WO2021203716A1 - 一种电芯中心孔插针组件 - Google Patents
一种电芯中心孔插针组件 Download PDFInfo
- Publication number
- WO2021203716A1 WO2021203716A1 PCT/CN2020/131696 CN2020131696W WO2021203716A1 WO 2021203716 A1 WO2021203716 A1 WO 2021203716A1 CN 2020131696 W CN2020131696 W CN 2020131696W WO 2021203716 A1 WO2021203716 A1 WO 2021203716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- center hole
- pin assembly
- battery core
- assembly according
- cell
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 56
- 238000007789 sealing Methods 0.000 claims abstract description 19
- 239000000126 substance Substances 0.000 claims abstract description 7
- 239000003566 sealing material Substances 0.000 claims description 37
- 238000002347 injection Methods 0.000 claims description 26
- 239000007924 injection Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 239000011810 insulating material Substances 0.000 claims description 12
- 239000007769 metal material Substances 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229910052755 nonmetal Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- -1 polypropylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 238000003892 spreading Methods 0.000 claims description 2
- 230000007480 spreading Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 60
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000002699 waste material Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/559—Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/152—Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/155—Lids or covers characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
- H01M50/174—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
- H01M50/179—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
- H01M50/174—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
- H01M50/181—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for button or coin cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/184—Sealing members characterised by their shape or structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/193—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/562—Terminals characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/588—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
- H01M50/627—Filling ports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
- H01M50/627—Filling ports
- H01M50/636—Closing or sealing filling ports, e.g. using lids
Definitions
- the invention relates to the technical field of cell component structures, in particular to a cell center hole pin assembly.
- Lithium-ion batteries are green and environmentally friendly, with long cycle life, good rate performance, safety and reliability, and are widely used in various energy storage products, consumer electronics products and power battery products.
- Lithium-ion batteries can be divided into soft-packed lithium-ion batteries, square aluminum-shell batteries and steel-shell cylindrical batteries according to the manufacturing process.
- the steel shell cylindrical battery cell is widely used in power automobile batteries because of the high degree of standardization of the process and the relatively low cost.
- customers have increasingly higher requirements for the energy density and appearance of batteries.
- the current common lithium ion battery electrode composition process includes two processes: winding and lamination. Practice has proved that in the field of cylindrical batteries, the battery space obtained by the winding process is better and the energy density is higher than that of the lamination process. .
- the cylindrical pole group is formed by winding, it is inevitable that the winding center hole caused by the placement of the winding needle will be left, and the diameter of the hole is generally greater than 1 mm. On the one hand, this winding center hole wastes cell space. On the other hand, the hole may also cause the structure of the electrode assembly to collapse during use. Therefore, most cylindrical batteries will place a pin in the center hole of the electrode assembly. Stable structure, the commonly used unintentional pin is a metal tube.
- a cylindrical battery cell includes a "U"-shaped metal bottom shell and a "one"-shaped top cover.
- the bottom shell and the top cover are sealed and connected together through an insulating rubber ring and piping, and the pole group on which the center pin is placed is sealed in the cavity formed by it.
- the center pin occupies the volume of the winding center hole, and the function is only to stabilize the electrode group structure.
- the cylindrical cell also has to provide additional space to implement the electrical core separation function.
- the positive and negative electrodes of the battery are the bottom shell and the cover of the battery respectively.
- the separation of the positive and negative polarities is achieved by sealing on the cover side of the shell with an insulating rubber ring.
- the above structure occupies about 4-6mm length of the cell, which is equivalent to 5.7%-10% of space waste; the above structure will drastically reduce the energy density when the height of the cell is reduced.
- the button cell transfers the cell polarity separation function to the radial direction.
- the positive and negative poles of this type of cell are still connected to the bottom shell and the shell cover respectively.
- the bottom shell and the shell cover are coaxially buckled together, and the middle is filled.
- the insulation layer realizes the polarity separation, and the polarity separation structure is on the outermost circle of the cell (refer to patent: ZL201080007121.9). This structure needs to occupy about 0.6mm of the outer circle of the circular cross-section. For the cell with a diameter of 8-20mm, This is equivalent to a waste of 6% to 15% of space.
- the purpose of the present invention is to provide a cell center hole pin assembly, which not only has the function of a traditional pin assembly, but also realizes the separation of the cell polarity, and can release the original extra polarity used for the cell. Separate the space, thereby increasing the energy density of the cell.
- a battery core central hole pin assembly provided by the present invention includes:
- the pin housing includes at least one cylindrical portion with upper and lower openings, and the cylindrical portion is inserted into the central hole of the electrode group; the insulating and sealing substance is partially or completely disposed in the cylindrical portion; the lead-out conductor Passing through the insulating and sealing material; the lower end of the lead conductor is electrically connected with the positive electrode and/or the negative electrode of the battery core, so as to realize the polarity extraction of the battery core.
- the longitudinal section of the pin housing is It includes a cylindrical part with upper and lower openings and a disc-shaped flange formed outwardly at the top of the cylindrical part.
- the longitudinal section of the pin housing is The shape includes a cylindrical part with upper and lower openings and a round cup formed outwardly at the top of the cylindrical part.
- the longitudinal section of the pin housing is Shape, which is a cylindrical part with upper and lower openings.
- the longitudinal section of the pin housing is not limited to the above three situations.
- the shape of the pin housing can expand outward from the upper end of the columnar part to form a space between The form between several forms.
- the battery cell includes at least one positive electrode and one negative electrode, and a diaphragm separating the positive and negative electrodes.
- the positive electrode, the negative electrode and the diaphragm are formed in a spiral winding manner around a central hole of an electrode group.
- the diameter of the center hole is greater than 0 and smaller than the diameter of the cell.
- the cell center hole pin assembly is used in conjunction with the cell shell, and the two are hermetically connected to form an annular sealed cavity capable of accommodating the electrode group.
- the longitudinal section of the insulating sealing material is The shape includes a column inserted into the cylindrical portion of the pin housing and a flange formed by the bottom end of the column spreading outward and completely covering the lower end surface of the cylindrical portion of the pin housing.
- it also includes at least one liquid injection hole for injecting electrolyte into the cell.
- liquid injection hole is arranged on the pin housing and/or arranged on the insulating sealing substance.
- the liquid injection hole penetrates the insulating sealing material up and down, and is arranged at the center or eccentric position of the insulating sealing material, and the liquid injection hole is sealed by a sealing member to prevent the electrolyte from leaking from the liquid injection hole.
- sealing element adopts one of the following structures:
- the sealing element adopts an end cap structure, which includes an end and an embedded part arranged at the lower end of the end block, the end is closed on the upper end of the cylindrical part, and the embedded part is inserted into the cylindrical Department;
- the sealing element is at least one steel ball, the steel ball is inserted into the cylindrical portion, and the steel ball is in interference fit with the cylindrical portion.
- the central hole pin assembly of the battery is made of a material with waterproof characteristics.
- the material with waterproof properties is a metal material or a non-metal material.
- the metal material is stainless steel, aluminum or aluminum alloy.
- non-metallic material is ceramic or plastic.
- the material of the insulating and sealing material is polypropylene.
- the lead-out conductor is an aluminum sheet or a nickel sheet.
- the battery core center hole pin assembly of the present invention is preferably suitable for cylindrical lithium ion batteries, and has the ability to form a ring-shaped cavity in a sealed connection with the battery shell, and the cavity can accommodate the electrode group containing the center hole, wherein
- the lead conductor has contact areas for circuit expansion at its inner and outer ends respectively, and has the ability to be electrically connected to the positive electrode and/or negative electrode of the cell to realize the polarity of the cell.
- the battery core center hole pin assembly of the present invention can realize the traditional pin function, and part or all of it is inserted into the center hole of the battery winding electrode group.
- an insulating sealing material is arranged in the cylindrical part, and the lead conductor penetrates the insulating sealing material up and down.
- This design allows the positive electrode and/or negative electrode inside the cell to be led out of the cell polarity through the above-mentioned lead conductor, and the existence of the insulating and sealing material enables the cell polarity separation to be realized in the center hole pin assembly of the cell, and then It avoids the embarrassment of traditional cylindrical batteries reluctantly occupying the limited space of the batteries to realize the polarity separation of the batteries.
- the insulating and sealing material is generally selected from plastic, and the injection molding process is preferred to add the insulating and sealing material to the inside of the cylindrical part structure.
- the cell center hole pin assembly realized by the present invention realizes the cell polarity extraction function, part of it will inevitably be exposed to the use environment of the cell. This is completely different from the traditional pin.
- the traditional pin is finally combined with the electrode group. Sealed in the battery shell. Since part of the center hole pin assembly of the new battery core must be placed inside the electrode group, and part of it must be exposed to the use environment of the battery, this requires the new battery center hole pin assembly to have waterproof characteristics and expand to form a closed space.
- the expanded structure satisfies the following characteristics, the original pin and electrode group corresponding surface will always correspond to the electrode group after expansion.
- the cell shell will fulfill this expanded function, so the new cell center hole pin assembly is designed to be hermetically connected with the cell shell to form an annular cavity shape.
- the liquid injection hole will be sealed by a sealing element after liquid injection is completed during the production process of the cell.
- the cell polarity extraction function is realized by presetting the leading conductor in the insulating and sealing material of the cylindrical part.
- the lead conductor must have a contact area for circuit expansion at both ends of the needle-shaped body.
- the contact inside the corresponding cell is used to realize the conductive connection with the positive electrode and/or the negative cell of the cell.
- the contact is used to realize the conductive connection with the external power supply or design interface.
- an aluminum sheet and a nickel sheet can be preset as lead conductors in the cylindrical part.
- the positive electrode of the battery is electrically conductively connected to the above aluminum sheet through the conductor or directly
- the negative electrode of the battery is electrically connected to the above-mentioned aluminum sheet through the conductor or directly.
- the above-mentioned nickel sheet is conductively connected, and the aluminum sheet and the nickel sheet eventually become the positive electrode and the negative electrode of the battery core.
- a metal sheet (such as aluminum sheet or nickel sheet) can also be preset.
- the positive electrode or the negative electrode of the cell is conductively connected to the above aluminum sheet through a conductor or directly, and the metal (for example, stainless steel) the battery cell shell, which electrically connects the negative electrode of the battery cell and the metal shell together.
- the aluminum sheet is the positive electrode of the battery and the metal shell is the negative electrode of the battery.
- Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
- Embodiment 2 is a schematic diagram of the structure of Embodiment 2 of the present invention.
- Figure 3 is a schematic structural diagram of Embodiment 3 of the present invention.
- Embodiment 4 is a schematic diagram of the structure of Embodiment 4 of the present invention.
- Figure 5 is a schematic structural diagram of Embodiment 5 of the present invention.
- Figure 6 is a schematic diagram of the first structure of the seal in the present invention.
- Figure 7 is a schematic diagram of the second structure of the seal in the present invention.
- FIG. 8 is a schematic diagram of the first structure of the present invention applied to a battery cell
- FIG. 9 is a schematic diagram of the second structure of the present invention applied to the battery core.
- this embodiment discloses a battery core center hole pin assembly 100A, which includes:
- the longitudinal section of the pin housing 101 is It includes a cylindrical part with upper and lower openings and a disc-shaped flange formed outwardly at the top of the cylindrical part.
- the cylindrical part is inserted into the central hole of the electrode group; the insulating sealing material 102 is partially disposed in the cylindrical part; the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 penetrate the insulating sealing material; the positive electrode lead-out conductor 103 And the lower end of the negative electrode lead-out conductor 104 is conductively connected to the positive electrode and/or the negative electrode of the battery core, thereby realizing the polarity extraction of the battery core.
- the longitudinal section of the insulating sealing material 102 is The shape includes a cylinder inserted into the cylindrical part of the pin housing 101 and a flange formed by the bottom end of the cylinder expanding outward and completely covering the lower end surface of the cylindrical part of the pin housing 101.
- the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 are made of aluminum sheet or nickel sheet.
- the insulating sealing material 102 is provided with a liquid injection hole, which penetrates the insulating sealing material up and down, and is arranged at the center or eccentric position of the insulating sealing material.
- the lower end of the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 extend beyond the cylindrical part of the pin housing 101, and the upper end extends beyond the disc-shaped flange.
- the cylindrical part is injected with an insulating sealing material 102 by the template injection method.
- the insulating and sealing material 102 is made of polypropylene plastic, and finally the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 in the cylindrical part are completely wrapped, and a through hole is formed in the center or eccentricity of the tube, that is, the liquid injection hole ,
- the outer wall of the insulating sealing material 102 is tightly combined with the inner wall of the cylindrical portion, and the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 are symmetrically located in the insulating sealing material 102.
- Embodiment 1 is an improvement based on Embodiment 1.
- the difference between this embodiment and Embodiment 1 is only the difference of the pin housing 101, and the rest of the structure is the same as that of Embodiment 1.
- the longitudinal section of the pin housing 101 of the cell center hole pin assembly 100B provided in this embodiment is The shape includes a cylindrical part with upper and lower openings and a round cup formed outwardly at the top of the cylindrical part.
- Embodiment 1 is based on the improvement of Embodiment 1 and Embodiment 2.
- the difference between this embodiment and Embodiment 1 and Embodiment 2 is only the difference of the pin housing 101, and the rest of the structure is the same as that of Embodiment 1.
- the longitudinal section of the pin housing 101 of the cell center hole pin assembly 100C provided in this embodiment is Shape, which is a cylindrical part with upper and lower openings.
- This embodiment is based on the improvement of embodiment 1.
- the difference between the cell center hole pin assembly 100D provided in this embodiment and embodiment 1 is that the insulating and sealing material 102 is not provided with a liquid injection hole, and the rest of the structure is the same as that of the embodiment.
- the structure of 1 is the same, as shown in Figure 4.
- the insulating sealing material 102 may not be provided with a liquid injection hole, and the liquid injection hole may be arranged at other positions.
- This embodiment is based on the improvement of embodiment 1.
- the difference between the cell center hole pin assembly provided in this embodiment and embodiment 1 is that, as shown in FIG. 5, there is only one lead conductor 103, which can be Lead the conductor for the positive electrode, or lead the conductor for the negative electrode.
- Embodiment 2 Embodiment 3, and Embodiment 4, this kind of improvement can be made, and only one lead conductor 103 is provided, which will not be described in detail here.
- the liquid injection hole is provided on the insulating sealing material 102. Since the liquid injection hole needs to be sealed with a seal after use, it is:
- the structure of the seal adopts one of the following structures:
- the seal adopts an end cap structure, which includes an end portion and an embedded portion provided at the lower end of the end block. Part inserted into the cylindrical part;
- the sealing member is at least one steel ball, the steel ball is inserted into the cylindrical portion, and the steel ball is in an interference fit with the cylindrical portion.
- the longitudinal section of the cell shell used in conjunction with the structure of the pin housing in Embodiment 1 is U-shaped, and both the pin shell and the cell shell can be an integral molding structure or a multi-part splicing structure.
- the longitudinal section of the battery shell used in conjunction with the structure of the pin housing in the second embodiment is a "one" shape, and both the pin shell and the battery shell can be an integral structure or multi-part splicing. structure.
- the longitudinal section of the cell shell used in conjunction with the structure of the pin housing in Example 3 is Shape, and both the pin housing and the cell housing can be an integral molding structure or a multi-part splicing structure.
- the above-mentioned pin housing is used in conjunction with the cell housing, and the two are hermetically connected to form an annular sealed cavity capable of accommodating the electrode group.
- the battery core center hole pin assembly is made of a material with waterproof characteristics, and the material with waterproof characteristics includes a metal material or a non-metal material.
- the metal material is stainless steel, aluminum or aluminum alloy; and the non-metal material is ceramic or plastic.
- FIG. 8 and FIG. 9 it is an application example structure of the embodiment 1 of the present invention applied to the battery, in which the lower ends of the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 are connected to the positive electrode and the negative electrode, respectively.
- the conductive connection can be done in two ways:
- the first type as shown in Figure 8, the lower end of the electrode lead-out conductor is welded to one end of the transition conductor, and the other end of the transition conductor is welded to the positive electrode or the negative electrode;
- the second type as shown in Figure 9, the lower end of the electrode lead-out conductor is directly welded to the positive electrode or the negative electrode.
- the cell in the figure includes at least one positive electrode 201 and one negative electrode 202 and a diaphragm 203 separating the positive and negative electrodes.
- the positive electrode 201, the negative electrode 202, and the diaphragm 203 are spirally wound around a central hole of an electrode group, so The diameter of the center hole of the electrode group 200 is greater than 0 and smaller than the diameter of the cell.
- a layer of insulating tape 300-a is laid on the inner surface of the bottom end of the cell housing 300 to prevent short-circuits between the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 and the cell housing 300, and also to prevent the positive electrode transition conductor 204, negative A short circuit occurs between the electrode transition conductor 205 and the cell housing 300.
- the insulating and sealing material 102 is injected into the pin housing 101 by template injection, and finally the positive electrode lead-out conductor 103 and the negative electrode lead-out conductor 104 in the cylindrical part are completely wrapped, and at the same time a longitudinal direction is formed in the insulating sealing material 102
- the penetrating liquid injection hole 400 is sealed by the sealing member 400-a, and the insulating sealing material 102 is tightly combined with the inner wall of the cylindrical portion.
- the connection between the pin shell and the battery shell is sealed by laser welding.
- the electrolyte is injected into the inside of the cell through the liquid injection hole 400 reserved in the insulating sealing material 102. After the liquid injection is completed, the liquid injection hole 400 is sealed. After the completion of the above operations, the battery cell undergoes traditional chemical conversion treatment to form a secondary lithium ion cylindrical battery cell.
- the center hole pin assembly of the cell realizes the insulation and extraction of the positive and negative polarity of the cell.
- the positive electrode lead-out conductor 103 is the positive pole of the cell
- the negative electrode lead-out conductor 104 is the negative pole of the cell, which avoids the height direction. Or take up space in the diameter direction for cell polarity separation.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Filling, Topping-Up Batteries (AREA)
Abstract
一种电芯中心孔插针组件(100A,100B,100C,100D),包括一个壳体(101)、至少一种引出导体(103,104)和绝缘密封物质(102),其可与电芯外壳(300)密封连接构成环状空腔,此空腔可容纳含中心孔电极组(200),其中的引出导体(103,104)在针状结构两端分别具有可进行电路拓展的触点区域。利用该复合插针组件(100A,100B,100C,100D)可在电极组(200)的中心孔内实现圆柱电芯极性分离,颠覆了原本使用电芯壳与盖作为正负极的设计,可释放原本圆柱电芯用于绝缘壳盖的空间,提高电芯能量密度。
Description
本发明涉及电芯零部件结构技术领域,尤其涉及一种电芯中心孔插针组件。
锂离子电芯绿色环保,循环寿命长、倍率性能及安全可靠性能好,被广泛应用于各储能产品、消费类电子产品以及动力电芯产品。锂离子电芯按照制作工艺可分为软包锂离子电芯,方形铝壳电芯及钢壳圆柱形电芯。其中钢壳圆柱形电芯由于工艺高度标准化,成本相当低廉,被广泛应用于动力汽车电芯。作为高速发展的新能源产业,在激烈的市场竞争下,客户对电芯的能量密度以及外观的要求也越来越高。
目前常见的锂离子电池电极组成型工艺包括卷绕和叠片两种工艺,实践证明,在圆柱电池领域,采用卷绕工艺获得的电池空间利用更佳,能量密度比叠片工艺电芯更高。然而,当采用卷绕成型圆柱形极组时,不可避免的会遗留因放置卷针而造成的卷绕中心孔,该孔直径一般大于1mm。这个卷绕中心孔一方面浪费电芯空间,另一方面由于孔的存在还可能导致极组在使用过程中结构坍塌,故大多数圆柱形电芯会在电极组的中心孔内放置插针以稳定结构,常用的不心孔插针为一金属管。
通常地,圆柱型电芯包括一个“U”字型金属底壳和“一”字型顶盖。上述底壳与顶盖通过绝缘胶圈和滚边处理密封连接在一起,将放置了中心针的极组密封在其构成的空腔内。采用这种结构的圆柱型电芯中,中心插针占用了卷绕中心孔的体积,而作用仅仅为稳定电极组结构。另一方面,圆柱型电芯还不得不另外提供空间来实施电芯的电极性分离功能。例如,传统18650及21700圆柱形电芯,其电芯的正负极分别是电芯的底壳与壳盖,正负极性的分隔是通过绝缘胶圈在壳盖侧通过滚边工艺密封实现,上述结构占用了电芯约4~6mm长度空间,相当于5.7%~10%空间浪费;上述结构在电芯高度减小时,会急剧降低能 量密度,故目前对于高度较小的圆柱形电芯(纽扣电芯)则将电芯极性分隔功能转移到了径向方向,该类电芯的正负极依然分别连接在底壳与壳盖上,底壳与壳盖同轴扣在一起,中间填充绝缘层实现极性分隔,极性分隔结构在电芯最外圈(参考专利:ZL201080007121.9),这种结构需要占用圆形截面最外圈约0.6mm空间,对于直径8~20mm电芯,相当于6%~15%空间浪费。
总结而言,当前圆柱型电芯空间分配不合理,中心插针和电池极性分离分别独自占用一部分电芯体积,阻碍了电芯能量密度的提升。
发明内容
本发明的目的是提供一种电芯中心孔插针组件,该插针组件不仅具有传统插针组件的功能,同时可实现电芯极性的分离,能够释放原本额外的用于电芯极性分离的空间,从而提升电芯能量密度。
为实现本发明的目的,本发明提供的一种电芯中心孔插针组件,包括:
一个插针壳体、至少一种引出导体以及绝缘密封物质;
其中,所述插针壳体至少包括一个上下开口的筒状部,所述筒状部插入电极组中心孔内;所述绝缘密封物质部分或全部设置在所述筒状部内;所述引出导体贯穿所述绝缘密封物质;所述引出导体下端与电芯正电极和/或负电极导电连接,从而实现电芯极性引出。
进一步地,所述电芯包括至少一个正电极和一个负电极以及分隔正负电极的隔膜,所述正电极、负电极及隔膜围绕一个电极组中心孔以螺旋卷绕方 式成形,所述电极组中心孔直径大于0,小于电芯直径。
进一步地,所述电芯中心孔插针组件与电芯外壳相配合使用,两者密封连接,形成能够容纳电极组的环状密闭空腔。
进一步地,还包括至少一个用于向所述电芯内注入电解液的注液孔。
进一步地,所述注液孔设置在所述插针壳体上和/或设置在所述绝缘密封物质上。
进一步地,所述注液孔上下贯穿绝缘密封物质,其设置在绝缘密封物质的中心或偏心位置,所述注液孔通过密封件密封,用于防止电解液从所述注液孔泄漏。
进一步地,所述密封件采用如下结构之一:
第一种:所述密封件采用端帽结构,其包括端部以及设置在端块下端的嵌入部,所述端部盖合在所述筒状部上端,所述嵌入部插入所述筒状部内;
第二种:所述密封件为至少一个钢球,所述钢球塞入所述筒状部内,且所述钢球与所述筒状部过盈配合。
进一步地,所述电芯中心孔插针组件采用具有防水特性的材质。
进一步地,所述具有防水特性的材质为金属材质或非金属材质。
进一步地,所述金属材质为不锈钢、铝或铝合金。
进一步地,所述非金属材质为陶瓷或塑料。
进一步地,所述绝缘密封物质的材质为聚丙烯材质。
进一步地,所述引出导体为铝片或镍片。
本发明电芯中心孔插针组件,优选地适用于圆柱形锂离子电芯,具有与电芯外壳密封连接构成环状空腔的能力,此空腔可容纳含中心孔电极组的能力,其中引出导体在其内外两端分别具有可进行电路拓展的触点区域,具备 与电芯正电极和/或负电极导电连接而实现电芯极性引出的能力。
本发明电芯中心孔插针组件能够实现传统插针功能,其部分或全部插入电芯卷绕电极组中心孔。为了实现电芯极性引出,筒状部内设置绝缘密封物质,引出导体上下贯穿绝缘密封物质。这种设计允许电芯内部正电极和/负电极可通过上述引出导体将电芯极性引出,而绝缘密封物质的存在使得电芯极性分离可在电芯中心孔插针组件内实现,进而避免了传统圆柱电芯无奈地占用电芯有限空间来实现电芯极性分离的尴尬。绝缘密封物质一般选用塑料,优选注塑工艺将绝缘密封物质添加到筒状部结构内部。
本发明实现的电芯中心孔插针组件因为要实现电芯极性引出功能,必然会有部分暴露在电芯使用环境中,这与传统插针截然不同,传统插针最终与电极组一起被密封在电芯壳内。由于该新型电芯中心孔插针组件部分要置于电极组内部,部分又要暴露在电芯使用环境中,这就要求该新型电芯中心孔插针组件必须具备防水特性和拓展形成密闭空间的能力,且拓展后结构满足如下特征,原本插针与电极组对应的面拓展后始终对应电极组。在实际应用中,电芯外壳将完成这种拓展功能,因此该新型电芯中心孔插针组件设计成可与电芯外壳密封连接构成环状空腔的形状。本发明优选在绝缘密封物质上预设注液孔,或设置在绝缘密封物质中心或为偏心位置。注液孔在电芯制作过程中会在完成注液后通过密封件实施密封。
本发明实现的电芯中心孔插针组件,其电芯极性引出功能是通过在筒状部的绝缘密封物质内预设引出导体来实现的。该引出导体在针状主体两端都必须具有可进行电路拓展的触点区域,对应电芯内部的触点用于实现与电芯正电极和/或负电芯的导电连接,对应电芯外部的触点用于实现与外界电源或设计接口导电连接。通常的,可以预设一个铝片和一个镍片作为引出导体在筒状部内,组装电芯时,电芯正极片通过导体或直接与上述铝片导电连接,电芯负极片通过导体或直接与上述镍片导电连接,铝片和镍片最终成为电芯的正极子与负极子。为了缩减筒状体尺寸,也可预设一个金属片(例如铝片 或镍片),组装电芯时,电芯正电极或负电极通过导体或直接与上述铝片导电连接,配合使用金属(例如不锈钢)电芯外壳,将电芯负电极与金属壳导电连接在一起,铝片为电芯正极子,金属壳为电芯负极子。
图1为本发明的实施例1的结构示意图;
图2为本发明的实施例2的结构示意图;
图3为本发明的实施例3的结构示意图;
图4为本发明的实施例4的结构示意图;
图5为本发明的实施例5的结构示意图;
图6为本发明中密封件的第一种结构示意图;
图7为本发明中密封件的第二种结构示意图;
图8为本发明应用于电芯中第一种结构示意图;
图9为本发明应用于电芯中第二中结构示意图。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,本实施例公开了一种电芯中心孔插针组件100A包括,
一个插针壳体101、正电极引出导体103以及负电极引出导体104、绝缘密封物质102;
其中,所述插针壳体101的纵截面呈
型,其包括一个上下开口的筒状部和在所述筒状部顶端向外展开形成的圆盘形翼缘。所述筒状部插入电极组中心孔内;所述绝缘密封物质102部分设置在所述筒状部内;正电极引出导体103以及负电极引出导体104贯穿所述绝缘密封物质;正电极引出导体 103以及负电极引出导体104下端与电芯正电极和/或负电极导电连接,从而实现电芯极性引出。
其中,所述正电极引出导体103以及负电极引出导体104采用铝片或镍片。
其中,在所述绝缘密封物质102上设置有注液孔,所述注液孔上下贯穿绝缘密封物质,其设置在绝缘密封物质的中心或偏心位置。
需要说明的是,本申请中电芯中心孔插针组件100A以及引出导体的尺寸,本领域中的技术人员通过其掌握的常规技术能够获知,不再详述。
在进行加工的时候,正电极引出导体103以及负电极引出导体104下端超出插针壳体101的筒状部,上端超出圆盘形翼缘,筒状部内通过模板注塑法注入了绝缘密封物质102,优选地,所述绝缘密封物质102采用聚丙烯塑料,最终将筒状部内正电极引出导体103以及负电极引出导体104完全包裹,同时在管中心或偏心形成一个通孔,即为注液孔,绝缘密封物质102外壁与筒状部内壁紧密结合,正电极引出导体103以及负电极引出导体104对称处于绝缘密封物质102内。
实施例2
本实施例是基于实施例1的改进,本实施例与实施例1的区别仅在于插针壳体101的不同,其余的结构均与实施例1的结构相同。
实施例3
本实施例是基于实施例1、实施例2的改进,本实施例与实施例1、实施例 2的区别仅在于插针壳体101的不同,其余的结构均与实施例1的结构相同。
实施例4
本实施例是基于实施例1的改进,本实施例提供的电芯中心孔插针组件100D与实施例1的区别在于绝缘密封物质102上未设置有注液孔,其余的结构均与实施例1的结构相同,如图4所示。当然,在实施例2和实施例3中,绝缘密封物质102也可以不设置注液孔,注液孔设置在其他位置。
实施例5
本实施例是基于实施例1的改进,本实施例提供的电芯中心孔插针组件与实施例1的区别仅在于,如图5所示,只有一根引出导体103,此引出导体103可以为正电极引出导体,也可以为负电极引出导体。
当然,在实施例2、实施例3、实施例4中,均能够进行该种改进,引出导体103只设置一根,此处不再详述。
需要说明的是,在实施例1、实施例2、实施例3、实施例5中注液孔设置在绝缘密封物质102上,由于注液孔在使用完毕后,需要使用密封件密封,因此,密封件的结构采用如下结构之一:
第一种:如图6所示,所述密封件采用端帽结构,其包括端部以及设置在端块下端的嵌入部,所述端部盖合在所述筒状部上端,所述嵌入部插入所述筒状部内;
第二种:如图7所示,所述密封件为至少一个钢球,所述钢球塞入所述筒状部内,且所述钢球与所述筒状部过盈配合。
需要说明的是,
与实施例1中插针壳体的结构相配合使用的电芯外壳的纵截面为U形,且插针壳体以及电芯外壳均可以为一体式成型结构,也可为多部分拼接结构。
与实施例2中插针壳体的结构相配合使用的电芯外壳的纵截面为“一”字 形,且插针壳体以及电芯外壳均可以为一体式成型结构,也可为多部分拼接结构。
上述的插针壳体与电芯外壳相配合使用,两者密封连接,形成能够容纳电极组的环状密闭空腔。
另外,所述电芯中心孔插针组件采用具有防水特性的材质,所述具有防水特性的材质包括金属材质或非金属材质。优选地,所述金属材质为不锈钢、铝或铝合金;所述非金属材质为陶瓷或塑料。
另外,如,8、图9所示,为本发明中实施例1应用于电芯中的应用示例结构,其中,正电极引出导体103以及负电极引出导体104的下端分别与正电极、负电极的导电连接,可以采用两种方式:
第一种:如图8,所述电极引出导体下端与过渡导体的一端焊接连接,过渡导体的另一端与所述正电极或负电极焊接连接;
第二种:如图9,所述电极引出导体下端与所述正电极或负电极直接焊接连接。
图中电芯包括至少一个正电极201和一个负电极202以及分隔正负电极的隔膜203,所述正电极201、负电极202及隔膜203围绕一个电极组中心孔以螺旋卷绕方式成形,所述电极组200中心孔直径大于0,小于电芯直径。
电芯外壳300底端内侧面铺设一层绝缘胶带300-a,用于防止正电极引出导体103以及负电极引出导体104与电芯外壳300之间发生短路,同样防止正电极过渡导体204、负电极过渡导体205与电芯外壳300之间发生短路。
在组装过程中,插针壳体101内通过模板注塑法注入绝缘密封材质102,最终将筒状部内的正电极引出导体103以及负电极引出导体104完全包裹,同时在绝缘密封物质102形成一个纵向贯穿的注液孔400,注液孔400通过 密封件400-a密封,绝缘密封物质102与筒状部内壁紧密结合。将筒状部插入电极组中心孔,然后正电极引出导体103以及负电极引出导体104分别向外弯折与正电极过渡导体(极组正极耳)204、负电极过渡导体(极组负极耳)205焊接,搭配使用相配合形状的电芯外壳,将插针壳体与电芯外壳连接处通过激光焊接实施封口。然后通过预留在绝缘密封物质102的注液孔400将电解液注入电芯内部,完成注液后,注液孔400进行密封。完成上述操作后的电芯经传统化成处理后形成二次锂离子圆柱电芯。其中电芯中心孔插针组件实现了电芯正负极性的绝缘与引出,正电极引出导体103为电芯正极极子,负电极引出导体104为电芯负极极子,避免了在高度方向或者直径方向占用空间进行电芯极性分离。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (17)
- 一种电芯中心孔插针组件,其特征在于,包括:一个插针壳体、至少一种引出导体以及绝缘密封物质;其中,所述插针壳体至少包括一个上下开口的筒状部,所述筒状部插入电极组中心孔内;所述绝缘密封物质部分或全部设置在所述筒状部内;所述引出导体贯穿所述绝缘密封物质;所述引出导体下端与电芯正电极和/或负电极导电连接,从而实现电芯极性引出。
- 根据权利要求1所述的电芯中心孔插针组件,其特征在于,所述插针壳体的纵截面呈“||”形,其为一个上下开口的筒状部。
- 根据权利要求1所述的电芯中心孔插针组件,其特征在于,所述电芯包括至少一个正电极和一个负电极以及分隔正负电极的隔膜,所述正电极、负电极及隔膜围绕一个电极组中心孔以螺旋卷绕方式成形,所述电极组中心孔直径大于0,小于电芯直径。
- 根据权利要求1所述的电芯中心孔插针组件,其特征在于,所述电芯中心孔插针组件与电芯外壳相配合使用,两者密封连接,形成能够容纳电极组的环状密闭空腔。
- 根据权利要求1所述的电芯中心孔插针组件,其特征在于,还包括至少一个用于向所述电芯内注入电解液的注液孔。
- 根据权利要求8所述的电芯中心孔插针组件,其特征在于,所述注液孔设置在所述插针壳体上和/或设置在所述绝缘密封物质上。
- 根据权利要求9所述的电芯中心孔插针组件,其特征在于,所述注液孔上下贯穿绝缘密封物质,其设置在绝缘密封物质的中心或偏心位置,所述注液孔通过密封件密封,用于防止电解液从所述注液孔泄漏。
- 根据权利要求10所述的电芯中心孔插针组件,其特征在于,所述密封件采用如下结构之一:第一种:所述密封件采用端帽结构,其包括端部以及设置在端块下端的嵌入部,所述端部盖合在所述筒状部上端,所述嵌入部插入所述筒状部内;第二种:所述密封件为至少一个钢球,所述钢球塞入所述筒状部内,且所述钢球与所述筒状部过盈配合。
- 根据权利要求11所述的电芯中心孔插针组件,其特征在于,所述电芯中心孔插针组件采用具有防水特性的材质。
- 根据权利要求12所述的电芯中心孔插针组件,其特征在于,所述具有防水特性的材质为金属材质或非金属材质。
- 根据权利要求13所述的电芯中心孔插针组件,其特征在于,所述金属材质为不锈钢、铝或铝合金。
- 根据权利要求13所述的电芯中心孔插针组件,其特征在于,所述非金属材质为陶瓷或塑料。
- 根据权利要求1所述的电芯中心孔插针组件,其特征在于,所述绝缘密封物质的材质为聚丙烯材质。
- 根据权利要求1所述的电芯中心孔插针组件,其特征在于,所述引出导体为铝片或镍片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20929778.7A EP4068458A4 (en) | 2020-04-06 | 2020-11-26 | CONTACT PIN ARRANGEMENT FOR CENTER HOLE OF A BATTERY CELL |
US17/841,640 US20220311106A1 (en) | 2020-04-06 | 2022-06-15 | Pin assembly for cell |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010262232.XA CN111969253A (zh) | 2020-04-06 | 2020-04-06 | 一种电芯中心孔插针组件 |
CN202020484251.2U CN212011175U (zh) | 2020-04-06 | 2020-04-06 | 一种电芯中心孔插针组件 |
CN202010262232.X | 2020-04-06 | ||
CN202020484251.2 | 2020-04-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/841,640 Continuation-In-Part US20220311106A1 (en) | 2020-04-06 | 2022-06-15 | Pin assembly for cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021203716A1 true WO2021203716A1 (zh) | 2021-10-14 |
Family
ID=78023210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131696 WO2021203716A1 (zh) | 2020-04-06 | 2020-11-26 | 一种电芯中心孔插针组件 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220311106A1 (zh) |
EP (1) | EP4068458A4 (zh) |
WO (1) | WO2021203716A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06124696A (ja) * | 1992-08-24 | 1994-05-06 | Sony Corp | 円筒型電池 |
JPH1083833A (ja) * | 1996-09-06 | 1998-03-31 | Japan Storage Battery Co Ltd | 二次電池 |
US20020110729A1 (en) * | 1999-09-30 | 2002-08-15 | Asahi Glass Company, Limited | Electrochemical device |
CN101393973A (zh) * | 2007-09-21 | 2009-03-25 | 深圳市比克电池有限公司 | 圆柱形二次电池 |
JP2012174344A (ja) * | 2011-02-17 | 2012-09-10 | Hitachi Ltd | 電池およびその製造方法 |
CN111969253A (zh) * | 2020-04-06 | 2020-11-20 | 天津力神电池股份有限公司 | 一种电芯中心孔插针组件 |
CN212011175U (zh) * | 2020-04-06 | 2020-11-24 | 天津力神电池股份有限公司 | 一种电芯中心孔插针组件 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000011981A (ja) * | 1998-06-25 | 2000-01-14 | Shin Kobe Electric Mach Co Ltd | 非水電解質二次電池 |
CN206460987U (zh) * | 2017-02-13 | 2017-09-01 | 山东巨维新能源股份有限公司 | 圆柱形锂离子电池用铝盖帽 |
CN108023037B (zh) * | 2017-12-15 | 2024-06-25 | 珠海微矩实业有限公司 | 纽扣电池 |
-
2020
- 2020-11-26 WO PCT/CN2020/131696 patent/WO2021203716A1/zh unknown
- 2020-11-26 EP EP20929778.7A patent/EP4068458A4/en active Pending
-
2022
- 2022-06-15 US US17/841,640 patent/US20220311106A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06124696A (ja) * | 1992-08-24 | 1994-05-06 | Sony Corp | 円筒型電池 |
JPH1083833A (ja) * | 1996-09-06 | 1998-03-31 | Japan Storage Battery Co Ltd | 二次電池 |
US20020110729A1 (en) * | 1999-09-30 | 2002-08-15 | Asahi Glass Company, Limited | Electrochemical device |
CN101393973A (zh) * | 2007-09-21 | 2009-03-25 | 深圳市比克电池有限公司 | 圆柱形二次电池 |
JP2012174344A (ja) * | 2011-02-17 | 2012-09-10 | Hitachi Ltd | 電池およびその製造方法 |
CN111969253A (zh) * | 2020-04-06 | 2020-11-20 | 天津力神电池股份有限公司 | 一种电芯中心孔插针组件 |
CN212011175U (zh) * | 2020-04-06 | 2020-11-24 | 天津力神电池股份有限公司 | 一种电芯中心孔插针组件 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4068458A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20220311106A1 (en) | 2022-09-29 |
EP4068458A1 (en) | 2022-10-05 |
EP4068458A4 (en) | 2024-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7205050B2 (ja) | 密閉型蓄電装置 | |
CN100440602C (zh) | 圆柱形锂可再充电电池及其制造方法 | |
JP4787046B2 (ja) | 円筒状のリチウム二次電池 | |
WO2021203715A1 (zh) | 一种电芯 | |
KR100646530B1 (ko) | 이차 전지 | |
KR100882912B1 (ko) | 캡 조립체, 이를 구비하는 이차 전지, 상기 캡 조립체의제조방법 및 상기 이차전지의 제조방법 | |
JP2006093109A (ja) | 二次電池 | |
EP4024574B1 (en) | Laser welded lithium-ion button cell battery comprising a top plate | |
KR20100021192A (ko) | 이차전지 | |
KR20040034248A (ko) | 캡 조립체 및 이를 채용한 이차전지 | |
CN111354914B (zh) | 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品 | |
WO2020248939A1 (zh) | 一种电化学储能器件 | |
CN109216596A (zh) | 一种电池 | |
KR100751310B1 (ko) | 캡 조립체 및, 그것을 구비한 각형 2 차 전지 | |
CN111969253A (zh) | 一种电芯中心孔插针组件 | |
CN111354910B (zh) | 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品 | |
KR20220066600A (ko) | 이차전지 | |
KR20150050154A (ko) | 코팅층이 형성된 원통형 이차전지 | |
CN212011175U (zh) | 一种电芯中心孔插针组件 | |
CN208674180U (zh) | 一种电池 | |
WO2021203716A1 (zh) | 一种电芯中心孔插针组件 | |
CN211265619U (zh) | 纽扣电池 | |
CN112635878A (zh) | 一种具有焊接保护垫圈的微型锂离子电池 | |
JPH09293529A (ja) | 円筒密閉型蓄電池及びその製造法 | |
KR100522819B1 (ko) | 리튬 이온 2차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20929778 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020929778 Country of ref document: EP Effective date: 20220701 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |