WO2021208077A1 - 一种有机场效应晶体管及其制备方法 - Google Patents

一种有机场效应晶体管及其制备方法 Download PDF

Info

Publication number
WO2021208077A1
WO2021208077A1 PCT/CN2020/085371 CN2020085371W WO2021208077A1 WO 2021208077 A1 WO2021208077 A1 WO 2021208077A1 CN 2020085371 W CN2020085371 W CN 2020085371W WO 2021208077 A1 WO2021208077 A1 WO 2021208077A1
Authority
WO
WIPO (PCT)
Prior art keywords
effect transistor
dielectric layer
organic field
field effect
depositing
Prior art date
Application number
PCT/CN2020/085371
Other languages
English (en)
French (fr)
Inventor
孟鸿
施宇豪
王新炜
艾琳
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2020/085371 priority Critical patent/WO2021208077A1/zh
Priority to US16/960,420 priority patent/US11937438B2/en
Publication of WO2021208077A1 publication Critical patent/WO2021208077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of organic electronic devices, in particular to an organic field effect transistor and a preparation method thereof.
  • organic electronic devices have attracted much attention due to their high mechanical flexibility and low-cost preparation.
  • organic field-effect transistors have a very wide range of applications as a core unit.
  • the performance of organic field effect transistors is largely affected by the dielectric layer. For example, factors such as dielectric layer polarization, purity and charge confinement will seriously affect the hysteresis effect, subthreshold slope, leakage current, and source-drain current switching ratio of the device. And the performance of charge mobility, etc., in turn will also affect the switching rate, power consumption and stability of the entire circuit.
  • the mechanical properties of the dielectric layer are also very critical, especially for flexible mobile display devices with rollable displays.
  • the bending performance of the dielectric layer determines the performance and life of the entire display device.
  • the dielectric layer material can generally be inorganic oxides, organic polymers, and their mixtures or multilayer materials. Among these materials, the mechanical flexibility of the organic polymer dielectric layer material is particularly outstanding, and in addition, it has better compatibility with other organic materials in the device. These characteristics are very important for flexible device applications, such as rollable displays, which place high requirements on the bending radius of the device, and most inorganic dielectric materials are difficult to meet this requirement.
  • the polymer dielectric layer material often contains metal ions. These metal ion impurities are derived from the production process of polymer raw materials, so they are difficult to avoid and difficult to remove. This movable metal ion will affect the OFET (organic field effect). (Transistor) The threshold voltage drift of the device has a serious impact.
  • polymer films could be cross-linked and improved by adding a cross-linking agent, followed by ultraviolet UV irradiation and post-air annealing, etc., to improve the dielectric properties of the film, but these post-treatment methods could not effectively remove the water-absorbing functional groups and ionic impurities in the polymer .
  • the purpose of the present invention is to provide an organic field effect transistor and a preparation method thereof, aiming to solve the problem that metal ion impurities in the existing polymer dielectric layer cannot be effectively removed.
  • supercritical fluid combines the characteristics of both gas and liquid. Its density and viscosity are less than that of liquid, but its diffusion coefficient is close to that of gas. Therefore, supercritical fluid has a very fast material transport capability.
  • a desiccant such as anhydrous calcium chloride, the supercritical fluid can quickly and efficiently remove water molecules and impurities in the substance.
  • a method for preparing an organic field effect transistor which comprises the following steps:
  • the gate electrode deposited with the dielectric layer is subjected to supercritical fluid treatment
  • the electrode layer material is deposited on the organic semiconductor layer to form an electrode layer.
  • the polymer material includes any one or more of polyvinyl alcohol, polyvinyl phenol, polymethyl methacrylate, and polyvinylidene fluoride.
  • the gate includes any one of heavily doped single crystal silicon, a polymer film deposited with indium tin oxide, and a polymer film deposited with metal.
  • the deposition method of the polymer material is a spin coating method.
  • the step of subjecting the gate electrode deposited with the dielectric layer to supercritical fluid treatment specifically includes: using carbon dioxide as a fluid, placing the gate electrode deposited with the dielectric layer in a reactor, and adding a water removal agent , The carbon dioxide gas is pressurized to 1500-3000 psi and then passed into the reactor. The temperature of the reactor is raised to 60-120°C and maintained for a treatment time of 30 minutes to 1 hour.
  • the organic semiconductor layer material is any one or two of pentacene and 2,7-dioctyl[1]benzothieno[3,2-B]benzothiophene.
  • the method for depositing the organic semiconductor layer material is a vacuum thermal evaporation method, wherein the vacuum degree is 2 ⁇ 10 -6 Torr, and the evaporation rate is 0.5 angstroms per second.
  • the method for depositing the electrode layer material is a vacuum thermal evaporation method, wherein the vacuum degree is 2 ⁇ 10 -6 Torr, and the evaporation rate is 0.5 Angstroms per second.
  • the electrode layer material includes one of gold, copper, and aluminum.
  • An organic field effect transistor which is prepared by the method of the present invention.
  • the present invention uses supercritical fluid to treat the dielectric layer, which can effectively reduce the movable metal ion content in the entire dielectric layer, and the OFET device using this dielectric layer responds more quickly when the gate voltage changes. Speed up the switching rate of transistor devices and reduce the impact of movable ions on hysteresis. The defects in the polymer after supercritical fluid treatment are reduced, and the OFET using this dielectric layer can inject more carriers into the channel under the condition of low voltage, so that the subthreshold slope of the device is significantly reduced, and the carrier The migration rate is effectively improved.
  • using the processed dielectric layer for the control transistor of the display panel thanks to the improved performance of the dielectric layer, the control switch responds faster, and the display refresh rate can be significantly improved.
  • FIG. 1 is a flowchart of a method for manufacturing an organic field effect transistor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of an organic field-effect transistor with a dielectric layer after treatment with a supercritical fluid according to Embodiment 1.
  • FIG. 2 is a schematic diagram of the structure of an organic field-effect transistor with a dielectric layer after treatment with a supercritical fluid according to Embodiment 1.
  • FIG. 3 is a schematic diagram of a supercritical fluid processing equipment provided in Embodiment 1.
  • FIG. 3 is a schematic diagram of a supercritical fluid processing equipment provided in Embodiment 1.
  • Example 4 is a schematic diagram of a supercritical fluid treatment high-temperature and high-pressure reactor vessel provided in Example 1.
  • FIG. 5 is a comparative schematic diagram of Comparative Example 2 and Comparative Example 3 reflecting the change of the metal dielectric condition of the dielectric material before and after the treatment after the dielectric test.
  • Fig. 6 is a comparative schematic diagram showing the change of the metal sodium ion content of the dielectric material before and after the treatment after the X-ray photoelectron spectroscopy test of the comparative example 4 and the comparative example 5.
  • FIG. 7 is a comparative schematic diagram showing the improvement of the electrical performance of the OFET by using a supercritical fluid to treat the dielectric layer after the transfer characteristic curve test in Example 1 and Comparative Example 6.
  • FIG. 8 is a comparative schematic diagram showing the improvement of the switch performance of OFETs using a supercritical fluid to treat the dielectric layer after the organic light emitting diodes are connected in series in Example 1 and Comparative Example 6.
  • FIG. 8 is a comparative schematic diagram showing the improvement of the switch performance of OFETs using a supercritical fluid to treat the dielectric layer after the organic light emitting diodes are connected in series in Example 1 and Comparative Example 6.
  • the present invention provides an organic field effect transistor and a preparation method thereof.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, but not used to limit the present invention.
  • the embodiment of the present invention provides a method for manufacturing an organic field effect transistor, as shown in FIG. 1, including the steps:
  • the supercritical fluid is used to treat the dielectric layer, which can effectively reduce the content of movable metal ions in the entire dielectric layer, and the OFET device using this dielectric layer responds more quickly when the gate voltage changes.
  • the OFET device using this dielectric layer responds more quickly when the gate voltage changes.
  • the defects in the polymer after supercritical fluid treatment are reduced, and the OFET using this dielectric layer can inject more carriers into the channel under the condition of low voltage, so that the subthreshold slope of the device is significantly reduced, and the carrier
  • the migration rate is effectively improved.
  • using the processed dielectric layer for the control transistor of the display panel thanks to the improved performance of the dielectric layer, the control switch responds faster, and the display refresh rate can be significantly improved.
  • the gate includes heavily doped single crystal silicon, a polymer film deposited with indium tin oxide (ITO), a polymer film deposited with metal, etc., and the like is not limited to any of these.
  • ITO indium tin oxide
  • the heavily doped single crystal silicon refers to semiconductor single crystal silicon doped with a relatively large amount of impurities, and usually the impurity concentration is greater than 10 18 atoms per cubic centimeter.
  • step S20 in one embodiment, before depositing the polymer material on the gate, it further includes the step of placing the gate in acetone, isopropanol, and deionized water for ultrasonic cleaning for 20 minutes. Treat for 15 minutes under UV or ozone atmosphere.
  • the polymer material includes polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), etc. Any one or more of them.
  • PVA polyvinyl alcohol
  • PVP polyvinyl phenol
  • PMMA polymethyl methacrylate
  • PVDF polyvinylidene fluoride
  • the deposition method of the polymer material may be a solution method, such as a spin coating method.
  • the step of subjecting the gate electrode deposited with the dielectric layer to supercritical fluid treatment specifically includes: using carbon dioxide as a fluid, and placing the gate electrode deposited with the dielectric layer in the reaction In the kettle, add a dewatering agent (such as anhydrous calcium chloride), pressurize the carbon dioxide gas to 1500-3000 psi and pass it into the reaction kettle. After raising the temperature of the reaction kettle to 60-120°C, keep it for 30 minutes to 1 Hours of processing time.
  • a dewatering agent such as anhydrous calcium chloride
  • the organic semiconductor layer material is pentacene, 2,7-dioctyl[1]benzothieno[3,2-B]benzothiophene (C8-BTBT ), etc. are not limited to any one or two of these.
  • the method for depositing the organic semiconductor layer material may be a vacuum thermal evaporation method, wherein the vacuum degree is 2 ⁇ 10 -6 Torr, and the evaporation rate is 0.5 Angstroms per second.
  • the method of depositing the electrode layer material is a vacuum thermal evaporation method, wherein the vacuum degree is 2 ⁇ 10 -6 Torr, and the evaporation rate is 0.5 Angstroms per second.
  • the electrode layer material includes gold, copper, aluminum, etc., and is not limited to one of them.
  • the material in the interval between step S30, step S40, and step S50, the material should be prevented from contacting high-humidity air or performed under a nitrogen atmosphere, and the air humidity of the process environment should be less than 30%.
  • the embodiment of the present invention also provides an organic field effect transistor, which is prepared by the method described in the embodiment of the present invention.
  • a method for treating a polymer dielectric layer with a supercritical fluid for preparing an organic field-effect transistor is used.
  • the structure of the organic field-effect transistor is shown in FIG. 2.
  • the specific preparation steps are as follows:
  • Supercritical fluid processing uses a pressure controller 201 to compress carbon dioxide gas, and is connected to a high temperature and high pressure reactor 202, and the grid 101 spin-coated with the dielectric layer 102 is placed in the reactor 202 for processing. At the same time, in order to effectively remove the water molecules in the polyvinyl alcohol film, an appropriate amount of anhydrous calcium chloride particles 307 are placed in the reactor 202 as a water remover.
  • the supercritical fluid equipment is shown in FIG. 3, and the internal structure of the reactor 202 is shown in FIG.
  • the film on which the organic semiconductor layer 103 has been vapor-deposited and replace the mask which is used to vapor-deposit the metal electrode 104 and the electrode 105.
  • the gap between the electrode 104 and the electrode 105 is 100 microns, the electrode width is 1 mm, and the electrode spacing The area should be completely located above the organic semiconductor layer 103.
  • Place the masked film in a high-vacuum thermal evaporation chamber weigh 0.1 g of gold (Au) as the evaporation source, the vacuum in the chamber is 2 ⁇ 10 -6 Torr, and the evaporation rate is 0.5 angstroms In meters per second, the thickness of the electrode 104 and the electrode 105 is 50 nanometers.
  • step d the internal structure of the reactor 202 used for supercritical fluid treatment is shown in FIG. 4.
  • the wafers 305 to be processed are placed on the quartz shelf 306 and placed in the reactor 202 together.
  • step d the schematic diagram of the supercritical fluid processing equipment is shown in FIG.
  • the valve 203 is closed.
  • the pressure controller 201 the pressure is increased to 1500 psi.
  • the valve 204 is slowly opened to balance the pressure in the pressure controller 201 and the reactor 202, and then the valve 204 is closed.
  • the reactor 202 is heated to 90° C., and the pressure in the pressure controller 201 is adjusted to 3000 psi at the same time.
  • the valve 204 is opened to make the pressure in the reactor 202 reach 3000 psi, and then the valve 204 is closed, and then the reactor 202 is heated to 120°C.
  • the pressure of the reactor 202 is maintained at 3000 psi and the temperature is maintained at 120°C for 1 hour.
  • the reactor 202 heating equipment is closed, the temperature of the reactor 202 is lowered to below 50°C, and then the valve 205 is slowly opened to relieve the pressure.
  • the pressure of the reaction vessel 202 is the same as the atmospheric pressure, the lid 302 of the reaction vessel 202 can be opened, and the processed film 305 can be taken out.
  • the preparation method is the same as that of Embodiment 1, except that the supercritical treatment step d and the subsequent step e of depositing the organic semiconductor layer are not performed.
  • the preparation method is the same as in Example 1, except that the following step e of depositing the organic semiconductor layer is not performed.
  • Comparative Example 2 and Comparative Example 3 the dielectric spectroscopy test of Comparative Example 2 and Comparative Example 3 is carried out. Permittivity and dielectric loss angle, the result on the right is the polyvinyl alcohol capacitor after supercritical treatment, that is, the dielectric constant and dielectric loss angle of Comparative Example 3. It can be seen from Figure 5 (a) and (c) that the dielectric constant of the untreated polyvinyl alcohol film at 373K is higher than that of other conditions, and the response is at low frequencies ( ⁇ 10 2 Hz) It is particularly obvious that this indicates that there is a relaxation phenomenon in the untreated polyvinyl alcohol film in addition to its own polarization, and this relaxation phenomenon is a slow process of response at low frequencies.
  • the loss angle of the untreated polyvinyl alcohol film also has an obvious loss angle peak at 103 Hz. From the frequency range where the peak appears, it can be inferred that this relaxation process is a slow response process, and the response time is consistent with the performance of the movable metal ions in the polymer film. From Figure 5 (b) and (d), it can be found that the dielectric constant of the polyvinyl alcohol film treated with supercritical carbon dioxide is slightly lower than that of the untreated polyvinyl alcohol film, and the dielectric constant is less affected by temperature. When the temperature is 373K, the dielectric constant changes smoothly with frequency. Through the dielectric loss angle curve, it can be found that there is no peak at low frequencies, indicating that the content of movable metal ions in the polyvinyl alcohol film is greatly reduced after the supercritical CO 2 treatment.
  • the preparation method is the same as that of Embodiment 1, except that the supercritical treatment step d, and the subsequent step e of depositing the organic semiconductor layer and the step f of electrode deposition are not performed.
  • the preparation method is the same as that of Embodiment 1, except that the following step e of depositing an organic semiconductor layer and step f of electrode deposition are not performed.
  • Comparative Example 4 and Comparative Example 5 X-ray photoelectron spectroscopy test was performed on Comparative Example 4 and Comparative Example 5.
  • the upper curve is the dielectric layer without supercritical fluid treatment, that is, Comparative Example 4.
  • the 1s orbit signal count value of the middle sodium element, and the dielectric layer treated with supercritical fluid is on the lower side, that is, the 1s orbit signal count value of the sodium element of Comparative Example 5. It can be found from Figure 6 that the untreated polyvinyl alcohol film exhibits a significant sodium 1s excitation peak, and this excitation peak is significantly reduced after the supercritical fluid treatment.
  • the 1s signal of the sample sodium treated with supercritical carbon dioxide fluid is below the detection limit (the detection limit is about 0.01 at.%), and the energy spectrum shows noise signals.
  • the preparation method is the same as in Example 1, except that the supercritical treatment step d is not performed.
  • Example 1 and Comparative Example 6 the transistor transfer characteristic curve test of Example 1 and Comparative Example 6 was performed, and the test results are shown in FIG. 7. Through the transfer characteristic curve, it can be found that the OFET without the supercritical processing dielectric layer, that is, Comparative Example 6, when the gate voltage is relatively low (close to 0 volts), that is, when the transistor is in the off state, the current is large and the fluctuation is obvious.
  • the dielectric layer has serious leakage and unstable when it is not processed by supercritical fluid, which will cause the power consumption of the arithmetic circuit or display control backplane to increase; at the same time, when the gate voltage is large (the gate voltage is- 15 volts), that is, when the transistor is in the on state, the on-state current is slightly lower, which will cause the brightness to be too low when controlling the display; more obvious is the curve of the gate voltage positive sweep (from zero to negative voltage) and the reverse sweep The curve (from negative to zero voltage) has obvious drift phenomenon, which will cause errors when setting the on-state voltage and off-state voltage of the control device and cause the overall power consumption of the circuit to increase.
  • the OFET device using the supercritical fluid to treat the dielectric layer, that is, Example 1 when the transistor is in the off state, the current is one order of magnitude lower than that of the comparative example 6, and the overall power consumption of the circuit is greatly reduced; at the same time, it can be found that the transistor is in the on state. It is larger than the untreated one, and the overall current-to-switch current ratio is larger, which is conducive to a higher-brightness display; more obvious is that the gate voltage positive sweep curve and the reverse sweep curve almost overlap, indicating that the hysteresis effect of the device is in the supercritical Basically eliminated after fluid treatment.
  • an OFET without a supercritically-treated dielectric layer, ie, Comparative Example 6, and an OFET device with a supercritical fluid-treated dielectric layer, ie, Example 1, were connected in series with an organic light-emitting diode, and continuous changes were applied.
  • the gate control voltage is used to measure the brightness change of the organic light-emitting diode. As shown in Fig. 8, the gate control voltage continuously changes between 0 volts and -20 volts, changing once every 8 seconds, and the brightness curves of the two groups of organic light-emitting diodes also change periodically.
  • the transistor-controlled light-emitting diodes without supercritical fluid treatment do not reach the brightness saturation value within 8 seconds when they are first turned on, and the brightness is slowly brightening, which will seriously affect the display refresh rate; At the same time, it can be found that at the moment when the transistor is turned off, the light-emitting diode is not completely turned off, and there is still residual brightness.
  • a transistor-controlled light-emitting diode with supercritical fluid treatment can reach a brightness of 500 candela per square meter in a short time, and the brightness becomes 0 in a short time after the gate control voltage is turned off, which effectively improves the entire The refresh rate of the display and the overall brightness have been improved.
  • the present invention provides an organic field-effect transistor and a preparation method thereof.
  • the dielectric loss of the polymer film treated by the supercritical fluid in the present invention is significantly reduced, and the metal movable ions in the film are significantly reduced.
  • the impurity content is significantly reduced.
  • the dielectric properties of the dielectric layer have been significantly improved.
  • the hysteresis effect of the OFET device using the treated dielectric layer is basically eliminated, and the OFET subthreshold slope is also significantly reduced, and the carrier mobility is effectively improved.
  • the switching speed of the processed OFET is improved. By connecting the LEDs in series, the switching speed of the LEDs can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种有机场效应晶体管及其制备方法,其中包括步骤:提供栅极(S10);沉积聚合物材料至所述栅极上,形成介电层(S20);将沉积有介电层的栅极进行超临界流体处理(S30);沉积有机半导体层材料在处理后的介电层上,形成有机半导体层(S40);沉积电极层材料在有机半导体层上,形成电极层(S50)。采用超临界流体处理后的介电层(102)的介电性能得到了明显的提升。同时,采用处理过后介电层(102)的OFET器件迟滞效应被基本消除,同时OFET亚阈值斜率也显著降低,且载流子迁移率有效提升。除此之外,处理后的OFET开关速度得到提升,通过串联发光二极管,可以提升发光二极管开关速率。

Description

一种有机场效应晶体管及其制备方法 技术领域
本发明涉及有机电子器件技术领域,尤其涉及一种有机场效应晶体管及其制备方法。
背景技术
近些年,有机电子器件因具有高机械柔性和低成本制备而备受关注,在这些有机电子器件中有机场效应晶体管作为核心单元具有非常广泛的应用。有机场效应晶体管的性能很大程度上受介电层影响,例如介电层极化、纯度和电荷束缚等因素会严重影响器件的迟滞效应、亚阈值斜率、漏电流、源漏极电流开关比和电荷迁移率等性能,进而也会影响整个电路的开关速率、功耗和稳定性。除此之外,介电层的机械性能也十分关键,特别是对于可卷曲显示的柔性移动显示设备,介电层的弯曲性能就决定了整个显示设备的使用性能和寿命。介电层材料通常可以是无机氧化物、有机聚合物以及他们的混合物或者是多层材料。在这些材料当中,有机聚合物介电层材料的机械柔性尤为出众,此外与器件中其他有机材料有更好的相容性。这些特性对于柔性器件应用十分重要,例如可卷曲显示,可卷曲显示对器件的弯曲半径提出很高的要求,而大部分的无机介电材料很难达到这个要求。
然而在聚合物介电层材料中经常含有金属离子,这些金属离子杂质是来自于在聚合物原料生产过程,因而难以避免且很难去除,这种可移动的金属离子会对OFET(有机场效应晶体管)器件的阈值电压漂移产生严重影响。此前,聚合物薄膜可以通过加入交联剂,再进行紫外UV照射和空气后退火等方法来交联并提升薄膜介电性能,但是这些后处理方法无法有效去除聚合物中的吸水官能团和离子杂质。基于聚合物介电层OFET的多个电学性能,如迟滞效应、亚阈值斜率和载流子迁移率,依然不能达到令人满意的程度,而这些问题将严重限制基于聚合物介电层的OFET在高速开关和低功耗有机电路中的应用。
因此,现有技术仍有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种有机场效应晶体管及其制备方法,旨在解决现有聚合物介电层中金属离子杂质无法有效去除的问题。
发明人研究发现,超临界流体结合了气体和液体两者的特性,其密度和粘度小于液体,但是扩散系数却接近气体,因此超临界流体具有非常快的物质输送能力。通过加入除湿剂,例如无水氯化钙,超临界流体可以快速高效地去除物质中的水分子和杂质。
本发明的技术方案如下:
一种有机场效应晶体管的制备方法,其中,包括步骤:
提供栅极;
沉积聚合物材料至所述栅极上,形成介电层;
将沉积有介电层的栅极进行超临界流体处理;
沉积有机半导体层材料在处理后的介电层上,形成有机半导体层;
沉积电极层材料在有机半导体层上,形成电极层。
进一步地,所述聚合物材料包含聚乙烯醇、聚乙烯基苯酚、聚甲基丙烯酸甲酯、聚偏二氟乙烯中任意一种或多种。
进一步地,所述栅极包含重掺杂单晶硅、沉积有氧化铟锡的聚合物薄膜、沉积有金属的聚合物薄膜中的任意一种。
进一步地,所述聚合物材料的沉积方法为旋涂法。
进一步地,所述将沉积有介电层的栅极进行超临界流体处理的步骤,具体包括:采用二氧化碳作为流体,将沉积有介电层的栅极放置于反应釜中,再加入除水剂,将二氧化碳气体加压至1500-3000psi后通入反应釜中,将反应釜温度升至60-120℃后保持30分钟至1小时的处理时间。
进一步地,所述有机半导体层材料为并五苯、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩中任意一种或两种。
进一步地,所述沉积有机半导体层材料的方法为真空热蒸镀法,其中真空度为2×10 -6托,蒸镀速率为0.5埃米每秒。
进一步地,所述沉积电极层材料的方法为真空热蒸镀法,其中真空度为2×10 -6托,蒸镀速率为0.5埃米每秒。
进一步地,所述电极层材料包括金、铜、铝中一种。
一种有机场效应晶体管,其中,采用本发明所述的方法制备得到。
有益效果:本发明采用超临界流体处理介电层,可以有效降低整个介电层中的可移动金属离子含量,进而采用此介电层的OFET器件在栅压变化的情况下更快地响应,加快晶体管器件的开关速率,减少可移动离子对迟滞的影响。超临界流体处理后的聚合物中的缺陷减少,进而采用此介电层的OFET在低电压的情况下可以注入更多载流子进入沟道,使器件亚阈值斜率显著降低,且载流子迁移率有效提升。另外,将处理后的介电层用于显示面板的控制晶体管,得益于性能提升后的介电层,控制开关响应更快,可以显著提升显示刷新率。
附图说明
图1本发明实施例提供的一种有机场效应晶体管的制备方法的流程图。
图2为实施例1提供的一种采用超临界流体处理后介电层的有机场效应晶体管结构示意图。
图3为实施例1提供的一种超临界流体处理设备示意图。
图4为实施例1提供的一种超临界流体处理高温高压反应釜容器示意图。
图5为对比例2和对比例3在介电测试后反映介电材料在处理前后金属介电情况变化的对比示意图。
图6为对比例4和对比例5在X射线光电子能谱测试后反映介电材料在处理前后金属钠离子含量变化的对比示意图。
图7实施例1和对比例6在转移特性曲线测试后反映采用超临界流体处理介电层对OFET电学性能改善的对比示意图。
图8为实施例1和对比例6在串联有机发光二极管后反映采用超临界流体处理介电层的OFET开关性能改善的对比示意图。
具体实施方式
本发明提供一种有机场效应晶体管及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种有机场效应晶体管的制备方法,如图1所示,包括步骤:
S10、提供栅极;
S20、沉积聚合物材料至所述栅极上,形成介电层;
S30、将沉积有介电层的栅极进行超临界流体处理;
S40、沉积有机半导体层材料在处理后的介电层上,形成有机半导体层;
S50、沉积电极层材料在有机半导体层上,形成电极层。
本发明实施例中,采用超临界流体处理介电层,可以有效降低整个介电层中的可移动金属离子含量,进而采用此介电层的OFET器件在栅压变化的情况下更快地响应,加快晶体管器件的开关速率,减少可移动离子对迟滞的影响。超临界流体处理后的聚合物中的缺陷减少,进而采用此介电层的OFET在低电压的情况下可以注入更多载流子进入沟道,使器件亚阈值斜率显著降低,且载流子迁移率有效提升。另外,将处理后的介电层用于显示面板的控制晶体管,得益于性能提升后的介电层,控制开关响应更快,可以显著提升显示刷新率。
步骤S10中,在一种实施方式中,所述栅极包含重掺杂单晶硅、沉积有氧化铟锡(ITO)的聚合物薄膜、沉积有金属的聚合物薄膜等不限于此中的任意一种。其中所述重掺杂单晶硅指的是掺入杂质量比较多的半导体单晶硅,通常杂质浓度大于每立方厘米原子数为10 18个。
步骤S20中,在一种实施方式中,在所述栅极上沉积聚合物材料之前,还包括步骤:将栅极分别放置于丙酮、异丙醇、去离子水中超声清洗20分钟,清洗后需在紫外或臭氧氛围下处理15分钟。
在一种实施方式中,所述聚合物材料包含聚乙烯醇(PVA)、聚乙烯基苯酚(PVP)、聚甲基丙烯酸甲酯(PMMA)、聚偏二氟乙烯(PVDF)等不限于此中任意一种或多种。
在一种实施方式中,所述聚合物材料的沉积方法可以为溶液法,如旋涂法。
步骤S30中,在一种实施方式中,所述将沉积有介电层的栅极进行超临界流体处理的步骤,具体包括:采用二氧化碳作为流体,将沉积有介电层的栅极放置于反应釜中,再加入除水剂(如无水氯化钙),将二氧化碳气体加压至1500-3000psi后通入反应釜中,将反应釜温度升至60-120℃后,保持30分钟至1小时的处理时间。
步骤S40中,在一种实施方式中,所述有机半导体层材料为并五苯、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩(C8-BTBT)等不限于此中任意一种或两种。
在一种实施方式中,所述沉积有机半导体层材料的方法可以为真空热蒸镀法,其中真空度为2×10 -6托,蒸镀速率为0.5埃米每秒。
步骤S50中,在一种实施方式中,所述沉积电极层材料的方法为真空热蒸镀法,其中真空度为2×10 -6托,蒸镀速率为0.5埃米每秒。
在一种实施方式中,所述电极层材料包括金、铜、铝等不限于此中一种。
本发明实施例中,步骤S30、步骤S40和步骤S50的间隔中,应避免材料接触高湿度空气或在氮气氛围下进行,工艺环境空气湿度应低于30%。
本发明实施例还提供一种有机场效应晶体管,其中,采用本发明实施例所述的方法制备得到。
下面通过具体的实施例对本发明作进一步地说明。
实施例1
本实施例的一种利用超临界流体处理聚合物介电层并用于制备有机场效应晶体管的方法,其有机场效应晶体管结构如图2所示,具体制备步骤如下:
a、将栅极101按顺序放置于丙酮、异丙醇、去离子水中超声清洗,每一步清洗20分钟。然后将超声清洗后的衬底通过紫外处理15分钟。
b、将聚乙烯醇颗粒(分子质量为100,000以上)溶解于去离子水中,聚乙烯醇溶液浓度为7.0wt.%。将聚乙烯醇溶液在70℃加热下搅拌4个小时,然后加入交联剂重铬酸铵,交联剂与聚乙烯醇的质量比为1:10。加入交联剂后,溶液再搅拌30分钟备用。
c、将准备好的聚乙烯醇溶液旋涂至栅极101表面,旋转速度为3000转每分钟。
d、超临界流体处理采用压力控制器201来压缩二氧化碳气体,并连接一个高温高压反应釜202,将旋涂有介电层102的栅极101放置于反应釜202中处理。同时,为了有效去除聚乙烯醇薄膜中的水分子,在反应釜202中放置适量无水氯化钙颗粒307作为除水剂。超临界流体设备如图3所示,反应釜202内部构造如图4所示。
e、将处理完的介电层102和栅极101取出,在表面贴合掩膜版,掩膜版的孔洞为1毫米×1毫米的正方形,用于下一步在介电层102上沉积有机半导体层103。将贴好掩膜版的片子放置于高真空热蒸镀仓内,称取0.01克2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩(C8-BTBT)材料作为蒸镀源,仓内真空度为2×10 -6托,蒸镀速率为0.5埃米每秒,蒸镀有机半导体层103的厚度为30纳米。
f、将蒸镀完有机半导体层103的片子取出更换掩膜版,用于蒸镀金属电极104和电极105,电极104和电极105之间的间隔为100微米,电极宽度为1毫米,电极间隔区域应完全位于有机半导体层103上部。将贴好掩膜版的片子放置于高真空热蒸镀仓内,称取0.1克金(Au)材料作为蒸镀源,仓内真空度为2×10 -6托,蒸镀速率为0.5埃米每秒,电极104和电极105的厚度为50纳米。
根据本实施例1,在步骤d中,超临界流体处理所用反应釜202内部结构如图4所示。将需要处理的片子305放置于石英架306上,并将其一起放置于反应釜202中。称取10克无水氯化钙307作为除水剂放置于石英锅308中,并将其一起放置于反应釜202中。放置完成后,盖上反应釜202的盖子302,304为进气管,303为出气管。
根据本实施例1,在步骤d中,超临界流体处理设备示意图如图3所示,二氧化碳气体从气瓶经阀门203处进入压力控制器201,此时应将阀门204和阀门205全部关闭。当二氧化碳气瓶与压力控制器201压力相同时关闭阀门203。通过调整压力控制器201,升压至1500psi。到达压力后缓慢打开阀门204,使压力控制器201与反应釜202中压力达到平衡,然后关闭阀门204。将反应釜202升温至90℃,同时将压力控制器201中的压力调整至3000psi。温度和压力都到达指定数值之后,打开阀门204使反应釜202中的压力达到3000psi后关闭阀门204,之后将反应釜202升温至120℃。保持反应釜202压力维持在3000psi和温度维持在120℃,维持时间为1小时。时间达到1小时之 后,将反应釜202升温设备关闭,使反应釜202降温至50℃以下,之后缓慢打开阀门205泄压。当反应釜202压力与大气压相同时可打开反应釜202的盖子302,取出处理完的片子305。
对比例2
制备方法同实施例1,不同的是:没有进行超临界处理步骤d,以及后面的沉积有机半导体层步骤e。
对比例3
制备方法同实施例1,不同的是:没有进行后面的沉积有机半导体层步骤e。
根据对比例2和对比例3,通过将对比例2与对比例3进行介电谱测试,如图5所示,左侧结果为未进行超临界处理的聚乙烯醇电容,即对比例2的介电常数和介电损耗角,右侧结果为进行了超临界处理后的聚乙烯醇电容,即对比例3的介电常数和介电损耗角。通过图5中(a)和(c)可以看到,对于未处理的聚乙烯醇薄膜在373K的时候介电常数高于其他条件的介电常数,并且响应在低频处(<10 2赫兹)尤为明显,这表明了在未处理的聚乙烯醇薄膜中存在一个除自身极化之外的弛豫现象,且这个弛豫现象是在低频下响应的缓慢过程。当温度在373K时,未处理的聚乙烯醇薄膜的损耗角在10 3赫兹处同样存在一个明显的损耗角峰值。通过峰值出现的频率范围可以推测这个弛豫过程是个缓慢的响应过程,同时这个响应时间与可移动金属离子在聚合物薄膜中的表现相符合。通过图5中(b)和(d)可以发现经过超临界二氧化碳处理的聚乙烯醇薄膜介电常数略低于未处理聚乙烯醇薄膜介电常数,且介电常数受温度的影响程度小,当温度为373K时介电常数随频率变化较为平缓。通过介电损耗角曲线,可以发现在低频处没有出现峰值,说明通过超临界CO 2处理后聚乙烯醇薄膜内的可移动金属离子含量大幅度降低。
对比例4
制备方法同实施例1,不同的是:没有进行超临界处理步骤d,以及后面的沉积有机半导体层步骤e和电极沉积步骤f。
对比例5
制备方法同实施例1,不同的是:没有进行后面的沉积有机半导体层步骤e和电极沉积步骤f。
根据对比例4和对比例5,将对比例4和对比例5进行X射线光电子能谱测试,如图6所示,上侧曲线为未进行超临界流体处理的介电层,即对比例4中钠元素1s轨道信号计数值,下侧为进行了超临界流体处理的介电层,即对比例5的钠元素1s轨道信号计数值。由图6可以发现未处理的聚乙烯醇薄膜展现出明显的钠1s激发峰,而这个激发峰在超临界流体处理之后明显地降低。值得注意的是,使用超临界二氧化碳流体处理的样品钠1s信号低于探测极限(探测极限大约是0.01at.%),能谱上表现出来的均是噪音信号。通过X射线荧光光谱定量化测试,可以发现钠元素含量在超临界流体处理后从141ppm降低至4ppm,由此结果可以发现超临界二氧化碳流体处理可以有效地去除聚乙烯醇薄膜中的钠离子,且使用超临界流体处理的钠元素含量已经低于设备的探测噪音。
对比例6
制备方法同实施例1,不同的是:没有进行超临界处理步骤d。
根据实施例1和对比例6,将实施例1和对比例6进行晶体管转移特性曲线测试,测试结果如图7所示。通过转移特性曲线可以发现没有采用超临界处理介电层的OFET,即对比例6,在栅极电压比较低的时候(接近0伏特),即晶体管处于关态时,电流较大且波动明显,表明介电层在没有经过超临界流体处理的时候漏电严重且不稳定,这会导致运算电路或者显示控制背板的功耗上升;同时,当栅极电压较大的时候(栅极电压为-15伏特),即晶体管处于开态时,开态电流略低,这会导致当控制显示时亮度过低;更加明显的是,栅极电压正扫(从零到负电压)的曲线和反扫(从负到零电压)的曲线存在明显的漂移现象,这会导致在设定控制器件开态电压和关态电压的时候出现误差同时导致电路整体功耗上升。观察采用超临界流体处理介电层的OFET器件,即实施例1,在晶体管处于关态时电流较对比例6低一个数量级,电路整体功耗大幅度下降;同时可以发现晶体管在开态时电流较未处理的更大,整体电流开关电流之比更大,有利于亮度更高的显示;更加明显的是,栅极电压正扫曲线和反扫曲线几乎重合,说明器件的迟滞 效应在超临界流体处理之后基本消除。
进一步地,将没有采用超临界处理介电层的OFET,即对比例6,和用超临界流体处理介电层的OFET器件,即实施例1,分别与一个有机发光二极管串联,并施加连续变化的栅极控制电压,测量有机发光二极管亮度变化。如图8所示,栅极控制电压在0伏特与-20伏特之间连续变化,每8秒变化一次,两组有机发光二极管亮度曲线也随之周期变化。由此可以发现,未进行超临界流体处理的晶体管控制的发光二极管在第一次开启时未在8秒内达到亮度饱和值,且亮度处于缓慢变亮的速度,这会严重影响显示刷新率;同时,可以发现在关闭晶体管的瞬间,发光二极管没有随之完全关闭,还存在有残余亮度。另一方面,进行了超临界流体处理的晶体管控制的发光二极管可以在短时间内达到500坎德拉每平方米的亮度,且在栅极控制电压关闭后短时间内亮度变为0,有效提升了整个显示的刷新率,且整体亮度得到了提升。
综上所述,本发明提供的一种有机场效应晶体管及其制备方法,本发明采用超临界流体处理后的聚合物薄膜的介电损耗得到了明显的减弱,同时薄膜中的金属可移动离子杂质含量明显减少。基于该处理后的介电层的介电性能得到了明显的提升。同时,采用处理过后介电层的OFET器件迟滞效应被基本消除,同时OFET亚阈值斜率也显著降低,且载流子迁移率有效提升。除此之外,处理后的OFET开关速度得到提升,通过串联发光二极管,可以提升发光二极管开关速率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种有机场效应晶体管的制备方法,其特征在于,包括步骤:
    提供栅极;
    沉积聚合物材料至所述栅极上,形成介电层;
    将沉积有介电层的栅极进行超临界流体处理;
    沉积有机半导体层材料在处理后的介电层上,形成有机半导体层;
    沉积电极层材料在有机半导体层上,形成电极层。
  2. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述聚合物材料包含聚乙烯醇、聚乙烯基苯酚、聚甲基丙烯酸甲酯、聚偏二氟乙烯中任意一种或多种。
  3. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述栅极包含重掺杂单晶硅、沉积有氧化铟锡的聚合物薄膜、沉积有金属的聚合物薄膜中的任意一种。
  4. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述聚合物材料的沉积方法为旋涂法。
  5. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述将沉积有介电层的栅极进行超临界流体处理的步骤,具体包括:采用二氧化碳作为流体,将沉积有介电层的栅极放置于反应釜中,再加入除水剂,将二氧化碳气体加压至1500-3000psi后通入反应釜中,将反应釜温度升至60-120℃后保持30分钟至1小时的处理时间。
  6. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述有机半导体层材料为并五苯、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩中任意一种或两种。
  7. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述沉积有机半导体层材料的方法为真空热蒸镀法,其中真空度为2×10 -6托,蒸镀速率为0.5埃米每秒。
  8. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述沉积电极层材料的方法为真空热蒸镀法,其中真空度为2×10 -6托,蒸镀速率为0.5埃米每 秒。
  9. 根据权利要求1所述的有机场效应晶体管的制备方法,其特征在于,所述电极层材料包括金、铜、铝中一种。
  10. 一种有机场效应晶体管,其特征在于,采用权利要求1-9任一项所述的方法制备得到。
PCT/CN2020/085371 2020-04-17 2020-04-17 一种有机场效应晶体管及其制备方法 WO2021208077A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085371 WO2021208077A1 (zh) 2020-04-17 2020-04-17 一种有机场效应晶体管及其制备方法
US16/960,420 US11937438B2 (en) 2020-04-17 2020-04-17 Organic field-effect transistor and fabrication method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085371 WO2021208077A1 (zh) 2020-04-17 2020-04-17 一种有机场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
WO2021208077A1 true WO2021208077A1 (zh) 2021-10-21

Family

ID=78083433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085371 WO2021208077A1 (zh) 2020-04-17 2020-04-17 一种有机场效应晶体管及其制备方法

Country Status (1)

Country Link
WO (1) WO2021208077A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110776A (zh) * 2010-12-03 2011-06-29 中国科学院化学研究所 一种高性能有机场效应晶体管及其制备方法
CN103000809A (zh) * 2012-12-20 2013-03-27 东北师范大学 一种提高有机场效应晶体管性能的方法
CN105336860A (zh) * 2015-11-09 2016-02-17 南京邮电大学 一种柔性低电压有机场效应晶体管及其制备方法
CN106058047A (zh) * 2016-07-06 2016-10-26 华南师范大学 一种用于柔性低压驱动有机薄膜晶体管的高介电栅介质材料及其制备方法与应用
KR20190118923A (ko) * 2018-04-11 2019-10-21 서울대학교산학협력단 유기 전계 효과 트랜지스터와 그 제조방법, 상기 유기 전계 효과 트랜지스터를 포함하는 인버터
CN110518119A (zh) * 2019-08-21 2019-11-29 华南师范大学 一种基于溶液法制备氧化镧介电层的柔性有机非易失性存储器件及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110776A (zh) * 2010-12-03 2011-06-29 中国科学院化学研究所 一种高性能有机场效应晶体管及其制备方法
CN103000809A (zh) * 2012-12-20 2013-03-27 东北师范大学 一种提高有机场效应晶体管性能的方法
CN105336860A (zh) * 2015-11-09 2016-02-17 南京邮电大学 一种柔性低电压有机场效应晶体管及其制备方法
CN106058047A (zh) * 2016-07-06 2016-10-26 华南师范大学 一种用于柔性低压驱动有机薄膜晶体管的高介电栅介质材料及其制备方法与应用
KR20190118923A (ko) * 2018-04-11 2019-10-21 서울대학교산학협력단 유기 전계 효과 트랜지스터와 그 제조방법, 상기 유기 전계 효과 트랜지스터를 포함하는 인버터
CN110518119A (zh) * 2019-08-21 2019-11-29 华南师范大学 一种基于溶液法制备氧化镧介电层的柔性有机非易失性存储器件及其制备方法和应用

Similar Documents

Publication Publication Date Title
US7956361B2 (en) Field effect transistor using amorphous oxide film as channel layer, manufacturing method of field effect transistor using amorphous oxide film as channel layer, and manufacturing method of amorphous oxide film
KR20050039730A (ko) 실록산 중합체 계면을 갖는 유기 박막 트랜지스터
US20090127622A1 (en) Transparent thin-film transistor and manufacturing method of the transistor
AU2020104175A4 (en) Method for preparing c-axis aligned crystalline igzo thin film at low temperature
WO2021147284A1 (zh) 柔性衬底金属氧化物薄膜晶体管及其钝化层的制备方法
WO2020233220A1 (zh) 一种薄膜晶体管的制作方法及薄膜晶体管和显示装置
WO2021208077A1 (zh) 一种有机场效应晶体管及其制备方法
CN107104151A (zh) 一种双栅电极金属氧化物薄膜晶体管及其制备方法
CN111893461B (zh) 一种类氧化硅柔性薄膜的生长方法
Chiu et al. Effect of oxygen partial pressure on electrical characteristics of amorphous indium gallium zinc oxide thin-film transistors fabricated by thermal annealing
US11937438B2 (en) Organic field-effect transistor and fabrication method therefor
CN117479551A (zh) 一种高跨导离子凝胶基全固态有机电化学晶体管及其制备方法
CN111477743B (zh) 一种有机场效应晶体管及其制备方法
KR101856563B1 (ko) 액정성 유기박막 트랜지스터 및 그 제조방법
Gebel et al. Millisecond-annealing using flash lamps for improved performance of AZO layers
CN113241327A (zh) 抗紫外复合钝化层、金属氧化物薄膜晶体管和阵列基板
KR102568182B1 (ko) 유기 박막 트랜지스터 및 그 제조방법
CN113540254B (zh) 一种钕掺杂的氧化锆薄膜晶体管及其制备方法和应用
Lee et al. Thickness Effect of Polar Polymer Films on the Characteristics of Organic Memory Transistors
KR102700293B1 (ko) 표면 처리 공정을 실시하여 제조된 tft
CN116113243A (zh) 一种叠层介电材料及其制备方法与应用
Trigaud et al. Transparent all organic TFT fabrication by low cost process without clean room
US12040404B2 (en) Passivation layer and preparation method thereof, flexible thin film transistor and preparation method thereof, and array substrate
KR102431927B1 (ko) 패시베이션막을 구비하는 박막 트랜지스터
KR102431923B1 (ko) Tft 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931546

Country of ref document: EP

Kind code of ref document: A1