WO2021203585A1 - 磁悬浮转子系统的位移检测电路及其位移自传感系统 - Google Patents

磁悬浮转子系统的位移检测电路及其位移自传感系统 Download PDF

Info

Publication number
WO2021203585A1
WO2021203585A1 PCT/CN2020/104867 CN2020104867W WO2021203585A1 WO 2021203585 A1 WO2021203585 A1 WO 2021203585A1 CN 2020104867 W CN2020104867 W CN 2020104867W WO 2021203585 A1 WO2021203585 A1 WO 2021203585A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
air gap
displacement
hall
rotor system
Prior art date
Application number
PCT/CN2020/104867
Other languages
English (en)
French (fr)
Inventor
郑世强
魏世通
文通
王坤
乐韵
毛琨
王棣
Original Assignee
北京航空航天大学宁波创新研究院
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学宁波创新研究院, 北京航空航天大学 filed Critical 北京航空航天大学宁波创新研究院
Priority to US17/995,953 priority Critical patent/US11863033B2/en
Publication of WO2021203585A1 publication Critical patent/WO2021203585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0487Active magnetic bearings for rotary movement with active support of four degrees of freedom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to the technical field of magnetic suspension bearings, in particular to a displacement detection circuit of a magnetic suspension rotor system and a displacement self-sensing system thereof.
  • the magnetic bearing has the characteristics of non-contact friction, high speed and no need for lubrication, and the magnetic levitation rotor system itself can realize active vibration control without adding additional hardware equipment.
  • the magnetic levitation rotor system is also used in the ground observation satellite and space telescope. It has a wide range of applications. In order to achieve high-precision control of the magnetic suspension rotor, it is necessary to accurately obtain the position of the rotor relative to the stator in the suspension bearing.
  • the technical problem to be solved by the present disclosure is to solve the problems of the existing displacement sensor that the detection surface needs to be individually selected, the axial size of the rotor is increased, the displacement detection and control are not coplanar, and the displacement detection generates errors.
  • a displacement detection circuit of a magnetic levitation rotor system including:
  • a current sampling circuit for collecting current flowing through the corresponding coil wherein the coil is a coil distributed in series in the magnetic levitation rotor system;
  • the Hall sensor is provided in both the upper secondary air gap and the lower secondary air gap of the magnetic levitation rotor system, and the sensing surface of the Hall sensor is perpendicular to the direction of the magnetic field in the corresponding secondary air gap;
  • a Hall signal processing circuit connected to the Hall sensor, for performing differential processing on the Hall sensing signal corresponding to the upper secondary air gap and the Hall sensing signal corresponding to the lower secondary air gap;
  • the displacement signal calculation circuit is respectively connected with the current sampling circuit and the Hall signal processing circuit, and is used to obtain the displacement of the rotor in the magnetic suspension rotor system according to the current and the difference processing result.
  • the current sampling circuit includes:
  • the first amplifying circuit is used for amplifying the current flowing through the sampling resistor.
  • the amplification factor of the first amplification circuit satisfies the following calculation formula:
  • a is the magnification of the first amplifying circuit
  • ⁇ 0 is the vacuum permeability
  • N is the number of turns of the coil
  • the main air gap width when the rotor in the magnetic suspension rotor system is at the equilibrium position is h 1
  • the surface area is A 1
  • the width of the auxiliary air gap is h 2
  • the surface area is A 2 .
  • the Hall signal processing circuit includes:
  • Two amplifying branches and a differential circuit, the amplifying branches are connected to the corresponding Hall sensors;
  • Each of the amplifying branches includes a second amplifying circuit, and the second amplifying circuit in the amplifying branch is connected to the Hall sensing signal corresponding to the corresponding sub-air gap, and one of the two amplifying branches is The output ends of the second amplifying circuit are all connected to the differential circuit.
  • the displacement signal solution circuit includes:
  • a division circuit and a square root circuit the division circuit is connected to the square root circuit, and the division circuit is used to divide the output signal of the current sampling circuit and the output signal of the Hall signal processing circuit, so The square root circuit is used to perform offset adjustment and square root processing on the output signal of the dividing circuit.
  • the prescribing circuit includes:
  • a deviation adjustment circuit and a square root circuit the deviation adjustment circuit is connected to the square root circuit, the deviation adjustment circuit is used to superimpose the deviation adjustment value on the output signal of the division circuit according to a reference signal, and the square root circuit is used to The output signal of the deviation adjustment circuit is subjected to square root processing.
  • the offset adjustment value corresponding to the offset adjustment circuit satisfies the following calculation formula:
  • b is the deviation adjustment value corresponding to the deviation adjustment circuit.
  • the amplification control resistance in the current sampling circuit and the Hall signal processing circuit, the amplification control resistance in the bias adjustment circuit, and the reference signal lead-in resistance all adopt sliding rheostats.
  • the main air gap width corresponding to the rotor displacement satisfies the following calculation formula:
  • h is the main air gap width corresponding to the rotor displacement
  • the rotor displacement in the magnetic levitation rotor system is equal to the sum of the position of the stator in the magnetic suspension rotor system and the main air gap width corresponding to the rotor displacement
  • ⁇ 0 is the vacuum magnetic Conductivity
  • N is the number of turns of the coil
  • I is the current
  • the main air gap width when the rotor in the magnetic suspension rotor system is in the equilibrium position is h 1
  • the surface area is A 1
  • the auxiliary air gap width is h 2
  • the surface area is A 2
  • B 1 is the Hall sensing signal corresponding to the upper secondary air gap
  • B 2 is the Hall sensing signal corresponding to the lower secondary air gap.
  • the embodiments of the present disclosure also provide a magnetic levitation rotor displacement self-sensing system, including a magnetic levitation rotor system and the displacement detection circuit of the magnetic levitation rotor system as described in the first aspect, the magnetic levitation rotor system and the displacement detection circuit The detection circuit is connected, and the magnetic suspension rotor system includes a permanent magnet biased magnetic suspension rotor system with a secondary air gap.
  • the displacement detection circuit includes a circuit sampling circuit, a Hall sensor, a Hall signal processing circuit, and a displacement signal resolving circuit.
  • the current sampling circuit is used to collect the current flowing through the corresponding coil.
  • the coil is a magnetic levitation rotor system.
  • the coils distributed in series are equipped with Hall sensors in the upper air gap and the lower air gap of the magnetic levitation rotor system.
  • the sensing surface of the Hall sensor is perpendicular to the direction of the magnetic field in the corresponding auxiliary air gap.
  • the Hall signal processing circuit is used In order to perform differential processing on the Hall sensing signal corresponding to the upper secondary air gap and the Hall sensing signal corresponding to the lower secondary air gap, the displacement signal calculation circuit is used to obtain the displacement of the rotor in the magnetic levitation rotor system according to the current and the differential processing result.
  • the embodiments of the present disclosure are suitable for rotor position detection in a permanent magnet biased magnetic levitation rotor system with a secondary air gap. Only the coil current value is required.
  • the Hall sensor detection is coplanar with the magnetic levitation rotor system control.
  • FIG. 1 is a schematic structural diagram of a displacement detection circuit of a magnetic levitation rotor system provided by an embodiment of the disclosure
  • FIG. 2 is a schematic top view of the structure of a magnetic levitation rotor system in the axial direction according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure along the axial direction of a magnetic levitation rotor system provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of a circuit structure of a current sampling circuit provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a Hall signal processing circuit provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a division circuit provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the structure of a square prescribing circuit provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic structural diagram of a displacement detection circuit of a magnetic levitation rotor system provided by an embodiment of the disclosure.
  • the displacement detection circuit of the magnetic levitation rotor system includes a current sampling circuit 10, a Hall sensor 20, a Hall signal processing circuit 30, and a displacement signal solving circuit 40.
  • the Hall signal processing circuit 30 is connected to the Hall sensor 20.
  • the displacement signal calculation circuit 40 is connected to the current sampling circuit 10 and the Hall signal processing circuit 30 respectively.
  • FIG. 2 is a schematic top view of the structure of a magnetic levitation rotor system in an axial direction according to an embodiment of the disclosure.
  • the current sampling circuit 10 is used to collect the current flowing through the coil 4.
  • the coil 4 is a coil 4 distributed in series in a magnetic levitation rotor system.
  • the magnetic levitation rotor system can be a permanent magnet bias type with a sub-air gap 8.
  • Magnetic suspension rotor system, the magnetic suspension rotor system is a two-degree-of-freedom bearing, which can provide support for both the X direction and the Y direction.
  • Figure 1 shows the cross section of the magnetic levitation rotor system along the axial direction.
  • the four coils 4 in the same direction and in series in the permanent magnet bias magnetic levitation rotor system are distributed in the X+ direction.
  • the two coils 4 are connected in series in the same direction, the two coils 4 distributed in the X-direction are connected in series in the same direction.
  • the X+ and X- two coils 4 are connected in reverse series. The current of a coil 4 is sampled.
  • the magnetic levitation rotor system consists of two outer magnetic conductors, that is, a stator magnetic ring 1, a permanent magnet 2, eight stator cores 3, eight exciting coils 4, and an inner magnetic ring.
  • the rotor conductive magnet 5, two rotor cores 6 and eight outer spacer magnets 9, the eight stator cores 3 form the stator poles in the X direction and Y direction at the left and right ends of the magnetic suspension rotor system, of which every four stator cores 3
  • the four stator poles in the X and Y directions at one end of the magnetic levitation rotor system are formed, and eight outer magnets 9 are connected to the stator cores 3 in the X and Y directions at the left and right ends of the magnetic levitation rotor system.
  • Each stator magnetic pole is wound with an excitation coil 4 ,
  • the outer stator core 3 is the outer conductor 1
  • the permanent magnet 2 is located between the two outer conductors 1 in the axial direction
  • a secondary air gap is formed inside the permanent magnet 2 between the two outer conductors 1 in the axial direction.
  • the auxiliary air gap 8 is used to form an electric excitation magnetic path.
  • the inside of the stator core 3 is the rotor core 6.
  • the inner magnetic ring 5 is installed inside the rotor core 6, and The rotor cores 6 at the left and right ends are connected to form a magnetic path.
  • Both the upper and lower auxiliary air gaps of the magnetic levitation rotor system are provided with a Hall sensor 20, and the sensing surface of the Hall sensor 20 is perpendicular to the direction of the magnetic field in the corresponding auxiliary air gap 8.
  • the Hall sensor 20 can use a miniature flexible probe with a thickness of less than 0.5 mm.
  • the sensing surface of the Hall sensor 20 is perpendicular to the direction of the magnetic field in the corresponding auxiliary air gap 8, so that the Hall sensor 20 detects and controls the magnetic suspension rotor system. Coplanar.
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a magnetic levitation rotor system along an axial direction according to an embodiment of the disclosure.
  • the Hall signal processing circuit 30 is connected to the Hall sensor 20, and the Hall signal processing circuit 30 is used for the Hall sensing signal corresponding to the upper sub air gap and the Hall sensing signal corresponding to the lower sub air gap Perform differential processing.
  • the electromagnetic magnetic circuit is the magnetic circuit shown by the dashed line in Figure 3.
  • the electromagnetic magnetic circuit must pass through the main air gap 7 and must pass through the secondary air gap 8 to form a closed loop.
  • the permanent magnetic circuit is the magnetic circuit shown by the solid line in FIG.
  • the magnetic field in the auxiliary air gap 8 is formed by the superposition of an electromagnetic magnetic field and a part of the permanent magnetic field. Affected by the control current and the length of the main air gap, the electromagnetic flux in the auxiliary air gap 8 is a variable value, and the auxiliary air The magnetic resistance of the gap 8 remains unchanged, and the permanent magnetic flux in the sub-air gap 8 is a fixed value.
  • the embodiment of the present disclosure sets the Hall signal processing circuit 30 to perform differential processing on the Hall sensing signal corresponding to the upper secondary air gap and the Hall sensing signal corresponding to the lower secondary air gap, so that the permanent magnetic flux in the secondary air gap 8 can be The effect is canceled, and a quantity related only to electromagnetic flux is obtained.
  • the displacement signal calculation circuit 40 is respectively connected to the current sampling circuit 10 and the Hall signal processing circuit 30.
  • the displacement signal calculation circuit 40 is used to obtain the displacement of the rotor in the magnetic levitation rotor system according to the current and the difference processing result, that is, the displacement signal calculation
  • the circuit 40 can perform differential processing on the Hall induction signal corresponding to the upper secondary air gap and the Hall induction signal corresponding to the lower secondary air gap according to the current collected by the current sampling circuit 10 and flowing through the corresponding coil 4, and the Hall signal processing circuit 30 The result directly obtains the main air gap width corresponding to the rotor displacement to be obtained in the magnetic suspension rotor system, and then obtains the position of the rotor in the magnetic suspension rotor system.
  • FIG. 4 is a schematic diagram of a circuit structure of a current sampling circuit provided by an embodiment of the disclosure. 1 to 4, the current sampling circuit 10 includes a first amplifying circuit U2B, and the first amplifying circuit U2B is used to amplify the current flowing through the sampling resistor.
  • sampling resistor R only one current flowing through one coil 4 needs to be sampled in the same direction, that is, only one sampling resistor R is needed in the same direction.
  • One end of the sampling resistor R can be connected to one of the external terminals A of the four coils 4, and the other end of the sampling resistor R can be connected to the other external terminal B of the four coils 4, which can be obtained by collecting the current flowing through the sampling resistor R The current flowing through the four coils 4.
  • a sampling resistor R can be connected in series with a power amplifier 50 to preliminarily amplify the current collected by the current sampling circuit 10 and improve current detection accuracy.
  • the first amplifying circuit U2B is used to amplify the current flowing through the sampling resistor R, and the current sampling circuit 10 can calculate the output current of the corresponding coil 4 by detecting the voltage at the positive and negative ends of the sampling resistor R.
  • the current sampling circuit 10 may also include a first voltage follower circuit U2A and a first filter circuit U2C. The two ends are connected, and the current flowing through the output coil 4 is calculated by detecting the voltage at the positive and negative ends of the sampling resistor R.
  • the current enters the first amplifying circuit U2B through the first voltage follower circuit U2A, and the first amplifying circuit U2B sets the current It is amplified by a fixed multiple, and then filtered by the first filter circuit U2C, and then output.
  • the current sampling circuit 10 has a small number of stages, is easy to implement, and can effectively ensure the reliability of the system.
  • the main air gap width corresponding to the rotor displacement to be obtained can be set to satisfy the following calculation formula:
  • h is the main air gap width corresponding to the rotor displacement to be obtained
  • the rotor displacement in the magnetic suspension rotor system is equal to the sum of the position of the stator in the magnetic suspension rotor system and the main air gap width corresponding to the rotor displacement
  • ⁇ 0 is the vacuum permeance N is the number of turns of a coil
  • I is the current flowing through the coil 4.
  • the main air gap width is h 1
  • the surface area is A 1
  • h 2 is the auxiliary air gap width
  • H 2 is a constant
  • a 2 is the surface area of the secondary air gap
  • B 1 is the Hall sensing signal corresponding to the upper secondary air gap
  • B 2 is the Hall sensing signal corresponding to the lower secondary air gap.
  • is the magnetic flux
  • N is the number of turns of the electromagnetic coil of the magnetic levitation rotor system, that is, the number of turns of a coil
  • I is the coil current, that is, the current flowing through the sampling resistor
  • R 1 is the magnetic resistance corresponding to the main air gap
  • R 2 Is the magnetic resistance corresponding to the auxiliary air gap
  • R 2 satisfies the following calculation formula:
  • the magnetic induction intensity B e1 generated by the electromagnetic flux in the upper secondary air gap is:
  • the magnetic induction intensity B e2 generated by the electromagnetic flux in the lower auxiliary air gap is:
  • the magnetic field in the secondary air gap is formed by the superposition of an electromagnetic field and a part of the permanent magnetic field. After considering the influence of the permanent magnetic flux By, the magnetic induction intensity B 1 generated by the magnetic field in the upper secondary air gap is obtained and satisfies the following calculation formula:
  • the magnetic induction intensity B 2 produced by the magnetic field in the lower secondary air gap satisfies the following calculation formula:
  • the magnetic induction intensity B 1 produced by the magnetic field in the upper secondary air gap and the magnetic induction intensity B 2 produced by the magnetic field in the lower secondary air gap are entered into the difference to obtain:
  • the rotor displacement in the magnetic suspension rotor system is equal to the position of the stator in the magnetic suspension rotor system, that is, the sum of the bearing position and the main air gap width h corresponding to the rotor displacement, and then the rotor displacement in the magnetic suspension rotor system is obtained.
  • the amplification factor of the first amplification circuit U2B may be set to satisfy the following calculation formula:
  • a is the magnification of the first amplifying circuit U2B
  • ⁇ 0 is the vacuum permeability
  • N is the number of turns of a coil
  • the main air gap width when the rotor in the magnetic levitation rotor system is in the equilibrium position is h 1
  • the surface area is A 1
  • the width of the auxiliary air gap is h 2
  • the surface area is A 2.
  • FIG. 5 is a schematic structural diagram of a Hall signal processing circuit provided by an embodiment of the disclosure.
  • the Hall signal processing circuit 30 includes two amplifying branches and a differential circuit U4D, one amplifying branch is the branch where R8 is located, one amplifying branch is the branch where R15 is located, and the amplifying branch is connected with The corresponding Hall sensor 20 is connected.
  • Each amplifying branch includes a second amplifying circuit
  • the amplifying branch where R8 is located includes a second amplifying circuit U3B
  • the amplifying branch where R13 is located includes a second amplifying circuit U4B
  • the second amplifying circuit in the amplifying branch is connected to the corresponding
  • the secondary air gap 8 corresponds to the Hall sensing signal
  • the output terminals of the second amplifying circuit in the two amplifying branches are all connected to the differential circuit U4D.
  • one amplifying branch can be connected to the Hall sensor 20 set corresponding to the upper secondary air gap, and the other amplifying branch can be connected to the Hall sensor 20 set corresponding to the lower secondary air gap.
  • a resistor R8 can be provided.
  • the amplifying branch is connected to the Hall sensor 20 set corresponding to the upper secondary air gap, and the amplifying branch including the resistor R15 is connected to the Hall sensor 20 set corresponding to the lower secondary air gap.
  • the induction signal of the air gap is transmitted to the corresponding amplifying branch, and the second amplifying circuit amplifies the corresponding current by a set multiple and outputs it to the differential circuit U4D.
  • the magnification of the second amplifying circuit can be set as:
  • I H is the supply current of the probe in the corresponding auxiliary air gap.
  • each amplifying branch can also be configured to further include a second voltage follower circuit and a second filter circuit
  • the amplifying branch where R8 is located includes a second voltage follower circuit U3A and a second filter circuit U3C.
  • the amplifying branch where R13 is located includes a second voltage follower circuit U4A and a second filter circuit U4C.
  • the Hall sensor 20 detects the output in the sub-air gap 8, and then passes through the corresponding second voltage follower circuit, second amplifier and second filter. The circuit is transformed into the magnetic induction in the auxiliary air gap 8.
  • the two magnetic inductions are output after the differential circuit U4D, that is, the differential circuit U4D realizes the subtraction of B 1 and B 2 to eliminate part of the permanent magnetic flux in the auxiliary air gap 8.
  • the generated common mode interference results in the difference in magnetic induction intensity that is only related to the electromagnetic coil.
  • the displacement signal calculation circuit 40 includes a division circuit and a square root circuit.
  • the division circuit is connected to the square root circuit.
  • the division circuit is used to compare the output signal of the current sampling circuit 10 and the output signal of the Hall signal processing circuit 30. Perform division processing, and the square root circuit is used to adjust the offset and square root of the output signal of the division circuit.
  • FIG. 6 is a schematic structural diagram of a dividing circuit provided by an embodiment of the disclosure.
  • the division circuit can be set to include the main arithmetic device U5.
  • U5 can be, for example, an AD633AN chip.
  • the output signal of the current sampling circuit 10 is input from the IN2 terminal, and the output signal of the Hall signal processing circuit 30 is input from IN1.
  • Terminal input, that is, the right side of R7 is connected to IN2, and the right side of R23 is connected to IN1, and the result of the division operation can be obtained at the OUT side of the division circuit.
  • Terminal input that is, the right side of R7 is connected to IN2, and the right side of R23 is connected to IN1, and the result of the division operation can be obtained at the OUT side of the division circuit.
  • the result is:
  • FIG. 7 is a schematic diagram of the structure of a square prescribing circuit provided by an embodiment of the disclosure.
  • you can set the square root circuit including the deviation adjustment circuit and the square root circuit U7A.
  • U8B and U7C form the deviation adjustment circuit.
  • the deviation adjustment circuit is connected to the square root circuit.
  • the deviation adjustment circuit is used to divide the circuit according to the reference signal Vref.
  • the output signal is superimposed on the offset value, and the square root circuit is used to perform square root processing on the output signal of the offset circuit.
  • the square root circuit may also include a reference signal generating circuit, that is, the circuit shown in the upper right of FIG.
  • the third filter circuit U7D the output signal of the division circuit is input through the left side of the resistor R31, the calculation result of the division circuit is passed through the third voltage follower circuit U7B, and a fixed value is superimposed on this signal by the polarization circuit, that is, the polarization and amplitude modulator After the inverted output, the third filter circuit U7D is transmitted to the square root circuit U7A.
  • the negative voltage square root processing circuit is calculated to obtain the main air gap width h corresponding to the rotor displacement to be obtained.
  • the offset adjustment value corresponding to the offset adjustment circuit satisfies the following calculation formula:
  • b is the offset adjustment value corresponding to the offset adjustment circuit.
  • the amplification control resistance in the current sampling circuit 10 and the Hall signal processing circuit 30, the amplification control resistance in the bias adjustment circuit, and the reference signal lead-in resistance all adopt sliding rheostats
  • the amplification control resistance in the current sampling circuit 10 is R3
  • the amplification control resistance in the Hall signal processing circuit 30 is R14 and R21
  • the amplification control resistance in the polarization adjustment circuit is R37.
  • the reference signal in the polarization adjustment circuit is introduced
  • the resistance is R39, that is, you can set R3, R14, R21, R39 and R37 to use sliding rheostats to control the resistance by adjusting the magnification to achieve the magnification that the amplifying circuit meets, and to introduce the resistance by adjusting the reference signal to achieve the biasing value of the biasing circuit Demand.
  • the use of sliding rheostat not only facilitates the debugging process, but also facilitates transplantation on different devices without modification to meet the requirements of multiple sets of devices.
  • the embodiment of the present disclosure can obtain the coil current passing through the sampling resistor through the current sampling circuit 10, and amplify and filter it.
  • the Hall sensor 20 is placed in the secondary air gap of the permanent magnet biased magnetic levitation rotor system. The direction of the magnetic field is vertical. In this structure, the variable electromagnetic flux and part of the permanent magnetic flux pass through the auxiliary air gap. The part of the permanent magnetic flux is a fixed value.
  • the Hall signal processing circuit 30 amplifies and filters the magnetic induction intensity of the unilateral air gap, and then differentiates the magnetic induction intensity of the bilateral air gap to eliminate the common mode interference generated by the permanent magnetic flux in the secondary air gap.
  • the displacement signal calculation circuit 40 composed of a divider and an open circuit divides the filtered magnetic bearing coil current signal and the differential magnetic bearing air gap magnetic induction intensity first, and then performs the square root calculation to obtain the displacement signal. While realizing all the functions of traditional position sensors and traditional position self-sensing detection methods, it also has the advantages of shortening the axial size of the rotor, coplanar detection and control, high precision and simple design, which provides high-precision control of the magnetic levitation system condition.
  • the embodiments of the present disclosure also provide a magnetic levitation rotor displacement self-sensing system.
  • the magnetic levitation rotor displacement self-sensing system includes a magnetic levitation rotor system and the displacement detection circuit of the magnetic levitation rotor system as described in the above embodiment,
  • the magnetic suspension rotor system is connected with the displacement detection circuit.
  • the magnetic suspension rotor system includes a permanent magnet biased magnetic suspension rotor system with a secondary air gap.
  • the magnetic suspension rotor displacement self-sensing system has the beneficial effects of the above-mentioned embodiments, and will not be repeated here.
  • the present disclosure is suitable for rotor position detection in a permanent magnet biased magnetic levitation rotor system with a secondary air gap. Only the coil current value is required. In addition to all the functions of the self-sensing detection method, it also has the advantages of shortening the axial size of the rotor, coplanar detection and control, high precision and simple design. It provides conditions for the high-precision control of the magnetic levitation system, and has strong industrial practicality. sex.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种磁悬浮转子系统的位移检测电路及其位移自传感系统,位移检测电路包括电流采样电路(10),用于采集流经对应线圈(4)的电流;线圈(4)为磁悬浮转子系统中串联分布的线圈(4);霍尔传感器(20),磁悬浮转子系统的上副气隙(8)和下副气隙(8)中均设置有霍尔传感器(20),霍尔传感器(20)的感应面与对应的副气隙(8)中的磁场方向垂直;霍尔信号处理电路(30),与霍尔传感器(20)连接,用于对上副气隙(8)对应的霍尔感应信号和下副气隙(8)对应的霍尔感应信号进行差分处理;位移信号解算电路(40),分别与电流采样电路(10)和霍尔信号处理电路(30)连接,用于根据电流和差分处理结果获取磁悬浮转子系统中转子的位移。通过检测电路及其位移自传感系统,缩短了转子轴向尺寸,使得检测与控制共面,精度高且设计简洁。

Description

磁悬浮转子系统的位移检测电路及其位移自传感系统
本公开要求于2020年4月10日提交中国专利局、申请号为202010281385.9、发明名称为“磁悬浮转子系统的位移检测电路及其位移自传感系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及磁悬浮轴承技术领域,尤其涉及一种磁悬浮转子系统的位移检测电路及其位移自传感系统。
背景技术
磁悬浮轴承具有无接触摩擦、高转速以及无需润滑等特点,且磁悬浮转子系统本身可以实现主动振动控制,不需增加额外的硬件设备,磁悬浮转子系统也因此在对地观测卫星以及空间望远镜等方面得到了广泛的应用。为了实现对磁悬浮转子的高精度控制,需要精准获取系悬浮轴承中转子相对于定子的位置。
各种高分辨率卫星的发展对磁悬浮控制系统的稳定性和振动提出了更高的要求,由于磁悬浮系统的无接触特性,需要采用无接触传感器确定磁悬浮转子系统中转子相对于定子的位移。传统的位移传感器需要单独选定检测面,不仅增加了转子的轴向尺寸,而且位移的检测与控制不共面,使得位移的检测产生误差,且传统的位移传感器成本高,可靠性差。另外,传统的位移自传感磁轴承,只是通过提取电流纹波中的分量来估计转子位置,为了保证分量估计的精度,需要设计复杂的提取电路,使得传统的位移检测方法限制了磁悬浮系统振动性能的提高。
发明内容
本公开要解决的技术问题是解决现有的位移传感器存在的需要单独选定检测面,转子的轴向尺寸增加,位移的检测与控制不共面,位移检测产生误差的问题。
为了解决上述技术问题,本公开实施例提供了一种磁悬浮转子系统的位移检测电路,包括:
电流采样电路,用于采集流经对应线圈的电流;其中,所述线圈为所述磁悬浮转子系统中串联分布的线圈;
霍尔传感器,所述磁悬浮转子系统的上副气隙和下副气隙中均设置有所述霍尔传感器,所述霍尔传感器的感应面与对应的副气隙中的磁场方向垂直;
霍尔信号处理电路,与所述霍尔传感器连接,用于对所述上副气隙对应的霍尔感应信号和所述下副气隙对应的霍尔感应信号进行差分处理;
位移信号解算电路,分别与所述电流采样电路和所述霍尔信号处理电路连接,用于根据所述电流和差分处理结果获取所述磁悬浮转子系统中转子的位移。
可选地,所述电流采样电路包括:
第一放大电路,所述第一放大电路用于对流经采样电阻的所述电流进行放大处理。
可选地,所述第一放大电路的放大倍数满足如下计算公式:
a=2μ 0N(4A 2h 1+2A 1h 2)
其中,a为所述第一放大电路的放大倍数,μ 0为真空磁导率,N为一个所述线圈的匝数,所述磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2
可选地,所述霍尔信号处理电路包括:
两条放大支路和差分电路,所述放大支路与对应的所述霍尔传感器连接;
每条所述放大支路均包括第二放大电路,所述放大支路中的所述第二放大电路接入对应的副气隙对应的霍尔感应信号,两条所述放大支路中的第二放大电路的输出端均与所述差分电路连接。
可选地,所述位移信号解算电路包括:
除法电路和开方电路,所述除法电路与所述开方电路连接,所述除法电路用于对所述电流采样电路的输出信号与所述霍尔信号处理电路的输出信号进行除法处理,所述开方电路用于对所述除法电路的输出信号进行调偏和开方处理。
可选地,所述开方电路包括:
调偏电路和平方根电路,所述调偏电路与所述平方根电路连接,所述调偏电路用于根据参考信号向所述除法电路的输出信号叠加调偏值,所述平方根电路用于对所述调偏电路的输出信号进行开方处理。
可选地,所述调偏电路对应的调偏值满足如下计算公式:
b=(2A 2h 1+A 1h 2) 2
其中,b为所述调偏电路对应的调偏值,所述磁悬浮转子系统中的转子位于 平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2
可选地,所述电流采样电路和所述霍尔信号处理电路中的放大倍数控制电阻、所述调偏电路中的放大倍数控制电阻以及所述参考信号引入电阻均采用滑动变阻器。
可选地,对应转子位移的主气隙宽度满足如下计算公式:
Figure PCTCN2020104867-appb-000001
其中,h为对应转子位移的主气隙宽度,所述磁悬浮转子系统中转子的位移等于所述磁悬浮转子系统中定子的位置与对应转子位移的主气隙宽度的和值,μ 0为真空磁导率,N为一个所述线圈的匝数,I为所述电流,所述磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2,B 1为所述上副气隙对应的所述霍尔感应信号,B 2为所述下副气隙对应的所述霍尔感应信号。
第二方面,本公开实施例还提供了一种磁悬浮转子位移自传感系统,包括磁悬浮转子系统和如第一方面所述的磁悬浮转子系统的位移检测电路,所述磁悬浮转子系统与所述位移检测电路连接,所述磁悬浮转子系统包括带副气隙的永磁偏置式磁悬浮转子系统。
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的该位移检测电路包括电路采样电路、霍尔传感器、霍尔信号处理电路和位移信号解算电路,电流采样电路用于采集流经对应线圈的电流,线圈为磁悬浮转子系统中串联分布的线圈,磁悬浮转子系统的上副气隙和下副气隙中均设置有霍尔传感器,霍尔传感器的感应面与对应的副气隙中的磁场方向垂直,霍尔信号处理电路用于对上副气隙对应的霍尔感应信号和下副气隙对应的霍尔感应信号进行差分处理,位移信号解算电路用于根据电流和差分处理结果获取磁悬浮转子系统中的转子的位移。本公开实施例适用于带副气隙的永磁偏置式磁悬浮转子系统中的转子位置检测,仅需要线圈电流值,霍尔传感器检测与磁悬浮转子系统控制共面,在实现了传统位置传感器和传统位置自传感检测方法的所有功能的同时,还具有缩短转子轴向尺寸、检测与控制共面、精度高和设计简洁的优点,为磁悬浮系统的高精度控制提供了条件。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种磁悬浮转子系统的位移检测电路的结构示意图;
图2为本公开实施例提供的一种磁悬浮转子系统沿轴向的俯视结构示意图;
图3为本公开实施例提供的一种磁悬浮转子系统沿轴向的剖面结构示意图;
图4为本公开实施例提供的一种电流采样电路的电路结构示意图;
图5为本公开实施例提供的一种霍尔信号处理电路的结构示意图;
图6为本公开实施例提供的一种除法电路的结构示意图;
图7为本公开实施例提供的一种开方电路的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1为本公开实施例提供的一种磁悬浮转子系统的位移检测电路的结构示意图。如图1所示,磁悬浮转子系统的位移检测电路包括电流采样电路10、霍尔传感器20、霍尔信号处理电路30和位移信号解算电路40,霍尔信号处理电路30与霍尔传感器20连接,位移信号解算电路40分别与电流采样电路10和霍尔信号处理电路30连接。
图2为本公开实施例提供的一种磁悬浮转子系统沿轴向的俯视结构示意图。 结合图1和图2,电流采样电路10用于采集流经线圈4的电流,线圈4为磁悬浮转子系统中串联分布的线圈4,磁悬浮转子系统可以为带副气隙8的永磁偏置式磁悬浮转子系统,该磁悬浮转子系统为二自由度轴承,可以同时对X方向和Y方向提供支撑。图1示出了磁悬浮转子系统沿轴向的截面,以X方向为例,永磁偏置式磁悬浮转子系统中同方向且串联分布的图1示出的四个线圈4中,X+方向分布的两个线圈4同向串联,X-方向分布的两个线圈4同向串联,X+和X-两部分线圈4反向串联,流经四个线圈4的电流相等,所以同一方向仅需要对流经一个线圈4的电流进行采样。
具体地,结合图1和图2,磁悬浮转子系统由两个外导磁体,即定子导磁环1,一个永磁体2,八个定子铁心3,八个激磁线圈4,一个内导磁环,即转子导磁体5,两个转子铁心6和八个外隔磁体9组成,八个定子铁心3组成了磁悬浮转子系统左右两端X方向和Y方向上的定子磁极,其中每四个定子铁心3组成了磁悬浮转子系统一端X、Y方向上的四个定子磁极,八个外隔磁体9连接磁悬浮转子系统左右两端X、Y方向上的定子铁心3,每个定子磁极绕制有激磁线圈4,定子铁心3外部为外导磁体1,永磁体2在轴向上位于两个外导磁体1之间,在轴向上的两个外导磁体1之间在永磁体2内侧形成副气隙8,副气隙8用以构成电励磁磁通路。定子铁心3内部为转子铁心6,定子铁心3内表面与转子铁心6外表面留有一定的间隙,形成空气隙7,即主气隙7,内导磁环5安装在转子铁心6内部,并将左右两端转子铁心6连接起来,形成磁通路。
磁悬浮转子系统的上副气隙和下副气隙中均设置有霍尔传感器20,霍尔传感器20的感应面与对应的副气隙8中的磁场方向垂直,示例性地,结合图1和图2,霍尔传感器20可以采用微型柔性探头,厚度小于0.5mm,设置霍尔传感器20的感应面与对应的副气隙8中的磁场方向垂直,使得霍尔传感器20检测与磁悬浮转子系统控制共面。
图3为本公开实施例提供的一种磁悬浮转子系统沿轴向的剖面结构示意图。结合图1至图3,霍尔信号处理电路30与霍尔传感器20连接,霍尔信号处理电路30用于对上副气隙对应的霍尔感应信号和下副气隙对应的霍尔感应信号进行差分处理。具体地,结合图1至图3,磁悬浮转子系统中,电磁磁路为图3中虚线所示的磁路,电磁磁路除了经过主气隙7外,必须经过副气隙8才能构成闭合回路。永磁磁路为图3中实线所示的磁路,永磁磁路分为两部分,一部分永磁磁路经过 主气隙7,另一部分永磁磁路经过副气隙8。因此,副气隙8中的磁场是由电磁磁场与部分永磁磁场叠加而成,受控制电流和主气隙长度的影响,副气隙8中的电磁磁通是一个变化值,而副气隙8的磁阻不变,副气隙8中的永磁磁通是固定值。本公开实施例设置霍尔信号处理电路30对上副气隙对应的霍尔感应信号和下副气隙对应的霍尔感应信号进行差分处理,可以将副气隙8中的永磁磁通的影响抵消,得到只与电磁磁通有关的量。
位移信号解算电路40分别与电流采样电路10和霍尔信号处理电路30连接,位移信号解算电路40用于根据电流和差分处理结果获取磁悬浮转子系统中的转子的位移,即位移信号解算电路40能够根据电流采样电路10采集的流经对应线圈4的电流,以及霍尔信号处理电路30对上副气隙对应的霍尔感应信号和下副气隙对应的霍尔感应信号进行差分处理的结果直接获得磁悬浮转子系统中对应要获取的转子位移的主气隙宽度,进而获取磁悬浮转子系统中转子的位置,在实现了传统位置传感器和传统位置自传感检测方法的所有功能的同时,还具有缩短转子轴向尺寸、检测与控制共面、精度高和设计简洁的优点,为磁悬浮转子系统的高精度控制提供了条件。
图4为本公开实施例提供的一种电流采样电路的电路结构示意图。结合图1至图4,电流采样电路10包括第一放大电路U2B,第一放大电路U2B用于对流经采样电阻的电流进行放大处理。
具体地,同一方向仅需要对流经一个线圈4的电流进行采样,即同一方向仅需要一个采样电阻R。可以设置采样电阻R的一端与四个线圈4的一个外接端A连接,采样电阻R的另一端与四个线圈4的另一个外接端B连接,通过采集流经采样电阻R的电流即可获得流经四个线圈4的电流。示例性地,还可以设置采样电阻R串联有功放50,以初步放大电流采样电路10采集到的电流,提高电流检测精度。
第一放大电路U2B用于对流经采样电阻R的电流进行放大处理,电流采样电路10可以通过检测采样电阻R正负两端的电压,计算出对应的线圈4的输出电流。示例性地,如图4所示,电流采样电路10还可以包括第一电压跟随电路U2A和第一滤波电路U2C,电流检测放大器U1的正向端+和反向端-分别与采样电阻R的两端连接,通过检测采样电阻R正负两端的电压,计算流经输出线圈4的电流,该电流经第一电压跟随电路U2A进入第一放大电路U2B,第一放大电路U2B对 该电流进行设定倍数的放大,然后经过第一滤波电路U2C进行滤波处理后输出。这样,电流采样电路10的级数较少,容易实现,可以有效地保证系统的可靠性。
可选地,结合图1至图4,可以设置对应要获取的转子位移的主气隙宽度满足如下计算公式:
Figure PCTCN2020104867-appb-000002
其中,h为对应要获得的转子位移的主气隙宽度,磁悬浮转子系统中转子的位移等于磁悬浮转子系统中定子的位置与对应转子位移的主气隙宽度的和值,μ 0为真空磁导率,N为一个线圈的匝数,I为流经线圈4的电流,磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,h 2为副气隙宽度,h 2为常数,A 2为副气隙的表面积,B 1为上副气隙对应的霍尔感应信号,B 2为下副气隙对应的霍尔感应信号。
具体地,上述公式的得出推理过程具体如下:
设置磁悬浮转子系统中转子处于平衡位置时主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2,设置对应要获取的转子位移的主气隙宽度为h。
由安培环路定律可知:
Φ×(2R 1+R 2)=2NI
其中,Φ为磁通量,N为磁悬浮转子系统电磁线圈匝数,即为一个线圈的匝数,I为线圈电流,即流经采样电阻的电流,R 1为主气隙对应的磁阻,R 2为副气隙对应的磁阻,R 1满足如下计算公式:
Figure PCTCN2020104867-appb-000003
R 2满足如下计算公式:
Figure PCTCN2020104867-appb-000004
上副气隙内电磁磁通产生的磁感应强度B e1为:
Figure PCTCN2020104867-appb-000005
下副气隙内电磁磁通产生的磁感应强度B e2为:
Figure PCTCN2020104867-appb-000006
副气隙中的磁场是由电磁磁场与部分永磁磁场叠加而成,考虑永磁磁通By的影响后,得到上副气隙中的磁场产生的磁感应强度B 1满足如下计算公式:
Figure PCTCN2020104867-appb-000007
下副气隙中的磁场产生的磁感应强度B 2满足如下计算公式:
Figure PCTCN2020104867-appb-000008
为了消除共模干扰,将上副气隙中的磁场产生的磁感应强度B 1与下副气隙中的磁场产生的磁感应强度B 2进项差分,得到:
Figure PCTCN2020104867-appb-000009
反解,可得对应要获取的转子位移的主气隙宽度h满足如下计算公式:
Figure PCTCN2020104867-appb-000010
磁悬浮转子系统中转子的位移等于磁悬浮转子系统中定子的位置,即轴承的位置与对应转子位移的主气隙宽度h的和值,进而获取到磁悬浮转子系统中转子的位移。
可选地,可以设置第一放大电路U2B的放大倍数满足如下计算公式:
a=2μ 0N(4A 2h 1+2A 1h 2)
其中,a为第一放大电路U2B的放大倍数,μ 0为真空磁导率,N为一个线圈的匝数,磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2,设置第一放大电路U2B的放大倍数a满足上述公式,以得到h计算公式中的2μ 0NI(4A 2h 1+2A 1h 2),I为流经采样电阻的电流。
图5为本公开实施例提供的一种霍尔信号处理电路的结构示意图。结合图1至图5,霍尔信号处理电路30包括两条放大支路和差分电路U4D,一条放大支路为R8所在的支路,一条放大支路为R15所在的支路,放大支路与对应的霍尔传感 器20连接。每条放大支路均包括第二放大电路,R8所在的放大支路包括第二放大电路U3B,R13所在的放大支路包括第二放大电路U4B,放大支路中的第二放大电路接入对应的副气隙8对应的霍尔感应信号,两条放大支路中的第二放大电路的输出端均与差分电路U4D连接。
具体地,可以设置一条放大支路接入对应上副气隙设置的霍尔传感器20,另一条放大支路接入对应下副气隙设置的霍尔传感器20,例如可以设置包含有电阻R8的放大支路接入对应上副气隙设置的霍尔传感器20,包含有电阻R15的放大支路接入对应下副气隙设置的霍尔传感器20,霍尔传感器20分别将感应到的对应副气隙的感应信号传输至对应的放大支路,第二放大电路将对应的电流放大设定倍数后输出至差分电路U4D。示例性地,磁感应强度B(电磁感应强度与永磁感应强度的和)的检测基于霍尔效应,霍尔传感器得到的是霍尔电压U H=K HI HB,K H为霍尔灵敏度,其与霍尔片的材料性质、几何尺寸有关,对于一定的霍尔探头,其为常数;I H为探头供电电流,该电流与线圈电流无关。由此可以得到:
Figure PCTCN2020104867-appb-000011
B即对应气隙的磁感应强度B,因此可以设置第二放大电路的放大倍数为:
Figure PCTCN2020104867-appb-000012
I H为对应的副气隙中探头的供电电流。
示例性地,如图5所示,还可以设置每条放大支路还包括第二电压跟随电路和第二滤波电路,R8所在的放大支路包括第二电压跟随电路U3A和第二滤波电路U3C,R13所在的放大支路包括第二电压跟随电路U4A和第二滤波电路U4C,霍尔传感器20在副气隙8中检测输出,经对应的第二电压跟随电路、第二放大器和第二滤波电路转化为副气隙8内的磁感应强度,两路磁感应强度经差分电路U4D后输出,即差分电路U4D实现B 1与B 2的减法运算,用以消除副气隙8中部分永磁磁通产生的共模干扰,得到只与电磁线圈有关的磁感应强度差值。
可选地,可以设置位移信号解算电路40包括除法电路和开方电路,除法电路与开方电路连接,除法电路用于对电流采样电路10的输出信号与霍尔信号处理电路30的输出信号进行除法处理,开方电路用于对除法电路的输出信号进行调偏和开方处理。
图6为本公开实施例提供的一种除法电路的结构示意图。结合图1至图6,可以设置除法电路包含有主要运算器件U5,U5例如可以采用AD633AN型号的芯片,电流采样电路10的输出信号由IN2端输入,霍尔信号处理电路30的输出信号由IN1端输入,即R7的右侧端与IN2端连接,R23的右侧端与IN1端连接,即可在除法电路的OUT端得到除法运算后的结果,该结果为:
Figure PCTCN2020104867-appb-000013
此结果为负数。
图7为本公开实施例提供的一种开方电路的结构示意图。结合图1至图7,可以设置开方电路包括调偏电路和平方根电路U7A,U8B与U7C构成调偏电路,调偏电路与平方根电路连接,调偏电路用于根据参考信号Vref向除法电路的输出信号叠加调偏值,平方根电路用于对调偏电路的输出信号进行开方处理。
具体地,开方电路还可以包括参考信号产生电路,即图7中右上方所示电路,参考电压Vref由TL431ACD产生的,用于调偏,开方电路还可以包括第三电压跟随电路U7B和第三滤波电路U7D,除法电路的输出信号经由电阻R31的左侧输入,除法电路的计算结果经第三电压跟随电路U7B后,由调偏电路,即调偏调幅器在此信号上叠加固定值后反相输出,经过第三滤波电路U7D后传输至平方根电路U7A,例如负电压平方根处理电路进行计算,即可得到对应要获得的转子位移的主气隙宽度h。
可选地,调偏电路对应的调偏值满足如下计算公式:
b=(2A 2h 1+A 1h 2) 2
其中,b为调偏电路对应的调偏值,磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2,参照上述h的计算公式,除法电路的计算结果为:
Figure PCTCN2020104867-appb-000014
在该计算结果上叠加(2A 2h 1+A 1h 2) 2后反相输出,经过第三滤波电路U7D后由负电压平方根处理电路进行计算,即可得到对应要获得的转子位移的主气隙宽度h。
可选地,结合图1至图7,可以设置电流采样电路10和霍尔信号处理电路30 中的放大倍数控制电阻、调偏电路中的放大倍数控制电阻以及参考信号引入电阻均采用滑动变阻器,电流采样电路10中的放大倍数控制电阻为R3,霍尔信号处理电路30中的放大倍数控制电阻为R14和R21,调偏电路中的放大倍数控制电阻为R37,调偏电路中的参考信号引入电阻为R39,即可以设置R3、R14、R21、R39和R37均使用滑动变阻器,以通过调节放大倍数控制电阻达到放大电路满足的放大倍数,以及通过调节参考信号引入电阻达到调偏电路调偏值的需求。使用滑动变阻器不仅方便调试过程,而且方便在不作修改的情况下在不同的设备上进行移植,以满足多套设备的要求。
本公开实施例通过电流采样电路10可以得到经过采样电阻中的线圈电流,并对其进行放大和滤波,霍尔传感器20放置于永磁偏置式磁悬浮转子系统的副气隙中,感应面与磁场方向垂直,此结构中副气隙内通过变化的电磁磁通与部分永磁磁通,该部分永磁磁通为固定值,霍尔传感器20感应气隙内的磁场得到霍尔电压,经霍尔信号处理电路30放大滤波后得到单边气隙的磁感应强度,然后将双边气隙的磁感应强度进行差分,以消除副气隙中永磁磁通产生的共模干扰。除法器和开放电路组成的位移信号解算电路40将滤波后的磁轴承线圈电流信号和差分后的磁轴承气隙磁感应强度先进行除法运算,调偏后进行平方根运算即可得到位移信号,在实现了传统位置传感器和传统位置自传感检测方法的所有功能的同时,还具有缩短转子轴向尺寸、检测与控制共面、精度高和设计简洁的优点,为磁悬浮系统的高精度控制提供了条件。
本公开实施例还提供了一种磁悬浮转子位移自传感系统,如图1所示,磁悬浮转子位移自传感系统包括磁悬浮转子系统和如上述实施例所述的磁悬浮转子系统的位移检测电路,磁悬浮转子系统与位移检测电路连接,磁悬浮转子系统包括带副气隙的永磁偏置式磁悬浮转子系统,磁悬浮转子位移自传感系统具备上述实施例的有益效果,这里不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的 情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开适用于带副气隙的永磁偏置式磁悬浮转子系统中的转子位置检测,仅需要线圈电流值,霍尔传感器检测与磁悬浮转子系统控制共面,在实现了传统位置传感器和传统位置自传感检测方法的所有功能的同时,还具有缩短转子轴向尺寸、检测与控制共面、精度高和设计简洁的优点,为磁悬浮系统的高精度控制提供了条件,具有很强的工业实用性。

Claims (10)

  1. 一种磁悬浮转子系统的位移检测电路,其特征在于,包括:
    电流采样电路,用于采集流经对应线圈的电流;其中,所述线圈为所述磁悬浮转子系统中串联分布的线圈;
    霍尔传感器,所述磁悬浮转子系统的上副气隙和下副气隙中均设置有所述霍尔传感器,所述霍尔传感器的感应面与对应的副气隙中的磁场方向垂直;
    霍尔信号处理电路,与所述霍尔传感器连接,用于对所述上副气隙对应的霍尔感应信号和所述下副气隙对应的霍尔感应信号进行差分处理;
    位移信号解算电路,分别与所述电流采样电路和所述霍尔信号处理电路连接,用于根据所述电流和差分处理结果获取所述磁悬浮转子系统中转子的位移。
  2. 根据权利要求1所述的位移检测电路,其特征在于,所述电流采样电路包括:
    第一放大电路,所述第一放大电路用于对流经采样电阻的所述电流进行放大处理。
  3. 根据权利要求2所述的位移检测电路,其特征在于,所述第一放大电路的放大倍数满足如下计算公式:
    a=2μ 0N(4A 2h 1+2A 1h 2)
    其中,a为所述第一放大电路的放大倍数,μ 0为真空磁导率,N为一个所述线圈的匝数,所述磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2
  4. 根据权利要求1所述的位移检测电路,其特征在于,所述霍尔信号处理电路包括:
    两条放大支路和差分电路,所述放大支路与对应的所述霍尔传感器连接;
    每条所述放大支路均包括第二放大电路,所述放大支路中的所述第二放大电路接入对应的副气隙对应的霍尔感应信号,两条所述放大支路中的第二放大电路的输出端均与所述差分电路连接。
  5. 根据权利要求1所述的位移检测电路,其特征在于,所述位移信号解算电路包括:
    除法电路和开方电路,所述除法电路与所述开方电路连接,所述除法电路用 于对所述电流采样电路的输出信号与所述霍尔信号处理电路的输出信号进行除法处理,所述开方电路用于对所述除法电路的输出信号进行调偏和开方处理。
  6. 根据权利要求5所述的位移检测电路,其特征在于,所述开方电路包括:
    调偏电路和平方根电路,所述调偏电路与所述平方根电路连接,所述调偏电路用于根据参考信号向所述除法电路的输出信号叠加调偏值,所述平方根电路用于对所述调偏电路的输出信号进行开方处理。
  7. 根据权利要求6所述的位移检测电路,其特征在于,所述调偏电路对应的调偏值满足如下计算公式:
    b=(2A 2h 1+A 1h 2) 2
    其中,b为所述调偏电路对应的调偏值,所述磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2
  8. 根据权利要求6或7所述的位移检测电路,其特征在于,所述电流采样电路和所述霍尔信号处理电路中的放大倍数控制电阻、所述调偏电路中的放大倍数控制电阻以及所述参考信号引入电阻均采用滑动变阻器。
  9. 根据权利要求1所述的位移检测电路,其特征在于,对应转子位移的主气隙宽度满足如下计算公式:
    Figure PCTCN2020104867-appb-100001
    其中,h为对应转子位移的主气隙宽度,所述磁悬浮转子系统中转子的位移等于所述磁悬浮转子系统中定子的位置与对应转子位移的主气隙宽度的和值,μ 0为真空磁导率,N为一个所述线圈的匝数,I为所述电流,所述磁悬浮转子系统中的转子位于平衡位置时的主气隙宽度为h 1,表面积为A 1,副气隙宽度为h 2,表面积为A 2,B 1为所述上副气隙对应的所述霍尔感应信号,B 2为所述下副气隙对应的所述霍尔感应信号。
  10. 一种磁悬浮转子位移自传感系统,其特征在于,包括磁悬浮转子系统和如权利要求1-9任一项所述的磁悬浮转子系统的位移检测电路,所述磁悬浮转子系统与所述位移检测电路连接,所述磁悬浮转子系统包括带副气隙的永磁偏置式磁悬浮转子系统。
PCT/CN2020/104867 2020-04-10 2020-07-27 磁悬浮转子系统的位移检测电路及其位移自传感系统 WO2021203585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/995,953 US11863033B2 (en) 2020-04-10 2020-07-27 Displacement detection circuit of maglev rotor system and displacement self-sensing system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281385.9A CN111457830B (zh) 2020-04-10 2020-04-10 磁悬浮转子系统的位移检测电路及其位移自传感系统
CN202010281385.9 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021203585A1 true WO2021203585A1 (zh) 2021-10-14

Family

ID=71677580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104867 WO2021203585A1 (zh) 2020-04-10 2020-07-27 磁悬浮转子系统的位移检测电路及其位移自传感系统

Country Status (3)

Country Link
US (1) US11863033B2 (zh)
CN (1) CN111457830B (zh)
WO (1) WO2021203585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810827A (zh) * 2022-04-18 2022-07-29 重庆邮电大学 一种磁流变橡胶智能滑动轴承结构及其制造与控制方法
CN115289955A (zh) * 2022-10-08 2022-11-04 河北腾云信息技术有限公司 测量缓变位移和倾斜的磁悬浮检测装置及检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566959B (zh) * 2022-12-06 2023-03-24 北京航空航天大学 一种磁悬浮电机位移自检测方法
CN116907402A (zh) * 2023-08-03 2023-10-20 中国计量科学研究院 一种磁悬浮转子系统位移传感器自校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143323A1 (en) * 2006-12-18 2008-06-19 Akira Akahane Method of detecting rotational position by using hall element and hall element resolver
CN101876556A (zh) * 2009-04-30 2010-11-03 浙江关西电机有限公司 位置检测装置及其信号处理装置
CN102545744A (zh) * 2012-01-17 2012-07-04 南京信息职业技术学院 无轴承同步磁阻电机的位移估算方法、悬浮控制系统
CN204179919U (zh) * 2014-09-19 2015-02-25 邵金泽 新型大功率两极双凹坑单相永磁步进电机
CN108646571A (zh) * 2018-07-12 2018-10-12 北京航空航天大学 一种陀螺框架伺服系统高精度位置辨识方法
CN110518724A (zh) * 2019-07-23 2019-11-29 南京航空航天大学 定子永磁型无轴承薄片电机及其工作方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775303A (ja) * 1993-07-09 1995-03-17 Tamron Co Ltd アクチュエータ装置及びアクチュエータ
KR100903519B1 (ko) * 2007-09-18 2009-06-19 주식회사 아모텍 영구자석 매입형 모터 및 이를 이용한 공기흡입장치
CN101931371B (zh) * 2010-08-06 2013-07-03 中国人民解放军国防科学技术大学 磁悬浮轴承控制功放一体化系统
CN102075131B (zh) * 2011-01-22 2014-05-14 福州大学 同步电动机容错运行时低速及零速转子位置观测方法及装置
CN102175131B (zh) 2011-02-14 2012-09-26 厦门大学 一种利用漏磁场测量钢板厚度的方法
CN102368657B (zh) * 2011-09-21 2014-02-12 江苏大学 一种无轴承无刷直流电机及其控制方法
JP5947637B2 (ja) * 2012-06-29 2016-07-06 オリエンタルモーター株式会社 ブラシレスモータのセンサ基板の取付方法および取付構造
CN103174746A (zh) * 2013-03-28 2013-06-26 南京工业大学 一种主动型磁悬浮轴承系统及控制电路
KR101617244B1 (ko) * 2014-06-19 2016-05-02 강용주 절대위치 측정이 가능한 선형모터
KR101655537B1 (ko) * 2014-09-25 2016-09-07 현대자동차주식회사 홀센서를 이용한 모터의 위치 검출 및 속도 계산 방법
CN104795958B (zh) * 2014-12-18 2018-12-21 遨博(北京)智能科技有限公司 一种应用机械臂的具有空心轴电机的无刷直流伺服系统
CN204993133U (zh) * 2015-09-02 2016-01-20 西京学院 一种无刷直流电动机转子位置检测电路
KR102522550B1 (ko) * 2016-05-12 2023-04-14 한국전기연구원 소프트 스위칭 기능을 가지는 모터 구동 장치
CN109067280B (zh) * 2018-09-06 2019-12-31 福州大学 一种基于空间对称绕组磁链和的无轴承磁通切换电机转子径向位移观测方法
CN109780985A (zh) * 2019-03-14 2019-05-21 苏州赛得尔智能科技有限公司 一种磁悬浮轴承用微位移检测装置
CN110231133B (zh) * 2019-06-26 2020-11-24 北京航空航天大学 一种磁悬浮轴承电流刚度和位移刚度测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143323A1 (en) * 2006-12-18 2008-06-19 Akira Akahane Method of detecting rotational position by using hall element and hall element resolver
CN101876556A (zh) * 2009-04-30 2010-11-03 浙江关西电机有限公司 位置检测装置及其信号处理装置
CN102545744A (zh) * 2012-01-17 2012-07-04 南京信息职业技术学院 无轴承同步磁阻电机的位移估算方法、悬浮控制系统
CN204179919U (zh) * 2014-09-19 2015-02-25 邵金泽 新型大功率两极双凹坑单相永磁步进电机
CN108646571A (zh) * 2018-07-12 2018-10-12 北京航空航天大学 一种陀螺框架伺服系统高精度位置辨识方法
CN110518724A (zh) * 2019-07-23 2019-11-29 南京航空航天大学 定子永磁型无轴承薄片电机及其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG XIAOGUANG, HU LIEFENG HE ZHUANG HOU LEILEI: "Study on Radial Measuring Method of Axial Displacement of Magnetic Suspension Rotor", CHINA SCIENCEPAPER, vol. 12, no. 16, 31 August 2007 (2007-08-31), pages 1805 - 1809, XP055856820, ISSN: 2095-2783 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810827A (zh) * 2022-04-18 2022-07-29 重庆邮电大学 一种磁流变橡胶智能滑动轴承结构及其制造与控制方法
CN114810827B (zh) * 2022-04-18 2023-11-14 重庆邮电大学 一种磁流变橡胶智能滑动轴承结构及其制造与控制方法
CN115289955A (zh) * 2022-10-08 2022-11-04 河北腾云信息技术有限公司 测量缓变位移和倾斜的磁悬浮检测装置及检测方法
CN115289955B (zh) * 2022-10-08 2022-12-20 河北腾云信息技术有限公司 测量缓变位移和倾斜的磁悬浮检测装置及检测方法

Also Published As

Publication number Publication date
US20230117718A1 (en) 2023-04-20
CN111457830A (zh) 2020-07-28
US11863033B2 (en) 2024-01-02
CN111457830B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2021203585A1 (zh) 磁悬浮转子系统的位移检测电路及其位移自传感系统
Ravaud et al. Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization
EP1654552B1 (en) Method and apparatus for measuring a magnetic field by using a hall-sensor
JP2749748B2 (ja) 可変リラクタンスサーボ制御リニアモータ
US20170276707A1 (en) Method and apparatus for the measurement of electrical current by means of a self-compensating configuration of magnetic field sensors
CN1851389A (zh) 磁悬浮轴承差动变压器式位移传感器
CN113833757B (zh) 一种五自由度转子轴向位移自传感磁悬浮轴承
US20140312885A1 (en) Magnetic flux enhancer system for reluctance type sensors
CN103174746A (zh) 一种主动型磁悬浮轴承系统及控制电路
JP2015200523A (ja) 磁界検出装置および磁気識別装置
EP0362882A2 (en) Magnetic bearing device
US20240192030A1 (en) Position sensor for bearingless slice motors
JP2003004407A (ja) 変位測定装置
US7719151B2 (en) Active magnetic bearing with automatic detection of the position thereof
JP6320098B2 (ja) 可変インダクタンス型位置センサシステムおよび可変インダクタンス型方法
Wang et al. Design of a novel integrated position sensor based on Hall effects for linear oscillating actuator
US3229202A (en) Tachometer using an eddy current signal generator
Mirzaei et al. The effect of conductor permeability on electric current transducers
Kant et al. A 6-DoF position sensor for bearingless slice motors
CN115622335B (zh) 磁悬浮电机及其位置检测传感器、检测电路和电桥电路
KR101823571B1 (ko) 외부 공통 성분의 방해 자기장을 효과적으로 제거하는 센싱 장치
Ou et al. Sensitive current sensor based on Fe73. 5Cu1Nb3Si13. 5B9/Pb (Zr, Ti) O3 composite with a tunable magnetic flux concentrator
Jin et al. A novel eight-pole heteropolar radial-axial hybrid magnetic bearing
Ren et al. Asymmetric electromagnetic analysis and design of a permagnet biased axial magnetic bearings
JP2020041869A (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929834

Country of ref document: EP

Kind code of ref document: A1