WO2021203771A1 - 一种用于显示装置的透明光源系统 - Google Patents

一种用于显示装置的透明光源系统 Download PDF

Info

Publication number
WO2021203771A1
WO2021203771A1 PCT/CN2021/000074 CN2021000074W WO2021203771A1 WO 2021203771 A1 WO2021203771 A1 WO 2021203771A1 CN 2021000074 W CN2021000074 W CN 2021000074W WO 2021203771 A1 WO2021203771 A1 WO 2021203771A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
light
strip
display device
light source
Prior art date
Application number
PCT/CN2021/000074
Other languages
English (en)
French (fr)
Inventor
武鹏
陈玉雷
张蕊蕊
李同
Original Assignee
马鞍山晶智科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马鞍山晶智科技有限公司 filed Critical 马鞍山晶智科技有限公司
Priority to JP2022560014A priority Critical patent/JP7493838B2/ja
Priority to US17/916,587 priority patent/US11899236B2/en
Publication of WO2021203771A1 publication Critical patent/WO2021203771A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present invention relates to a light source system for a display device, in particular to a transparent light source system for a display device.
  • the transparent light source system is a light source system suitable for liquid crystal display devices; its principle is as follows: when the ambient light is strong, the ambient light passes through the transparent light source system, enters the display device, and then reflects to the human eye, and makes the light carry display information at this time ; When the ambient light is weak, the transparent light source emits light by itself, enters the display device and is reflected in the human eye, so that the human eye can receive enough energy light to recognize the display information.
  • This technology can effectively improve energy utilization and meet the needs of energy-saving scenarios .
  • Patent US20180052274A1 discloses a thin film light guide film, as shown in FIG. 1.
  • the microstructure is made on the light guide film, so that the light passes through the microstructure and destroys the total reflection condition of its propagation, and then exits on the other side.
  • the light guide film of this structure is laminated to form a thin film light guide film.
  • Each layer of light guide film is a single individual. This kind of structure has high cost, complicated process, and low efficiency.
  • the light guide film structure disclosed in Patent CN 109031512 A is a trapezoidal structure, as shown in FIG. 2.
  • the light guide film and the light guide plate are bonded together with an adhesive layer, which is equivalent to an inverted trapezoid structure on the surface of the light guide plate. After the light enters the side of the inverted trapezoid structure and diverges and is totally reflected, the light exits on the bottom surface of the trapezoid.
  • This kind of light guide film structure requires a glue layer to bond the two layers together, and the flatness of the glue layer will greatly affect the light emitting effect, and thus cause problems such as lower contrast and lower brightness.
  • Patent CN 108519637 A discloses the production of microstructures on a light guide plate, as shown in FIG. 3.
  • the shape of the microstructure is a truncated cone, and the light irradiates the surface of the microstructure, and the light is refracted on the surface.
  • This kind of structure has the phenomenon of light leakage on the back side. Although the light leakage on the back side can be suppressed by laminating a transflective film on the back side, it will also reduce the light transmittance.
  • the transflective structure should be opposite to the microstructure on the opposite side. Alignment, so the process is complicated and the cost is high.
  • the technical problem to be solved by the present invention is to provide a transparent light source system for a display device that is simple to manufacture, low in cost, and high in light output efficiency.
  • a transparent light source system for a display device including a light source and a light guide plate, the light guide plate includes a light incident surface, an upper surface, and a light source opposite to the light source.
  • the lower surface and the side surface opposite to the light incident surface, the upper surface and the lower surface are parallel to each other, the upper surface is provided with a light guide outer film, and the upper surface is provided with A first optical microstructure capable of causing light transmitted in the light guide plate to be emitted from the upper surface, and the inner surface of the light guide outer film is provided with a first optical microstructure opposite to the first optical microstructure
  • the second optical microstructure, the second optical microstructure can make the light emitted by the first optical microstructure emerge from the outer surface of the light guide outer film.
  • a light guide inner film is arranged between the light guide plate and the light guide outer film, the lower surface of the light guide inner film is attached to the upper surface of the light guide plate, and the first optical The microstructure is arranged on the upper surface of the light guide inner film.
  • the outer surface of the light guide outer film is parallel to the lower surface of the light guide inner film.
  • the first optical microstructure is a plurality of first strip-shaped independent structures arranged side by side along the light transmission direction, the width of the first strip-shaped independent structure is smaller than the minimum pixel size of the display device, and the second The optical microstructure is a plurality of second strip-shaped independent structures arranged side by side along the light transmission direction, and the width of the second strip-shaped independent structures is smaller than the minimum size of the display device.
  • the first strip-shaped independent structure and the second strip-shaped independent structure correspondingly cooperate to form a plurality of parallel strip-shaped independent structure units, and the strip-shaped independent structure units enable the light transmitted in the light guide plate Eject from the outer surface of the light guide outer film.
  • the strip-shaped independent structure unit is composed of a first strip-shaped independent structure and a second strip-shaped independent structure correspondingly matched.
  • the strip-shaped independent structure unit is composed of a first strip-shaped independent structure and two second strip-shaped independent structures correspondingly matched.
  • the second strip-shaped independent structure may be continuously distributed along the light transmission direction, and the first strip-shaped independent structure may be discontinuously distributed along the light transmission direction. It may also be that the first strip-shaped independent structure and the second strip-shaped independent structure are both discontinuously distributed along the light transmission direction.
  • the cross-sections of the first strip-shaped independent structure and the second strip-shaped independent structure may be convex arcs corresponding to arcs.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex arcs that are opposite to the triangles.
  • the cross-sections of the first strip-shaped independent structure and the second strip-shaped independent structure may be convex arcs that are opposite to the polygons.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex arcs opposite to trapezoids.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex triangles opposite to the triangles.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex triangles and corresponding arcs opposed to each other.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex triangles and corresponding polygons opposite to each other.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex triangles opposite to the trapezoids.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex trapezoids and opposite triangles.
  • the first strip-shaped independent shrinkage structure and the second strip-shaped independent cross-sections may be convex trapezoids and corresponding arcs opposite to each other.
  • the first strip-shaped independent shrinkage structure and the second strip-shaped independent cross-sections may be convex trapezoids and corresponding polygons opposite to each other.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex trapezoids opposite to the trapezoids.
  • the first strip-shaped independent structure and the second strip-shaped independent cross-sections may be convex and opposed in complementary shapes.
  • the first strip-shaped independent structure and the second strip-shaped independent structure are glued into a whole by optical glue.
  • the side surface of the light guide plate may be provided with a reflective surface.
  • An auxiliary light source may also be provided outside the side surface.
  • the optical microstructure may also be a discrete two-dimensional structure arranged along the light propagation direction, and the two-dimensional optical microstructure may be uniformly distributed or non-uniformly distributed.
  • the cross-section of the two-dimensional structure includes, but is not limited to, a square, a hexagon, a circle, and a cone.
  • a display device using the above-mentioned transparent light source system is provided with a display device on the outside of the light guide outer film.
  • the outer side of the lower surface of the light guide plate is provided with a reflecting plate.
  • the present invention has the advantages of good light output unidirectionality, can ensure that there is only one direction of light output, the optical film is formed at one time, the process is less difficult, and the product yield is high; the structure of the light guide inner film can be combined with the light guide plate , The product can realize integrated molding, the process flow is simple, and the cost is low.
  • Figure 1 is a schematic diagram of the structure disclosed in the US patent US20180052274A1;
  • Figure 2 is a schematic diagram of the structure disclosed in Chinese Patent CN 109031512A;
  • Figure 3 is a schematic diagram of the structure disclosed in Chinese Patent CN 108519637 A;
  • Figure 4 (a) is a schematic diagram of a planar structure of the first embodiment of the present invention.
  • Fig. 4(b) is a schematic diagram of the three-dimensional structure of the first embodiment of the present invention.
  • FIG. 5(a) is a schematic structural diagram of Example 1 of Embodiment 1 of the present invention.
  • FIG. 5(b) is a schematic structural diagram of Example 2 of Embodiment 1 of the present invention.
  • Example 3 of Embodiment 1 of the present invention is a schematic structural diagram of Example 3 of Embodiment 1 of the present invention.
  • Figure 5(d) is a schematic structural diagram of Example 4 of Embodiment 1 of the present invention.
  • FIG. 5(e) is a schematic structural diagram of Example 5 of Embodiment 1 of the present invention.
  • Example 6 of Embodiment 1 of the present invention is a schematic structural diagram of Example 6 of Embodiment 1 of the present invention.
  • Example 7 of Embodiment 1 of the present invention is a schematic structural diagram of Example 7 of Embodiment 1 of the present invention.
  • Example 8 of Embodiment 1 of the present invention is a schematic structural diagram of Example 8 of Embodiment 1 of the present invention.
  • FIG. 5(i) is a schematic structural diagram of Example 9 of Embodiment 1 of the present invention.
  • Figure 5(j) is a schematic structural diagram of Example 10 of Embodiment 1 of the present invention.
  • Figure 5(k) is a schematic structural diagram of Example 11 of Embodiment 1 of the present invention.
  • Figure 5(l) is a schematic structural diagram of Example 12 of Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the combination of the light guide inner film and the light guide outer film of the first embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 3 of the present invention.
  • Fig. 9(a) is a schematic diagram of a unidirectional band reflected light in Example 1 of the fourth embodiment of the present invention.
  • FIG. 9(b) is a schematic diagram of bidirectional incident light in Example 2 of Embodiment 4 of the present invention.
  • Figure 10 (a) is a schematic structural diagram of Example 1 of Embodiment 5 of the present invention.
  • FIG. 10(b) is a schematic structural diagram of Example 2 of Embodiment 5 of the present invention.
  • FIG. 10(c) is a schematic structural diagram of Example 3 of Embodiment 5 of the present invention.
  • 11(a) is a schematic diagram of the final light observation effect of a reflective display device using the transparent light source system of the present invention.
  • 11(b) is a schematic diagram of the final light observation effect of the transparent display device using the transparent light source system of the present invention.
  • FIG. 11(c) is a schematic diagram of the final light observation effect of the transmissive display device using the transparent light source system of the present invention.
  • a transparent light source system for a display device includes a light source 1 and a light guide plate 2.
  • the light guide plate 2 is a parallel flat plate and includes a light incident surface 21, which is opposite to the light source 1.
  • the upper surface 22 and the lower surface 23 are parallel to each other.
  • the side surface 24 can be a slope or parallel to the light incident surface 21.
  • the upper surface 22 A light guide inner film 4 is provided, the lower surface 41 of the light guide inner film 4 is bonded to the upper surface 22 of the light guide plate 2, and the upper surface 42 of the light guide inner film 4 is provided with a first optical microstructure 43, which enables The light transmitted in 2 is emitted from the upper surface 22 of the light guide plate 2.
  • the first optical microstructure 43 is a plurality of first strip-shaped independent structures arranged side by side along the light transmission direction, and is arranged on the light guide inner film 4 through UV molding.
  • the width of the first strip-shaped independent structure 43 is smaller than the minimum pixel size of the display device, the distance 441 between adjacent first strip-shaped independent structures is greater than twice the width of the first strip-shaped independent structure 43, and the light is guided
  • a light guide outer film 5 is provided on the outside of the inner film 4, the outer surface 51 of the light guide outer film 5 is parallel to the lower surface 41 of the light guide inner film 4, and the inner surface 52 of the light guide outer film 5 is provided with the first optical microstructure 43 opposite
  • the second optical microstructure 53 of the second optical microstructure 53 can make the light emitted by the first optical microstructure 43 emerge from the outer surface 51 of the light guide outer film 5.
  • the second optical microstructure 53 is a plurality of second strip-shaped independent structures arranged side by side along the light transmission direction.
  • the second strip-shaped independent structure is arranged on the inner surface 52 of the outer film 5 by UV molding.
  • the width of the second strip-shaped independent structure is smaller than the minimum size of the display device. Pixel size.
  • the material of the light guide inner film 4 and the light guide outer film 5 is polyethylene terephthalate, and polycarbonate, polymethyl methacrylate or a mixture of transparent materials can also be used.
  • the material of the first optical microstructure 43 and the second optical microstructure 53 is acrylic resin, it can also be epoxy resin or silicon rubber, and it can also be made of polycarbonate, polymethyl methacrylate and other materials. .
  • the material of the light guide plate 2 can be polymethyl methacrylate, polycarbonate, glass and the like.
  • the cross-section of the first strip-shaped independent structure is a convex arc shape
  • the cross-section of the second strip-shaped independent structure is a convex arc shape
  • the light source 1 emits light into the light guide plate 2. According to the Fresnel reflection law, when the light travels in a parallel medium, it forms total reflection at the interface with the air. For example, the light 4010 passes through the first (42) and second interface ( 23) After reflection, it will continue to propagate in the light guide plate 2 (the refractive index of the light guide inner film 4 can be the same as or different from that of the light guide plate 2, which does not affect the condition that the light is totally reflected in the medium).
  • the interface condition does not meet the total reflection condition, the light will exit the surface 44 of the first optical microstructure 43 and enter the outside
  • the second optical microstructure 53 of the film, in which the contour 54 of the strip-shaped second optical microstructure 53 is an arc-shaped structure, and its contour should satisfy that the incident angle of the light irradiated on the surface at the interface is greater than or equal to the total reflection angle.
  • the light that reaches the contour 54 is refracted out of the second optical microstructure 53 and emits light on the outer surface 51 (such as light 4011, 4021, and 4051); if the light does not enter the first optical microstructure 43 during the propagation process, it will be on the light guide plate 2 continues to propagate (such as light 4030, 4040) until it irradiates the side surface 24 and exits the light guide plate 2. All light will only be emitted from the outer surface 51 of the light guide outer film 5.
  • the first optical microstructure 43 and the second optical microstructure 53 are made on the light guide inner film 4 and the light guide outer film 5, which have a higher refractive index than the light guide plate, both on the light guide plate 2 and the first optical microstructure.
  • the light guide inner film 4 and the light guide plate 2 are generally bonded with optical glue.
  • the arrangement pitch of the first strip-shaped independent structure and the second strip-shaped independent structure may be uniform or uneven.
  • the light exit surface (outer surface 51) of the light guide outer film 5 can be coated with optical glue, and the entire film can be directly attached to the liquid crystal panel to further reduce the optical interface.
  • the first strip-shaped independent structure and the second strip-shaped independent structure of the present invention correspondingly cooperate to form a plurality of parallel strip-shaped independent structure units, which can be formed by a first strip-shaped independent structure and a second strip-shaped independent structure correspondingly cooperated, It can also be composed of a first strip-shaped independent structure and two second strip-shaped independent structures correspondingly matched.
  • Example 1 The triangle-to-triangle as shown in Figure 5(a);
  • Example 2 The triangle-to-arc shape as shown in Figure 5(b);
  • Example 3 The triangle pair polygon shown in Figure 5(c);
  • Example 7 The trapezoid-to-polygon shown in Figure 5(g);
  • Example 8 Trapezoid-to-trapezoid as shown in Figure 5(h);
  • Example 9 is paired with the reverse structure of Example 8 as shown in Figure 5(i);
  • Example 10 The arc to the triangle as shown in Figure 5(j);
  • Example 11 The arc against the polygon as shown in Figure 5(k);
  • Example 12 is shown in Figure 5 (l) as shown in the arc vs. trapezoid.
  • the surface 44 of the first optical microstructure 43 that enters the outer film and the second optical microstructure 53 can also be paired with the light guide inner film 4 and the light guide outer film 5 with optical glue to form The light guide inner film 4 and the light guide outer film 5 are integrated without an optical interface.
  • Embodiment 2 As shown in FIG. 7, the first optical microstructure 43 on the light guide inner film 4 is directly molded on the light guide plate 2, or a thicker light guide inner film substrate is directly used as the light guide plate, thereby reducing
  • the interface between the light guide inner film 43 and the light guide plate 2 in the first embodiment saves materials and reduces interface loss.
  • a material with good light permeability must be selected, otherwise the optical path in the medium will be too long and the optical loss will be too large.
  • the third embodiment as shown in Figure 8, the second optical microstructure 53 on the light guide outer film 5 in the first embodiment can also be made into a continuous second strip-shaped independent structure, instead of Figures 4 to 7 The discontinuous distribution pattern shown in.
  • a reflective surface 25 is provided on the side surface 24 of the light guide plate 2.
  • the second optical microstructure 53 of the light guide outer film 5 is refracted out of the light exit surface 51, such as the light rays 9010 and 9020 in the same process
  • the description of the previous embodiment 1 is the same, but the direction is opposite. It can also be shown in Example 2 shown in Figure 9(b).
  • An auxiliary light source is provided on the side 24 of the light guide plate 2.
  • the first strip-shaped independent structure and the second strip-shaped independent structure are arranged symmetrically, and the principle and process of light refraction Same as the previous description.
  • Embodiment 5 As shown in FIG. 10, the cooperation of the first optical microstructure 43 on the light guiding inner film 4 and the second optical microstructure 53 on the light guiding outer film 5 in the above embodiment can also be a two-dimensional structure .
  • the first example is the tetragonal fit shown in Figure 10(a); the second example is the hexagonal fit shown in Figure 10(b); the third example is the cone fit shown in Figure 10(c).
  • the distribution of optical microstructures can be uniform or non-uniform.
  • the strip-shaped or two-dimensional optical microstructures can be made by thermocompression molding, injection molding or laser etching; the array arrangement can be sparsely arranged near the light source side, densely arranged away from the light source side, or even Arrangement; the material is acrylic resin, epoxy resin, polycarbonate material, etc. can also be used, the refractive index of which is consistent with the refractive index of the light guide plate, or can be less than the refractive index of the light guide plate material.
  • Embodiment 6 The present invention provides an application mode of a transparent light source.
  • Example 1 As shown in Figure 11(a), it includes a display device 60 and the above-mentioned transparent light source.
  • the transparent light source is arranged on the display side (above) of the display device 60.
  • the outer surface 51 of the light guide outer film 5 and the display device in the transparent light source 60 relative settings.
  • the display device 60 is a reflective display device, the inside of which is a liquid crystal layer, and the bottom surface of which is a reflective surface.
  • the light emitted from the transparent light source enters the display device 60 and enters the display device 60. After the light passes through the liquid crystal and is reflected on the lower surface, it returns to the transparent light source.
  • the light will penetrate the light guide plate 2, the light guide inner film 4, and The light guide outer film 5 is observed by the observer, as shown by light 93. Since the outer surface 51 of the light guide outer film 5 is flat, the transparent light source can be integrally attached to the display device 60 to reduce optical interface loss and eliminate physical friction between different film layers. The light output angle of the transparent light source can be customized according to the requirements of the display device 60 by changing the contours of the optical microstructures on the light guide inner film 4 and the light guide outer film 5.
  • Example 2 As shown in Figure 11(b), it includes a transparent display device 70, items to be displayed and the above-mentioned transparent light source.
  • the transparent light source is arranged below the display side of the transparent display device 70, and the outer surface of the light-guiding outer film 5 in the transparent light source 51 is arranged opposite to the transparent display device 70, and the items to be displayed are arranged under the transparent light source.
  • the interior of the transparent display device 70 is a liquid crystal layer, and the upper and lower surfaces are transparent surfaces.
  • the light emitted from the transparent light source enters the transparent display device 70 and enters the transparent display device 70. After the light passes through the liquid crystal, it enters the observer's observation range, as shown by the light 94.
  • the light emitted or reflected by the item to be displayed irradiates the transparent light source, and will penetrate the light guide inner film 4, the light guide outer film 5, the light guide plate 2 and the transparent display device 70 and enter the observer's observation range, as shown by the light 95 . Therefore, while observing the information of the transparent display device 70, the observer can observe the items to be displayed through the transparent display device 70 and the transparent light source. Since the outer surface 51 of the light guide outer film 5 is flat, the transparent light source can be integrally attached to the display device 70 to reduce optical interface loss and eliminate physical friction between different film layers.
  • the light output angle of the transparent light source can be customized by changing the contours of the optical microstructures on the light guide inner film 4 and the light guide outer film 5 according to the requirements of the display device 70.
  • Example 3 As shown in Figure 11(c), it includes a transmissive display device 80, a reflective plate 81 and the above-mentioned transparent light source.
  • the transparent light source is arranged under the transmissive display device 80, and the outer surface of the light guide outer film 5 in the transparent light source 51 is arranged opposite to the transmissive display device 80, the reflecting plate 81 is arranged on the side of the light guide plate 2 in the transparent light source, and the reflecting plate 81 and the display device 80 sandwich the transparent light source.
  • the inside of the transmissive display device 80 is a liquid crystal layer.
  • the light emitted by the above-mentioned transparent light source is incident on the transmissive display device 80, and after passing through the liquid crystal, the light enters the observer's observation range, as shown by the light 96.
  • the reflective plate 81 reflects back the light leaking from under the light guide plate 2 due to the reflection of the optical interface to improve the optical efficiency of the module. Since the outer surface 51 of the light guide outer film 5 is flat, the transparent light source can be integrally attached to the display device 80 to reduce optical interface loss and eliminate physical friction between different film layers.
  • the light output angle of the transparent light source can be customized according to the requirements of the display device 80 by changing the contours of the optical microstructures on the light guide inner film 4 and the light guide outer film 5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)

Abstract

一种用于显示装置的透明光源系统,包括光源(1)和导光板(2),导光板(2)包括与光源(1)相对的入光面(21)、上表面(22)、下表面(23)和与入光面(21)相对的侧表面(24),上表面(22)与下表面(23)相互平行,特点是上表面(22)外设置有导光外膜(5),上表面(22)上设置有能够使在导光板(2)内传输的光线从上表面(22)射出的第一光学微结构(43),导光外膜(5)的内表面(52)上设置有与第一光学微结构(43)相对的第二光学微结构(53),第二光学微结构(53)能够使第一光学微结构(43)射出的光线从导光外膜(5)的外表面(51)射出,优点在于出光单向性好,可以保证只有一个方向出光,光学薄膜一次成型,工艺难度小,产品良率高;此结构导光内膜(4)可以和导光板(2)合并,产品能够实现一体化成型,工艺流程简单,成本低。

Description

一种用于显示装置的透明光源系统 技术领域
本发明涉及一种用于显示装置的光源系统,尤其是涉及一种用于显示装置的透明光源系统。
背景技术
透明光源系统是适用于液晶显示装置的光源系统;其原理如下:当环境光较强时,环境光线透过透明光源系统,进入显示装置,之后反射到人眼中,并使此时光线携带显示信息;当环境光较弱时,透明光源自身发出光线,进入显示装置后反射到人眼中,使人眼接受到足够能量的光线以识别显示信息,此技术能够有效提高能源利用率,符合节能场景需求。
专利US20180052274A1公开了一种薄膜导光膜,如图1所示。在导光膜上制作微结构,使光线经过微结构后破坏其传播的全反射条件,之后在另一面出射,将多层此种结构的导光膜压合构成薄膜导光膜,在光学上各层导光膜为单个个体。此种结构成本较高且工艺复杂,同时效率较低。
专利CN 109031512 A公开的导光膜结构为梯形结构,如图2所示。将此导光膜与导光板用胶层粘结在一起,相当于在导光板表面存在一倒梯形结构,光线射入到倒梯形结构侧面发散全反射后,在梯形底面出光。此种导光膜结构,其需要胶层将两层结构粘结在一起,其胶层平整性会极大影响其出光效果,并因而造成对比度下降,亮度降低等问题。
专利CN 108519637 A公开了在导光板上制作微结构,如图3所示。微结构形状为圆台型,光线照射到微结构表面,在表面折射出光。此种结构存在背面漏光现象,虽然通过在其背面贴合半透半反膜,可以抑制其背面漏光,但同时也会降低光透过率,此外,半透半反结构要与其对面的微结构对准,所以工艺复杂,成本较高。
发明内容
本发明所要解决的技术问题是提供一种制作简单、成本较低,而且出光效率高的用于显示装置的透明光源系统。
本发明解决上述技术问题所采用的技术方案为:一种用于显示装置的透明光源系统,包括光源和导光板,所述的导光板包括与所述的光源相对的入光面、上表面、下表面和与所述的入光面相对的侧表面,所述的上表面与所述的下表面相互平行,所述的上表面外设置有导光外膜,所述的上表面上设置有能够使在所述的导光板内传输的光线从所述的上表面射出的第一光学微结构,所述的导光外膜的内表面上设置有与所述的第一光学微结构相对的第二光学微结构,所述的第二光学微结构能够使所述的第一光学微结构射出的光线从所述的导光外膜的外表面射出。
所述的导光板与所述的导光外膜之间设置有导光内膜,所述的导光内膜的下表面与所述的导光板的上表面贴合,所述的第一光学微结构设置在所述的导光内膜的上表面。
所述的导光外膜的外表面与所述的导光内膜的下表面平行。
所述的第一光学微结构为沿光线传输方向并列设置的多个第一条形独立结构,所述的第一条形独立结构的宽度尺寸小于显示装置的最小像素尺寸,所述的第二光学微结构为沿光线传输方向并列设置的多个第二条形独立结构,所述的第二条形独立结构的宽度尺寸小于显示装置的最小橡素尺寸。
所述的第一条形独立结构与所述的第二条形独立结构对应配合构成多个并列的条形独立结构单元,所述的条形独立结构单元使所述的导光板内传输的光线从所述的导光外膜的外表面射出。
所述的条形独立结构单元由一个第一条形独立结构和一个第二条形独立结构对应配合构成。
所述的条形独立结构单元由一个第一条形独立结构和二个第二条形独立结构对应配合构成。
所述的第二条形独立结构可以沿光线传输方向连续分布,所述的第一条形独立结构则可以沿光线传输方向不连续分布。也可以是第一条形独立结构和第二条形独立结构均沿光线传输方向不连续分布。
第一条形独立结构和第二条形独立的截面可以为凸起的弧形对应弧形。
第一条形独立结构和第二条形独立的截面可以为凸起的弧形对应三角形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的弧形对应多边形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的弧形对应梯形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的三角形对应三角形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的三角形对应弧形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的三角形对应多边形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的三角形对应梯形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的梯形对应三角形对置。
第一条形独立缩构和第二条形独立的截面可以为凸起的梯形对应弧形对置。
第一条形独立缩构和第二条形独立的截面可以为凸起的梯形对应多边形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的梯形对应梯形对置。
第一条形独立结构和第二条形独立的截面可以为凸起的以互补的形状对置。
所述的第一条形独立结构与所述的第二条形独立结构以光学胶水胶合为一个整体。
所述的导光板的侧表面可以设有反射面。
所述的侧表面外也可以设有辅助光源。
所述的光学微结构也可以为沿光线传播方向排列设置的离散的二维结构,所述的二维光学微结构可以是均匀分布的;也可以是非均匀分布的。所述的二维结构的横截面包括但不限于四方形、六方形、圆形和锥形。
一种使用上述的透明光源系统的显示装置,所述的导光外膜的外侧设置有显示装置。
所述的导光板的下表面的外侧设置有反射板。
与现有技术相比,本发明的优点在于出光单向性好,可以保证只有一个方向出光,光学薄膜一次成型,工艺难度小,产品良率高;此结构导光内膜可以和导光板合并,产品能够实现一体化成型,工艺流程简单,成本低。
附图说明
图1为美国专利US20180052274A1公开的结构示意图;
图2为中国专利CN 109031512A公开的结构示意图;
图3为中国专利CN 108519637 A公开的结构示意图;
图4(a)为本发明实施例一的平面结构示意图;
图4(b)为本发明实施例一的立体结构示意图;
图5(a)为本发明实施例一的示例一的结构示意图;
图5(b)为本发明实施例一的示例二的结构示意图;
图5(c)为本发明实施例一的示例三的结构示意图;
图5(d)为本发明实施例一的示例四的结构示意图;
图5(e)为本发明实施例一的示例五的结构示意图;
图5(f)为本发明实施例一的示例六的结构示意图;
图5(g)为本发明实施例一的示例七的结构示意图;
图5(h)为本发明实施例一的示例八的结构示意图;
图5(i)为本发明实施例一的示例九的结构示意图;
图5(j)为本发明实施例一的示例十的结构示意图;
图5(k)为本发明实施例一的示例十一的结构示意图;
图5(l)为本发明实施例一的示例十二的结构示意图;
图6为本发明实施例一的导光内膜与导光外膜结合的示意图;
图7为本发明实施例二的结构示意图;
图8为本发明实施例三的结构示意图;
图9(a)为本发明实施例四的示例一的单向带反射光线示意图;
图9(b)为本发明实施例四的示例二的双向入射光线示意图;
图10(a)为本发明实施例五的示例一的结构示意图;
图10(b)为本发明实施例五的示例二的结构示意图;
图10(c)为本发明实施例五的示例三的结构示意图;
图11(a)为使用本发明透明光源系统的反射式显示装置的最终光线观察效果示意图;
图11(b)为使用本发明透明光源系统的透明式显示装置的最终光线观察效果示意图;
图11(c)为使用本发明透明光源系统的透射式显示装置的最终光线观察效果示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例一,如图4(a)所示,一种用于显示装置的透明光源系统,包括光源1和导光板2,导光板2为平行平板,包括与光源1相对的入光面21、上表面22、下表面23和与入光面21相对的侧表面24,上表面22与下表面23相互平行,侧表面24可以为为斜面、也可以与入光面21相互平行,上表面22设置有导光内膜4,导光内膜4下表面41与导光板2的上表面22贴合,导光内膜4的上表面42设置有第一光学微结构43,能够使在导光板2内传输的光线从导光板2的上表面22射出,第一光学微结构43为沿光线传输方向并列设置的多个第一条形独立结构,通过UV成型设置在导光内膜4的上表面42上,第一条形独立结构43的宽度小于显示装置的最小像素尺寸,相邻第一条形独立结构之间的间距441大于第一条形独立结构43的宽度的2倍,导光内膜4外侧设置有导光外膜5,导光外膜5外表面51与导光内膜4的下表面41平行,导光外膜5内表面52设置有与第一光学微结构43相对的第二光学微结构53,第二光学微结构53能够使第一光学微结构43射出的光线从导光外膜5的外表面51射出。第二光学微结构53为沿光线传输方向并列设置的多个第二条形独立结构,通过UV成型设置外膜5的内表面52上,第二条形独立结构的宽度尺寸小于显示装置的最小像素尺寸。
导光内膜4和导光外膜5的材料为聚对苯二甲酸乙二醇酯,也可以采用聚碳酸酯,聚甲基丙烯酸甲酯或其混合物透明材料。
第一光学微结构43和第二光学微结构53的材料为丙烯酸树脂,也可以为环氧树脂或硅橡胶,同样也可以采用聚碳酸酯,聚甲基丙烯酸甲酯等材料整体注塑加工制作完成。
导光板2其材料可以为聚甲基丙烯酸甲酯,也可以采用聚碳酸酯,玻璃等。
第一条形独立结构的截面为凸起的弧形,第二条形独立结构的截面为凸起的弧形。
本实施例的工作原理如图4(a)所示如下:
光源1发出光线进入导光板2中,根据菲涅尔反射定律光线在平行介质内传播时由于在与空气交界的界面形成全反射,如光线4010在经过第一(42)、第二次界面(23)反射后将在导光板2中继续传播(导光内膜4的折射率可以与导光板2的相同、也可以不同,不影响光线在介质内被全反射的条件)。当光线在传播过程中进入条形弧形第一光学微 结构43时(如光线4020、光线4050)界面条件已不满足全反射条件,光线将射出第一光学微结构43的表面44而进入外膜的第二光学微结构53,其中条形的第二光学微结构53的轮廓54为一弧形结构,其轮廓应满足照射到其表面的光线在界面的入射角大于等于全反射角,照射到轮廓54上的光线被折射出第二光学微结构53并在外表面51出光(如光线4011、4021和4051);若光线在传播过程中未进入第一光学微结构43,将会在导光板2中继续传播(如光线4030、4040),直到照射到侧面24上射出导光板2。所有光线只会在导光外膜5的外表面51出光。通常情况下,第一光学微结构43和第二光学微结构53做在折射率高于导光板的导光内膜4和导光外膜5上,既在导光板2和第一光学微结构43间有一层光学材料,导光内膜4与导光板2一般用光学胶水键合。第一条形独立结构和第二条形独立结构的排列间距可以是均匀的也可以是不均匀的。另外,导光外膜5的出光面(外表面51)可以涂上光学胶水,整个膜可以直接贴合到液晶平板上去,以进一步减少光学界面。
本发明的第一条形独立结构与第二条形独立结构对应配合构成多个并列的条形独立结构单元,可以由一个第一条形独立结构和一个第二条形独立结构对应配合构成,也可以由一个第一条形独立结构和二个第二条形独立结构对应配合构成。
除图4中的弧形对弧形的条形独立结构单元外,图5的各个图中还公开了各种条形独立结构单元的示例。
示例一如图5(a)所示的三角形对三角形;
示例二如图5(b)所示的三角形对弧形;
示例三如图5(c)所示的三角形对多边形;
示例四如图5(d)所示的三角形对梯形;
示例五如图5(e)所示的梯形对三角形;
示例六如图5(f)所示的梯形对弧形;
示例七如图5(g)所示的梯形对多边形;
示例八如图5(h)所示的梯形对梯形;
示例九如图5(i)所示的与示例八反向结构配对;
示例十如图5(j)所示的弧形对三角形;
示例十一如图5(k)所示的弧形对多边形;
示例十二如图5(l)所示的弧形对梯形。
如图6所示,第一光学微结构43的表面44而进入外膜的与第二光学微结构53的配对也可以用光学胶将导光内膜4和导光外膜5胶合,以形成导光内膜4和导光外膜5间无光学界面的一体化结合。
实施例二:如图7所示,将导光内膜4上的第一光学微结构43直接成型在导光板2上,或者采用较厚的导光内膜基材直接做导光板,而减少实施例一中的导光内膜43和导光板2间的界面,节省了材料同时减少了界面损失。当以导光膜做导光板时,必须要选择透光性好的材料,否则介质内光程过长会导致光学损耗过大。
实施例三;如图8所示,也可将实施例一中导光外膜5上的第二光学微结构53做成连续分布的第二条形独立结构,而不是如图4至图7中所示的非连续的分布模式。
实施例四:如图9(a)所示的示例一中,在实施例一的结构中,在导光板2的侧面24上设置反射面25,照射到侧面24上的光线被反射后光线重新进入导光板2中传播,再进入导光内膜4的第一光学微结构43中后,将由导光外膜5的第二光学微结构53折射出出光面51,如光线9010、9020流程同之前实施例一叙述一致,但方向相反。也可以如图9(b)所示的示例二,在导光板2的侧面24再设置一个辅助光源,第一条形独立结构和第二条形独立结构的分布对称排列,光线折射原理和流程同之前叙述一致。
实施例五:如图10所示,上述实施例中的导光内膜4上的第一光学微结构43与导光外膜5上的第二光学微结构53的配合也可以是二维结构。
示例一如图10(a)所示的四方体配合;示例二如图10(b)所示的六边体配合;示例三如图10(c)所示的圆锥体配合。光学微结构的分布可以是均匀的也可以是不均匀的。
上述实施例中,条形或二维的光学微结构可以采用热压成型,注塑成型或激光刻蚀工艺制作;其阵列排布方式可以靠近光源侧疏排,远离光源侧密排,也可以均匀排布;材料为丙烯酸树脂,也可以采用环氧树脂,聚碳酸酯材料等,其折射率与导光板折射率一致,也可以小于导光板材料的折射率。
实施例六:本发明提供一种透明光源的应用方式。
示例一:如图11(a)所示,包括显示装置60和上述透明光源,透明光源设置在显示装置60的显示侧(上方),透明光源中导光外膜5的外表面51与显示装置60相对设置。显示装置60为反射式显示装置,其内部为液晶层,其下表面为反光面。上述透明光源的发出光线入射至显示装置60,进入显示装置60中,光线通过液晶后在下表面发生反射后, 返回至透明光源中,此光线将会穿透导光板2、导光内膜4和导光外膜5被观察者观察,如光线93所示。由于导光外膜5外表面51是平面,此透明光源可以整体贴合在显示装置60上,以减少光学界面损耗并消除不同膜层间的物理摩擦。透明光源的出光角度可以根据显示装置60的需求通过改变导光内膜4和导光外膜5上的光学微结构的轮廓定制。
示例二:如图11(b)所示,包括透明显示装置70、需展示物品和上述透明光源,透明光源设置在透明显示装置70显示侧的下方,透明光源中导光外膜5的外表面51与透明显示装置70相对设置,需展示物品设置于透明光源的下方。透明显示装置70内部为液晶层,上下表面为透明表面。上述透明光源的发出光线入射至透明显示装置70,进入透明显示装置70中,光线通过液晶后,进入观察者观察范围,如光线94所示。需展示物品发出或反射的光线照射到透明光源上,将会穿透导光内膜4、导光外膜5、导光板2和透明显示装置70进入观察者的观察范围,如光线95所示。所以观察者在观察到透明显示装置70的信息同时,能够通过透明显示装置70和透明光源来观察需展示物品。由于导光外膜5的外表面51是平面,此透明光源可以整体贴合在显示装置70上,以减少光学界面损耗并消除不同膜层间的物理摩擦。透明光源的出光角度可以根据显示装置70的需求通过改变导光内膜4和导光外膜5上的光学微结构的轮廓定制。
示例三:如图11(c)所示,包括透射式显示装置80、反射板81和上述透明光源,透明光源设置在透射式显示装置80的下方,透明光源中导光外膜5的外表面51与透射式显示装置80相对设置,反射板81设置在透明光源中的导光板2一侧,反射板81与显示装置80将透明光源夹在中间。透射式显示装置80内部为液晶层。上述透明光源发出的光线入射至透射式显示装置80,光线通过液晶后,进入观察者观察范围,如光线96所示。反射板81将由于光学界面的反射从导光板2下方漏出的光线反射回去以提高模组的光学效率。由于导光外膜5的外表面51是平面,此透明光源可以整体贴合在显示装置80上,以减少光学界面损耗并消除不同膜层间的物理摩擦。透明光源的出光角度可以根据显示装置80的需求通过改变导光内膜4和导光外膜5上的光学微结构的轮廓定制。

Claims (12)

  1. 一种用于显示装置的透明光源系统,包括光源和导光板,所述的导光板包括与所述的光源相对的入光面、上表面、下表面和与所述的入光面相对的侧表面,所述的上表面与所述的下表面相互平行,其特征在于所述的上表面外设置有导光外膜,所述的上表面上设置有能够使在所述的导光板内传输的光线从所述的上表面射出的第一光学微结构,所述的导光外膜的内表面上设置有与所述的第一光学微结构相对的第二光学微结构,所述的第二光学微结构能够使所述的第一光学微结构射出的光线从所述的导光外膜的外表面射出。
  2. 如权利要求1所述的一种用于显示装置的透明光源系统,其特征在于所述的导光板与所述的导光外膜之间设置有导光内膜,所述的导光内膜的下表面与所述的导光板的上表面贴合,所述的第一光学微结构设置在所述的导光内膜的上表面。
  3. 如权利要求2所述的一种用于液晶显示装置的透明光源系统,其特征在于所述的导光外膜的外表面与所述的导光内膜的下表面平行。
  4. 如权利要求1或2或3所述的一种用于显示装置的透明光源系统,其特征在于所述的第一光学微结构为沿光线传输方向并列设置的多个第一条形独立结构,所述的第一条形独立结构的宽度尺寸小于显示装置的最小像素尺寸,所述的第二光学微结构为沿光线传输方向并列设置的多个第二条形独立结构,所述的第二条形独立结构的宽度尺寸小于显示装置的最小像素尺寸。
  5. 如权利要求4所述的一种用于显示装置的透明光源系统,其特征在于所述的第一条形独立结构与所述的第二条形独立结构对应配合构成多个并列的条形独立结构单元,所述的条形独立结构单元使所述的导光板内传输的光线从所述的导光外膜的外表面射出。
  6. 如权利要求5所述的一种用于显示装置的透明光源系统,其特征在于所述的条形独立结构单元由一个第一条形独立结构和一个第二条形独立结构对应配合构成。
  7. 如权利要求5所述的一种用于显示装置的透明光源系统,其特征在于所述的条形独立结构单元由一个第一条形独立结构和二个第二条形独立结构对应配合构成。
  8. 如权利要求5所述的一种用于显示装置的透明光源系统,其特征在于所述的第一条形独立结构与所述的第二条形独立结构以光学胶水胶合为一个整体。
  9. 如权利要求1所述的一种用于显示装置的透明光源系统,其特征在于所述的导光板的侧表面设有反射面。
  10. 如权利要求1所述的一种用于显示装置的透明光源系统,其特征在于所述的侧表面外设有辅助光源。
  11. 一种使用权利要求1所述的透明光源系统的显示装置,其特征在于所述的导光外膜的外侧设置有显示装置。
  12. 如权利要求11所述的显示装置,其特征在于所述的导光板的下表面的外侧设置有反射板。
PCT/CN2021/000074 2020-04-10 2021-04-09 一种用于显示装置的透明光源系统 WO2021203771A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022560014A JP7493838B2 (ja) 2020-04-10 2021-04-09 表示装置用透明光源システム
US17/916,587 US11899236B2 (en) 2020-04-10 2021-04-09 Display backlight with transparent light guide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010278218.9 2020-04-10
CN202010278218.9A CN111338128B (zh) 2020-04-10 2020-04-10 一种用于显示装置的透明光源系统

Publications (1)

Publication Number Publication Date
WO2021203771A1 true WO2021203771A1 (zh) 2021-10-14

Family

ID=71186625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000074 WO2021203771A1 (zh) 2020-04-10 2021-04-09 一种用于显示装置的透明光源系统

Country Status (4)

Country Link
US (1) US11899236B2 (zh)
JP (1) JP7493838B2 (zh)
CN (1) CN111338128B (zh)
WO (1) WO2021203771A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338128B (zh) * 2020-04-10 2022-11-22 马鞍山晶智科技有限公司 一种用于显示装置的透明光源系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080001236A (ko) * 2006-06-29 2008-01-03 엘지.필립스 엘시디 주식회사 광학 시트 및 이를 구비한 백라이트 유닛
WO2011108038A1 (ja) * 2010-03-03 2011-09-09 パナソニック株式会社 発光装置及びそれを用いたバックライトモジュール
KR20170084888A (ko) * 2016-01-13 2017-07-21 주식회사 파인텍 광학시트와 도광판을 구비한 투명 백라이트 유닛
CN108061931A (zh) * 2016-11-09 2018-05-22 三星电子株式会社 用于3d图像显示器的背光单元及制造该背光单元的方法
CN108519637A (zh) * 2018-04-13 2018-09-11 京东方科技集团股份有限公司 导光板及其制作方法、前置光源、显示装置
CN109031512A (zh) * 2018-09-04 2018-12-18 京东方科技集团股份有限公司 导光膜组件、前置光源和反射式显示装置
CN111338128A (zh) * 2020-04-10 2020-06-26 马鞍山晶智科技有限公司 一种用于显示装置的透明光源系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692025B2 (ja) * 1992-01-24 1997-12-17 スタンレー電気株式会社 面状発光体装置
JP2842739B2 (ja) * 1992-09-14 1999-01-06 富士通株式会社 面光源ユニット及び液晶表示装置
TW594115B (en) * 1992-10-09 2004-06-21 Asahi Glass Co Ltd A liquid crystal display device and an illumination device for a direct viewing type display element
US5396350A (en) * 1993-11-05 1995-03-07 Alliedsignal Inc. Backlighting apparatus employing an array of microprisms
JP3817877B2 (ja) * 1997-12-22 2006-09-06 カシオ計算機株式会社 照明パネルおよびそれを用いた表示装置
KR100422938B1 (ko) * 1999-03-24 2004-03-12 주식회사 엘지 백라이트 시스템
JP2001051272A (ja) * 1999-08-11 2001-02-23 Semiconductor Energy Lab Co Ltd フロントライト及び電子機器
JP3952168B2 (ja) * 2002-06-11 2007-08-01 富士通株式会社 電子機器、液晶表示装置および導光板
TWI240831B (en) * 2004-01-20 2005-10-01 Ace T Corp Small-angle light-emitting device at specific positions for back light module of liquid crystal display
US7726865B2 (en) * 2005-08-12 2010-06-01 Sharp Kabushiki Kaisha Backlight unit and liquid crystal display device
JP4600218B2 (ja) * 2005-08-29 2010-12-15 カシオ計算機株式会社 面光源及び液晶表示装置
KR100813253B1 (ko) * 2006-04-27 2008-03-13 삼성전자주식회사 고효율의 편광도광판 유닛, 이를 채용한 백라이트 유닛 및디스플레이 장치
JP2008210737A (ja) * 2007-02-28 2008-09-11 Funai Electric Co Ltd 液晶モジュール
CN101514801A (zh) * 2008-02-22 2009-08-26 富士迈半导体精密工业(上海)有限公司 照明装置
JP2010107721A (ja) * 2008-10-30 2010-05-13 Hitachi Displays Ltd 液晶表示装置
CN102096233A (zh) * 2009-12-14 2011-06-15 康佳集团股份有限公司 用于液晶显示的导光板、背光模组及液晶显示装置
US20140049983A1 (en) 2010-11-18 2014-02-20 Anthony John Nichol Light emitting device comprising a lightguide film and aligned coupling lightguides
JP6202828B2 (ja) * 2012-02-17 2017-09-27 学校法人慶應義塾 液晶表示装置
JP6377887B2 (ja) * 2012-02-17 2018-08-22 学校法人慶應義塾 液晶表示装置
TW201516485A (zh) * 2013-09-26 2015-05-01 Dainippon Printing Co Ltd 稜鏡片、面光源裝置、映像源單元及液晶顯示裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080001236A (ko) * 2006-06-29 2008-01-03 엘지.필립스 엘시디 주식회사 광학 시트 및 이를 구비한 백라이트 유닛
WO2011108038A1 (ja) * 2010-03-03 2011-09-09 パナソニック株式会社 発光装置及びそれを用いたバックライトモジュール
KR20170084888A (ko) * 2016-01-13 2017-07-21 주식회사 파인텍 광학시트와 도광판을 구비한 투명 백라이트 유닛
CN108061931A (zh) * 2016-11-09 2018-05-22 三星电子株式会社 用于3d图像显示器的背光单元及制造该背光单元的方法
CN108519637A (zh) * 2018-04-13 2018-09-11 京东方科技集团股份有限公司 导光板及其制作方法、前置光源、显示装置
CN109031512A (zh) * 2018-09-04 2018-12-18 京东方科技集团股份有限公司 导光膜组件、前置光源和反射式显示装置
CN111338128A (zh) * 2020-04-10 2020-06-26 马鞍山晶智科技有限公司 一种用于显示装置的透明光源系统

Also Published As

Publication number Publication date
CN111338128A (zh) 2020-06-26
CN111338128B (zh) 2022-11-22
US20230152507A1 (en) 2023-05-18
US11899236B2 (en) 2024-02-13
JP2023520474A (ja) 2023-05-17
JP7493838B2 (ja) 2024-06-03

Similar Documents

Publication Publication Date Title
JP7386786B2 (ja) 光学デバイス
TWI235807B (en) Light guiding board, and lighting device, plane light source device and display device using the light guiding board
KR20190001406U (ko) 광 조사 장치
JP2005527864A (ja) 多機能光学アセンブリ
WO2016045159A1 (zh) 一种发光二极管led发光器件、背光模组及显示面板
WO2021203771A1 (zh) 一种用于显示装置的透明光源系统
US20240192430A1 (en) Area light source device and flat panel display device
CN112987410A (zh) 一种前置光源及显示装置
WO2022213909A1 (zh) 一种透明单向出光光源模组
JP2001312915A (ja) 面光源素子およびそれを用いた表示装置
TWI494619B (zh) 液晶顯示裝置
TW202028826A (zh) 導光組件、背光模組及顯示設備
JP2019200862A (ja) 導光板、面光源装置および表示装置
JP2012059612A (ja) 面発光装置
CN106772759B (zh) 一种背光模组及显示装置
KR101522242B1 (ko) 광학시트 및 이를 포함하는 액정표시장치
JP6030399B2 (ja) 偏光光学体
CN219799824U (zh) 前置光源模组和显示装置
CN216361878U (zh) 一种导光板、低能耗背光模组及液晶显示装置
CN115176196B (zh) 光源模组及其制备方法和显示模组
CN112764151B (zh) 面光源装置和液晶显示装置
CN111123426A (zh) 一种用于显示装置的透明光源系统
TW202331321A (zh) 光導元件及包含其的顯示裝置
JP6308560B2 (ja) 照明装置
WO2019202642A1 (ja) 導光板、面光源装置、表示装置、導光板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785228

Country of ref document: EP

Kind code of ref document: A1