WO2021204583A1 - Drehgestell für ein schienenfahrzeug mit wankstütze - Google Patents

Drehgestell für ein schienenfahrzeug mit wankstütze Download PDF

Info

Publication number
WO2021204583A1
WO2021204583A1 PCT/EP2021/058170 EP2021058170W WO2021204583A1 WO 2021204583 A1 WO2021204583 A1 WO 2021204583A1 EP 2021058170 W EP2021058170 W EP 2021058170W WO 2021204583 A1 WO2021204583 A1 WO 2021204583A1
Authority
WO
WIPO (PCT)
Prior art keywords
bogie
torsion
torsion spring
spring system
roll support
Prior art date
Application number
PCT/EP2021/058170
Other languages
English (en)
French (fr)
Inventor
Andreas Ulbricht
Werner Hufenbach
Florian ZEIDLER
Sansan DING
Zhenxian ZHANG
Yulong GAO
Xiongfei Zhang
Dawei Ruan
Chao SU
Kejian Liu
Xin Cao
Original Assignee
Crrc Qingdao Sifang Co., Ltd.
CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crrc Qingdao Sifang Co., Ltd., CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH filed Critical Crrc Qingdao Sifang Co., Ltd.
Priority to JP2022561994A priority Critical patent/JP7483043B2/ja
Priority to EP21716655.2A priority patent/EP4132833A1/de
Priority to US17/995,769 priority patent/US20230166777A1/en
Publication of WO2021204583A1 publication Critical patent/WO2021204583A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/14Side bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • B61F5/301Axle-boxes mounted for movement under spring control in vehicle or bogie underframes incorporating metal springs
    • B61F5/304Torsion-bar springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/50Other details
    • B61F5/52Bogie frames

Definitions

  • the invention relates to a bogie according to the preamble of claim 1.
  • bogies in fiber composite construction are known from the prior art, in which the primary suspension by the bogie frame, such. B. described in DE 29 52 182 A1, or realized by leaf springs made of a fiber-reinforced plastic (FRP), as known e.g. from US 2012/0279416 A1.
  • FRP fiber-reinforced plastic
  • torsion bars also known as torsion bar springs, torsion bars or torsion springs
  • FRP force-appropriate fiber orientation
  • the torsional stiffness of a torsion spring made of fiber composite material includes the modulus of elasticity E in the longitudinal direction of the fibers and not, as for example with metallic springs, the i. A. smaller shear modulus G.
  • bogies in which the primary suspension is implemented by means of torsion bars have a high potential for lightweight construction and space for built-in components.
  • a bogie with torsion bar primary suspension in which the wheel axles are attached to the frame by means of arms swinging in the vertical direction, with each arm being attached to the outer end of a torsion bar arranged transversely to the direction of travel, is for example from DE 735 080 A or from DE 102016 123 784 A1 known.
  • a similar design is described in DE 838 897 A, the height of the links here being adjustable via an adjustable anchorage of the torsion bars in the center of the bogie.
  • torsion bars are used for the transverse stabilization of the car body, i.e. to reduce or stabilize the rolling movement of the car body about its longitudinal axis.
  • DE 2841 769 A1 shows a torsion bar which acts as a stabilizer and which connects rockers arranged on opposite sides of the vehicle with one another.
  • the upper bearing of a helical spring for cushioning the car body is attached to each rocker arm, which is attached to the bogie frame via a rocker arm holder, so that it can move vertically.
  • a roll support in the form of a torsion bar arranged transversely to the direction of travel with end-side cranks, which are usually pivotably mounted on the car body, the connection between the cranks and the car body being made via pendulum supports.
  • DE 44 10 970 C1 describes a combination of a roll support designed in this way for a rail vehicle, the car body of which rests on the bogie with a sprung suspension, with a passive transverse inclination control represented by inclining the pendulum supports of the roll support, in which the torsion bar of the roll support consists of an im Bogie centered by spring force is mounted transversely to the longitudinal direction of the vehicle by a limited stroke to both sides.
  • DE 10 2012 008 995 A1 shows a stabilizer made of an FRP for the wheel suspension of a motor vehicle, which is connected to longitudinal arms attached to the wheel suspension via a non-positive and positive toothing.
  • the object of the invention is to specify a bogie with a roll support that has a particularly large amount of installation space for additional built-in components.
  • the bogie according to the invention has at least two sets of wheels, each set of wheels comprising two wheels connected to an axle.
  • the wheel set is mounted in axle bearings, which are articulated to the frame via steering arms, so that the steering arms form an H-shape with the axle bearings and the frame.
  • the frame has at least two torsion spring systems which are arranged parallel to the axes of the wheel sets and which are firmly connected to the frame in certain areas.
  • the torsion spring systems have spring lever arms at their ends, so that in each case the end region of the spring lever arm not connected to the torsion spring system acts on the axle bearing.
  • the primary suspension is accordingly at least partially taken over by the at least two torsion spring systems.
  • the bogie according to the invention also has at least one anti-roll support which has a torsion bar that is torsionally movable in the inner volume is arranged at least one of the torsion spring systems.
  • the torsion bar of the anti-roll support is accordingly, like the torsion spring system, arranged transversely to the direction of travel of the bogie, that is, the central axis of the torsion bar of the anti-roll support is also arranged at least approximately parallel to the axes of the wheel sets
  • Each of the at least two torsion spring systems has at least one torsion bar, which is designed as a hollow body.
  • a torsion spring system can have exactly one torsion bar, which is firmly mounted in the frame in the region of half its height and whose two ends each have a spring lever.
  • a torsion spring system can also have two torsion bars arranged one after the other in the axial direction. Then the mutually facing ends of the torsion bars are firmly mounted on the frame. The other ends of the two torsion bars each have a spring lever.
  • the bogie according to the invention advantageously has a large installation space for built-in components.
  • the torsion spring systems can be arranged in corresponding recesses within the frame in a particularly space-saving manner.
  • the end regions of the torsion bar of the anti-roll support project beyond the torsion spring system on both sides.
  • At least one pendulum support arrangement is arranged on each of the two end regions of the torsion bar of the anti-roll support, whose end not connected to the torsion bar is articulated on the car body of the rail vehicle, so that the two pendulum support arrangements are articulated mechanically and in an energy-transmitting manner on opposite sides of the car body.
  • the torsion bar of the anti-roll support is hinged to the torsion spring system, which is at least part of the primary suspension of the rail vehicle.
  • the torsion bar of the anti-roll support is preferably connected to the torsion spring system in a non-positive or non-positive and positive manner at the end, for example via an end press connection or end-side toothing between the torsion bar of the anti-roll support and the torsion spring system or between the torsion bar of the anti-roll support and a torsion spring system connected to the torsion spring system Transmission element.
  • This embodiment advantageously offers a particularly large amount of installation space and requires particularly few components and no additional attachments to the car body.
  • the geometry and the material of the torsion bars of the torsion spring system and the anti-roll support can be adapted to the expected loads in a defined manner.
  • the torsion bars can, for example, have a round, oval or polygonal cross-sectional outer contour, which can be constant or variable over the length, that is to say along the central axis, of the torsion bars.
  • the torsion bar of the anti-roll support is preferably also designed as a hollow body, as is the at least one torsion bar of a torsion spring system.
  • the wall thickness of the torsion bars made as hollow bodies can be made constant or variable over the length.
  • the wall thickness in mechanically particularly stressed areas of the torsion bars, for example in the end areas, is preferably greater than in other areas.
  • the torsion bar of the anti-roll support consists at least predominantly of a fiber-reinforced plastic.
  • at least the at least one torsion bar of the torsion spring systems of the bogie is preferably at least predominantly made of a fiber-reinforced plastic.
  • at least the frame and / or the spring lever arms of the bogie are at least predominantly made of a fiber-reinforced plastic.
  • “at least predominantly” means that the components mentioned can also be designed as a hybrid structure, e.g. B. by using a metallic insert to introduce force, the main function of torsion being carried out by the fiber composite component.
  • All fibers in particular carbon or glass or aramid fibers or a combination of the aforementioned, which can withstand the loads occurring during operation of the bogie, are suitable as fibers.
  • the solution according to the invention is based on the fact that the torsion bar of at least one anti-roll support of the bogie, which is arranged transversely to the direction of travel of the bogie, is arranged in a torsionally movable manner approximately concentrically within the at least one torsion bar of a torsion spring system, which is designed for at least partial primary suspension of the bogie
  • the invention is not restricted to the illustrated and described embodiments, but also includes all embodiments that have the same effect in the sense of the invention. Further The invention is also not restricted to the specially described combinations of features, but can also be defined by any other combination of specific features of all the individual features disclosed as a whole, provided the individual features are not mutually exclusive or a specific combination of individual features is not explicitly excluded.
  • FIG. 1 shows a plan view of a bogie according to the invention for a rail vehicle
  • FIG. 2 shows a side view in viewing direction Y of a bogie according to the invention with a roll support articulated on the car body (not shown),
  • FIG 3 shows a sectional view along the line X-X of a bogie according to the invention with a roll support articulated on the car body (not shown),
  • FIG. 3b shows the detail F from FIG. 3,
  • FIG. 4 shows a side view in viewing direction Y of a bogie according to the invention with a roll support articulated by the torsion spring system
  • FIG. 5 shows a sectional view along the line X-X of a bogie according to the invention with a roll support articulated by the torsion spring system
  • FIG. 5a shows the detail E * from FIG. 5,
  • FIG. 6 shows a side view in viewing direction Y of a bogie according to the invention with two anti-roll supports each articulated by a torsion spring system.
  • FIG. 6a shows a plan view of a section in the X-Y plane of the bogie according to the invention from FIG. 6.
  • Fig. 1 shows the plan view of an embodiment of a bogie according to the invention for a rail vehicle.
  • the bogie 1, 1 *, 1 ** has two wheel sets 2, each supported in two axle bearings 21, with two wheels 202 connected by an axle 201.
  • Each axle bearing 21 is articulated to the frame 3 via an axle guide 22.
  • the bogie 1, 1 *, 1 ** each has a torsion spring system per wheelset 2, which is arranged parallel to the axis 201 of the corresponding wheelset 2 in the frame 3 and is therefore not visible in the illustration shown.
  • each spring lever arm 4 With its one end region by means of a damping body, for. B. a rubber pad 41 acts on an axle bearing 21.
  • a pivot pin 5 is arranged on the frame 3; an elastic connection between the car body and the bogie 1, 1 *, 1 ** is established by air springs 6 arranged on the frame 3 for the secondary suspension.
  • the bogie 1, 1 *, 1 ** advantageously has a particularly large amount of installation space for further operationally relevant built-in components, such as the motors 7, the gears 8 and the brakes 9.
  • the frame 3, the spring lever arms 4, the torsion spring systems and the torsion bar of the anti-roll support can be made at least predominantly from an FRP.
  • FIGS. 2 and 3 show views of a bogie according to the invention analogous to that in FIG. 1, the anti-roll supports being articulated on the car body (not shown).
  • FIG. 2 shows the side view of a bogie 1 in the viewing direction Y indicated in FIG. 1.
  • the bogie 1 has wheel sets 2 mounted in axle bearings 21.
  • Each axle bearing 21 is articulated to the frame 3 via an axle guide 22.
  • An end region of a spring lever arm 4 acts on each axle bearing 21 via a damping body, e.g. B. a rubber pad 41.
  • the other end of the spring lever arm 4 is a, z. B. metallic, transmission shaft 10 connected to the torsion spring system (not visible).
  • torsion spring systems of the bogie 1 there is a roll support with a torsion bar 11 which is articulated at the end via a pendulum support arrangement having a lever 111 on one side and an essentially vertical pendulum support 112 on opposite sides of the car body (not shown) of the rail vehicle.
  • Fig. 3 shows the representation of a bogie 1 according to the invention with the anti-roll supports articulated to the car body (not shown) in a section along the line XX indicated in FIG 11 of the anti-roll support is arranged, and thus also of the torsion bar 11 of the anti-roll support corresponds.
  • Fig. 3a shows an enlarged view of the detail E from FIG. 3.
  • FIG. 3b shows an enlarged view of the detail F from FIG. 3.
  • Fig. 3 shows the space-saving arrangement of the torsion spring system 12 within the frame 3.
  • the torsion spring system 12 comprises two torsion bars 1201 and 1202 with the same spring characteristic, which are arranged one behind the other in the axial direction, with the longitudinal axes, i.e. the axes with the smallest Moment of inertia of both torsion bars 1201 and 1202 coincide.
  • z. B. metallic, insert 13, 13 ‘arranged, as shown in more detail in Figs. 3a, 3b.
  • the torsion bar 1201, 1202 is thickened, i.e. the wall thickness is e.g. B. by additional fiber layers, or an additional bandage that surrounds the torsion bar in this area and is preferably made of a metal, enlarged.
  • the mutually facing end regions of the torsion bars 1201 and 1202 comprise a common insert 13 ', d. That is, the torsion bars 1201 and 1202 of the torsion spring system 12 are connected to one another via a common insert 13 '.
  • the insert 13 ‘is non-rotatably connected to a fixed bearing 14 attached to the frame 3, as shown in more detail in FIG. 3b.
  • the inserts 13 of the other, outer end areas of the two torsion bars 1201 and 1202 are firmly connected to the transmission shaft 10, which is rotatably mounted in a radial bearing 15 fastened in the frame 3 and is connected to the spring lever arm 4, as FIG. 3a exemplifies for shows the torsion bar 1201 in detail.
  • the torsion bars 1201 and 1202, the inserts 13, the fixed bearing 14 and the transmission shaft 10 of the bogie 1 are designed as essentially cylindrical hollow bodies that the torsion bar 11 of the anti-roll support is arranged according to the invention continuously in the inner volume of the elements mentioned, with its longitudinal axis in Coincides substantially with the longitudinal axis of the elements.
  • the two end regions of the torsion bar 11 of the anti-roll support project beyond the transmission shaft 1Q arranged there, the torsion bar 11 of the anti-roll support being guided through the transmission shaft 10 by means of a plain bearing bushing 16.
  • the torsion bar 11 of the anti-roll support is thus rotatably mounted in the transmission shaft 10 in both end regions.
  • the end regions of the torsion bar 11 of the anti-roll support are thickened, in particular where the torsion bar 11 is in contact with the plain bearing bush 16; however, the end regions can also be designed without a thickening.
  • the anti-roll support which are designed as an axial stop the lever 111 is arranged, which is connected to the pendulum support 112, which is articulated on the car body (not shown) of the rail vehicle.
  • FIGS. 4 and 5 show views of a bogie 1 * according to the invention analogous to that in FIG. 1, the bogie 1 * having exactly one anti-roll support which is articulated to one of the two torsion spring systems.
  • This exemplary embodiment represents an alternative to the exemplary embodiment of a bogie 1 shown in FIGS. 2 and 3.
  • FIG. 4 shows the side view of a bogie 1 * in the viewing direction Y indicated in FIG. 1.
  • the bogie 1 * in contrast to the bogie 1, does not have a pendulum support arrangement for articulating the anti-roll support 11 on the car body.
  • the torsion bar 11 of the anti-roll support which is arranged in a space-saving manner within the torsion spring system, is partially non-rotatably connected to the transmission shaft 10 so that the anti-roll support is hinged to the torsion spring system by means of the transmission shaft 10.
  • the torsion spring system 12 arranged within the frame 3 comprises two torsion bars 1201 and 1202 with the same spring characteristic, which are arranged one behind the other in the axial direction, the longitudinal axes, i.e. the axes with the smallest moment of inertia of both torsion bars 1201 and 1202, coinciding.
  • the torsion bar 1201, 1202 In the area of the torsion bar 1201, 1202 in which the insert 13, 13 ‘rests, the torsion bar 1201, 1202 is thickened, i.e. the wall thickness is e.g. B. by additional fiber layers or bandages, enlarged.
  • the design of the bogie 1 * corresponds in the area of the mutually facing end areas of the torsion bars 1201 and 1202 to the design of the bogie 1 shown in FIG. 3b.
  • the inserts 13 of the other, outer end areas of the two torsion bars 1201 and 1202 in the bogie 1 * are firmly connected to the transmission shaft 10, which is rotatably mounted in a radial bearing 15 fastened in the frame 3 and to the spring lever arm 4 is in connection, as FIG. 5a shows in detail by way of example for the torsion bar 1201.
  • the torsion bars 1201 and 1202, the inserts 13, the fixed bearing 14 and the transmission shaft 10 of the bogie 1 * are designed as essentially cylindrical hollow bodies that the torsion bar 11 of the anti-roll support according to the invention is continuously in the inner volume of the mentioned elements is arranged, wherein its longitudinal axis coincides with the longitudinal axis of the elements, and wherein the torsion bar 11 does not protrude beyond the transmission shaft 10.
  • the two thickened end regions of the torsion bar 11 of the anti-roll support in the illustrated embodiment each have an area facing the spring lever arm 4 which is outer in the axial direction and which is frictionally or frictionally and positively, e.g. B. is rotatably connected to the transmission shaft 10 via a toothing 17.
  • a non-toothed region of the torsion bar 11 adjoins the toothing 17 further inward in the axial direction and is guided through the transmission shaft 10 by means of a plain bearing bush 16, for example.
  • Both the torsion spring system 12 and the torsion bar 11 of the anti-roll support are correspondingly connected to the respective transmission shaft 10 in a rotationally fixed manner, so that the anti-roll support is articulated to the torsion spring system 12 by means of the transmission shaft 10.
  • FIG. 6 shows the side view of a bogie 1 ** according to the invention in the viewing direction Y indicated in FIG. 1, the bogie 1 ** only differing from the bogie 1 * in that in each of its two torsion spring systems (not visible) Torsion bar 11 of a anti-roll support is arranged, so it has two anti-roll supports which are each articulated to a torsion spring system by means of a transmission shaft 10.
  • FIG. 6a the plan view of a section in Fig. 1 to be removed XY plane of the bogie 1 ** according to the invention with the pivot pin 5 is shown.
  • a torsion bar 11 of a roll support is arranged in each torsion spring system 12 assigned to one wheel set 2 in each case.
  • Each torsion spring system 12 is connected at the end via an insert 13 to an associated, rotatably mounted transmission shaft 10.
  • the torsion bar 11 of the anti-roll support is non-rotatably non-positively or non-positively and positively connected to the two transmission shafts 10 arranged at the ends and, by means of these, is articulated to the torsion spring system 12 at its two end regions.
  • the bogie 1 ** advantageously has a particularly large amount of space for the arrangement of components such.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Die Erfindung betrifft ein Drehgestell für ein Schienenfahrzeug, welches sich durch ein hohes Leichtbaupotenzial auszeichnet. Das erfindungsgemäße Drehgestell (1, 1*, 1**) weist zur Primärfederung ein Torsionsfedersystem (12) auf, in dessen inneren Volumen eine Wankstütze aufweisend einen Torsionsstab (11) torsionsbeweglich angeordnet ist. Die Wankstütze kann am Wagenkasten des Schienenfahrzeugs oder am Torsionsfedersystem (12) angelenkt sein. Das erfindungsgemäße Drehgestell (1, 1*, 1**) verfügt vorteilhaft über einen besonders großen Bauraum für Einbauten.

Description

Drehgestell für ein Schienenfahrzeug mit Wankstütze
Die Erfindung betrifft ein Drehgestell nach dem Oberbegriff des Anspruchs 1.
Konventionelle Drehgestelle für Schienenfahrzeuge in Stahlbauweise, bei denen die Primär federung, also die Federung der Räder bzw. Radachsen gegenüber dem Drehgestell, zumeist durch Blattfedern, Schraubenfedern oder Gummi-Metall-Federn aufgebracht wird, weisen neben dem hohen Eigengewicht zusätzliche Nachteile dadurch auf, dass sie aus vielen Einzelteilen bestehen und wenig Bauraum für Einbauten wie Antriebe, Steuergeräte und Bremsen vorhanden ist.
Um das Eigengewicht zu verringern, sind aus dem Stand der Technik Drehgestelle in Faserverbundbauweise bekannt, bei denen die Primärfederung durch den Drehgestellrahmen, wie z. B. in der DE 29 52 182 A1 beschrieben, oder durch Blattfedern aus einem faserverstärkten Kunststoff (FVK) realisiert wird, wie z.B. aus der US 2012/0279416 A1 bekannt.
Besondere Vorteile bietet die Verwendung von FVK bei der Gestaltung von auch als Drehstabfedern, Drehstäben oder Torsionsfedern bezeichneten Torsionsstäben aufgrund der Möglichkeit zur belastungsgerechten Faserorientierung, was dazu führt, dass in die Torsionssteifigkeit einer Torsionsfeder aus Faserverbundmaterial das Elastizitäts-Modul E in Längsrichtung der Fasern eingeht und nicht, wie beispielsweise bei metallischen Federn, das i. A. kleinere Schubmodul G.
Unter anderem aus diesem Grund weisen Drehgestelle, bei denen die Primärfederung mittels Torsionsstäben realisiert wird, hohes Leichtbaupotenzial und Bauraum für Einbauten auf. Ein Drehgestell mit Torsionsstab-Primärfederung, bei dem die Radachsen durch in Höhenrichtung schwingende Lenker am Gestellrahmen befestigt sind, wobei jeder Lenker an dem Außenende eines quer zur Fahrtrichtung angeordneten Torsionsstabs befestigt ist, ist beispielsweise aus der DE 735 080 A oder aus der DE 102016 123 784 A1 bekannt. Eine ähnliche Bauform ist in der DE 838 897 A beschrieben, wobei die Lenker hier über eine einstellbare Verankerung der Torsionsstäbe in der Drehgestellmitte höhenverstellbar sind.
In Schienenfahrzeugen finden Torsionsstäbe eine weitere Anwendung bei der Querstabilisierung des Wagenkastens, also um die Wankbewegung des Wagenkastens um seine Längsachse zu reduzieren bzw. zu stabilisieren. Die DE 2841 769 A1 zeigt einen als Querstabilisator wirkenden Torsionsstab, der an gegenüberliegenden Fahrzeugseiten angeordnete Schwingen miteinander verbindet. An jeder Schwinge, die über einen Schwingenhalter am Drehgestellrahmen angebracht ist, ist vertitel- beweglich das obere Lager einer Schraubenfeder zur Abfederung des Wagenkastens befestigt.
Zur Behinderung des einseitigen Einfederns des Wagenkastens wird auch häufig eine Wank- stütze in Gestalt eines quer zur Fahrtrichtung angeordneten Torsionsstabs mit endseitigen Kurbeln eingesetzt, die zumeist schwenkbar am Wagenkasten gelagert sind, wobei die Verbindung zwischen den Kurbeln und dem Wagenkasten über Pendelstützen erfolgt.
In der DE 44 10 970 C1 ist eine Kombination aus einer dergestalt ausgeführten Wankstütze für ein Schienenfahrzeug, dessen Wagenkasten gefedert auf dem Drehgestell aufliegt, mit einer durch Schrägstellen der Pendelstützen der Wankstütze dargestellten passiven Querneige steuerung beschrieben, bei der der Torsionsstab der Wankstütze aus einer im Drehgestell durch Federkraft zentrierten Mittellage quer zur Fahrzeuglängsrichtung um einen begrenzten Hub nach beiden Seiten verschiebbar gelagert ist.
In der DE 10 2012 008 995 A1 ist ein Stabilisator aus einem FVK für die Radaufhängung eines Kraftfahrzeugs gezeigt, der mit an der Radaufhängung befestigten Längsarmen übereine kraft- und formschlüssige Verzahnung verbunden ist.
Aufgabe der Erfindung ist es, ein Drehgestell mit Wankstütze anzugeben, das besonders viel Bauraum für zusätzliche Einbauten aufweist.
Die Aufgabe wird gelöst durch ein Drehgestell für ein Schienenfahrzeug mit den Merkmalen des Anspruchs 1. Weiterbildungen der Erfindung sind in untergeordneten Ansprüchen angegeben.
Das erfindungsgemäße Drehgestell weist mindestens zwei Radsätze auf, von denen jeder Radsatz zwei mit einer Achse verbundene Räder umfasst. Der Radsatz ist in Achslagern gelagert, die über Achslenker gelenkig mit dem Rahmen verbunden sind, so dass die Achslenker mit den Achslagern und der Rahmen eine H-Form ausbilden. Der Rahmen weist mindestens zwei parallel zu den Achsen der Radsätze angeordnete Torsionsfedersysteme auf, die bereichsweise mit dem Rahmen fest verbunden sind. Weiterhin weisen die Torsionsfedersysteme endseitig Federhebelarme auf, so dass jeweils der nicht mit dem Torsionsfedersystem verbundene Endbereich des Federhebelarms auf das Achslager wirkt. In dem erfindungsgemäßen Drehgestell wird die Primärfederung demnach zumindest teilweise durch die mindestens zwei Torsionsfedersysteme übernommen. Das erfindungsgemäße Drehgestell weist außerdem mindestens eine Wankstütze auf, die einen Torsionsstab aufweist, der torsionsbeweglich im inneren Volumen mindestens eines der Torsionsfedersysteme angeordnet ist. Der Torsionsstab der Wankstütze ist demnach, ebenso wie das Torsionsfedersystem, quer zur Fahrtrichtung des Drehgestells angeordnet, das heißt, die Mittelachse des Torsionsstabs der Wankstütze ist ebenso zumindest annähernd parallel zu den Achsen der Radsätze angeordnet
Jedes der mindestens zwei Torsionsfedersysteme weist mindestens einen Torsionsstab auf, der als Hohlkörper ausgebildet. Im Sinne dieser Anmeldung kann ein Torsionsfedersystem genau einen Torsionsstab aufweisen, der im Bereich seiner halben Höhe fest im Rahmen gelagert ist und dessen beiden Enden jeweils einen Federhebel aufweisen. Ein Torsionsfedersystem kann ebenso zwei in axialer Richtung nacheinander angeordnete Torsionsstäbe aufweisen. Dann sind die zueinander weisenden Enden der Torsionsstäbe fest am Rahmen gelagert. Die anderen Enden der beiden Torsionsstäbe weisen jeweils einen Federhebel auf.
Aufgrund der Anordnung des Torsionsstabs der Wankstütze innerhalb des Torsionsfeder systems weist das erfindungsgemäße Drehgestell vorteilhaft einen großen Bauraum für Einbauten auf.
Besonders platzsparend können die Torsionsfedersysteme in entsprechenden Aussparungen innerhalb des Rahmens angeordnet werden.
In einer Ausführungsform des erfindungsgemäßen Drehgestells überragen die Endbereiche des Torsionsstabs der Wankstütze das Torsionsfedersystem beidseitig. An jedem der beiden Endbereiche des Torsionsstabs der Wankstütze ist mindestens eine Pendelstützenanordnung angeordnet, deren jeweils nicht mit dem Torsionsstab verbundenes Ende am Wagenkasten des Schienenfahrzeugs angelenkt ist, so dass die beiden Pendelstützenanordnungen an sich gegenüberliegenden Seiten des Wagenkastens mechanisch und energieübertragend angelenkt sind.
In einer alternativen Ausführungsform des erfindungsgemäßen Drehgestells wird der Torsions stab der Wankstütze am Torsionsfedersystem, welches zumindest Teil der Primärfederung des Schienenfahrzeugs ist, angelenkt.
Bevorzugt ist der Torsionsstab der Wankstütze dazu endseitig kraftschlüssig oder kraft- und formschlüssig mit dem Torsionsfedersystem zumindest mittelbar verbunden, beispielsweise über eine endseitige Pressverbindung oder eine endseitige Verzahnung zwischen dem Torsionsstab der Wankstütze und dem Torsionsfedersystem oder zwischen dem Torsionsstab der Wankstütze und einem mit dem Torsionsfedersystem verbundenen Übertragungselement. Vorteilhaft bietet diese Ausführungsform besonders viel Bauraum und benötigt besonders wenige Bauteile sowie keine zusätzlichen Anbauten am Wagenkasten.
Die Geometrie und das Material der Torsionsstäbe des Torsionsfedersystems und der Wankstütze können definiert an die zu erwartenden Lasten angepasst werden. Die Torsions stäbe können beispielsweise eine runde, ovale oder mehreckige Querschnittsaußenkontur aufweisen, die über die Länge, also entlang der Mittelachse, der Torsionsstäbe konstant oder variabel sein kann. Zur Masseeinsparung wird der Torsionsstab der Wankstütze bevorzugt ebenso als Hohlkörper ausgeführt wie der mindestens eine Torsionsstab eines Torsionsfeder systems. Die Wanddicke der als Hohlkörper ausgeführten Torsionsstäbe kann über die Länge konstant oder variabel ausgeführt sein. Bevorzugt ist die Wanddicke in mechanisch besonders beanspruchten Bereichen der Torsionsstäbe, beispielsweise in den Endbereichen, größer als in anderen Bereichen.
In einer weiteren Ausführungsform des erfindungsgemäßen Drehgestells besteht der Torsionsstab der Wankstütze zumindest überwiegend aus einem faserverstärkten Kunststoff. Bevorzugt ist zusätzlich zumindest der mindestens eine Torsionsstab der Torsionsfedersysteme des Drehgestells zumindest überwiegend aus einem faserverstärkten Kunststoff. Besonders bevorzugt ist zusätzlich zumindest der Rahmen und/oder die Federhebelarme des Drehgestells zumindest überwiegend aus einem faserverstärkten Kunststoff. Dabei bedeutet „zumindest überwiegend“, dass die genannten Bauteile durchaus auch als Hybridstruktur ausgeführt sein können, z. B. durch Einsatz eines metallischen Inserts zur Krafteinleitung, wobei die Hauptfunktion der Torsion durch den Faserverbundanteil ausgeführt wird.
Als Fasern sind alle Fasern, insbesondere Kohlenstoff- oder Glas- oder Aramidfasern oder eine Kombination aus den vorgenannten, geeignet, die den im Betrieb des Drehgestells auftretenden Belastungen gewachsen sind. Als Harz sind alle Harze, insbesondere Kunstharze, geeignet, die den im Betrieb des Drehgestells auftretenden Belastungen gewachsen sind. Diese sind vom Fachmann in Kenntnis des Erfindungsgedankens ohne Weiteres bestimmbar.
Mit anderen Worten zusammenfassend basiert die erfindungsgemäße Lösung darauf, dass der quer zur Fahrtrichtung des Drehgestells angeordnete Torsionsstab mindestens einer Wankstütze des Drehgestells in etwa konzentrisch innerhalb des mindestens einen Torsionsstabs eines Torsionsfedersystems, welches zur zumindest teilweisen Primärfederung des Drehgestells ausgebildet ist, torsionsbeweglich angeordnet ist
Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsformen beschränkt, sondern umfasst auch alle im Sinne der Erfindung gleich wirkenden Ausführungsformen. Ferner ist die Erfindung auch nicht auf die speziell beschriebenen Merkmalskombinationen beschränkt, sondern kann auch durch jede beliebige andere Kombination von bestimmten Merkmalen aller insgesamt offenbarten Einzelmerkmale definiert sein, sofern sich die Einzelmerkmale nicht gegenseitig ausschließen, oder eine spezifische Kombination von Einzelmerkmalen nicht explizit ausgeschlossen ist.
Die Erfindung wird im Folgenden durch Ausführungsbeispiele anhand von Figuren erläutert, ohne auf diese beschränkt zu sein. In den Figuren ist zwecks besserer Übersichtlichkeit bei mehrfach vorkommenden, gleichen Komponenten jeweils nur eine mit einem Bezugszeichen versehen.
Dabei zeigt die
Fig. 1 eine Draufsicht auf ein erfindungsgemäßes Drehgestell für ein Schienenfahrzeug,
Fig. 2 eine Seitenansicht in Blickrichtung Y eines erfindungsgemäßen Drehgestells mit am Wagenkasten (nicht dargestellt) angelenkter Wankstütze,
Fig 3 eine Schnittdarstellung entlang der Linie X-X eines erfindungsgemäßen Drehgestells mit am Wagenkasten (nicht dargestellt) angelenkter Wankstütze,
Fig. 3a das Detail E aus Figur 3,
Fig. 3b das Detail F aus Figur 3,
Fig. 4 eine Seitenansicht in Blickrichtung Y eines erfindungsgemäßen Drehgestells mit einer durch das Torsionsfedersystem angelenkten Wankstütze,
Fig. 5 eine Schnittdarstellung entlang der Linie X-X eines erfindungsgemäßen Drehgestells mit einer durch das Torsionsfedersystem angelenkten Wankstütze,
Fig. 5a das Detail E* aus Figur 5,
Fig. 6 eine Seitenansicht in Blickrichtung Y eines erfindungsgemäßen Drehgestells mit zwei jeweils durch ein Torsionsfedersystem angelenkten Wankstützen.
Fig. 6a eine Draufsicht auf einen Schnitt in der X-Y-Ebene des erfindungsgemäßen Drehgestells aus Figur 6.
Fig. 1 zeigt die Draufsicht auf ein Ausführungsbeispiel eines erfindungsgemäßen Drehgestells für ein Schienenfahrzeug. Das Drehgestell 1, 1*, 1** weist zwei in je zwei Achslagern 21 gelagerte Radsätze 2 mit zwei durch eine Achse 201 verbundenen Rädern 202 auf. Jedes Achslager 21 ist über einen Achslenker 22 mit dem Rahmen 3 gelenkig verbunden. Zur Federung der Radsätze 2 gegenüber dem Rahmen 3 weist das Drehgestell 1, 1*, 1** jeweils ein Torsionsfedersystem pro Radsatz 2 auf, das parallel zur Achse 201 des entsprechenden Radsatzes 2 im Rahmen 3 angeordnet und dadurch in der gezeigten Darstellung nicht sichtbar ist. Gleiches gilt für die m Torsionsfedersystem angeordnete Wankstütze. Die Anlenkung der Wankstütze ist nicht dargestellt. Am Torsionsfedersystem sind endseitig Federhebelarme 4 angeordnet, wobei jeder Federhebelarm 4 mit seinem einen Endbereich mittels eines Dämpfungskörpers, z. B. eine Gummiunterlage 41 , auf ein Achslager 21 wirkt. Als Verbindung zum Wagenkasten (nicht dargestellt) des Schienenfahrzeugs ist ein Drehzapfen 5 auf dem Rahmen 3 angeordnet; eine elastische Verbindung zwischen Wagenkasten und Drehgestell 1, 1*, 1** wird durch auf dem Rahmen 3 angeordnete Luftfedern 6 zur Sekundärfederung hergestellt.
Vorteilhaft weist das Drehgestell 1, 1*, 1** besonders viel Bauraum für weitere betriebsrelevante Einbauten, wie die Motoren 7, die Getriebe 8 und die Bremsen 9 auf.
Insbesondere der Rahmen 3, die Federhebelarme 4, die Torsionsfedersysteme und der Torsionsstab der Wankstütze können zumindest überwiegend aus einem FVK gefertigt sein.
Fig. 2 und Fig. 3 zeigen Ansichten eines erfindungsgemäßen Drehgestells analog dem in Fig. 1 , wobei die Wankstützen am Wagenkasten (nicht dargestellt) angelenkt sind.
Fig. 2 zeigt die Seitenansicht eines Drehgestells 1 in der in Fig. 1 angegebenen Blickrichtung Y. Wie oben beschrieben, weist das Drehgestell 1 in Achslagern 21 gelagerte Radsätze 2 auf. Jedes Achslager 21 ist über einen Achslenker 22 mit dem Rahmen 3 gelenkig verbunden. Auf jedes Achslager 21 wirkt ein Endbereich eines Federhebelarms 4 über einen Dämpfungskörper, z. B. eine Gummiunterlage 41. Der andere Endbereich des Federhebelarms 4 ist über eine, z. B. metallische, Übertragungswelle 10 mit dem Torsionsfedersystem (nicht sichtbar) verbunden. In einem der beiden Torsionsfedersysteme des Drehgestells 1 ist eine Wankstütze mit einem Torsionsstab 11 angeordnet, der endseitig über eine Pendelstützenanordnung, aufweisend einen einseitigen Hebel 111 und eine im Wesentlichen vertikale Pendelstütze 112 an gegenüberliegenden Seiten des Wagenkastens (nicht dargestellt) des Schienenfahrzeugs, angelenkt ist.
Fig. 3 zeigt die Darstellung eines erfindungsgemäßen Drehgestells 1 mit am Wagenkasten (nicht dargestellt) angelenkten Wankstützen im Schnitt entlang der in Fig. 1 angegebenen Linie X-X, der einem Längsschnitt entlang der Symmetrieachse desjenigen der beiden Torsionsfedersysteme 12 des Drehgestells 1 , in dem der Torsionsstab 11 der Wankstütze angeordnet ist, und damit auch des Torsionsstabs 11 der Wankstütze, entspricht. Fig. 3a zeigt eine vergrößerte Ansicht des Details E aus Fig. 3. Fig. 3b zeigt eine vergrößerte Ansicht des Details F aus Fig. 3.
Fig. 3 zeigt die platzsparende Anordnung des Torsionsfedersystems 12 innerhalb des Rahmens 3. Das Torsionsfedersystem 12 umfasst im dargestellten Ausführungsbeispiel zwei Torsions stäbe 1201 und 1202 mit gleicher Federkennlinie, die in axialer Richtung hintereinander angeordnet sind, wobei die Längsachsen, also die Achsen mit dem kleinsten Trägheitsmoment beider Torsionsstäbe 1201 und 1202, zusammenfallen. In den Torsionsstäben 1201 und 1202 ist jeweils endseitig ein, z. B. metallisches, Insert 13, 13‘ angeordnet, wie in den Fig. 3a, 3b genauer sichtbar. In dem Bereich des Torsionsstabs 1201, 1202, in dem das Insert 13, 13‘ anliegt, ist der Torsionsstab 1201, 1202 aufgedickt, d.h. die Wanddicke ist, z. B. durch zusätzliche Faserlagen, oder eine zusätzliche Bandage, die den Torsionsstab in diesem Bereich umschließt und vorzugsweise aus einem Metall gefertigt ist, vergrößert.
Die zueinander weisenden Endbereiche der Torsionsstäbe 1201 und 1202 umfassen ein gemeinsames Insert 13‘, d. h., die Torsionsstäbe 1201 und 1202 des Torsionsfedersystems 12 sind über ein gemeinsames Insert 13‘ miteinander verbunden. Das Insert 13‘ ist mit einem am Rahmen 3 befestigten Festlager 14 drehfest verbunden, wie in Fig. 3b näher dargestellt. Die Inserts 13 der anderen, äußeren Endbereiche der beiden Torsionsstäbe 1201 und 1202 sind fest mit der Übertragungswelle 10 verbunden, die drehbar in einem, im Rahmen 3 befestigten Radiallager 15 gelagert ist und mit dem Federhebelarm 4 in Verbindung steht, wie Fig. 3a beispielhaft für den Torsionsstab 1201 im Detail zeigt.
Die Torsionsstäbe 1201 und 1202, die Inserts 13, das Festlager 14 und die Übertragungswelle 10 des Drehgestells 1 sind so als im Wesentlichen zylindrische Hohlkörper ausgebildet, dass der Torsionsstab 11 der Wankstütze erfindungsgemäß durchgängig im inneren Volumen der genannten Elemente angeordnet ist, wobei seine Längsachse im Wesentlichen mit der Längsachse der Elemente zusammenfällt. Der Torsionsstab 11 der Wankstütze überragt mit seinen beiden Endbereichen jeweils die dort angeordnete Übertragungswelle 1Q wobei der Torsionsstab 11 der Wankstütze mittels einer Gleitlagerbuchse 16 durch die Übertragungswelle 10 geführt wird. Der Torsionsstab 11 der Wankstütze ist damit in beiden Endbereichen drehbar in der Übertragungswelle 10 gelagert. Im gezeigten Ausführungsbeispiel sind die Endbereiche des Torsionsstabs 11 der Wankstütze insbesondere dort, wo der Torsionsstab 11 mit der Gleitlagerbuchse 16 in Kontakt steht, aufgedickt; die Endbereiche können aber auch ohne Aufdickung ausgeführt sein. An den beiden, den jeweiligen Federhebelarm 4 überragenden Bereichen des Torsionsstabs 11 der Wankstütze, die als axialer Anschlag ausgebildet sind, ist der Hebel 111 angeordnet, der mit der Pendelstütze 112 verbunden ist, die am Wagenkasten (nicht dargestellt) des Schienenfahrzeugs angelenkt ist.
Fig. 4 und Fig. 5 zeigen Ansichten eines erfindungsgemäßen Drehgestells 1* analog dem in Fig. 1 , wobei das Drehgestell 1* genau eine Wankstütze aufweist, die an einem der beiden Torsions federsysteme angelenkt ist. Dieses Ausführungsbeispiel stellt eine Alternative zu dem in Fig. 2 und 3 gezeigten Ausführungsbeispiel eines Drehgestells 1 dar.
Fig. 4 gibt die Seitenansicht eines Drehgestells 1* in der in Fig. 1 angegebenen Blickrichtung Y wieder. Neben den bereits in Fig. 2 gekennzeichneten Komponenten weist das Drehgestell 1* im Gegensatz zum Drehgestell 1 keine Pendelstützenanordnung zur Anlenkung der Wankstütze 11 am Wagenkasten auf. Stattdessen ist der platzsparend innerhalb des Torsionsfedersystems angeordnete Torsionsstab 11 der Wankstütze bereichsweise drehfest mit der Übertragungswelle 10 verbunden, so dass die Wankstütze mittels der Übertragungswelle 10 am Torsions federsystem angelenkt ist.
Dies ist in Fig. 5, der Darstellung des erfindungsgemäßen Drehgestells 1* im Schnitt entlang der in Fig. 1 angegebenen Linie X-X, bzw. in Fig. 5a, die eine vergrößerte Ansicht des Details E* aus Fig. 5 zeigt, genauer zu sehen. Auch in diesem Ausführungsbeispiel umfasst das innerhalb des Rahmens 3 angeordnete Torsionsfedersystem 12 zwei Torsionsstäbe 1201 und 1202 mit gleicher Federkennlinie, die in axialer Richtung hintereinander angeordnet sind, wobei die Längsachsen, also die Achsen mit dem kleinsten Trägheitsmoment beider Torsionsstäbe 1201 und 1202, zusammenfallen. In den Torsionsstäben 1201 und 1202 ist jeweils endseitig ein, z. B. metallisches, Insert 13, 13‘ angeordnet. In dem Bereich des Torsionsstabs 1201 , 1202, in dem das Insert 13, 13‘ anliegt, ist der Torsionsstab 1201 , 1202 aufgedickt, d.h. die Wanddicke ist, z. B. durch zusätzliche Faserlagen oder Bandagen, vergrößert. Die Ausführung des Drehgestells 1* entspricht im Bereich der zueinander weisenden Endbereiche der Torsionsstäbe 1201 und 1202 der in Figur 3b dargestellten Ausführung des Drehgestells 1.
Ebenfalls wie bei dem Drehgestell 1 sind auch im Drehgestell 1* de Inserts 13 der anderen, äußeren Endbereiche der beiden Torsionsstäbe 1201 und 1202 fest mit der Übertragungswelle 10 verbunden, die drehbar in einem im Rahmen 3 befestigten Radiallager 15 gelagert ist und mit dem Federhebelarm 4 in Verbindung steht, wie Fig. 5a beispielhaft für den Torsionsstab 1201 im Detail zeigt.
Die Torsionsstäbe 1201 und 1202, die Inserts 13, das Festlager 14 und die Übertragungswelle 10 des Drehgestells 1* sind so als im Wesentlichen zylindrische Hohlkörper ausgebildet, dass der Torsionsstab 11 der Wankstütze erfindungsgemäß durchgängig im inneren Volumen der genannten Elemente angeordnet ist, wobei seine Längsachse mit der Längsachse der Elemente zusammenfällt, und wobei der Torsionsstab 11 die Übertragungswelle 10 nicht überragt. Die beiden im gezeigten Ausführungsbeispiel aufgedickten Endbereiche des Torsionsstabs 11 der Wankstütze weisen jeweils einen in axialer Richtung äußeren, zum Federhebelarm 4 weisenden Bereich auf, der kraftschlüssig oder kraft- und formschlüssig, z. B. über eine Verzahnung 17, drehfest mit der Übertragungswelle 10 verbunden ist. An die Verzahnung 17 schließt sich in axialer Richtung weiter innenliegend ein nichtverzahnter Bereich des Torsionsstabs 11 an, der beispielsweise mittels einer Gleitlagerbuchse 16 durch die Übertragungswelle 10 geführt wird. Sowohl das Torsionsfedersystem 12 als auch der Torsionsstab 11 der Wankstütze sind dementsprechend jeweils endseitig drehfest mit der jeweiligen Übertragungswelle 10 verbunden, so dass die Wankstütze mittels der Übertragungswelle 10 am Torsionsfedersystem 12 angelenkt ist.
Fig. 6 zeigt die Seitenansicht eines erfindungsgemäßen Drehgestells 1** in der in Fig. 1 angegebenen Blickrichtung Y, wobei sich das Drehgestell 1** nur insofern von dem Drehgestell 1* unterscheidet, als dass in jedem seiner beiden Torsionsfedersysteme (nicht sichtbar) der Torsionsstab 11 einer Wankstütze angeordnet ist, es also zwei Wankstützen aufweist, die jeweils mittels einer Übertragungswelle 10 an einem Torsionsfedersystem angelenkt sind.
In Fig. 6a ist die Draufsicht auf einen Schnitt in der Fig. 1 zu entnehmenden X-Y-Ebene des erfindungsgemäßen Drehgestells 1** mit dem Drehzapfen 5 dargestellt. In jedem, jeweils einem Radsatz 2 zugeordneten Torsionsfedersystem 12 ist jeweils ein Torsionsstab 11 einer Wankstütze angeordnet. Jedes Torsionsfedersystem 12 ist jeweils endseitig über ein Insert 13 mit einer zugehörigen, drehbar gelagerten Übertragungswelle 10 verbunden. Der Torsionsstab 11 der Wankstütze ist drehfest kraftschlüssig oder kraft- und formschlüssig mit beiden endseitig angeordneten Übertragungswellen 10 verbunden und mittels dieser an seinen beiden Endbereichen am Torsionsfedersystem 12 angelenkt. Das Drehgestell 1** verfügt vorteilhaft über besonders viel Bauraum zur Anordnung von Komponenten wie z. B. den Motoren 7, den Getrieben 8 und den Bremsen 9. Bezugszeichen
1 , 1*, 1** Drehgestell 2 Radsatz
201 Achse
202 Rad
21 Achslager
22 Achslenker
3 Rahmen
4 Federhebelarm 41 Gummiunterlage
5 Drehzapfen
6 Luftfeder
7 Motor
8 Getriebe
9 Bremse
10 Übertragungswelle 11 Torsionsstab der Wankstütze 111 Hebel 112 Pendelstütze 12 T orsionsfedersystem
1201 Torsionsstab des Torsionsfedersystems 1202 Torsionsstab des Torsionsfedersystems 13, 13‘ Insert
14 Festlager
15 Radiallager
16 Gleitlagerbuchse 17 Verzahnung

Claims

Patentansprüche
1. Drehgestell (1, 1*, 1**) für ein Schienenfahrzeug mit mindestens zwei in Achslagern (21) gelagerten Radsätzen (2) und wenigstens einem Rahmen (3), wobei jedes der zwei Achslager (21) eines Radsatzes (2) über einen Achslenker (22) mit dem Rahmen (3) gelenkig verbunden ist, aufweisend mindestens zwei parallel zu den Achsen (201) der Radsätze (2) angeordnete Torsionsfedersysteme (12), die jeweils mindestens einen Bereich aufweisen, in dem sie mit dem Rahmen (3) drehfest verbunden sind, wobei jedes Torsionsfedersystem (12) zwei Federhebelarme (4) derart aufweist, dass der nicht mit dem Torsionsfedersystem (12) verbundene Endbereich eines Federhebelarms (4) auf das Achslager (21) wirkt, dadurch gekennzeichnet, dass das Drehgestell (1, 1*, 1**) mindestens eine Wankstütze, aufweisend einen Torsionsstab (11), der torsionsbeweglich im inneren Volumen mindestens eines der Torsionsfedersysteme (12) angeordnet ist, aufweist.
2. Drehgestell (1, 1*, 1**) nach Anspruch 1, dadurch gekennzeichnet, dassdie Endbereiche des Torsionsstabs (11) der Wankstütze das Torsionsfedersystem (12) überragen und der Torsionsstab (11) der Wankstütze über jeweils eine endseitig angeordnete Pendelstützenanordnung (111, 112) an einander gegenüberliegenden Außenseiten des Wagenkastens des Schienenfahrzeugs angelenkt ist.
3. Drehgestell (1, 1*, 1**) nach Anspruch 1, dadurch gekennzeichnet, dass der Torsionsstab (11) der Wankstütze am Torsionsfedersystem (12) angelenkt ist.
4. Drehgestell (1, 1*, 1**) nach Anspruch 3, dadurch gekennzeichnet, dass der Torsionsstab (11) der Wankstütze mit dem Torsionsfedersystem (12) zumindest mittelbar in seinen beiden Endbereichen über einen Kraftschluss oder Kraft- und Formschluss verbunden ist.
5. Drehgestell (1, 1*, 1**) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Torsionsstab (11) der Wankstütze zumindest überwiegend aus einem faserverstärkten Kunststoff gefertigt ist.
6. Drehgestell (1 , 1*, 1**) nach Anspruch 5, dadurch gekennzeichnet, dass der mindestens eine Torsionsstab (1201, 1202) jedes Torsionsfedersystems (12) oder der Rahmen (3) oder die Federhebelarme (4) oder eine Kombination aus den vorgenannten zumindest überwiegend aus einem faserverstärkten Kunststoff gefertigt ist. Drehgestell (1, 1*, 1**) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass in den beiden Endbereichen und im Bereich der halben Höhe des Torsionsfedersystems (12) ein Insert (13, 13‘) drehtest mit dem Torsionsfedersystem (12) verbunden ist, wobei das Insert (13‘) im Bereich der halben Höhe des Torsionsfedersystems (12) drehtest in einem Festlager (14) gelagert ist, welches im Rahmen (3) angeordnet ist, und wobei das jeweils eine Insert (13) in einem der beiden Endbereiche des Torsionsfedersystems (12) drehtest mit einer Übertragungswelle (10) verbunden ist, die ihrerseits drehbar in einem im Rahmen (3) angeordneten Radiallager (15) gelagert ist und mit dem zugehörigen Federhebelarm (4) in Verbindung steht, und wobei zumindest das Torsionsfedersystem (12), die Inserts (13, 13‘), das Festlager (14) und die Übertragungswelle (10) so als Hohlkörper ausgebildet sind, dass der Torsionsstab (11) der Wankstütze durchgängig in ihrem inneren Volumen angeordnet ist, wobei der Torsionsstab (11) der Wankstütze jeweils in seinen Endbereichen mittels einer Pressverbindung oder Verzahnung drehtest mit der Übertragungswelle (10) verbunden ist, sodass die Wankstütze mittels der Übertragungswelle (10) am Torsionsfedersystem (12) angelenkt ist.
PCT/EP2021/058170 2020-04-09 2021-03-29 Drehgestell für ein schienenfahrzeug mit wankstütze WO2021204583A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022561994A JP7483043B2 (ja) 2020-04-09 2021-03-29 アンチローリング装置を備えた、レール車両のための台車
EP21716655.2A EP4132833A1 (de) 2020-04-09 2021-03-29 Drehgestell für ein schienenfahrzeug mit wankstütze
US17/995,769 US20230166777A1 (en) 2020-04-09 2021-03-29 Bogie for a railway vehicle with roll stabiliser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020109930.4 2020-04-09
DE102020109930.4A DE102020109930A1 (de) 2020-04-09 2020-04-09 Drehgestell für ein Schienenfahrzeug mit Wankstütze

Publications (1)

Publication Number Publication Date
WO2021204583A1 true WO2021204583A1 (de) 2021-10-14

Family

ID=75396738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/058170 WO2021204583A1 (de) 2020-04-09 2021-03-29 Drehgestell für ein schienenfahrzeug mit wankstütze

Country Status (5)

Country Link
US (1) US20230166777A1 (de)
EP (1) EP4132833A1 (de)
JP (1) JP7483043B2 (de)
DE (1) DE102020109930A1 (de)
WO (1) WO2021204583A1 (de)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE735080C (de) 1937-06-19 1943-05-06 Christoph & Unmack Ag Drehgestell fuer Schienenfahrzeuge
DE838897C (de) 1946-02-13 1952-05-12 Sig Schweiz Industrieges Drehgestell fuer Schienenfahrzeuge mit am gefederten Drehgestellrahmen befestigten Motoren
DE2841769A1 (de) 1978-09-26 1980-04-03 Daimler Benz Ag Spurgebundenes fahrzeug mit neigbarem fahrzeugaufbau
DE2952182A1 (de) 1979-12-22 1981-07-02 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Drehgestell fuer schienenfahrzeuge
CH677763A5 (en) * 1988-12-12 1991-06-28 Inventio Ag Anti-rocking suspension for rail vehicle - has torsion bar end levers acting against opposite ends of damper
US5222442A (en) * 1992-07-30 1993-06-29 Trans-Dyne Incorporated Torsion bar railway truck
DE4410970C1 (de) 1994-03-29 1995-07-20 Talbot Waggonfab Wankstütze für Schienenfahrzeuge mit einer Querneigeeinrichtung
US20120279416A1 (en) 2011-04-07 2012-11-08 Kawasaki Jukogyo Kabushiki Kaisha Railcar bogie
CN203005448U (zh) * 2012-12-28 2013-06-19 南车青岛四方机车车辆股份有限公司 无摇枕城际轨道车辆转向架
DE102012008995A1 (de) 2012-03-02 2013-09-05 Audi Ag Stabilisator für ein Kraftfahrzeug
CN205059624U (zh) * 2015-11-02 2016-03-02 株洲时代新材料科技股份有限公司 轨道交通用复合抗侧滚扭杆系统
CN106627635A (zh) * 2015-11-02 2017-05-10 株洲时代新材料科技股份有限公司 一种复合材料车辆抗侧滚扭杆及其制备方式
DE102016123784A1 (de) 2016-12-08 2018-06-14 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Drehgestell eines Schienenfahrzeugs mit mindestens zwei in Achslagern gelagerten Radsätzen und wenigstens einem Querträger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117730A (ja) * 1984-07-02 1986-01-25 Nhk Spring Co Ltd ト−シヨンバ−
DE4311521C1 (de) 1993-04-07 1994-04-21 Talbot Waggonfab Wankstütze für Schienenfahrzeuge
JPH0924826A (ja) * 1995-07-14 1997-01-28 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の車体支持装置
DE102011085029A1 (de) * 2011-10-21 2013-04-25 Luhn & Pulvermacher - Dittmann & Neuhaus GmbH Stabilisator in Faserkunststoffverbund und Verfahren zu dessen Herstellung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE735080C (de) 1937-06-19 1943-05-06 Christoph & Unmack Ag Drehgestell fuer Schienenfahrzeuge
DE838897C (de) 1946-02-13 1952-05-12 Sig Schweiz Industrieges Drehgestell fuer Schienenfahrzeuge mit am gefederten Drehgestellrahmen befestigten Motoren
DE2841769A1 (de) 1978-09-26 1980-04-03 Daimler Benz Ag Spurgebundenes fahrzeug mit neigbarem fahrzeugaufbau
DE2952182A1 (de) 1979-12-22 1981-07-02 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Drehgestell fuer schienenfahrzeuge
CH677763A5 (en) * 1988-12-12 1991-06-28 Inventio Ag Anti-rocking suspension for rail vehicle - has torsion bar end levers acting against opposite ends of damper
US5222442A (en) * 1992-07-30 1993-06-29 Trans-Dyne Incorporated Torsion bar railway truck
DE4410970C1 (de) 1994-03-29 1995-07-20 Talbot Waggonfab Wankstütze für Schienenfahrzeuge mit einer Querneigeeinrichtung
US20120279416A1 (en) 2011-04-07 2012-11-08 Kawasaki Jukogyo Kabushiki Kaisha Railcar bogie
DE102012008995A1 (de) 2012-03-02 2013-09-05 Audi Ag Stabilisator für ein Kraftfahrzeug
CN203005448U (zh) * 2012-12-28 2013-06-19 南车青岛四方机车车辆股份有限公司 无摇枕城际轨道车辆转向架
CN205059624U (zh) * 2015-11-02 2016-03-02 株洲时代新材料科技股份有限公司 轨道交通用复合抗侧滚扭杆系统
CN106627635A (zh) * 2015-11-02 2017-05-10 株洲时代新材料科技股份有限公司 一种复合材料车辆抗侧滚扭杆及其制备方式
DE102016123784A1 (de) 2016-12-08 2018-06-14 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Drehgestell eines Schienenfahrzeugs mit mindestens zwei in Achslagern gelagerten Radsätzen und wenigstens einem Querträger

Also Published As

Publication number Publication date
JP7483043B2 (ja) 2024-05-14
DE102020109930A1 (de) 2021-10-14
JP2023523699A (ja) 2023-06-07
US20230166777A1 (en) 2023-06-01
EP4132833A1 (de) 2023-02-15

Similar Documents

Publication Publication Date Title
EP3551519B1 (de) Drehgestell eines schienenfahrzeugs mit mindestens zwei in achslagern gelagerten radsätzen und wenigstens einem querträger
DE102013002713B4 (de) Drehstabfederanordnung für eine Radaufhängung eines Kraftfahrzeugs
DE102014205632A1 (de) Einzelradaufhängung sowie Hinterachse mit Einzelradaufhängungen für ein Fahrzeug und entsprechend ausgestattetes Fahrzeug
DE102017222487B3 (de) Mehrlenkerachse für ein Fahrzeug
DE2617896A1 (de) Drehgestell fuer eisenbahnwagen
WO2011072652A1 (de) Blattfederanordnung
EP2454139A1 (de) Fahrwerkrahmen für schienenfahrzeuge
EP0547188B1 (de) Drehgestell für schnellauffähige schienenfahrzeuge
DE102017215630A1 (de) Einzelradaufhängung eines zweispurigen Fahrzeugs mit einem radführenden Quer-Blattfederelement
DE102015212743B4 (de) Radaufhängung für ein Kraftfahrzeug
DE102014205635A1 (de) Einzelradaufhängung sowie Hinterachse mit Einzelradaufhängungen für ein Fahrzeug und entsprechend ausgestattetes Fahrzeug
DE102018201435A1 (de) Achsaufhängung
EP2386454B1 (de) Drehgestell
EP1897777B1 (de) Drehgestell
DE102017217598A1 (de) Federbaugruppe
WO2009144315A1 (de) Drehgestell mit zweigeteiltem rahmen
WO2008101903A1 (de) Fahrzeug mit einem jakobs-drehgestell und einer wankstütze
WO2021204583A1 (de) Drehgestell für ein schienenfahrzeug mit wankstütze
WO2022069287A1 (de) Fahrzeugachse und fahrzeug
DE202014101432U1 (de) Einzelradaufhängung sowie Hinterachse mit Einzelradaufhängungen für ein Fahrzeug und entsprechend ausgestattetes Fahrzeug
DE102017220238A1 (de) Achsaufhängung
DE102017211277A1 (de) Radaufhängung für ein Kraftfahrzeug
DE2741252C3 (de) Radsatzaufhängung für zweiachsige Schienenfahrzeuge
DE4118366C2 (de) Drehgestell
DE102020133694B3 (de) Anordnung aus einem Kinematikpaket und einem Federhebel für ein Drehgestell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21716655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021716655

Country of ref document: EP

Effective date: 20221109