WO2021207867A1 - 滤波电缆 - Google Patents

滤波电缆 Download PDF

Info

Publication number
WO2021207867A1
WO2021207867A1 PCT/CN2020/084367 CN2020084367W WO2021207867A1 WO 2021207867 A1 WO2021207867 A1 WO 2021207867A1 CN 2020084367 W CN2020084367 W CN 2020084367W WO 2021207867 A1 WO2021207867 A1 WO 2021207867A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
filter
filter cable
etching pattern
conductor layer
Prior art date
Application number
PCT/CN2020/084367
Other languages
English (en)
French (fr)
Inventor
韩宇南
Original Assignee
韩宇南
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩宇南 filed Critical 韩宇南
Priority to CN202080005177.4A priority Critical patent/CN113811960B/zh
Priority to PCT/CN2020/084367 priority patent/WO2021207867A1/zh
Priority to CA3166507A priority patent/CA3166507A1/en
Priority to JP2022547317A priority patent/JP7404551B2/ja
Priority to US17/268,695 priority patent/US11929536B2/en
Priority to EP20845648.3A priority patent/EP3916740B1/en
Publication of WO2021207867A1 publication Critical patent/WO2021207867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/202Coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1817Co-axial cables with at least one metal deposit conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1826Co-axial cables with at least one longitudinal lapped tape-conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1895Particular features or applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/1825Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of a high tensile strength core
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters

Definitions

  • This application relates to the field of cable technology, and in particular to a filter cable.
  • Cables are referred to as the "blood vessels and nerves" of industry.
  • the battlefield in the context of information warfare has gradually become a complex battlefield with five dimensions of "land, sea, air, space, and electricity”.
  • "Electricity” includes the complex electromagnetic environment on the battlefield, including nuclear electromagnetic pulses and high-power microwave weapons. , Electromagnetic pulse bombs, electronic interference, electronic countermeasures and other electromagnetic environments.
  • a cable is a necessary interconnection within and between electronic equipment.
  • a shielded cable is generally a single or a whole wrapped shielding layer.
  • the shielding layer is connected to the ground of the equipment shell through a connector. It has shielding but no filtering function.
  • Coaxial, with electromagnetic shielding performance can provide fixed impedance and stable phase in a wide frequency band, but without filtering function.
  • Optical fiber through the total reflection of light, transmits signals with low loss, and also greatly reduces interference.
  • optical devices and photoelectric change devices are relatively complicated.
  • the cable passes through the magnetic ring to suppress high-frequency interference signals on the line.
  • the disadvantage is that it is heavier and cannot be bent, and the use environment is demanding.
  • Low-temperature co-fired ceramic filters and multilayer filters are often used in mobile communication terminals.
  • the advantage is extremely small size, but the disadvantage is low quality factor and large insertion loss.
  • shielded cables and coaxial cables have shielding performance but cannot be filtered.
  • the filter magnetic ring and the low-temperature co-fired ceramic filter adopt centralized filtering methods.
  • the structure of the centralized filtering method cannot cope with the problem of distributed interference well.
  • the centralized filtering method is in the effect of the distributed complex electromagnetic environment. Since both ends of the connection will couple electromagnetic interference, the filtering effect will be greatly reduced.
  • the structure installation point of the centralized filtering method The two ends are required to have a high degree of isolation to avoid mutual interference between the two ends. The use conditions are high, and the structure of the centralized filtering method needs to occupy a large space and weight, which limits the scope of application.
  • the purpose of this application is to provide a filter cable to solve the problem of lack of devices that can better deal with various problems in a complex electromagnetic environment and have a simple and reasonable structure design.
  • a filter cable includes a core wire; the core wire includes an insulating base and a first conductor layer surrounding the insulating base; the first conductor layer has a first etching pattern; The filter cable is arranged in a distributed axial direction; the first etching pattern is used to make the filter cable equivalent to a first filter circuit to achieve a filter function.
  • the first etching pattern is periodically or non-periodically distributed along the axial direction of the filter cable.
  • the etching area of the first etching pattern is hollow or filled with insulating material.
  • the first conductor layer is plated on the insulating base or the first conductor layer is wrapped on the insulating base.
  • the first etching pattern includes multiple sets of cascaded patterns
  • Each group of cascade patterns includes a first concave pattern, a second concave pattern, and a third concave pattern that are open along the axial direction of the filter cable, and the third concave pattern surrounds the second concave pattern.
  • the second concave pattern surrounds the outside of the first concave pattern.
  • the size settings of multiple sets of cascaded patterns are not completely the same.
  • the first etching pattern includes a pattern having a Hilbert fractal structure.
  • it further includes a first filling layer surrounding the core wire, a second conductive layer surrounding the first filling layer; the second conductive layer has a second etching pattern; the first The second etching pattern is distributed along the axial direction of the filter cable; the second etching pattern is used to make the filter cable equivalent to a second filter circuit to realize the filtering function.
  • the shape of the second etching pattern is exactly the same as the shape of the first etching pattern; or, the shape of the second etching pattern is the same as that of the first etching pattern. The shape is completely different.
  • it further includes a second filling layer surrounding the second conductor layer and a shielding layer surrounding the second filling layer; the shielding layer is provided with a ground terminal.
  • FIG. 1 is a schematic structural diagram of a filter cable provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a first etching pattern provided by another embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a first etching pattern provided by another embodiment of the application.
  • FIG. 4 is a schematic diagram of the filtering effect of a filtering cable provided by another embodiment of the application.
  • FIG. 5 is a schematic diagram of the filtering effect of a filtering cable provided by another embodiment of the application.
  • Fig. 1 is a schematic structural diagram of a filter cable provided by an embodiment of the present application.
  • the filter cable provided by this embodiment includes a core wire; the core wire includes an insulating base 11 and a first conductor layer 12 surrounding the insulating base 11; the first conductor layer 12 has a first etching pattern; The first etching pattern is distributed along the axial direction of the filter cable; the first etching pattern is used to make the filter cable equivalent to the first filter circuit to realize the filtering function.
  • the first etching pattern is dispersed on the entire insulating substrate along the axial direction of the filter cable. Specifically, the first etching pattern may be distributed periodically or non-periodically along the axial direction of the filter cable.
  • the embodiments of the present application provide a filter cable that can better deal with various problems in a complex electromagnetic environment.
  • the traditional solid copper wire core structure is not used, but an insulating cable is provided.
  • the base body, and then the insulating base body surrounds the first conductor layer, the first conductor layer has a first etching pattern, the first etching pattern can make the filter cable equivalent to the required filter circuit to achieve the filtering function, the first aspect ,
  • the structure is simple, the volume is small, the weight is light, the cable itself can be bent at will, the installation is convenient, the application range is wider, and the use of other components is avoided.
  • a series of problems caused by components are the filtering of the structural core of the cable itself.
  • the first etching pattern is distributed on the cable, so the cable as a whole has good filtering characteristics, and the effect is more significant in dealing with the distributed electromagnetic environment.
  • the input and output ends of the filter circuit are distributed at both ends of the filter cable, and there will be no large coupling, and the filter effect is better.
  • the core wire in the filter cable adopts an insulating matrix, which saves conductor materials and further reduces ⁇ weight.
  • the filter cable provided in this application can be applied to a wide range of scenarios, such as interconnection between electronic equipment, interconnection between electronic equipment and power supply devices, interconnection between internal modules of electronic equipment, interconnection between internal modules of intelligent robots, and intelligent CNC machine tools Internal and external interconnection scenarios that require power and signal wired transmission, especially in environments with complex electromagnetic environments.
  • the number of core wires in the filter cable can be set according to actual needs, and can include one or more.
  • the first conductor layer in the core wire can be arranged on the insulating substrate in a variety of ways.
  • the first conductor layer can be plated (such as electroplating) on the insulating substrate.
  • the first conductor layer can be wrapped on the insulating substrate.
  • the shape of the insulating substrate can be set to a solid cylindrical shape, or it can be set to other desired shapes.
  • the first etching pattern 120 includes multiple sets of cascaded patterns 121; each set of cascaded patterns 121 includes a first concave pattern 1211 that opens along the axial direction of the filter cable.
  • the third concave pattern 1213 and the third concave pattern 1212, the third concave pattern 1213 surrounds the outside of the second concave pattern 1212, and the second concave pattern 1212 surrounds the outside of the first concave pattern 1211.
  • the third concave pattern 1213 and the second concave pattern 1212 are spaced apart, and the second concave pattern 1212 and the first concave pattern 1211 are spaced apart.
  • the concave pattern includes a bottom edge opposite to the concave opening and two sides adjacent to the bottom edge.
  • the bottom edge and the two sides are both etched areas.
  • the concave pattern The size, that is, the size of the bottom and two sides (including the length and width of the sides), can be set according to actual needs. Among them, the lengths of the two sides are equal.
  • each group of cascaded patterns contains three adjacent concave fold lines. Based on this, the length of each concave constitutes a stop band, so that multiple concaves constitute multiple frequency points. The number of stop bands is superimposed to a certain extent to form a low-pass effect.
  • the equivalent circuit of each concave shape includes a resonant circuit composed of an inductor Li and a capacitor Ci in parallel, which has a band-stop function.
  • the value of inductance and capacitance is positively related to the total length of the concave shape (that is, the sum of the length of the bottom side and the two sides) and the width (that is, the width of each side).
  • the positional relationship of multiple concave shapes will also affect each A concave equivalent inductance and capacitance.
  • the size settings of multiple groups of cascaded patterns may not be completely the same.
  • the size of each concave pattern can be adjusted as needed to achieve an ideal filtering effect.
  • the number of groups of cascaded patterns is not limited, and can be set according to filtering needs.
  • the first etching pattern 120 includes a pattern having a Hilbert fractal structure. It can be seen from Fig. 3 that the pattern is an etching pattern composed of a Hilbert curve with a certain line width.
  • the size of the first etching pattern that is, the width of the entire pattern along the radial cross-section of the filter cable, and the width of the line segment of the Hilbert fractal structure along the axial cross-section of the filter cable. The size can be set according to actual needs to achieve Ideal filtering effect.
  • the above is only a list of two possible specific structures of the first etching pattern.
  • patterns of various structures can be set and designed as needed to achieve the effects of various required filter circuits.
  • the filter circuits that can be implemented can include Low-pass filter circuit, band-pass filter circuit, band-stop filter circuit or high-pass filter circuit, etc.
  • the filter cable may further include a first filling layer 21 surrounding the core wire, and a second filling layer 21 surrounding the first filling layer 21
  • the second conductor layer 22; the second conductor layer 22 has a second etching pattern; the second etching pattern is distributed along the axis of the filter cable; the second etching pattern is used to make the filter cable equivalent to the second filter circuit, Realize the filtering function.
  • a second conductive layer 22 is further provided outside the core wire, and a second etching pattern is also provided on the second conductive layer 22 to further enhance the filtering effect.
  • the shape of the second etching pattern and the shape of the first etching pattern can be completely the same; or, the shape of the second etching pattern and the shape of the first etching pattern can also be completely different, which can be flexible according to actual conditions Set, as long as it can achieve the required filtering effect.
  • the second conductor layer can be provided as one layer or multiple sub-conductor layers. If multiple sub-conductor layers are provided, the sub-conductor layers are insulated from each other, for example, they can be insulated by filling layers. .
  • the above-mentioned filter cable may further include a second filling layer 31 surrounding the second conductor layer 22 and a shielding layer 32 surrounding the second filling layer 31; the shielding layer 32 is provided with a ground terminal.
  • the filtering function and shielding function of the filtering cable it is more able to cope with the complex electromagnetic environment, and the performance is further improved.
  • the grounding terminals can be arranged at both ends of the filter cable, and the equipment shell is grounded through the aerial plug of the two ends of the filter cable.
  • multiple grounding terminals can also be arranged in the middle of the filter cable to achieve multi-point grounding.
  • the shielding layer can be provided as one layer or multiple shielding layers. If multiple sub-shielding layers are provided, the sub-shielding layers can be insulated from each other, for example, a filling layer can be used for insulation.
  • the shielding layer can be directly wrapped on the first filling layer.
  • the filter cable may also include an outer sheath 4 arranged outside the shielding layer 32.
  • the outer sheath is a structure that physically protects the filter cable on the outermost layer of the filter cable and prolongs the service life of the filter cable.
  • FIG. 1 is only an example of a filter cable structure, which is not limited, and other structures may also be used.
  • the material of the insulating matrix in the core wire can be insulating materials such as Kevlar and Teflon, which are lighter than traditional copper materials and are more conducive to reducing the weight of the cable. Of course, it can also be other materials, which will not be listed here.
  • the material of the first conductor layer may include, but is not limited to, metals, metal alloys, metal alloys, and metal plating layers or conductive polymers. For example, it may include pure copper, copper-plated silver, or steel-clad copper-plated silver.
  • the structure of the core wire can be Kevlar wire-plated silver and the first etching pattern is etched on the silver-plated layer, or it can be a polyimide film or liquid crystal polymer (Liquid Cystal Polymer, LCP) films and other flexible printed circuit boards made of flexible media.
  • LCP Liquid Cystal Polymer
  • the second conductor layer can be made of the same material as the first conductor layer, which will not be repeated here.
  • a typical implementation of the core wire and the second conductor layer is a flexible printed circuit board made of a flexible medium such as a polyimide film or an LCP film. Because the flexible printed circuit board has excellent electrical properties and good processing performance, it can be easily designed and manufactured with the flexible dielectric substrate for the required core wire and second conductor layer, which can be applied to filter cables with different characteristics.
  • the shielding layer may include, but is not limited to, a copper-plated silver tape, an ultra-light silver-plated metal braided layer, a copper-nickel-plated braided layer, or a copper-plated silver braided mesh.
  • each filling layer can be, but is limited to, polytetrafluoroethylene or polyethylene.
  • the second filling layer is made of insulating materials such as polytetrafluoroethylene or polyethylene, and is evenly wrapped on the outside of the second conductor layer by winding or extrusion foaming.
  • the material of the outer sheath can include, but is not limited to, polytetrafluoroethylene, polyethylene, fluorinated ethylene propylene polymer, silicone rubber, polyurethane, stainless steel, RADOX, neoprene, or low-smoke halogen-free materials.
  • a copper layer with 4 sets of cascade patterns is constructed on the polyimide film substrate as the first conductor layer, which is wrapped in the insulating base of the filter cable to realize the low-pass filtering function of the filter cable.
  • the first conductor layer Wrap the shielding layer, of course, the shielding layer and the first conductor layer are insulated by a filling layer.
  • the group of cascade patterns in Fig. 2 is used as a structural diagram of a resonant unit.
  • L u 1.33mm spacing between adjacent cascade pattern.
  • the filter cable realized by the structure of this embodiment has a strong transition band (TB), an ultra-wide stop band (SB), and high stop band performance.
  • the conductor layer has a compact size of 15.5mm ⁇ 0.4mm ⁇ 0.0254mm.
  • the insertion loss (ie insertion loss) effect diagram achieved by the filter cable of this embodiment can be seen as
  • the insertion loss effect of a filter cable with a length of about 0.1m is less than 0.5dB at 0-3GHz, and greater than 10dB at 3.5-12GHz.
  • the abscissa represents the frequency
  • the unit is GHz (ie GH)
  • the ordinate represents the insertion loss
  • the unit is dB.
  • the filter cable constructed with this structure can achieve the filter effect shown in FIG. 5.
  • the frequency is used as the period to form a periodic loss. As the frequency increases, the attenuation gradually increases. In actual use, since the fractal structure is connected in series in the cable, the insertion loss will be further increased, and a better low-pass filtering effect can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Waveguides (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种滤波电缆,解决相关技术中缺乏能够更好的应对复杂电磁环境中的各种问题、且结构设计简单合理的器件的问题,滤波电缆包括芯线;该芯线包括绝缘基体(11)和包围该绝缘基体(11)的第一导体层(12);该第一导体层(12)具有第一刻蚀图案(120);该第一刻蚀图案(120)沿该滤波电缆轴向分布式设置;该第一刻蚀图案(120)用于使得该滤波电缆等效成第一滤波电路,以实现滤波功能。

Description

滤波电缆 技术领域
本申请涉及电缆技术领域,尤其涉及一种滤波电缆。
背景技术
电缆被称为工业的“血管和神经”,在军民电子设备从信息化向智能化逐步深入的过程中,面临着电磁环境效应领域的新问题和新挑战。信息化战争情况下的战场,已经逐步成为“陆、海、空、天、电”五维一体的复杂战场,“电”就包括战场上的复杂电磁环境,包括核电磁脉冲、高功率微波武器、电磁脉冲弹、电子干扰、电子对抗等电磁环境。随着无线装置飞速增长,民用的智能化电子设备在全生命周期中,也面临更加复杂的电磁环境。电缆是电子设备内和设备间必要的互联件,作为载流导体,不仅会传导电磁干扰(Electro Magnetic Interference,EMI),而且还会发射和接收周围的电磁波,带来电子设备的电磁兼容性(Electro Magnetic Compatibility,EMC)问题。为应对这些问题,现阶段复杂电磁环境下设备间和设备内的连接多采用屏蔽电缆和集中滤波方式的滤波器等,下面举例介绍:
屏蔽电缆,一般是单根或整体包裹屏蔽层,屏蔽层通过接插件连接设备壳体地,有屏蔽但无滤波功能。
同轴线,有电磁屏蔽性能,能在较宽的频带内提供固定的阻抗和稳定的相位,但无滤波功能。
光纤,通过光的全反射,低损耗传输信号,也大大降低干扰,目前设备内和设备间互联应用还较少,光器件和光电变化器件相对复杂。
滤波磁环,电缆穿过磁环,抑制线上高频干扰信号,缺点是较重,且无法弯折,使用环境要求高。
低温共烧陶瓷滤波器,多层滤波器,常用于移动通信终端,优点是尺寸极小,缺点是品质因数低,插损大。
由此可见,相关技术中,屏蔽线缆、同轴线等有屏蔽性能但无法滤波,由于复杂电磁环境分布在电缆和设备的周围,滤波磁环、低温共烧陶瓷滤波器等采用集中滤波方式的结构无法很好地应对分布式的干扰问题,集中滤波方式在分布式的复杂电磁环境效应中,由于连接的两端都会耦合电磁干扰,会大大降低滤波的效果,集中滤波方式的结构安装点要求两端要有较高的隔离度,避免两端相互干扰,使用条件要求高,安装集中滤波方式的结构需要占用较大的空间和重量,限制了应用范围。
综上所述,相关技术中缺乏能够更好的应对复杂电磁环境中的各种问题、且结构设计简单合理的器件。
发明内容
本申请的目的是提供一种滤波电缆,用于解决缺乏能够更好的应对复杂电磁环境中的各种问题、且结构设计简单合理的器件的问题。
本申请的目的是通过如下技术方案实现的:
一种滤波电缆,包括芯线;所述芯线包括绝缘基体和包围所述绝缘基体的第一导体层;所述第一导体层具有第一刻蚀图案;所述第一刻蚀图案沿所述滤波电缆轴向分布式设置;所述第一刻蚀图案用于使得所述滤波电缆等效成第一滤波电路,以实现滤波功能。
在一种可能的设计中,所述第一刻蚀图案沿所述滤波电缆轴向呈周期性或者非周期性地分布式设置。
在一种可能的设计中,所述第一刻蚀图案的刻蚀区呈镂空状或者填充有绝缘材料。
在一种可能的设计中,所述第一导体层镀在所述绝缘基体上或者所述第一导体层包裹在所述绝缘基体上。
在一种可能的设计中,所述第一刻蚀图案包括多组级联图案;
每组所述级联图案均包括沿所述滤波电缆轴向开口的第一凹形图案、第二凹形图案和第三凹形图案,所述第三凹形图案包围于所述第二凹形图案的外侧,所述第二凹形图案包围于所述第一凹形图案的外侧。
在一种可能的设计中,多组级联图案的尺寸设置不完全相同。
在一种可能的设计中,所述第一刻蚀图案包括具有希尔伯特分形结构的图案。
在一种可能的设计中,还包括包围所述芯线的第一填充层,包围所述第一填充层的第二导体层;所述第二导体层具有第二刻蚀图案;所述第二刻蚀图案沿所述滤波电缆轴向分布式设置;所述第二刻蚀图案用于使得所述滤波电缆等效成第二滤波电路,以实现滤波功能。
在一种可能的设计中,所述第二刻蚀图案的形状与所述第一刻蚀图案的形状完全相同;或者,所述第二刻蚀图案的形状与所述第一刻蚀图案的形状完全不同。
在一种可能的设计中,还包括包围所述第二导体层的第二填充层、包围所述第二填充层的屏蔽层;所述屏蔽层上设置有接地端子。
附图说明
图1为本申请一个实施例提供的一种滤波电缆的结构示意图;
图2为本申请另一个实施例提供的一种第一刻蚀图案的结构示意图;
图3为本申请另一个实施例提供的一种第一刻蚀图案的结构示意图;
图4为本申请另一个实施例提供的一种滤波电缆的滤波效果的示意图;
图5为本申请另一个实施例提供的一种滤波电缆的滤波效果的示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
实施例
参见图1,图1是本申请一个实施例提供的一种滤波电缆的结构示意图。
如图1所示,本实施例提供的一种滤波电缆,包括芯线;芯线包括绝缘基体11和包围绝缘基体11的第一导体层12;第一导体层12具有第一刻蚀图案;第一刻蚀图案沿滤波电缆轴向分布式设置;第一刻蚀图案用于使得滤波电缆等效成第一滤波电路,以实现滤波功 能。
第一刻蚀图案沿滤波电缆轴向,分散在整个绝缘基体上,具体的,第一刻蚀图案沿滤波电缆轴向可以呈周期性或者非周期性地分布式设置。
本申请的实施例提供了一种能够更好的应对复杂电磁环境中的各种问题的滤波电缆,在该滤波电缆中,并未采用传统的实心铜线的芯线结构,而是设置一个绝缘基体,然后再绝缘基体上包围第一导体层,该第一导体层具有第一刻蚀图案,该第一刻蚀图案能够使得滤波电缆等效成需要的滤波电路,实现滤波功能,第一方面,由于是对电缆本身的结构芯线实现的滤波,无需额外增加其它部件,结构简单,体积较小,重量轻,电缆本身可随意弯折,安装方便,应用范围更广,也避免了采用其它部件带来的一系列问题,第二方面,第一刻蚀图案在电缆上分布式设置,所以电缆整体上都具有良好的滤波特性,应对分布式的电磁环境,效果更加显著,第三方面,滤波电路的输入和输出端分布在滤波电缆的两端,不会存在较大的耦合,滤波效果更好,第四方面,滤波电缆中的芯线采用绝缘基体,节省了导体材料,也进一步减轻了重量。
本申请提供的滤波电缆能够应用的场景非常广泛,比如在电子设备之间互联、电子设备与供电装置间互连、电子设备内部模块间互连、智能机器人内部模组间互连、智能数控机床的内部及外部等需要电力和信号有线传输情况下的互连的场景中,尤其是电磁环境复杂的环境中。
需要说明的是,滤波电缆中的芯线的数量可以根据实际需要进行设置,可以包括一根,也可以包括多根。
实际应用中,芯线中的第一导体层可以通过多种方式设置在绝缘基体上,比如第一导体层可以镀(比如电镀等)在绝缘基体上,再比如,第一导体层可以包裹在绝缘基体上,在这些设置方式下,第一导体层与绝缘基体保持同样的热膨胀系数,不容易发生弯折,受环境温度影响较小,更加稳定。另外,绝缘基体的形状可以设置成实心圆柱状,也可以设置成其它需要的形状。
具体实施时,第一刻蚀图案的具体结构有多种,下面列举但不限定两种可能的结构。
结构一、
本实施例中,如图2所示,第一刻蚀图案120包括多组级联图案121;每组级联图案121均包括沿滤波电缆轴向开口的第一凹形图案1211、第二凹形图案和1212第三凹形图案1213,第三凹形图案1213包围于第二凹形图案1212的外侧,第二凹形图案1212包围于第一凹形图案1211的外侧。第三凹形图案1213与第二凹形图案1212有间隔,第二凹形图案1212与第一凹形图案1211有间隔。
从图2中可以看出,凹形图案包括与凹形开口相对的底边,以及与该底边相邻的两个侧边,底边和两个侧边均为刻蚀区,凹形图案的尺寸,即底边和两个侧边的尺寸(包括边的长度和宽度),均可以根据实际需要进行设置。其中,两个侧边的长度相等。
从图2可以看出,每组级联图案的包含靠近的三条凹形的折线,基于此,每一个凹形的长度,构成了一个阻带,这样多个凹形构成了多个频点的阻带,数量叠加到一定程度,就形成了低通的效果。每一个凹形的等效电路包括一个电感L i和一个电容C i并联构成的谐振电路,具有带阻功能。电感和电容取值大小与凹形的总长度(即底边和两个侧边的长度之和)和宽度(即每个边的宽度)正相关,多个凹形的位置关系也会影响每一个凹形的等 效电感和电容。
如图2所示,多组级联图案的尺寸设置可以不完全相同,实施中,可以根据需要调整各个凹形图案的尺寸,以达到理想的滤波效果。
另外,级联图案的组数也不做限定,根据滤波需要设置即可。
结构二、
本实施例中,如图3所示,第一刻蚀图案120包括具有希尔伯特分形结构的图案。从图3中可以看出,该图案是用一定线宽的希尔伯特曲线构成的刻蚀图案。第一刻蚀图案的尺寸,即,整个图案沿滤波电缆径向截面上的宽度,希尔伯特分形结构沿滤波电缆轴向截面的线段的宽度,该尺寸可以根据实际需要进行设置,以达到理想的滤波效果。
以上仅是列举了两种可能的第一刻蚀图案的具体结构,实施中,还可以根据需要设置设计各种结构的图案,达到各种需要的滤波电路的效果,可以实现的滤波电路可以包括低通滤波电路、带通滤波电路、带阻滤波电路或者高通滤波电路,等等。
具体实施时,为了进一步增强滤波电缆的滤波效果,在一种可能的设计中,如图1所示,滤波电缆还可以包括包围芯线的第一填充层21,包围第一填充层21的第二导体层22;第二导体层22具有第二刻蚀图案;第二刻蚀图案沿滤波电缆轴向分布式设置;第二刻蚀图案用于使得滤波电缆等效成第二滤波电路,以实现滤波功能。本实施例中,在芯线外部,再设置第二导体层22,在第二导体层22上也设置第二刻蚀图案,进一步增强滤波效果。
实施中,第二刻蚀图案的形状与第一刻蚀图案的形状可以完全相同;或者,第二刻蚀图案的形状与第一刻蚀图案的形状也可以完全不同,都可以根据实际情况灵活设置,只要能够达到需要的滤波效果即可。
需要说明的是,第二导体层可以设置为一层,也可以设置多层子导体层,若设置多层子导体层,各子导体层之间相互绝缘设置,比如可以通过填充层进行绝缘设置。
可以理解的是,如图1所示,上述滤波电缆还可以包括包围第二导体层22的第二填充层31、包围第二填充层31的屏蔽层32;屏蔽层32上设置有接地端子。如此,结合滤波电缆的滤波功能和屏蔽功能,更加能够应对复杂的电磁环境,性能得到了进一步提升。
其中,接地端子可以设置在滤波电缆的两端,通过滤波电缆两端航插连设备壳体接地,当然,也可以在滤波电缆中间设置多个接地端子,实现多点接地。
同样,需要说明的是,屏蔽层可以设置为一层,也可以设置多层屏蔽层,若设置多层子屏蔽层,各子屏蔽层之间相互绝缘设置,比如可以通过填充层进行绝缘设置。
当然,如果不设置第二导体层,可以直接在第一填充层上包裹屏蔽层即可。
为了对滤波电缆进行保护,如图1所示,滤波电缆上还可以包括设置在屏蔽层32外的外护套4。外护套是在滤波电缆最外层对滤波电缆进行物理的防护,延长滤波电缆的使用寿命的结构。
需要说明的是,图1中仅是举例示意的一种滤波电缆的结构,并非限定,也可以采用其它的结构。
下面对滤波电缆中的各层结构可采用的材料进行说明。
具体实施时,芯线中的绝缘基体的材料可以是凯夫拉、特氟龙等绝缘材料,这些材料都比传统的铜材料更轻,更利于减轻电缆的重量。当然也可以是其它的材料,此处不再一一列举。第一导体层的材料可以但不限于包括金属、金属合金、金属合金及金属镀层或导 电聚合物,比如,可以包括纯铜、铜镀银或者钢包铜镀银等。实施中,芯线的结构可以是凯夫拉丝外镀银,并在镀银层上蚀刻第一刻蚀图案,也可以是聚四氟乙烯外侧包裹聚酰亚胺薄膜或液晶聚合物(Liquid Cystal Polymer,LCP)薄膜等柔性介质制作的柔性印刷电路板等。
第二导体层可以采用与第一导体层相同的材料,此处不再赘述。
芯线和第二导体层的典型实施方式是采用聚酰亚胺薄膜或LCP薄膜等柔性介质制作的柔性印刷电路板。由于柔性印刷电路板具有优异的电性能和良好的加工性能,可以很容易地用柔性介质基板设计和制作需要的芯线和第二导体层,应用于不同特性的滤波电缆。
屏蔽层可以但不限于包括铜镀银带、超轻镀银金属编织层、铜镀镍编制层或者铜镀银编织网。
各填充层的材料可以但限于聚四氟乙烯或者聚乙烯等。实施中,第二填充层采用聚四氟乙烯或者聚乙烯等绝缘材料采用缠绕或挤压发泡方式均匀包裹于第二导体层外侧。
外护套的材料可以但不限于包括聚四氟乙烯、聚乙烯、氟化乙烯丙烯聚合物、硅橡胶、聚氨酯、不锈钢、RADOX、氯丁橡胶或者低烟无卤料等。
下面以一种具体的应用场景为例,对本申请提供的滤波电缆进行更加详细的说明。
场景一中,需要实现低通滤波,采用图2所示的第一刻蚀图案,具体如下:
在聚酰亚胺薄膜基板上构造具有4组级联图案的铜层作为第一导体层,包裹在滤波电缆的绝缘基体外,实现了滤波电缆的低通滤波功能,另外,第一导体层外包裹屏蔽层,当然,屏蔽层与第一导体层之间通过填充层绝缘。图2中的一组级联图案作为一个谐振单元的结构图,其中结构参数的典型值是:聚酰亚胺薄膜基板的相对介电常数ε r=3.8,介电损耗正切值tanδ=0.008,基板尺寸:长L c×宽W 1×高H sub=15.5mm×4mm×0.0254mm。谐振单元的尺寸:各边的宽度w=0.25mm,相邻的凹形图案的间隔距离s=0.2mm,凹形图案的各边长度:第三凹形图案的底边的长度L 1=3.4mm,第三凹形图案的侧边的长度L 2=2.57mm,第二凹形图案的底边的长度L 3=2.5mm,第二凹形图案的侧边的长度L 4=1.87mm,第一凹形图案的底边的长度L 5=1.6mm,第一凹形图案的侧边的长度L 6=1.74mm。相邻的级联图案之间的间距L u=1.33mm。如果滤波电缆半径小,滤波的谐振频率更低,且效果变好。典型的绝缘基体的半径为0.53mm,屏蔽层的半径为2.4mm。本实施例的结构实现的滤波电缆具有很强的过渡带(TB)、超宽的阻带(SB)和很高的阻带性能,本实施例提出的具有4组级联谐振单元的第一导体层具有15.5mm×0.4mm×0.0254mm的紧凑尺寸,如图4所示,为本实施例的滤波电缆达到的插入损耗(即插损)效果图,可以看到本实施例的滤波电缆为低通滤波电缆,长度约为0.1m的滤波电缆能达到的插损效果是在0-3GHz插损小于0.5dB,3.5-12GHz的插损大于10dB。图4中,横坐标表示频率,单位是GHz(即GH),纵坐标表示插入损耗,单位是dB。
场景二中,需要实现低通滤波,采用图3所示的第一刻蚀图案,具体如下:
本场景中,与场景一的区别主要是,采用了基于图3所示的图案,W 1=5.19mm,第一刻蚀图案在滤波电缆径向截面的长度W h=4.875mm,L c=24.8mm,希尔伯特分形结构沿滤波电缆轴向截面的线段的宽度W S=0.325mm。通过该结构构成的滤波电缆,能够实现图5所示的滤波效果,图5中,以频率为周期,形成了周期性损耗的情况。随着频率升高,衰减逐渐增大。实际使用中,由于分形结构正在电缆中串联,插损会进一步加大,可以实现更好的低 通滤波效果。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种滤波电缆,其特征在于,包括芯线;所述芯线包括绝缘基体和包围所述绝缘基体的第一导体层;所述第一导体层具有第一刻蚀图案;所述第一刻蚀图案沿所述滤波电缆轴向分布式设置;所述第一刻蚀图案用于使得所述滤波电缆等效成第一滤波电路,以实现滤波功能。
  2. 根据权利要求1所述的滤波电缆,其特征在于,所述第一刻蚀图案沿所述滤波电缆轴向呈周期性或者非周期性地分布式设置。
  3. 根据权利要求1所述的滤波电缆,其特征在于,所述第一刻蚀图案的刻蚀区呈镂空状或者填充有绝缘材料。
  4. 根据权利要求1所述的滤波电缆,其特征在于,所述第一导体层镀在所述绝缘基体上或者所述第一导体层包裹在所述绝缘基体上。
  5. 根据权利要求1所述的滤波电缆,其特征在于,所述第一刻蚀图案包括多组级联图案;
    每组所述级联图案均包括沿所述滤波电缆轴向开口的第一凹形图案、第二凹形图案和第三凹形图案,所述第三凹形图案包围于所述第二凹形图案的外侧,所述第二凹形图案包围于所述第一凹形图案的外侧。
  6. 根据权利要求5所述的滤波电缆,其特征在于,多组级联图案的尺寸设置不完全相同。
  7. 根据权利要求1所述的滤波电缆,其特征在于,所述第一刻蚀图案包括具有希尔伯特分形结构的图案。
  8. 根据权利要求1~7任一项所述的滤波电缆,其特征在于,还包括包围所述芯线的第一填充层,包围所述第一填充层的第二导体层;所述第二导体层具有第二刻蚀图案;所述第二刻蚀图案沿所述滤波电缆轴向分布式设置;所述第二刻蚀图案用于使得所述滤波电缆等效成第二滤波电路,以实现滤波功能。
  9. 根据权利要求8所述的滤波电缆,其特征在于,所述第二刻蚀图案的形状与所述第一刻蚀图案的形状完全相同;或者,所述第二刻蚀图案的形状与所述第一刻蚀图案的形状完全不同。
  10. 根据权利要求8所述的滤波电缆,其特征在于,还包括包围所述第二导体层的第二填充层、包围所述第二填充层的屏蔽层;所述屏蔽层上设置有接地端子。
PCT/CN2020/084367 2020-04-13 2020-04-13 滤波电缆 WO2021207867A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080005177.4A CN113811960B (zh) 2020-04-13 2020-04-13 滤波电缆
PCT/CN2020/084367 WO2021207867A1 (zh) 2020-04-13 2020-04-13 滤波电缆
CA3166507A CA3166507A1 (en) 2020-04-13 2020-04-13 Filter cable
JP2022547317A JP7404551B2 (ja) 2020-04-13 2020-04-13 フィルタケーブル
US17/268,695 US11929536B2 (en) 2020-04-13 2020-04-13 Filter cable
EP20845648.3A EP3916740B1 (en) 2020-04-13 2020-04-13 Filter cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084367 WO2021207867A1 (zh) 2020-04-13 2020-04-13 滤波电缆

Publications (1)

Publication Number Publication Date
WO2021207867A1 true WO2021207867A1 (zh) 2021-10-21

Family

ID=78084690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084367 WO2021207867A1 (zh) 2020-04-13 2020-04-13 滤波电缆

Country Status (6)

Country Link
US (1) US11929536B2 (zh)
EP (1) EP3916740B1 (zh)
JP (1) JP7404551B2 (zh)
CN (1) CN113811960B (zh)
CA (1) CA3166507A1 (zh)
WO (1) WO2021207867A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660730A (ja) * 1992-08-06 1994-03-04 Sumitomo Wiring Syst Ltd 大電流用遮蔽ケーブル
CN102629703A (zh) * 2012-05-08 2012-08-08 重庆大学 一种缺陷微带线结构的微带低通滤波器
CN104681907A (zh) * 2015-02-09 2015-06-03 中国电子科技集团公司第二十三研究所 整体聚四氟乙烯绝缘表面镀银外导体射频电缆及加工方法
CN206401054U (zh) * 2017-01-11 2017-08-11 广东坚宝电缆有限公司 一种防白蚁防霉防潮钢带铠装护套电力电缆
CN108880500A (zh) * 2018-07-12 2018-11-23 杭州左蓝微电子技术有限公司 射频滤波器的制作方法和射频滤波器
CN108986961A (zh) * 2018-07-11 2018-12-11 常州凌天达传输科技有限公司 一种聚偏氟乙二烯绝缘电磁滤波电缆及加工方法
CN109215853A (zh) * 2018-08-28 2019-01-15 华东师范大学 一种屏蔽双绞线线缆的结构及制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2437686A1 (fr) * 1978-09-29 1980-04-25 Mayer Ferdy Element electrique a pertes, tel que fil, cable et ecran, resistant et absorbant
JPH04282511A (ja) * 1991-03-08 1992-10-07 Mitsubishi Cable Ind Ltd 信号用電線
JP2003520542A (ja) * 2000-01-19 2003-07-02 フラクトゥス・ソシエダッド・アノニマ フラクタル及び空間充填伝送線、共振器、フィルター並びに受動ネットワーク用エレメント
JP4543610B2 (ja) * 2003-02-07 2010-09-15 株式会社村田製作所 超伝導素子の製造方法および超伝導素子
JP4002931B2 (ja) * 2005-04-14 2007-11-07 モレックス インコーポレーテッド フィルタ装置
US7390963B2 (en) * 2006-06-08 2008-06-24 3M Innovative Properties Company Metal/ceramic composite conductor and cable including same
JP2008028468A (ja) * 2006-07-18 2008-02-07 Seiji Kagawa 高周波伝送線路及び高周波フィルタ
CN201303038Y (zh) * 2008-11-14 2009-09-02 中天日立射频电缆有限公司 短节距交错混合开槽辐射型漏泄同轴电缆
JP2017041839A (ja) * 2015-08-21 2017-02-23 日本電業工作株式会社 フィルタ及びフィルタ装置
DE102016224415A1 (de) * 2016-12-08 2018-06-14 Leoni Kabel Gmbh Leitung und Verfahren zur Herstellung einer solchen
JP7101261B2 (ja) * 2019-06-19 2022-07-14 宇南 韓 フィルタケーブル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660730A (ja) * 1992-08-06 1994-03-04 Sumitomo Wiring Syst Ltd 大電流用遮蔽ケーブル
CN102629703A (zh) * 2012-05-08 2012-08-08 重庆大学 一种缺陷微带线结构的微带低通滤波器
CN104681907A (zh) * 2015-02-09 2015-06-03 中国电子科技集团公司第二十三研究所 整体聚四氟乙烯绝缘表面镀银外导体射频电缆及加工方法
CN206401054U (zh) * 2017-01-11 2017-08-11 广东坚宝电缆有限公司 一种防白蚁防霉防潮钢带铠装护套电力电缆
CN108986961A (zh) * 2018-07-11 2018-12-11 常州凌天达传输科技有限公司 一种聚偏氟乙二烯绝缘电磁滤波电缆及加工方法
CN108880500A (zh) * 2018-07-12 2018-11-23 杭州左蓝微电子技术有限公司 射频滤波器的制作方法和射频滤波器
CN109215853A (zh) * 2018-08-28 2019-01-15 华东师范大学 一种屏蔽双绞线线缆的结构及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916740A4 *

Also Published As

Publication number Publication date
EP3916740C0 (en) 2023-11-22
EP3916740A4 (en) 2022-03-02
CN113811960B (zh) 2024-05-07
CA3166507A1 (en) 2021-10-21
CN113811960A (zh) 2021-12-17
JP2023512538A (ja) 2023-03-27
US20220123448A1 (en) 2022-04-21
EP3916740A1 (en) 2021-12-01
EP3916740B1 (en) 2023-11-22
JP7404551B2 (ja) 2023-12-25
US11929536B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
CA2827334C (en) Transmission cable
US9843083B2 (en) Multi-mode filter having a dielectric resonator mounted on a carrier and surrounded by a trench
US20080176751A1 (en) Systems, methods, and apparatus for electrical filters
WO1998002025A1 (fr) Carte a circuit a basse emissivite et connecteur de cable a basse emissivite
US20090091405A1 (en) Resonator, method for manufacturing filter by using resonator and filter manufactured by the same method
CN112953431A (zh) 一种适用于微波与毫米波的ipd滤波器芯片
JP7101261B2 (ja) フィルタケーブル
WO2021207867A1 (zh) 滤波电缆
CN200959359Y (zh) 一种低损耗稳相同轴射频电缆
US10931067B2 (en) Common mode choke
CN110534853B (zh) 一种基于对称分裂结构多模谐振器的多频带阻滤波器
WO2022089026A1 (zh) 一种传输线组件、天线组件和移动终端
CN112713370B (zh) 一种圆波导Ku波段电磁波的TM0n模式滤波器
RU2650421C2 (ru) Малогабаритный направленный ответвитель
Han et al. Low-Pass Filtering Cable Design Utilizing Defected Conductor Layer with Pi-Shaped Defected Structure
WO2019102326A1 (en) A multi-mode cavity filter
CN114498041B (zh) 一种传输线组件、天线组件和移动终端
CN116470298A (zh) 一种采用超材料的微波传输线电磁辐射屏蔽结构
CN219163671U (zh) 柔性微带低通滤波器
CN117895200B (zh) 基于提取极点谐振器的5g基片集成同轴滤波器
CN220873835U (zh) 具有天线功能的电源线及电子设备
US20230230718A1 (en) Intermittent tape
WO2023125136A1 (zh) 电缆和通信系统
CA1223929A (en) Cable networks and filters with interfacial losses
CN2916862Y (zh) 同轴电缆

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020845648

Country of ref document: EP

Effective date: 20210204

ENP Entry into the national phase

Ref document number: 3166507

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022547317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE