WO2021205744A1 - ニコチンの分解方法 - Google Patents

ニコチンの分解方法 Download PDF

Info

Publication number
WO2021205744A1
WO2021205744A1 PCT/JP2021/005245 JP2021005245W WO2021205744A1 WO 2021205744 A1 WO2021205744 A1 WO 2021205744A1 JP 2021005245 W JP2021005245 W JP 2021005245W WO 2021205744 A1 WO2021205744 A1 WO 2021205744A1
Authority
WO
WIPO (PCT)
Prior art keywords
nicotine
target room
ultraviolet rays
ultraviolet
room
Prior art date
Application number
PCT/JP2021/005245
Other languages
English (en)
French (fr)
Inventor
敬祐 内藤
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US17/995,665 priority Critical patent/US20230194112A1/en
Priority to EP21784921.5A priority patent/EP4134176A4/en
Priority to CN202180014160.XA priority patent/CN115103726A/zh
Publication of WO2021205744A1 publication Critical patent/WO2021205744A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • F24F8/97Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes for removing tobacco smoke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light

Definitions

  • the present invention relates to a method for decomposing nicotine.
  • Nicotine contained in tobacco is known to react with nitrite in the air to produce nitrosamines (particularly tobacco-specific nitrosamines (TSNA)), which are carcinogens.
  • TSNA tobacco-specific nitrosamines
  • Patent Document 1 Conventionally, a method of cleaning tobacco tar that has soaked into a building interior material using sunlight or ultraviolet rays having a wavelength of 300 nm to 450 nm has been disclosed (see Patent Document 1 below).
  • Patent Document 1 The method of Patent Document 1 is generally described in that the interior material is impregnated with sunlight or ultraviolet rays having a wavelength of 300 nm to 450 nm in a state where the interior material is impregnated with hydrogen peroxide solution. It is a technology that decomposes and removes tar called "yani".
  • Patent Document 1 cannot decompose nicotine adhering to the interior material, so there is still a risk that the human body inhales nitrosamines.
  • Patent Document 1 when executing the method of Patent Document 1, the worker needs to perform the cleaning work while irradiating ultraviolet rays while wearing gloves, protective glasses (UV cut glasses), and a face cover. Therefore, the work becomes large-scale and complicated.
  • An object of the present invention is to provide a method for decomposing nicotine by a simple method in view of the above problems.
  • the nicotine decomposition method according to the present invention is characterized by including (a) a step (a) of irradiating ultraviolet rays having a main peak wavelength of 200 nm or more and 230 nm or less in a smoking object room to decompose nicotine.
  • nicotine can be decomposed by ultraviolet rays having a main peak wavelength of 200 nm or more and 230 nm or less. No nitrosamines are produced in this decomposition process.
  • the "target room” refers to the entire space where smoking is planned in the room, and as an example, in addition to a smoking room provided for the purpose of smoking separation, a conference room set to allow smoking. , Hotel rooms, home rooms, waiting rooms, amusement halls (game centers, karaoke, mahjong stores), etc. are assumed.
  • nicotine in the room is automatically decomposed by simply installing the light source that emits the above ultraviolet rays in the target room where smoking is possible. Therefore, unlike the conventional method, it is not always necessary for an operator wearing gloves, protective goggles (UV cut eyeglasses), and a face cover to perform the cleaning work.
  • ultraviolet rays in the above wavelength range are irradiated to the skin of the human body, they are absorbed by the stratum corneum of the skin and do not progress to the inside (basal layer side). Since the stratum corneum contained in the stratum corneum is in a dead state as a cell, it is absorbed by living cells such as the stratum spinosum, the stratum granulosum, and the dermis, for example, when irradiated with ultraviolet rays having a wavelength of 254 nm. There is little risk of DNA destruction.
  • the step (a) may include a step of irradiating the ultraviolet rays toward the wall surface of the target room or the surface of an object installed in the target room.
  • a method of decomposing nicotine in the target room can be considered only by exposing the photocatalyst to sunlight or visible light.
  • sidestream smoke and exhaled smoke drift in the target room as long as it is smoked. Therefore, it is assumed that fine particles such as tar contained in these smokes are laminated on the surface of the photocatalyst over time, and the function of decomposing nicotine deteriorates in a short time.
  • the method of the present invention is the step (a) of irradiating the target room with ultraviolet rays having a main peak wavelength of 200 nm or more and 230 nm or less, nicotine is decomposed as long as the ultraviolet rays reach the portion to which nicotine is attached. can do. Therefore, the decomposition efficiency is high as compared with the method using a photocatalyst.
  • the present invention does not exclude a method used in combination with photocatalysis as long as the target room is irradiated with ultraviolet rays having a main peak wavelength of 200 nm or more and 230 nm or less.
  • the main peak wavelength of ultraviolet rays is set to 200 nm or more.
  • the step (a) can be a step of irradiating the ultraviolet rays from an excimer lamp filled with a luminescent gas containing Kr and Cl.
  • ultraviolet rays having a main peak wavelength of around 222 nm are emitted from the excimer lamp.
  • the "neighborhood” here is a concept including a solid error of about ⁇ 2 nm.
  • the nicotine decomposition method includes a step (b) of generating an air flow that exhausts the atmosphere in the target room to the outside of the target room.
  • the step (b) may be a step of exhausting the atmosphere containing the nicotine decomposition product produced in the step (a) to the outside of the target room.
  • the nicotine decomposition product generated by the decomposition of nicotine by irradiation with ultraviolet rays can be discharged to the outside (outside the system) by the air flow.
  • the step (b) may be a step of generating an air flow along the wall surface of the target room.
  • nicotine can be decomposed by a simple method.
  • FIG. 2 is a cross-sectional view taken along the line A1-A1 of FIG. 2A. It is a figure which shows the spectrum of the ultraviolet ray L1 emitted from the excimer lamp which contains KrCl in the luminescent gas. It is a graph which shows the relationship between the exposure amount and the reduction rate of nicotine when irradiated with ultraviolet rays of 222 nm. It is a graph which shows the measurement result of the absorption spectrum of the nicotine aqueous solution.
  • FIG. 5A It is a graph which enlarged a part of the wavelength range in FIG. 5A. It is another drawing which shows one embodiment of the nicotine decomposition method of this invention schematically. It is another drawing which shows one embodiment of the nicotine decomposition method of this invention schematically. It is another drawing which shows one embodiment of the nicotine decomposition method of this invention schematically. It is another drawing which shows one embodiment of the nicotine decomposition method of this invention schematically.
  • FIG. 1 is a drawing schematically showing an implementation state of the nicotine decomposition method according to the present invention.
  • the nicotine decomposition method according to the present invention decomposes nicotine adhering to the inside of the target room 1 by irradiating the light source 3 with ultraviolet rays L1 in the subject room 1 where smoking is possible.
  • the case where the light source 3 irradiates the wall surface 1a of the target room 1 with the ultraviolet L1 is illustrated. Further, in the example of FIG. 1, the target room 1 is provided with an exhaust port 7 for exhausting the indoor atmosphere to the outside.
  • FIG. 1 schematically shows a situation in which the target room 1 is a smoking room and the smoker 2 is smoking.
  • the light source 3 is composed of an excimer lamp that emits ultraviolet L1 having a main peak wavelength of around 222 nm.
  • FIG. 2A is a plan view schematically showing the configuration of the excimer lamp, and FIG. 2B is a cross-sectional view taken along the line A1-A1 of FIG. 2A.
  • the excimer lamp 10 has an arc tube 11 extending along the direction d1.
  • the arc tube 11 is made of a dielectric material such as synthetic quartz glass and is a material that transmits ultraviolet rays L1.
  • the inside of the arc tube 11 is sealed, and the luminescent gas 12G that forms excimer molecules by electric discharge is sealed inside.
  • the excimer lamp 10 includes a pair of electrodes 13 (13a, 13b) formed on the tube wall of the arc tube 11.
  • the electrode 13a arranged on the side (+ d2 side) from which the ultraviolet L1 is taken out from the excimer lamp 10 has a mesh shape or a linear shape
  • the electrode 13b arranged on the opposite side has a film shape.
  • the electrode 13b is made of a metal material (for example, Al, Al alloy, etc.) that is reflective to ultraviolet rays L1, or is formed on the tube wall of the arc tube 11 on the side where the electrode 13b is formed.
  • a reflective film (not shown) is provided.
  • Al, Al alloy, stainless steel, silica, silica alumina and the like can be used.
  • the electrode 13b may also have a mesh shape or a linear shape.
  • the excimer lamp 10 when a high frequency AC voltage of, for example, about 50 kHz to 5 MHz is applied between a pair of electrodes 13 (13a, 13b) from a lighting power source (not shown) via a feed line, the excimer lamp 10 has a light emitting gas of 12 G. , The voltage is applied through the arc tube 11. At this time, a discharge plasma is generated in the discharge space in which the luminescent gas 12G is enclosed, an atom of the luminescent gas 12G is excited to enter an excimer state, and when this atom shifts to the ground state, excimer emission is generated.
  • the luminescent gas 12G is made of a material that emits ultraviolet L1 having a main peak wavelength of 200 nm or more and 230 nm or less at the time of excimer light emission.
  • the luminescent gas 12G includes KrCl and KrBr.
  • FIG. 3 is a drawing showing a spectrum of ultraviolet rays L1 emitted from an excimer lamp 10 in which KrCl is contained in the luminescent gas 12G.
  • nicotine can be decomposed by irradiating nicotine with ultraviolet L1 having a main peak wavelength of 222 nm as shown in the spectrum of FIG.
  • IPA isopropyl alcohol
  • GC / MS was used for a sample collected by wiping a 10 cm square area of the wall surface of the smoking room with a long-fiber non-woven fabric containing IPA (for example, Bencot (registered trademark) manufactured by Asahi Kasei Corporation).
  • IPA for example, Bencot (registered trademark) manufactured by Asahi Kasei Corporation.
  • JMS-Q1500GC manufactured by JEOL Ltd.
  • the nicotine concentration was in the range of 1/10 5 or more and 1/10 6 or less when converted to the corresponding dilution ratio. Based on the results of this preliminary experiment, it is considered that nicotine adheres to the wall surface of the smoking room at a concentration within the range of 1/10 5 or more and 1/10 6 or less.
  • a test product obtained by diluting nicotine was prepared.
  • the surface of the prepared test object was irradiated with ultraviolet rays L1 having a main peak wavelength of 222 nm from the excimer lamp 10 at an illuminance of 1 mW / cm 2. Then, the test substance was placed in a screw vial for GC / MS headspace (manufactured by GL Sciences: 1030-51096), heated at 60 ° C. for 60 minutes, and then SPME fiber (PDMS / DVB 65 ⁇ m diameter: manufactured by Sigma Aldrich). And analyzed by GC / MS (manufactured by JEOL Ltd., JMS-Q1500GC). The result is shown in FIG.
  • FIG. 4 is a graph in which the horizontal axis represents the exposure amount of ultraviolet L1 [mJ / cm 2 ] and the vertical axis represents the rate of decrease in nicotine from the initial stage.
  • the exposure amount [mJ / cm 2 ] on the horizontal axis should be read as the irradiation time [seconds]. You can also.
  • ultraviolet L1 having a main peak wavelength of 200 nm or more and 230 nm or less is absorbed by the stratum corneum of the skin even when it is irradiated to the human skin. It does not progress to the inside (basal layer side). Therefore, even during the time zone in which a human being (smoker 2 in FIG. 1) is present in the target room 1, the ultraviolet L1 can be irradiated from the light source 3 toward the wall surface 1a in the target room 1. ..
  • the smoker 2 when the target room 1 is a smoking room, the smoker 2 is expected to leave the room when smoking is completed, so it is unlikely that the same person will stay for a long time. Therefore, even if the light source 3 is installed in the target room 1 and the smoker 2 is irradiated with the ultraviolet L1 during the time when the smoker 2 is present, there is a risk that the smoker 2 will be exposed to radiation to the extent that the smoker 2 is exposed to radiation. It can be said that it is extremely low.
  • the control unit (not shown) provided in the light source 3 is exposed to the ultraviolet L1. It may be controlled to stop the irradiation of. More specifically, the control unit may be controlled so as to stop energization of the pair of electrodes 13 (13a, 13b).
  • a motion sensor provided in the target room 1 or a sensor for detecting that a person has entered the target room 1 This can be done by (for example, opening and closing an automatic door).
  • the control unit may control the light source 3 so as to repeatedly turn on and off at predetermined time intervals.
  • the amount of nicotine decomposition increases as the amount of exposure to nicotine increases. Therefore, even when the ultraviolet L1 is intermittently irradiated a plurality of times, the target room is similarly irradiated. The nicotine remaining in 1 can be decomposed.
  • the atmosphere G1 of the target room 1 is exhausted from the exhaust port 7 provided in the target room 1.
  • the nicotine decomposition product produced by the irradiation of the ultraviolet L1 and the decomposition of nicotine is exhausted to the outside of the target chamber 1 by the air flow of the atmosphere G1.
  • the decomposition products produced by irradiating nicotine with ultraviolet L1 include nicotinic acid amide, norcotinine, and the like, but nitrosamines are not produced.
  • the amount of nitrosamines, which are carcinogens, produced over time as nicotine remains in the target chamber 1 is significantly reduced.
  • FIG. 5A and 5B are graphs showing absorption spectra of an aqueous nicotine solution.
  • the graph of FIG. 5A shows a solution obtained by diluting nicotine at a dilution ratio of 1/10 4 and 1/10 5 in the same manner as described above, and then using an absorptiometer (NanoDorop One, manufactured by Thermo Fisher Scientific Co., Ltd.). This is the result of measurement. It was also confirmed that even if the dilution rate was adjusted to further increase the concentration of nicotine, the absorbance at 300 nm or less hardly increased. This result indicates that nicotine has low light absorption.
  • FIG. 5B is a graph in which a part of the wavelength range of FIG. 5A is enlarged and displayed.
  • the wavelength of the ultraviolet L1 is not limited to the vicinity of 222 nm, and if the main peak wavelength is within the range of 200 nm or more and 230 nm or less, the ultraviolet L1 is similarly irradiated. It can be seen that nicotine can be decomposed by.
  • the decomposition rate is faster when irradiated with ultraviolet rays having a wavelength of around 260 nm than when irradiated with ultraviolet rays L1 having a main peak wavelength in the range of 200 nm or more and 230 nm or less. It is expected that.
  • a light source that emits ultraviolet rays in such a wavelength band for example, a low-pressure mercury lamp exists.
  • ultraviolet rays with a wavelength of around 260 nm may have harmful effects on the human body, such as DNA being destroyed when the human body is irradiated. Therefore, strict control is required so that the light is turned on only when it is confirmed that no human (for example, smoker 2) is present in the target room 1.
  • a motion sensor or the like is installed in the target room 1 so that it can be confirmed that there is no human in the target room 1, and then approximately humans are in the target room 1. It is conceivable to control the lighting only during a limited time period when it is considered that the light does not enter.
  • the main peak wavelength is ultraviolet L1 in the wavelength range of 200 nm or more and 230 nm or less
  • the human body is affected. There are no such concerns as there is little impact.
  • nicotine is less likely to adhere to the wall surface 1a of the target room 1. The effect is sustained.
  • the light source 3 may be installed so as to emit ultraviolet rays L1 downward.
  • nicotine adhering to the floor surface 1b of the target room 1 can also be decomposed.
  • the traveling direction of the ultraviolet ray L1 emitted from the light source 3 may be variable.
  • the normal direction of the emission surface of the ultraviolet L1, that is, the traveling direction of the ultraviolet L1 can be made variable.
  • the light source 3 may be stored in the target room 1 in such a manner that the installation position of the light source 3 can be freely changed.
  • the target chamber 1 may be provided with a fan 8 to generate an air flow, or may be provided with an intake port 9 as shown in FIG. 7B.
  • the nicotine decomposition product generated by irradiating the nicotine adhering to the wall surface 1a or the like with the ultraviolet L1 is easily discharged from the exhaust port 7 by being put on the air flow of the atmosphere G1 flowing through the wall surface 1a. ..
  • the nicotine decomposition method according to the present invention is not limited to the excimer lamp as long as it is a light source that emits ultraviolet L1 having a main peak wavelength of 200 nm or more and 230 nm or less.
  • a solid-state light source such as an LED or LD may be used.
  • the light source 3 is not limited to the structures shown in FIGS. 2A and 2B.
  • the arc tube 11 may have a double tube structure in which the end portion in the tube axis direction is sealed, and a ring-cylindrical region sandwiched between the inner tube and the outer tube may be used as a light emitting space.
  • the arc tube 11 has a cylindrical shape, one electrode is inserted into the cylinder, the other electrode is arranged on the outer wall surface of the arc tube 11, and the inside of the cylinder constitutes a light emitting space. It may be a structure.
  • the wall surface 1a and the floor surface 1b of the target room 1 are irradiated with the ultraviolet L1.
  • the ultraviolet L1 may be irradiated toward the ceiling surface of the target room 1, and when objects such as a table, a chair, and a TV screen are installed in the target room 1, the surface of these objects may be irradiated.
  • ultraviolet L1 may be irradiated. This reduces the risk of nicotine colonizing not only the wall surface of the target room 1 but also the entire target room 1 for a long period of time.
  • Target room 1a Wall surface 1b: Floor surface 2: Smoker 3: Light source 7: Exhaust port 8: Fan 9: Intake port 10: Excimer lamp 11: Emitting tube 12G: Luminous gas 13: Electrode 13a: Electrode 13b: Electrode 15G: Emissive gas G1: Atmosphere L1: Ultraviolet rays

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Cleaning In General (AREA)

Abstract

簡易な方法によってニコチンを分解する方法を提供する。 本発明に係るニコチン分解方法は、喫煙可能な対象室内で、主ピーク波長が200nm以上、230nm以下の紫外線を照射してニコチンを分解する工程(a)を含む。

Description

ニコチンの分解方法
 本発明は、ニコチンの分解方法に関する。
 近年、喫煙者の衣服や喫煙室の壁紙等に付着した物質から揮発してくる化学物質を含む空気を、本人や第三者が吸引することによる健康上の問題が指摘されている。このような方法により、人体に対する有害な物質を吸引することは、「三次喫煙」と呼ばれている。
 タバコに含まれるニコチンは、空気中の亜硝酸と反応して、発がん性物質であるニトロソアミン類(特に、たばこ特異的ニトロソアミン(TSNA))を生成することが知られている。特に、喫煙室の壁面や喫煙者の衣服には、長時間にわたってニコチンが定着することから、上記の反応が長時間をかけて生じることが想定されるため、このような発がん性物質を人間が吸引するリスクが存在する。
 従来、太陽光や300nm~450nmの波長の紫外線を用いて、建物の内装用素材に染み込んだ煙草のヤニを清掃する方法が開示されている(下記、特許文献1参照)。
特開2011-240302号公報
 上記特許文献1の方法は、内装用素材に過酸化水素水を含ませた状態で、太陽光や300nm~450nmの波長の紫外線を照射することで、内装用素材に染み込んだ、一般的に「ヤニ」と称されるタールを分解・除去する技術である。
 しかし、この特許文献1の方法では、内装用素材に付着したニコチンについては分解できないため、依然として、ニトロソアミン類を人体が吸引するリスクが存在する。
 更に、特許文献1の方法を実行するに際しては、作業者は、手袋、保護眼鏡(UVカット眼鏡)、フェイスカバーを着用した状態で紫外線を照射しながら清掃作業を行う必要がある。よって、作業が大掛かりとなり、煩雑である。
 本発明は、上記の課題に鑑み、簡易な方法によってニコチンを分解する方法を提供することを目的とする。
 本発明に係るニコチン分解方法は、喫煙可能な対象室内で、主ピーク波長が200nm以上、230nm以下の紫外線を照射してニコチンを分解する工程(a)を含むことを特徴とする。
 本発明者の鋭意研究により、主ピーク波長が200nm以上、230nm以下の紫外線によって、ニコチンを分解できることが確認された。なお、この分解の過程ではニトロソアミン類は生成されない。
 本明細書内において、「対象室」とは、室内での喫煙が予定されている空間全般を指し、一例として、分煙目的で設けられた喫煙室の他、喫煙が可能に設定された会議室、ホテルの客室、自宅の部屋、待合室、遊技場(ゲームセンター、カラオケ、麻雀店)等が想定される。
 この方法によれば、例えば単に喫煙可能な対象室内に、上記紫外線を発する光源を設置しておくだけで、自動的に室内のニコチンが分解される。このため、従来の方法のように、必ずしも手袋、保護眼鏡(UVカット眼鏡)、フェイスカバーを着用した作業者によって清掃作業を行う必要がない。
 特に、上記波長域の紫外線は、仮に人体の皮膚に対して照射されても、皮膚の角質層で吸収され、それよりも内側(基底層側)には進行しない。角質層に含まれる角質細胞は細胞としては死んだ状態であるため、例えば、波長254nmの紫外線が照射される場合のように、有棘層、顆粒層、真皮など、生きた細胞に吸収されてDNAが破壊されるというリスクがほとんど存在しない。
 このため、仮に喫煙者が室内で喫煙中であっても、紫外線を照射してニコチンの分解処理を行うことができる。従って、ニコチンが長時間にわたって室内の壁、床、天井等の面、室内に設置された机やテレビなどの面に定着しにくくなるため、室内でニトロソアミン類が生成されるリスクが大幅に低下する。つまり、前記工程(a)は、前記対象室内の壁面又は前記対象室内に設置された物体の表面に向かって前記紫外線を照射する工程を含むものとしても構わない。
 更に、仮に喫煙者が対象室内で喫煙中であっても、紫外線を照射してニコチンの分解処理を行うことができるため、喫煙者の衣服にニコチンが定着しにくくなる。この結果、室外に出た喫煙者の衣服に付着したニコチンが分解されることで生成されたニトロソアミン類を、当該喫煙者本人や第三者が吸引するリスクが大幅に低下する。
 ところで、太陽光や可視光を光触媒に当てることのみで、対象室内のニコチンを分解する方法も考えられる。しかしながら、対象室では喫煙がされるところ、喫煙されている限り、副流煙や呼出煙が対象室内に漂う。このため、これらの煙に含まれるタール等の微粒子が光触媒の表面に経時的に積層し、ニコチンを分解する機能が短時間の間に低下することが想定される。
 しかし、本発明の方法は、主ピーク波長が200nm以上、230nm以下の紫外線を対象室内に照射する工程(a)であるため、ニコチンが付着した箇所に対して紫外線が届く限りにおいて、ニコチンを分解することができる。このため、光触媒を用いる方法に比べて分解効率が高い。
 ただし、本発明は、主ピーク波長が200nm以上、230nm以下の紫外線を対象室内に照射している限りにおいて、光触媒作用と併用する方法を排除するものではない。
 なお、波長200nm未満の波長の紫外線は、空気中の酸素によって吸収されやすいため、目的とする壁面等に紫外線が届きにくくなる。このため、紫外線の主ピーク波長は200nm以上とされる。
 前記工程(a)は、Kr及びClを含む発光ガスが封入されたエキシマランプから前記紫外線を照射する工程とすることができる。かかる場合、エキシマランプからは主ピーク波長が222nm近傍の紫外線が出射される。なお、ここでいう「近傍」は、±2nm程度の固体誤差を含む概念である。
 前記ニコチン分解方法は、前記対象室内の雰囲気を前記対象室の外側に排気する気流を生成する工程(b)を有し、
 前記工程(b)は、前記工程(a)によって生成されたニコチン分解物を含む前記雰囲気を前記対象室外に排気する工程であるものとしても構わない。
 上記の方法によれば、紫外線の照射によってニコチンが分解されたことで生じるニコチン分解物を、気流によって、室外(系外)に排出できる。
 この場合、前記工程(b)は、前記対象室内の壁面を伝って気流を生じさせる工程であるものとしても構わない。これにより、対象室の壁面に付着していたニコチンが分解されることで生成したニコチン分解物を、効率的に室外に排出できる。
 本発明によれば、簡易な方法によってニコチンを分解することが可能となる。
本発明のニコチン分解方法の一実施形態を模式的に示す図面である。 光源の一例としてのエキシマランプの構成を模式的に示す平面図である。 図2AのA1-A1線断面図である。 発光ガスにKrClが含まれるエキシマランプから出射される紫外線L1のスペクトルを示す図面である。 222nmの紫外線を照射したときの、露光量とニコチンの減少率の関係を示すグラフである。 ニコチン水溶液の吸収スペクトルの計測結果を示すグラフである。 図5A内の一部の波長範囲を拡大したグラフである。 本発明のニコチン分解方法の一実施形態を模式的に示す別の図面である。 本発明のニコチン分解方法の一実施形態を模式的に示す別の図面である。 本発明のニコチン分解方法の一実施形態を模式的に示す別の図面である。
 本発明に係るニコチン分解方法の実施形態につき、適宜図面を参照して説明する。
 図1は、本発明に係るニコチン分解方法の一実施状態を模式的に示す図面である。本発明に係るニコチン分解方法は、喫煙可能な対象室1内において、光源3から紫外線L1を照射することで、対象室1内に付着していたニコチンを分解するものである。
 図1の例では、光源3から対象室1の壁面1aに対して紫外線L1が照射される場合が図示されている。また、図1の例では、対象室1には、室内の雰囲気を室外に排気するための排気口7が設けられている。
 なお、図1では、対象室1が喫煙室であり、喫煙者2が喫煙している状況が模式的に示されている。
 本実施形態において、光源3は、主ピーク波長が222nm近傍の紫外線L1を発するエキシマランプで構成される。図2Aは、このエキシマランプの構成を模式的に示す平面図であり、図2Bは、図2AのA1-A1線断面図である。
 エキシマランプ10は、方向d1に沿って延伸する発光管11を有する。発光管11は、合成石英ガラスなどの誘電体からなり、紫外線L1を透過する材料である。発光管11は内部が封止されており、内部には放電によってエキシマ分子を形成する発光ガス12Gが封入されている。
 エキシマランプ10は、発光管11の管壁に形成された一対の電極13(13a,13b)を備える。図2A及び図2Bの例では、エキシマランプ10から紫外線L1が取り出される側(+d2側)に配置された電極13aがメッシュ形状又は線形状を呈し、反対側に配置された電極13bが膜形状を呈している。なお、この場合、電極13bは、紫外線L1に対して反射性を示す金属材料(例えばAl、Al合金等)で構成されるか、電極13bが形成されている側における発光管11の管壁に反射膜(不図示)が設けられるのが好ましい。この反射膜としては、Al、Al合金、ステンレス、シリカ、シリカアルミナなどを利用することができる。
 ただし、エキシマランプ10から+d2方向及び-d2方向の双方に紫外線L1を取り出す場合には、電極13bについてもメッシュ形状又は線形状を呈しているものとしてよい。
 エキシマランプ10は、不図示の点灯電源から給電線を介して一対の電極13(13a,13b)間に、例えば50kHz~5MHz程度の高周波の交流電圧が印加されると、発光ガス12Gに対して、発光管11を介して前記電圧が印加される。このとき、発光ガス12Gが封入されている放電空間内で放電プラズマが生じ、発光ガス12Gの原子が励起されてエキシマ状態となり、この原子が基底状態に移行する際にエキシマ発光を生じる。
 発光ガス12Gは、エキシマ発光時に、主たるピーク波長が200nm以上、230nm以下の紫外線L1を出射する材料からなる。一例として、発光ガス12Gとしては、KrCl、KrBrが含まれる。
 例えば、発光ガス12GにKrClが含まれる場合には、エキシマランプ10から主ピーク波長が222nm近傍の紫外線L1が出射される。発光ガス12GにKrBrが含まれる場合には、エキシマランプ10からは、主たるピーク波長が207nm近傍の紫外線L1が出射される。図3は、発光ガス12GにKrClが含まれるエキシマランプ10から出射される紫外線L1のスペクトルを示す図面である。
 図3のスペクトルに示すような、主ピーク波長が222nmの紫外線L1を、ニコチンに照射することでニコチンが分解できることにつき、検証を行った。
 具体的には、ニコチン(富士フィルム和光純薬社製、和光一級)を、イソプロピルアルコール(以下、「IPA」と略記する。)によって希釈した。希釈率は、1/105、1/106の2種類とした。この希釈液を、1cm四方のポリカーボネイト(PC)製のプレートに10μL塗布することで、試験物を作製した。
 なお、予備実験として、喫煙室の壁面の10cm四方の領域をIPAを含ませた長繊維不織布(例えば、旭化成社製ベンコット(登録商標))で拭き取って採取した採取物に対して、GC/MS(日本電子社製、JMS-Q1500GC)により分析を行ったところ、ニコチン濃度は、相当する希釈率に換算すると、1/105以上、1/106以下の範囲内であった。この予備実験の結果に基づき、およそ喫煙室の壁面には、1/105以上、1/106以下の範囲内の濃度でニコチンが付着していると考えられることから、上記の希釈率でニコチンを希釈した試験物を作製した。
 作製された試験物の表面に対し、エキシマランプ10から主ピーク波長222nmの紫外線L1を、照度1mW/cm2で照射した。その後、GC/MSヘッドスペース用スクリューバイアル瓶(ジーエルサイエンス社製:1030-51096)に試験物を入れ、60℃で60分間加熱した後、SPMEファイバー(PDMS/DVB 65μm径:シグマアルドリッチ社製)に吸着させ、GC/MS(日本電子社製、JMS-Q1500GC)によって分析を行った。この結果を、図4に示す。
 図4は、横軸を紫外線L1の露光量[mJ/cm2]とし、縦軸を初期時からのニコチンの減少率として表記したグラフである。この検証では、上述したように、1mW/cm2の照度で紫外線L1を試験物に照射していることから、横軸の露光量[mJ/cm2]は、照射時間[秒]と読み替えることもできる。
 図4の結果によれば、200mJ/cm2の露光量で紫外線L1を照射することで、75%以上のニコチンが分解できることが確認される。なお、ニコチンの希釈率を1/106とした場合には、300mJ/cm2の露光量で紫外線L1を照射することで、全てのニコチンが分解された。
 「課題を解決するための手段」の項で上述したように、主ピーク波長が200nm以上、230nm以下の紫外線L1は、人体の皮膚に対して照射されても、皮膚の角質層で吸収され、それよりも内側(基底層側)には進行しない。このため、対象室1内に人間(図1では喫煙者2)が存在している時間帯であっても、光源3から対象室1内の壁面1aに向けて紫外線L1を照射することができる。
 なお、特に対象室1が喫煙室である場合には、喫煙者2は喫煙が完了すると室外に退出することが想定されるところ、同一人物が長時間にわたって滞在する可能性が低い。このため、対象室1内において光源3を設置し、喫煙者2が存在する時間帯に紫外線L1を照射しても、当該喫煙者2に対して身体に影響の出る程度の被爆が生じるリスクは極めて低いといえる。
 ただし、人体への影響が殆どないとはいえ、紫外線L1が対象室1内で照射されることに抵抗感を覚える喫煙者2が存在する可能性もある。このため、対象室1が喫煙室である場合には、対象室1内に喫煙者2が存在していることが検知されると、光源3に備えられた制御部(不図示)が紫外線L1の照射を停止するように制御しても構わない。より詳細には、制御部が一対の電極13(13a,13b)への通電を停止するように制御しても構わない。対象室1内に喫煙者2が存在していることを検知する方法としては、一例として、対象室1内に設けられた人感センサや、対象室1に人間が入室したことを検知するセンサ(例えば自動ドアの開閉)等によって、実行できる。
 また、光源3が制御部を備える場合において、制御部が、光源3を所定の時間毎に点灯と消灯を繰り返すように制御するものとしても構わない。図4の結果により確認されるように、ニコチンに対する露光量が増加するほどニコチンの分解量が増えることから、間欠的に複数回にわたって紫外線L1が照射される場合であっても、同様に対象室1内に残存するニコチンの分解を行うことができる。
 図1の例では、対象室1に設けられた排気口7から、対象室1の雰囲気G1が排気される。これにより、紫外線L1が照射されニコチンが分解されることで生成されたニコチン分解物が、雰囲気G1の気流に乗って対象室1の外側に排気される。なお、ニコチンに対して紫外線L1が照射されることで生成される分解物には、ニコチン酸アミド、ノルコチニン等が含まれるが、ニトロソアミン類は生成されない。これにより、対象室1内でニコチンが残存することに伴って経時的に生成される、発がん性物質のニトロソアミン類の量は大幅に低下する。
 図5A及び図5Bは、ニコチン水溶液の吸収スペクトルを示すグラフである。図5Aのグラフは、上記と同様の方法でニコチンを希釈率1/104、及び1/105で希釈した溶液を生成した後、吸光光度計(サーモフィッシャーサイエンティック社製、NanoDorop One)によって測定した結果である。なお、希釈率を調整してニコチンの濃度を更に高めても、300nm以下の吸光度はほとんど上昇しないことも確認された。この結果は、ニコチンの光吸収性が低いことを示すものである。なお、図5Bは、図5Aの一部の波長範囲を拡大表示したグラフである。
 図5A及び図5Bの結果に鑑みると、波長300nm以上の長波長側においては、ニコチンによる光吸収能は極めて低いことが確認される。また、波長260nm付近に吸収のピークを有するものの、200nm以上、230nm以下の波長域においても、ニコチンに対する吸収が確認される。そして、図4の結果より、主ピーク波長が222nm近傍の紫外線L1が照射されることで、ニコチンが分解できることが確認されている。よって、図4、図5A及び図5Bの結果に鑑みれば、紫外線L1の波長は、222nm近傍に限らず、主ピーク波長が200nm以上、230nm以下の範囲内であれば、同様に紫外線L1の照射によってニコチンが分解できることが分かる。
 なお、ニコチンを効率的に分解する観点からは、主ピーク波長が200nm以上、230nm以下の範囲内の紫外線L1を照射するよりも、波長260nm付近の紫外線を照射する方が、分解速度が速くなることが予想される。このような波長帯の紫外線を発する光源としては、例えば低圧水銀ランプが存在する。
 しかし、波長260nm付近の紫外線は、人体に照射されるとDNAが破壊されるなど、人体に対して有害な作用を及ぼすおそれがある。このため、対象室1内に人間(例えば喫煙者2)が存在していないことが確認される場合に限って点灯するように、厳密な制御が求められる。リスクを最大限解消しようとすると、例えば、対象室1内に人感センサ等を設置して対象室1内に人間が存在しないことが確認できる態様とした上で、対象室1内におよそ人間が入らないと考えられる限られた時間帯に限って点灯させるという制御が考えられる。しかし、この制御の場合、結果的に対象室1内で光源が点灯できる時間が短くなり、ニコチンの分解効率があまり上がらない可能性がある上、万一センサが誤作動を起こすと、人体に甚大な影響を及ぼすおそれもある。
 これに対し、主ピーク波長が200nm以上、230nm以下の波長域の紫外線L1であれば、仮に対象室1内に人間(喫煙者2等)が存在している場合であっても、人体への影響が殆どないため、上記のような懸念は存在しない。また、例えば、対象室1内を清掃中には光源3を消灯しておき、清掃終了後から、光源3の点灯を開始・継続させることで、対象室1の壁面1aにニコチンが付着しにくくなる効果が持続される。
 なお、図6に示すように、光源3は下方に向けて紫外線L1を発するように設置されても構わない。この場合、対象室1の床面1bに付着していたニコチンについても分解することができる。また、光源3から出射される紫外線L1の進行方向については、可変としてもよい。一例として、光源3を、1軸、2軸又は3軸を基準として回動可能な構成とすることで、紫外線L1の出射面の法線方向、すなわち紫外線L1の進行方向を可変とすることができる。また、別の例として、光源3の設置位置を自在に変えることができるような態様で、光源3が対象室1内に保管されるものとしても構わない。
 また、図7Aに示すように、対象室1には、気流を生じさせるためにファン8が備えられても構わないし、図7Bに示すように吸気口9が備えられても構わない。これにより、壁面1a等に付着したニコチンに対して紫外線L1が照射されることで生成されたニコチン分解物を、壁面1aを伝って流れる雰囲気G1の気流に乗せて排気口7から排出しやすくなる。
 [別実施形態]
 以下、別実施形態について説明する。
 〈1〉上記実施形態では、光源3がエキシマランプである場合について説明した。しかし、本発明に係るニコチン分解方法は、主ピーク波長が200nm以上、230nm以下の紫外線L1を発する光源である限りにおいて、上記エキシマランプには限定されない。例えば、光源3として、LEDやLD等の固体光源を用いても構わない。
 また、光源3がエキシマランプで構成される場合であっても、光源3は、図2A及び図2Bに示す構造には限られない。例えば、発光管11が管軸方向に係る端部が封止されてなる二重管構造を呈し、内側管と外側管に挟まれた環筒状領域を発光空間とする構造であっても構わない。また、別の例として、発光管11が円筒状であり、一方の電極が筒内に挿入され、他方の電極が発光管11の外壁面に配設され、前記筒内が発光空間を構成する構造であっても構わない。
 〈2〉上記実施形態では、対象室1の壁面1aや床面1bに対して紫外線L1を照射するものとして説明した。しかし、紫外線L1を対象室1の天井面に向けて照射しても構わないし、対象室1内にテーブル、椅子、テレビ画面等の物体が設置されている場合には、これらの物体の表面に対して紫外線L1を照射しても構わない。これにより、対象室1の壁面のみならず、対象室1全体にわたって、長時間にわたってニコチンが定着するリスクが低下する。
1   :対象室
1a  :壁面
1b  :床面
2   :喫煙者
3   :光源
7   :排気口
8   :ファン
9   :吸気口
10  :エキシマランプ
11  :発光管
12G :発光ガス
13  :電極
13a :電極
13b :電極
15G :発光ガス
G1  :雰囲気
L1  :紫外線

Claims (5)

  1.  喫煙可能な対象室内で、主ピーク波長が200nm以上、230nm以下の紫外線を照射してニコチンを分解する工程(a)を含むことを特徴とする、ニコチン分解方法。
  2.  前記工程(a)は、Kr及びClを含む発光ガスが封入されたエキシマランプから前記紫外線を照射する工程であることを特徴とする、請求項1に記載のニコチン分解方法。
  3.  前記工程(a)は、前記対象室内の壁面又は前記室内に設置された物体の表面に向かって前記紫外線を照射する工程を含むことを特徴とする、請求項1又は2に記載のニコチン分解方法。
  4.  前記対象室内の雰囲気を前記対象室の外側に排気する気流を生成する工程(b)を有し、
     前記工程(b)は、前記工程(a)によって生成されたニコチン分解物を含む前記雰囲気を前記対象室外に排気する工程であることを特徴とする、請求項1~3のいずれか1項に記載のニコチン分解方法。
  5.  前記工程(b)は、前記対象室内の壁面を伝って気流を生じさせる工程であることを特徴とする、請求項4に記載のニコチン分解方法。
PCT/JP2021/005245 2020-04-09 2021-02-12 ニコチンの分解方法 WO2021205744A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/995,665 US20230194112A1 (en) 2020-04-09 2021-02-12 Method for decomposing nicotine
EP21784921.5A EP4134176A4 (en) 2020-04-09 2021-02-12 PROCESS FOR DECOMPOSITION OF NICOTINE
CN202180014160.XA CN115103726A (zh) 2020-04-09 2021-02-12 尼古丁的分解方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020070148A JP2021166948A (ja) 2020-04-09 2020-04-09 ニコチンの分解方法
JP2020-070148 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021205744A1 true WO2021205744A1 (ja) 2021-10-14

Family

ID=78023178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005245 WO2021205744A1 (ja) 2020-04-09 2021-02-12 ニコチンの分解方法

Country Status (5)

Country Link
US (1) US20230194112A1 (ja)
EP (1) EP4134176A4 (ja)
JP (1) JP2021166948A (ja)
CN (1) CN115103726A (ja)
WO (1) WO2021205744A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219461A (ja) * 1997-02-06 1998-08-18 Matsushita Electric Ind Co Ltd 撥水性セラミックコート膜及びその製造方法
JP2003344601A (ja) * 2002-05-28 2003-12-03 Canon Inc 光学素子の洗浄装置及び光学素子の洗浄方法、および光学素子の製造方法
JP2006229198A (ja) * 2004-12-16 2006-08-31 Asahi Glass Co Ltd 紫外線内設洗浄器具のための方法および装置
JP2010528064A (ja) * 2007-05-31 2010-08-19 フェルティン ファルマ アー/エス 経皮タバコアルカロイドリザーバパッチ
JP2011240302A (ja) 2010-05-21 2011-12-01 Sanrimix Co Ltd 内装用素材の再生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386287A (en) * 1930-04-07 1933-01-12 Charles Manton Richter Method of and apparatus for reducing the poisonous effects of nicotine and the product thereof
JPH11276563A (ja) * 1998-03-27 1999-10-12 Mitsubishi Paper Mills Ltd 空気清浄化装置
CN2733222Y (zh) * 2004-09-29 2005-10-12 Tcl国际电工(惠州)有限公司 一种换气扇
JP2008212767A (ja) * 2007-02-28 2008-09-18 Pioneer Electronic Corp ヤニ除去装置
DE102007021796A1 (de) * 2007-05-07 2008-11-13 Henkel Ag & Co. Kgaa Luftreinigung
KR20150095487A (ko) * 2014-02-13 2015-08-21 (주)토텍 흡연부스용 건식 정화시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219461A (ja) * 1997-02-06 1998-08-18 Matsushita Electric Ind Co Ltd 撥水性セラミックコート膜及びその製造方法
JP2003344601A (ja) * 2002-05-28 2003-12-03 Canon Inc 光学素子の洗浄装置及び光学素子の洗浄方法、および光学素子の製造方法
JP2006229198A (ja) * 2004-12-16 2006-08-31 Asahi Glass Co Ltd 紫外線内設洗浄器具のための方法および装置
JP2010528064A (ja) * 2007-05-31 2010-08-19 フェルティン ファルマ アー/エス 経皮タバコアルカロイドリザーバパッチ
JP2011240302A (ja) 2010-05-21 2011-12-01 Sanrimix Co Ltd 内装用素材の再生方法

Also Published As

Publication number Publication date
EP4134176A4 (en) 2023-09-13
JP2021166948A (ja) 2021-10-21
CN115103726A (zh) 2022-09-23
US20230194112A1 (en) 2023-06-22
EP4134176A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
KR101198718B1 (ko) 공기 정화 장치 및 그 방법
JP2022002749A (ja) 気体処理装置
JP7272390B2 (ja) 殺菌方法
KR20110052006A (ko) 살균용 에어커튼
US20240001053A1 (en) Electro-ionic systems and methods for treating enclosed spaces and medical air and gas supply devices for improved protection from airborne biopathogens
WO2008051304A3 (en) Treatment of airflow
WO2021205744A1 (ja) ニコチンの分解方法
TW202218691A (zh) 菌或病毒的不活化方法,菌或病毒的不活化裝置
KR20190011889A (ko) 공기 정화장치
KR101876916B1 (ko) 음이온 발생장치용 음이온 방사 탄소섬유 및 그의 제조방법
WO2023086974A1 (en) Scent control device and methods for treating an environment
JP5409978B1 (ja) 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置
US20220339373A1 (en) Plasma enhanced aerosol device
JP2021194624A (ja) ニコチン分解方法、ニコチン分解装置
JP2004000606A (ja) 殺菌方法、イオン発生装置及び空気調節装置
JP2004166742A (ja) オゾン薫蒸装置
JP6972657B2 (ja) 光処理装置及びその製造方法
KR102028441B1 (ko) IoT 기반의 담배연기 제연 방법
KR102254592B1 (ko) 살균 방법
WO2022049844A1 (ja) 低誘虫な菌又はウィルスの不活化方法
JP2007327685A (ja) 消臭装置
WO2021230192A1 (ja) 抗がん剤の分解方法
EP4230229A1 (en) Inactivation method and inactivation system
WO2022198209A1 (en) Electro-ionic systems and methods for treating enclosed spaces and medical air and gas supply devices for improved protection from airborne biopathogens
JP3060428U (ja) 煙草煙の浄化能力が付与された衝立

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021784921

Country of ref document: EP

Effective date: 20221109