CN109780985A - 一种磁悬浮轴承用微位移检测装置 - Google Patents

一种磁悬浮轴承用微位移检测装置 Download PDF

Info

Publication number
CN109780985A
CN109780985A CN201910191831.4A CN201910191831A CN109780985A CN 109780985 A CN109780985 A CN 109780985A CN 201910191831 A CN201910191831 A CN 201910191831A CN 109780985 A CN109780985 A CN 109780985A
Authority
CN
China
Prior art keywords
suspension bearing
magnetic suspension
signal
linear hall
hall sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910191831.4A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Seidel Intelligent Technology Co Ltd
Original Assignee
Suzhou Seidel Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Seidel Intelligent Technology Co Ltd filed Critical Suzhou Seidel Intelligent Technology Co Ltd
Priority to CN201910191831.4A priority Critical patent/CN109780985A/zh
Publication of CN109780985A publication Critical patent/CN109780985A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种磁悬浮轴承用微位移检测装置,它涉及轴承技术领域。包括定子铁心、激励线圈、线性霍尔传感器、磁悬浮轴承自带转子铁心、信号处理电路和外部接口,定子铁心上绕有激励线圈,定子铁心两端对应设置有线性霍尔传感器,线性霍尔传感器外侧对应设置有磁悬浮轴承自带转子铁心,线性霍尔传感器通过信号处理电路和外部接口相连。本发明能够在保持较高检测精度、较高线性度、以及较快响应速度的条件下,保持更低的成本和制造的简易性。

Description

一种磁悬浮轴承用微位移检测装置
技术领域
本发明涉及的是轴承技术领域,具体涉及一种磁悬浮轴承用微位移检测装置。
背景技术
磁悬浮轴承是一种采用输出电磁力,实现运动部件悬浮,从而代替传统机械轴承的,超静音、高效率、高转速/速度、以及高可靠性轴承,近年来,磁悬浮轴承在高速/超高速领域、超洁净领域、超静音领域等,得到了广泛的应用。磁悬浮轴承的工作原理为,通过位移传感器实时检测磁悬浮轴承转子位移反馈,再通过磁悬浮控制器实时控制注入磁悬浮轴承本体的电流,进而控制悬浮力大小,实现磁悬浮轴承转子的稳定悬浮。位移信号的检测是磁悬浮轴承保持稳定悬浮的关键所在。现有的位移传感器通常采用电涡流传感器或电感式传感器实现微位移的检测,上述两种位移传感器存在以下问题:
(1)信号激励与信号响应均为高频交流信号,信号处理困难,很难在宽范围内保持较好的线性度和响应速度;
(2) 通常需要前置器实现激励信号的产生和响应信号的处理,体积较大;
(3) 高精度的微位移传感器成本高,价格贵,难以用于成本要求低的场合;
综上所述,本发明设计了一种磁悬浮轴承用微位移检测装置。
发明内容
针对现有技术上存在的不足,本发明目的是在于提供一种磁悬浮轴承用微位移检测装置,能够在保持较高检测精度、较高线性度、以及较快响应速度的条件下,保持更低的成本和制造的简易性。
为了实现上述目的,本发明是通过如下的技术方案来实现:一种磁悬浮轴承用微位移检测装置,包括定子铁心、激励线圈、线性霍尔传感器、磁悬浮轴承自带转子铁心、信号处理电路和外部接口,定子铁心上绕有激励线圈,定子铁心两端对应设置有线性霍尔传感器,线性霍尔传感器外侧对应设置有磁悬浮轴承自带转子铁心,线性霍尔传感器通过信号处理电路和外部接口相连。
作为优选,所述的外部接口包括电源、激励、响应、信号地四个端口。
作为优选,所述的信号处理电路包括压控型电流源电路、加法器电路、模拟信号调理电路,加法器电路、模拟信号调理电路相连的一端连接电源端口,加法器电路、模拟信号调理电路相连的另一端连接信号地端口,加法器还通过模拟信号调理电路与相应端口相连,压控型电流源电路与电源端口、响应端口、信号地端口相连。
所述的磁悬浮轴承用微位移检测装置实现微位移检测的步骤如下:
步骤(1),外部接口输入电源向信号处理电路和线性霍尔传感器供电,使其进入工作状态,供电电源为恒定直流电源;
步骤(2),外部接口输入电压型激励信号被压控型电流源电路转换成电流源信号,电流源信号接入激励线圈,激励线圈在定子铁心与磁悬浮轴承自带转子铁心产生偏置磁场;
步骤(3),激励线圈产生的偏置磁场经过线性霍尔传感器,线性霍尔传感器将偏置磁场中磁通密度大小转换成电压信号,输出至加法器电路输入端;
步骤(4),加法器电路将两个线性霍尔传感器输出做相加处理后,送入模拟信号调理电路,模拟信号调理电路对前述信号进行幅值调整和滤波处理后,送入外部接口响应端;
重复步骤(1)至步骤(4),当磁悬浮轴承自带转子铁心与定子铁心的距离发生改变时,激励线圈产生的偏置磁场的磁通密度发生变化,两个线性霍尔传感器输出电压产生变化,进而使得外部接口中的响应信号出现变化,实现微位移检测。
本发明具有以下有益效果:
1.仅仅采用一个定子铁心、一个激励线圈、两个线性霍尔传感器、以及若干信号处理电路即可实现微位移检测,实现成本低,制造容易;
2.采用高灵敏度的线性霍尔传感器,能够实现较高的分辨率,可保证微位移的检测精度;
3.直接采用磁悬浮轴承自带转子铁心实现微位移检测,无需增加转子的复杂性,保证了磁悬浮转子的机械性能。
附图说明
下面结合附图和具体实施方式来详细说明本发明;
图1为本发明的结构示意图;
图2为本发明的激励线圈产生的偏置磁场示意图;
图3为本发明用于旋转式磁悬浮轴承示意图;
图4为本发明用于直线式磁悬浮轴承示意图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
参照图1-4,本具体实施方式采用以下技术方案:一种磁悬浮轴承用微位移检测装置,包括定子铁心(1)、激励线圈(2)、线性霍尔传感器(3)、磁悬浮轴承自带转子铁心(4)、信号处理电路(5)和外部接口(6),定子铁心(1)上绕有激励线圈(2),定子铁心(1)两端对应设置有线性霍尔传感器(3),线性霍尔传感器(3)外侧对应设置有磁悬浮轴承自带转子铁心(4),线性霍尔传感器(3)通过信号处理电路(5)和外部接口(6)相连。
值得注意的是,所述的外部接口(6)包括电源、激励、响应、信号地四个端口。
值得注意的是,所述的信号处理电路(5)包括压控型电流源电路、加法器电路、模拟信号调理电路,加法器电路、模拟信号调理电路相连的一端连接电源端口,加法器电路、模拟信号调理电路相连的另一端连接信号地端口,加法器还通过模拟信号调理电路与相应端口相连,压控型电流源电路与电源端口、响应端口、信号地端口相连。
此外,所述的磁悬浮轴承用微位移检测装置实现微位移检测的步骤如下:
步骤(1),外部接口输入电源向信号处理电路和线性霍尔传感器供电,使其进入工作状态,供电电源为恒定直流电源;
步骤(2),外部接口输入电压型激励信号被压控型电流源电路转换成电流源信号,电流源信号接入激励线圈,激励线圈在定子铁心与磁悬浮轴承自带转子铁心产生偏置磁场;
步骤(3),激励线圈产生的偏置磁场经过线性霍尔传感器,线性霍尔传感器将偏置磁场中磁通密度大小转换成电压信号,输出至加法器电路输入端;
步骤(4),加法器电路将两个线性霍尔传感器输出做相加处理后,送入模拟信号调理电路,模拟信号调理电路对前述信号进行幅值调整和滤波处理后,送入外部接口响应端;
重复步骤(1)至步骤(4),当磁悬浮轴承自带转子铁心与定子铁心的距离发生改变时,激励线圈产生的偏置磁场的磁通密度发生变化,两个线性霍尔传感器输出电压产生变化,进而使得外部接口中的响应信号出现变化,实现微位移检测。
前述步骤说明中,步骤(5)所述开关顺序表的建立方法可以为标准双极性调制方法、单极性调制方法、单极性倍频调制方法、以及双极性滞环调制方法四种当中的一种,或是由上述调试方法所衍生的其他类型调制方法。
将上述微位移检测装置应用于旋转式磁悬浮轴承的示意图如图3所示,其中除本发明所提出微位移检测装置外,还包括:(11)磁悬浮轴承转子铁心;(12)安装机壳;(13)磁悬浮轴承定子;(14)电机定子。
将上述微位移检测装置应用于直线式磁悬浮轴承的示意图如图4所示,其中除本发明所提出微位移检测装置外,还包括:(21)磁悬浮轴承/电机定子铁心;(22)磁悬浮轴承(左);(23)安装机壳(下);(24)安装机壳(上);(25)直线电机动子;(26)磁悬浮轴承(右)。
本具体实施方式采用一个定子铁心、一套激励线圈、两个线性霍尔传感器、信号处理电路、外部接口、以及磁悬浮轴承自带转子铁心四部分,构成微位移检测装置。其中,信号处理电路中包含一个压控电流源电路,可将外部接口中提供的激励参考电压转换为恒定激励电流。恒定激励电流向激励线圈提供激励信号,从而产生偏置磁场。当磁悬浮轴承自带转子铁心与定子铁心的距离发生改变时,偏置磁场的磁通密度发生变化,两个线性霍尔传感器将磁通密变化量转换为电压变化信号,信号处理电路将两个线性霍尔传感器输出的电压信号进行信号处理后,通过外部接口输出,进而实现微位移检测。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (4)

1.一种磁悬浮轴承用微位移检测装置,其特征在于,包括定子铁心(1)、激励线圈(2)、线性霍尔传感器(3)、磁悬浮轴承自带转子铁心(4)、信号处理电路(5)和外部接口(6),定子铁心(1)上绕有激励线圈(2),定子铁心(1)两端对应设置有线性霍尔传感器(3),线性霍尔传感器(3)外侧对应设置有磁悬浮轴承自带转子铁心(4),线性霍尔传感器(3)通过信号处理电路(5)和外部接口(6)相连。
2.根据权利要求1所述的一种磁悬浮轴承用微位移检测装置,其特征在于,所述的外部接口(6)包括电源、激励、响应、信号地四个端口。
3.根据权利要求1所述的一种磁悬浮轴承用微位移检测装置,其特征在于,所述的信号处理电路(5)包括压控型电流源电路、加法器电路、模拟信号调理电路,加法器电路、模拟信号调理电路相连的一端连接电源端口,加法器电路、模拟信号调理电路相连的另一端连接信号地端口,加法器还通过模拟信号调理电路与相应端口相连,压控型电流源电路与电源端口、响应端口、信号地端口相连。
4.根据权利要求1所述的一种磁悬浮轴承用微位移检测装置,其特征在于,所述的磁悬浮轴承用微位移检测装置实现微位移检测的步骤如下:
步骤(1),外部接口输入电源向信号处理电路和线性霍尔传感器供电,使其进入工作状态,供电电源为恒定直流电源;
步骤(2),外部接口输入电压型激励信号被压控型电流源电路转换成电流源信号,电流源信号接入激励线圈,激励线圈在定子铁心与磁悬浮轴承自带转子铁心产生偏置磁场;
步骤(3),激励线圈产生的偏置磁场经过线性霍尔传感器,线性霍尔传感器将偏置磁场中磁通密度大小转换成电压信号,输出至加法器电路输入端;
步骤(4),加法器电路将两个线性霍尔传感器输出做相加处理后,送入模拟信号调理电路,模拟信号调理电路对前述信号进行幅值调整和滤波处理后,送入外部接口响应端;
重复步骤(1)至步骤(4),当磁悬浮轴承自带转子铁心与定子铁心的距离发生改变时,激励线圈产生的偏置磁场的磁通密度发生变化,两个线性霍尔传感器输出电压产生变化,进而使得外部接口中的响应信号出现变化,实现微位移检测。
CN201910191831.4A 2019-03-14 2019-03-14 一种磁悬浮轴承用微位移检测装置 Pending CN109780985A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910191831.4A CN109780985A (zh) 2019-03-14 2019-03-14 一种磁悬浮轴承用微位移检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910191831.4A CN109780985A (zh) 2019-03-14 2019-03-14 一种磁悬浮轴承用微位移检测装置

Publications (1)

Publication Number Publication Date
CN109780985A true CN109780985A (zh) 2019-05-21

Family

ID=66487916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910191831.4A Pending CN109780985A (zh) 2019-03-14 2019-03-14 一种磁悬浮轴承用微位移检测装置

Country Status (1)

Country Link
CN (1) CN109780985A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111457830A (zh) * 2020-04-10 2020-07-28 北京航空航天大学宁波创新研究院 磁悬浮转子系统的位移检测电路及其位移自传感系统
CN112461544A (zh) * 2020-11-17 2021-03-09 王允学 一种轴向位置检测仪
CN113572312A (zh) * 2021-07-01 2021-10-29 上海大学 一种基于同极型永磁体双转子的线性霍尔角度和位移集成检测装置及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231020A (ja) * 1988-07-18 1990-02-01 Mitsui Eng & Shipbuild Co Ltd 磁気軸受装置
JPH0925934A (ja) * 1995-07-12 1997-01-28 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受制御装置
CN2250596Y (zh) * 1995-12-15 1997-03-26 中国科学院电工研究所 飞轮电池用高速电机
CN1652438A (zh) * 2005-01-24 2005-08-10 北京航空航天大学 一种Halbach磁体结构低功耗无刷直流电动机
CN101074700A (zh) * 2007-06-25 2007-11-21 江苏大学 三自由度双薄片三相交流混合磁轴承
CN101140169A (zh) * 2007-10-12 2008-03-12 上海大学 径向磁轴承集成式差动电感传感装置
CN101931371A (zh) * 2010-08-06 2010-12-29 中国人民解放军国防科学技术大学 磁悬浮轴承控制功放一体化系统
CN103424132A (zh) * 2013-08-22 2013-12-04 浙江大学 一种三维空间磁编码器
CN104533946A (zh) * 2015-01-05 2015-04-22 山东大学 一种由轴向磁轴承实现转子五自由度悬浮结构
CN104533945A (zh) * 2015-01-05 2015-04-22 山东大学 一种由轴向混合磁轴承实现转子五自由度悬浮结构
CN107890590A (zh) * 2017-08-17 2018-04-10 北京万峰医疗投资管理有限公司 一种动态磁平衡悬浮离心血泵
CN107968540A (zh) * 2017-12-27 2018-04-27 北京信息科技大学 磁悬浮无刷直流电机用轴向位移与转子位置集成传感器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231020A (ja) * 1988-07-18 1990-02-01 Mitsui Eng & Shipbuild Co Ltd 磁気軸受装置
JPH0925934A (ja) * 1995-07-12 1997-01-28 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受制御装置
CN2250596Y (zh) * 1995-12-15 1997-03-26 中国科学院电工研究所 飞轮电池用高速电机
CN1652438A (zh) * 2005-01-24 2005-08-10 北京航空航天大学 一种Halbach磁体结构低功耗无刷直流电动机
CN101074700A (zh) * 2007-06-25 2007-11-21 江苏大学 三自由度双薄片三相交流混合磁轴承
CN101140169A (zh) * 2007-10-12 2008-03-12 上海大学 径向磁轴承集成式差动电感传感装置
CN101931371A (zh) * 2010-08-06 2010-12-29 中国人民解放军国防科学技术大学 磁悬浮轴承控制功放一体化系统
CN103424132A (zh) * 2013-08-22 2013-12-04 浙江大学 一种三维空间磁编码器
CN104533946A (zh) * 2015-01-05 2015-04-22 山东大学 一种由轴向磁轴承实现转子五自由度悬浮结构
CN104533945A (zh) * 2015-01-05 2015-04-22 山东大学 一种由轴向混合磁轴承实现转子五自由度悬浮结构
CN107890590A (zh) * 2017-08-17 2018-04-10 北京万峰医疗投资管理有限公司 一种动态磁平衡悬浮离心血泵
CN107968540A (zh) * 2017-12-27 2018-04-27 北京信息科技大学 磁悬浮无刷直流电机用轴向位移与转子位置集成传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHN Y HUNG,NATHANIEL G ALBRITTON,FAN XIA: "Nonlinear control of a magnetic bearing system", 《MECHATRONICS》 *
肖林京,李波,孙传余,文艺成,徐秀秀: "基于霍尔元件的磁悬浮心脏泵转子径向位移检测", 《轴承》 *
邵李焕,秦会斌,沈怡然: "磁力轴承悬浮性能测试系统的设计", 《传感技术学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111457830A (zh) * 2020-04-10 2020-07-28 北京航空航天大学宁波创新研究院 磁悬浮转子系统的位移检测电路及其位移自传感系统
US11863033B2 (en) 2020-04-10 2024-01-02 Ningbo Institute Of Technology, Beihang University Displacement detection circuit of maglev rotor system and displacement self-sensing system thereof
CN112461544A (zh) * 2020-11-17 2021-03-09 王允学 一种轴向位置检测仪
CN113572312A (zh) * 2021-07-01 2021-10-29 上海大学 一种基于同极型永磁体双转子的线性霍尔角度和位移集成检测装置及方法

Similar Documents

Publication Publication Date Title
CN109780985A (zh) 一种磁悬浮轴承用微位移检测装置
CN105823452B (zh) 一种磁轴承用位移传感器位移信号调理方法
Tera et al. Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation
CN104931758B (zh) 直流剩余电流检测装置
CN103174746A (zh) 一种主动型磁悬浮轴承系统及控制电路
Looser et al. An active magnetic damper concept for stabilization of gas bearings in high-speed permanent-magnet machines
CN106301128B (zh) 一种内嵌式永磁同步电机恒直轴电流控制方法及系统
CN101359893B (zh) 测量永磁同步电机转子角位置的方法
CN104201965B (zh) 定子永磁型无轴承同步电机转子悬浮控制方法
CN103501148A (zh) 一种无轴承永磁同步电机无径向位移传感器运行控制方法
CN103631138A (zh) 三自由度混合磁轴承混合核函数支持向量机位移检测方法
Zhang et al. Electromagnetic performance analysis on the bearingless permanent magnet synchronous motor with Halbach magnetized rotor
CN105827159A (zh) 一种三相无轴承磁通切换电机转子悬浮控制方法
CN102013859A (zh) 一种高可靠的储能飞轮拖动电机控制数字系统
Wang et al. Analysis and experiment of self-differential eddy-current sensor for high-speed magnetic suspension electric machine
Baumgartner et al. Novel high-speed, Lorentz-type, slotless self-bearing motor
Wang et al. Calculation and measurement of radial and axial forces for a bearingless PMDC motor
CN104467338B (zh) 一种无转子位置传感器的开关磁阻电机
CN202034932U (zh) 一种磁悬浮储能飞轮拖动电机一体化数字控制系统
CN105242117B (zh) 一种永磁同步电机直轴电感和交轴电感测试方法
CN209590231U (zh) 一种具有信号反馈的无刷电机测试系统
CN204681284U (zh) 一种基于dsp的两相交流电机变频控制系统
CN107453578A (zh) 磁通并联倍频圆筒型永磁直线振荡发电机
CN204271870U (zh) 一种无转子位置传感器的开关磁阻电机
CN204392131U (zh) 基于矩阵变换器的交流磁轴承电主轴运行控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190521

RJ01 Rejection of invention patent application after publication