遗留部分金属搭接点,电磁感应板透明可视性好,提升用户体验。
实施例三
如图12所示,本实施例提供一种透明线圈板,包括:透明导电基板 21、贴覆在透明导电基板21的导电层上的透明导电薄膜22、由透明导电基板21的导电层形成的多段平行排列的第一透明感应线211,以及由透明导电薄膜22的导电层222形成的多段平行排列的第二透明感应线226。其中,透明导电薄膜22的绝缘层223邻接透明导电基板21的导电层。
透明导电薄膜具有若干过孔221。第一透明感应线211的首尾位置和第二透明感应线226的首尾位置对应过孔221而形成螺旋线圈状结构。
过孔221内设置导电填充物23。导电填充物23使第一透明感应线211和第二透明感应线226的首尾邻接端电连接而形成完整的螺旋线圈回路。
显然,本实施例的透明线圈板可由本申请的制作方法制成,本实施例的透明线圈板更为详尽的内容可参考上述制作方法的实施例,此处不做赘述。
本实施例提供的透明线圈板较为轻薄,且其感应区只有过孔221内的导电结构可见,其余感应线圈部分为透明结构,因此可以将上述透明线圈板制成的电磁感应板放置在显示屏前端,使得电磁笔触控时,减少了显示屏的干扰,感应磁场变化更优,并且视窗区只遗留部分金属搭接点,电磁感应板透明可视性好,提升用户体验。
实施例四
图14为本申请提供的一实施例中的透明电磁感应板结构示意图。如图14所示,该透明电磁感应板包括一绝缘盖板5、两块根据实施例三的透明线圈板。
两块透明线圈板的线圈方向相互垂直。两块透明线圈板分别作为透明电磁感应板的X方向线圈板7和Y方向线圈板3,且相互贴合形成透明电磁感应板的主体。绝缘盖板5贴合在透明电磁感应板的主体导电的一面上。两块透明线圈板的接线端分别电连接至对应柔性电路板6。
在进行上述透明电磁感应板的制作时,首先将X方向线圈板7和Y方向线圈板3利用OCA光学胶4进行粘接贴合,然后再将X方向线圈板7和Y方向线圈板3形成的电磁感应板的主体利用OCA光学胶4贴合在绝缘盖板5上,最后将X方向线圈板7和Y方向线圈板3的接线端分别电连接至 各自对应的柔性电路板6,即可完成透明电磁感应板的整体制作。
本实施例得到的透明电磁感应板基于本申请提供的透明线圈板,其感应区只有连接两面感应线的导电结构可见,其余感应线圈部分为透明结构,因此可以将上述电磁感应板放置在显示屏前面,使得电磁笔触控时,减少显示屏的干扰,感应磁场变化更优,并且视窗区只遗留部分金属搭接点,电磁感应板透明可视性好,提升用户体验。
实施例五
本实施例提供一种显示设备,包括显示屏及实施例四的透明电磁感应板。透明电磁感应板置于显示屏前端。
本实施例提供的显示设备的透明电磁感应板,其感应区只有连接两面感应线的导电结构可见,其余感应线圈部分为透明结构,因此可以将上述电磁感应板放置在显示屏前面,使得电磁笔触控时,减少显示屏的干扰,感应磁场变化更优,并且视窗区只遗留部分金属搭接点,电磁感应板透明可视性好,提升用户体验。
以上给出的实施例是实现本申请一些的例子,本申请不限于上述实施例。本领域的技术人员根据本申请技术方案的技术特征所做出的任何非本质的添加、替换,均属于本申请的保护范围。

Claims (10)

  1. 一种透明线圈板的制作方法,包括:
    将透明导电基板的导电层处理为多段平行排列的第一透明感应线;
    在透明导电薄膜上形成若干过孔;
    将所述透明导电薄膜贴覆在所述透明导电基板上,其中,所述透明导电薄膜的绝缘层邻接所述透明导电基板的导电层,所述若干过孔对应所述第一透明感应线的首尾位置;
    将所述透明导电薄膜的导电层处理为多段平行排列的第二透明感应线,其中,多段所述第二透明感应线的首尾位置对应所述若干过孔,且所述第一透明感应线和所述第二透明感应线的首尾邻接端依次对应,形成螺旋线圈状结构;
    在所述若干过孔内形成导电填充物,使所述第一透明感应线和第二透明感应线的首尾邻接端电连接,形成完整的螺旋线圈回路。
  2. 根据权利要求1所述的方法,其中,所述透明导电基板的导电层为形成在透明基板上的氧化铟锡薄膜或纳米银丝薄膜。
  3. 根据权利要求1所述的方法,其中,所述透明导电薄膜的厚度为5um。
  4. 根据权利要求1至3任一项所述的方法,其中,所述透明导电薄膜为转印型透明导电薄膜;所述将所述透明导电薄膜的导电层处理为多段平行排列的第二透明感应线之后,还包括:
    固化所述转印型透明导电薄膜。
  5. 根据权利要求1至3任一项所述的方法,其中,所述导电填充物为导电银胶。
  6. 根据权利要求1至3任一项所述的方法,其中,所述过孔内通过印刷工艺形成导电填充物。
  7. 一种透明电磁感应板的制作方法,其中,包括:
    将两块权利要求1至6中任一项所述的方法制作的透明线圈板相互贴合,其中,两块所述透明线圈板的线圈方向相互垂直;
    将两块所述透明线圈板的接线端分别电连接至对应的柔性电路板上。
  8. 一种透明线圈板,其中,包括:透明导电基板、贴覆在所述透明导电基板的导电层上的透明导电薄膜、由所述透明导电基板的导电层形成的多段平行排列的第一透明感应线,以及由所述透明导电薄膜的导电层形成的多段平行排列的第二透明感应线,其中,所述透明导电薄膜的绝缘层邻接所述透明导电基板的导电层;
    所述透明导电薄膜具有若干过孔,所述第一透明感应线的首尾位置和所述第二透明感应线的首尾位置对应所述过孔而形成螺旋线圈状结构;
    所述过孔内设置导电填充物,所述导电填充物使所述第一透明感应线和所述第二透明感应线的首尾邻接端电连接而形成完整的螺旋线圈回路。
  9. 一种透明电磁感应板,其中,包括两块如权利要求8所述的透明线圈板;
    两块所述透明线圈板相互贴合,两块所述透明线圈板的线圈方向相互垂直,两块所述透明线圈板的接线端分别电连接至对应的柔性电路板。
  10. 一种显示设备,其中,包括显示屏及如权利要求9所述的透明电磁感应板,所述透明电磁感应板置于所述显示屏前端。
PCT/CN2020/112247 2020-04-17 2020-08-28 透明线圈板及其制作方法、透明电磁感应板及显示设备 WO2021208325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010306084.7A CN111475064B (zh) 2020-04-17 2020-04-17 透明线圈板及其制作方法、透明电磁感应板及显示设备
CN202010306084.7 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208325A1 true WO2021208325A1 (zh) 2021-10-21

Family

ID=71755608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112247 WO2021208325A1 (zh) 2020-04-17 2020-08-28 透明线圈板及其制作方法、透明电磁感应板及显示设备

Country Status (2)

Country Link
CN (1) CN111475064B (zh)
WO (1) WO2021208325A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111475064B (zh) * 2020-04-17 2022-05-24 深圳市鸿合创新信息技术有限责任公司 透明线圈板及其制作方法、透明电磁感应板及显示设备
CN114136201B (zh) * 2021-12-30 2023-03-17 西安交通大学 基于光学透明导电介质材料的电涡流探头及薄膜厚度测量系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576680A (en) * 1994-03-01 1996-11-19 Amer-Soi Structure and fabrication process of inductors on semiconductor chip
CN1201366A (zh) * 1997-05-22 1998-12-09 日本电气株式会社 印刷电路板
CN101578574A (zh) * 2006-12-15 2009-11-11 苹果公司 基于pet的触摸板
CN105653106A (zh) * 2015-12-25 2016-06-08 义乌修远电子科技有限公司 一种gf2结构的电容触摸屏及其制造方法
CN106681580A (zh) * 2017-02-06 2017-05-17 深圳市优苹科技有限公司 一种电磁屏的制作方法、电磁屏和触控设备
CN111475064A (zh) * 2020-04-17 2020-07-31 深圳市鸿合创新信息技术有限责任公司 透明线圈板及其制作方法、透明电磁感应板及显示设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634915A (zh) * 2008-07-21 2010-01-27 奇信电子股份有限公司 用于双稳态电子显示器的触控侦测电路结构
CN102479995A (zh) * 2010-11-30 2012-05-30 英业达股份有限公司 天线结构及触控显示面板
CN102402359A (zh) * 2011-12-27 2012-04-04 天津美泰真空技术有限公司 一种电容式触摸屏
CN203133806U (zh) * 2012-09-04 2013-08-14 太瀚科技股份有限公司 电磁感应天线基板、电磁输入装置及具触控与书写输入功能的装置
CN102881839B (zh) * 2012-09-28 2014-05-07 京东方科技集团股份有限公司 有机发光二极管、触摸显示装置及其制造方法
TW201445410A (zh) * 2013-05-22 2014-12-01 Waltop Int Corp 電磁感應板結構及其製作方法、及電磁式手寫輸入裝置
CN203840575U (zh) * 2014-04-15 2014-09-17 佛山市顺德区美的电热电器制造有限公司 电磁线圈盘和电磁炉
CN205015867U (zh) * 2015-10-18 2016-02-03 周扬帆 一种计算机手写输入板
CN109213351A (zh) * 2017-07-03 2019-01-15 深圳市鸿合创新信息技术有限责任公司 一种电子白板触摸装置及电子白板
CN208013919U (zh) * 2018-03-20 2018-10-26 深圳市鸿合创新信息技术有限责任公司 一种电容白板触控膜结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576680A (en) * 1994-03-01 1996-11-19 Amer-Soi Structure and fabrication process of inductors on semiconductor chip
CN1201366A (zh) * 1997-05-22 1998-12-09 日本电气株式会社 印刷电路板
CN101578574A (zh) * 2006-12-15 2009-11-11 苹果公司 基于pet的触摸板
CN105653106A (zh) * 2015-12-25 2016-06-08 义乌修远电子科技有限公司 一种gf2结构的电容触摸屏及其制造方法
CN106681580A (zh) * 2017-02-06 2017-05-17 深圳市优苹科技有限公司 一种电磁屏的制作方法、电磁屏和触控设备
CN111475064A (zh) * 2020-04-17 2020-07-31 深圳市鸿合创新信息技术有限责任公司 透明线圈板及其制作方法、透明电磁感应板及显示设备

Also Published As

Publication number Publication date
CN111475064B (zh) 2022-05-24
CN111475064A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
TWI664560B (zh) 層疊構造體、觸摸面板、帶觸摸面板的顯示裝置及其製造方法
JP3192251U (ja) タッチパネル及びタッチディスプレイデバイス
JP3191884U (ja) タッチスクリーン
US8686308B2 (en) Conductive sheet and capacitive touch panel
US10606425B2 (en) Touch panel and method for making same
WO2019242301A1 (zh) 触控面板及其制作方法、电子装置
US10949002B2 (en) Conductive film and touch panel including the same
US20170177105A1 (en) Bezel structure of touch screen and method for manufacturing the same, touch screen and display device
KR101372525B1 (ko) 감광성 금속 나노와이어를 이용한 터치스크린 패널의 제조 방법
US20140307178A1 (en) Touch screen sensing module, manufacturing method thereof and display device
JP2008047026A (ja) 曲面を有するタッチパネル及びその製造方法
TWI494814B (zh) 透明導電膜
TW201439840A (zh) 觸摸屏感應模組及其製作方法和顯示器
WO2021208325A1 (zh) 透明线圈板及其制作方法、透明电磁感应板及显示设备
US9148141B2 (en) Layout structure of capacitive touch panel and manufacturing method thereof
TWI509480B (zh) 觸控面板
WO2021213051A1 (zh) 电路板及其制备方法、电子设备
CN110764657A (zh) 触控层、触控模组和电子设备
TW202201195A (zh) 觸控裝置及其製造方法
CN211479096U (zh) 一种超窄边框的电容触摸屏及终端设备
TW201602859A (zh) 觸控裝置
CN207458013U (zh) 触控薄膜、触控组件、触摸屏及电子设备
JP2013208862A (ja) 導電パターンが積層された積層構造体及びその製造方法並びに該積層構造体を備えるタッチパネル
CN109976569A (zh) 触控面板及其制备方法、触控装置
CN109002206B (zh) 触控结构、显示装置及触控结构的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931357

Country of ref document: EP

Kind code of ref document: A1