WO2021203481A1 - 一种基于馈线走廊的可靠性约束配电网规划方法 - Google Patents

一种基于馈线走廊的可靠性约束配电网规划方法 Download PDF

Info

Publication number
WO2021203481A1
WO2021203481A1 PCT/CN2020/085972 CN2020085972W WO2021203481A1 WO 2021203481 A1 WO2021203481 A1 WO 2021203481A1 CN 2020085972 W CN2020085972 W CN 2020085972W WO 2021203481 A1 WO2021203481 A1 WO 2021203481A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeder
node
corridor
distribution network
power
Prior art date
Application number
PCT/CN2020/085972
Other languages
English (en)
French (fr)
Inventor
吴文传
张伯明
栗子豪
孙宏斌
王彬
郭庆来
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US17/366,199 priority Critical patent/US11954409B2/en
Publication of WO2021203481A1 publication Critical patent/WO2021203481A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/00125Transmission line or load transient problems, e.g. overvoltage, resonance or self-excitation of inductive loads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • This application relates to the technical field of power system planning and evaluation, and in particular to a method for planning a reliability-constrained distribution network based on a feeder corridor.
  • Distribution network planning is an important part of power system planning. It is used to plan a reasonable and economical distribution network construction plan so that the distribution network can meet the current or the next ten to thirty years' new power load demand.
  • the feeder corridor is a path through which the distribution feeder can be routed through overhead towers and cables. Feeder corridors are usually planned in advance in urban planning.
  • reliability refers to the ability of the power system to continuously meet the quantity and quality of end users' power needs.
  • the reliability of the distribution network mainly includes the following indicators: Customer Interruption Frequency (CIF), Customer Interruption Duration (CID), System Average Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (System Average Interruption Duration Index, SAIDI) and Expected Energy Not Supplied (EENS).
  • most of the distribution network planning methods rely on artificially predetermined alternative lines (branches), that is, selecting a subset of the set of alternative lines as the input of the planning model to obtain the final planning scheme.
  • the artificially proposed alternative routes may be incompletely considered, and the exhaustive list of all alternative routes to output the planning model may make the model incalculable, thus failing to obtain feasible planning results.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • a reliability-constrained distribution network planning method based on feeder corridors This application constructs a reliability-constrained distribution network planning model based on feeder corridors, does not need to search through trial and The proposed solution reduces the input cost under the premise of satisfying the reliability constraints.
  • This application proposes a reliability-constrained distribution network planning method based on feeder corridors, which is characterized in that it includes the following steps:
  • a circuit breaker is installed at the head of each feeder, and isolation switches are installed at both ends of the feeder section, assuming that the circuit breaker is closed under normal operation;
  • c Total is the comprehensive investment cost of the distribution network
  • c f is the cost of the feeder f circuit breaker and recloser
  • l f indicates whether to construct the 0-1 variable of the feeder f
  • c ij is the occupancy cost of the feeder corridor ij
  • l ij means whether the 0-1 variable of the feeder corridor ij is occupied
  • l ij 1 means occupied
  • l ij 0 means not occupied
  • Is the cost of the node tie switch between feeder f and feeder g at node i Indicates whether to construct the 0-1 variable of the node tie switch between the feeder f and the feeder g at node i,
  • N ij is the number of feeder segments that can be accommodated in the feeder corridor ij
  • N tr is the number of feeder lines that the transformer tr can output
  • N SS is the number of transformers that the substation SS can carry
  • ⁇ SS is the set of transformers belonging to the substation SS .
  • CID i represents the user interruption duration of node i
  • ⁇ [xy,h] represents the annual failure rate of feeder h in the feeder section of the feeder corridor xy
  • CIF i represents the user interruption frequency of node i
  • NC i is the number of users of a given node i
  • SAIFI is the system's annual average interruption duration index
  • ASAI average system power index EENS loss of load to a desired energy
  • B is the set of all load levels
  • ⁇ b is the number of hours of continuous load level of b
  • L i denotes The peak load of node i; Is the upper limit of the average annual power outage frequency of node i, ⁇ SAIFI is the upper limit of the average annual power
  • step 2) Solve the model established in step 2) to obtain l f , l ij .
  • the optimal solutions of u tr and u SS are the planning and construction status of feeders, feeder sections, feeder corridors, node tie switches, transformers and substations respectively , and the optimal solutions of CID i , CIF i , SAIDI, SAIFI and EENS are obtained as corresponding planning The reliability index of the scheme has been planned.
  • This application takes the input cost of the distribution network as the objective function, and based on the information of substations, load locations, and feeder corridors, the substations, transformers, feeders, and tie switches in the distribution network are planned as a whole to construct a distribution network planning model; this model is a one
  • the mixed integer linear programming model can be directly solved by the solver, avoiding the complexity and unreliability of generating a set of candidate routes before selecting in the traditional planning method, and has high computational efficiency and accuracy. By solving the model, the planning results that meet the reliability constraints can be determined, and the cost of the distribution network can be reduced.
  • feeder corridors are usually pre-planned in urban planning, they are easier to provide than alternative line sets.
  • the distribution network planning model of this application directly based on the feeder corridor information can skip the step of generating a set of candidate lines, which is more practical and effective in actual planning projects.
  • this application is based on the direct modeling of the feeder corridor, and there is no need to generate the candidate circuit set, which avoids the time investment and labor cost in the process of generating the candidate circuit set.
  • the method of the application is simple and easy to implement, and the obtained most planned solution reduces the input cost under the premise of satisfying the reliability constraint.
  • the method for planning reliability-constrained distribution network based on feeder corridors proposed in this application includes the following steps:
  • a circuit breaker is installed at the head end of each feeder (which can interrupt the fault current), and an isolation switch is installed at both ends of the feeder section (the corresponding branch of the feeder in a feeder corridor) (the fault current cannot be interrupted) , Assuming that the circuit breaker is closed under normal operating conditions.
  • the circuit breaker upstream of the branch first acts to open and break the fault current.
  • the downstream node of the circuit breaker is powered off; then, all switches and circuit breakers in the distribution network are manually operated Finally, repair the faulty branch circuit, and restore the original power supply network structure through the action switch and circuit breaker after repair.
  • ⁇ i is the set of nodes directly connected to node i
  • ⁇ SS is the set of nodes where the substation is located
  • is the set of all feeders. It is the active power output from the transformer tr to the feeder f under normal operation.
  • P i is the active load power node i
  • is the set of all the nodes.
  • is the set of all feeder corridors. Is the capacity of the feeder f, S tr is the capacity of the transformer tr, and ⁇ tr is the set of feeders belonging to the transformer tr.
  • P i f,[xy,h] is the active load power of node i when the feeder h fails in the feeder section of the feeder corridor xy.
  • [xy,h] represents the scenario when the feeder h fails in the feeder section of the feeder corridor xy.
  • N ij is the number of feeder sections that can be accommodated in the feeder corridor ij
  • N tr is the number of feeder lines that the transformer tr can output
  • N SS is the number of transformers that the substation SS can carry
  • ⁇ SS is the set of transformers belonging to the substation SS.
  • CID i represents the user interruption duration of node i
  • ⁇ [xy,h] represents the annual failure rate of feeder h in the feeder section of the feeder corridor xy
  • CIF i represents the user interruption frequency of node i
  • NC i is the given node i Number of users
  • SAIFI is the system's average annual outage duration index
  • ASAI is the system's average power supply index
  • EENS is the expected loss of load energy
  • B is the set of all load levels
  • ⁇ b is the annual duration of load level b
  • ⁇ SAIFI is the upper limit of the average annual power outage frequency of the system
  • ⁇ SAIDI is the upper limit of the average annual power outage time of the system
  • ⁇ EENS is the upper limit of the expected energy of the system that does not meet the upper limit.
  • the above upper limits are set by planners , There is no limitation in this embodiment.
  • the model established in step 2) is solved by branch and bound and linear programming methods to obtain l f , l ij .
  • the optimal solutions of u tr and u SS are the planning and construction status of feeders, feeder sections, feeder corridors, node connection switches, transformers and substations respectively , and the optimal solutions of CID i , CIF i , SAIDI, SAIFI and EENS are corresponding The reliability index of the planning scheme has been planned.

Abstract

本申请提出一种基于馈线走廊的可靠性约束配电网规划方法,属于电力系统规划与评估技术领域。该方法首先确定元件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,然后建立由目标函数和约束条件构成的配电网规划模型,基于变电站、负荷布点和馈线走廊信息,将配电网中的变电站、变压器、馈线和联络开关统筹规划,以配电网的可靠性指标作为约束,最小化配电网综合投入成本;对模型求解,从而得出满足系统可靠性要求的配电网规划方案。本申请方法简单,易于实施,所得到的最有规划方案在满足可靠性约束的前提下降低配电网投入成本。

Description

一种基于馈线走廊的可靠性约束配电网规划方法
相关申请的交叉引用
本申请要求清华大学于2020年4月8日提交的、申请名称为“一种基于馈线走廊的可靠性约束配电网规划方法”的、中国专利申请号“202010268609.2”的优先权。
技术领域
本申请涉及电力系统规划与评估技术领域,尤其涉及一种基于馈线走廊的可靠性约束配电网规划方法。
背景技术
配电网规划是电力系统规划中重要的一环,用于规划合理、经济的配电网建设方案,使配电网满足当下或未来十年至三十年新增的电力负荷需求。
馈线走廊是配电馈线通过架空塔和电缆等形式可以走线的路径。馈线走廊通常是在城市规划中预先规划的。在电力领域,可靠性是指电力系统持续满足终端用户电力需求数量和质量的能力。配电网可靠性主要包括以下几个指标:用户中断频率(CustomerInterruption Frequency,CIF)、用户中断持续时间(Customer Interruption Duration,CID)、系统年平均中断频率指数(System Average Interruption Frequency Index,SAIFI)、系统年平均中断持续时间指数(System Average Interruption DurationIndex,SAIDI)和期望失负荷能量(Expected Energy Not Supplied,EENS)。
相关技术中,大多数配电网规划方法依赖于由人为预先确定的备选线路(支路),即选择备选线路集中的一个子集作为规划模型的输入,进而得到最终的规划方案。然而,人工提出的备选线路可能考虑不周全,而将所有备选线路集穷举出来输出规划模型可能使该模型变得不可计算,从而无法得到可实施的规划结果。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,一种基于馈线走廊的可靠性约束配电网规划方法。本申请通过构建基于馈线走廊的可靠性约束配电网规划模型,不通过试探搜索,不需要预先生成备选线路集,而通过求解该模型得到最优规划方案,方法简单,易于实施,所得到的方案在满足可靠性约束的前提下降低投入成本。
本申请提出一种基于馈线走廊的可靠性约束配电网规划方法,其特征在于,包括以下步骤:
1)确定元件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,具体如下:
1-1)每条馈线首端安装断路器,馈线段两端安装隔离刀闸,假设正常运行状态下断路器闭合;
1-2)在支路故障发生后,首先打开支路上游的断路器,开断故障电流,断路器下游节点断电;然后,操作该配电网里所有刀闸和断路器,恢复断电节点负荷;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构;
2)构建基于混合整数线性规划模型的配电网规划模型,该模型由目标函数和约束条件构成;具体步骤如下:
2-1)构建配电网规划模型的目标函数,如式(1)所示:
Figure PCTCN2020085972-appb-000001
其中,c Total为配电网综合投资成本,c f为馈线f断路器和重合器成本,l f表示是否建设馈线f的0-1变量,l f=1表示建设,l f=0表示不建设;
Figure PCTCN2020085972-appb-000002
为馈线f在馈线走廊ij的馈线段建设成本,
Figure PCTCN2020085972-appb-000003
表示是否建设馈线f在馈线走廊ij的馈线段的0-1变量,
Figure PCTCN2020085972-appb-000004
表示建设,
Figure PCTCN2020085972-appb-000005
表示不建设;c ij为馈线走廊ij的占用成本,l ij表示是否占用馈线走廊ij的0-1变量,l ij=1表示占用,l ij=0表示不占用;
Figure PCTCN2020085972-appb-000006
为位于节点i的馈线f和馈线g之间的节点联络开关的成本,
Figure PCTCN2020085972-appb-000007
表示是否建设位于节点i的馈线f和馈线g之间的节点联络开关的0-1变量,
Figure PCTCN2020085972-appb-000008
表示建设,
Figure PCTCN2020085972-appb-000009
表示不建设;c tr为变压器tr的建设成本,u tr表示是否建设变压器tr的0-1变量,u tr=1表示建设,u tr=0表示不建设;c SS为变电站SS的建设成本,u SS表示是否假设变电站SS的0-1变量,u SS=1表示建设,u SS=0表示不建设;ωSAIDI为可靠性成本,其中ω为权重因子,SAIDI为系统年平均停电时间;
2-2)确定配电网规划模型的约束条件,具体如下:
2-2-1)配电网正常运行状态功率平衡和支路约束,如式(2)-(9)所示:
Figure PCTCN2020085972-appb-000010
Figure PCTCN2020085972-appb-000011
Figure PCTCN2020085972-appb-000012
Figure PCTCN2020085972-appb-000013
Figure PCTCN2020085972-appb-000014
Figure PCTCN2020085972-appb-000015
Figure PCTCN2020085972-appb-000016
Figure PCTCN2020085972-appb-000017
其中
Figure PCTCN2020085972-appb-000018
为正常运行状态下馈线f从节点i流向节点j的有功功率,Ψ i为与节点i直接相连的节点集合,
Figure PCTCN2020085972-appb-000019
为正常运行状态下馈线f所带节点i的有功负荷功率,Ψ SS为变电站所在节点组成的集合,Ω为所有馈线组成的集合,
Figure PCTCN2020085972-appb-000020
为正常运行状态下从变压器tr输出到馈线f的有功功率,P i为节点i的有功负荷功率,Ψ为所有节点组成的集合,M为正数,F i f表示正常运行状态下节点i是否由馈线f供电的0-1变量,F i f=1表示是,F i f=0表示否;
Figure PCTCN2020085972-appb-000021
表示正常运行状态下馈线f在馈线走廊ij的馈线段的连通状态的0-1变量,
Figure PCTCN2020085972-appb-000022
表示连通,
Figure PCTCN2020085972-appb-000023
表示不连通,Υ为所有馈线走廊组成的集合,
Figure PCTCN2020085972-appb-000024
为馈线f的容量,S tr为变压器tr的容量,Ω tr为属于变压器tr的馈线组成的集合;
2-2-2)配电网故障状态功率平衡和支路约束,如式(10)-(20)所示:
Figure PCTCN2020085972-appb-000025
Figure PCTCN2020085972-appb-000026
Figure PCTCN2020085972-appb-000027
Figure PCTCN2020085972-appb-000028
Figure PCTCN2020085972-appb-000029
Figure PCTCN2020085972-appb-000030
Figure PCTCN2020085972-appb-000031
Figure PCTCN2020085972-appb-000032
Figure PCTCN2020085972-appb-000033
Figure PCTCN2020085972-appb-000034
Figure PCTCN2020085972-appb-000035
其中,
Figure PCTCN2020085972-appb-000036
适用于公式(10)-(20)其中,
Figure PCTCN2020085972-appb-000037
为馈线f在馈线走廊ij的馈线段在馈线h在馈线走廊xy的馈线段发生故障情况下的连通状态的0-1变量,
Figure PCTCN2020085972-appb-000038
表示连通,
Figure PCTCN2020085972-appb-000039
表示不连通;
Figure PCTCN2020085972-appb-000040
为节点i的负荷在馈线h在馈线走廊xy的馈线段发生故障情况下的受影响状态的0-1变量,
Figure PCTCN2020085972-appb-000041
表示受影响失电,
Figure PCTCN2020085972-appb-000042
表示不受影响;
Figure PCTCN2020085972-appb-000043
为在馈线h在馈线走廊xy的馈线段发生故障情况下馈线f从节点i流向节点j的有功功率,P i f,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下馈线f所带节点i的有功负荷功率,P i fg,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下在节点i经节点联络开关由馈线f流向馈线g的有功功率,
Figure PCTCN2020085972-appb-000044
为在馈线h在馈线走廊xy的馈线段发生故障情况下从变压器tr输出到馈线f的有功功率,P i f,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下节点i的有功负荷功率,
Figure PCTCN2020085972-appb-000045
表示在馈线h在馈线走廊xy的馈线段发生故障情况下节点i的供电情况的0-1变 量,
Figure PCTCN2020085972-appb-000046
表示正常供电,
Figure PCTCN2020085972-appb-000047
表示失电,[xy,h]代表馈线h在馈线走廊xy的馈线段发生故障时的场景。
2-2-3)设备建设约束,如式(21)-(26)所示:
Figure PCTCN2020085972-appb-000048
Figure PCTCN2020085972-appb-000049
Figure PCTCN2020085972-appb-000050
Figure PCTCN2020085972-appb-000051
Figure PCTCN2020085972-appb-000052
Figure PCTCN2020085972-appb-000053
其中,N ij为馈线走廊ij能容纳的馈线段数目,N tr为变压器tr能出的馈线条数,N SS为变电站SS能承载的变压器个数,Λ SS为属于变电站SS的变压器组成的集合。
2-2-4)可靠性约束,如式(27)-(36)所示:
Figure PCTCN2020085972-appb-000054
Figure PCTCN2020085972-appb-000055
Figure PCTCN2020085972-appb-000056
Figure PCTCN2020085972-appb-000057
Figure PCTCN2020085972-appb-000058
Figure PCTCN2020085972-appb-000059
Figure PCTCN2020085972-appb-000060
SAIFI≤ε SAIFI   (34)
SAIDI≤ε SAIDI   (35)
EENS≤ε EENS   (36)
其中,CID i表示节点i的用户中断持续时间,λ [xy,h]表示馈线h在馈线走廊xy的馈线段的年故障率,
Figure PCTCN2020085972-appb-000061
表示馈线h在馈线走廊xy的馈线段故障情况下的故障隔离和转供时间,
Figure PCTCN2020085972-appb-000062
表示馈线h在馈线走廊xy的馈线段故障情况下的故障修复时间,CIF i表示节点i的用户中断频率,NC i为给定的节点i的用户数量,SAIFI为系统年平均中断持续时间指数,ASAI为系统平均供电指数,EENS为期望失负荷能量,B为所有负荷水平的集合,Δ b为负荷水平b的年持续小时数,μ b≤1为负荷水平b的峰值负荷比,L i表示节点i的峰值负荷;
Figure PCTCN2020085972-appb-000063
为节点i电年均停电频率上限,
Figure PCTCN2020085972-appb-000064
为节电i年均停电时间上限,ε SAIFI为系统年均停电频率上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足上限。
3)对步骤2)建立的模型求解,得到l f
Figure PCTCN2020085972-appb-000065
l ij
Figure PCTCN2020085972-appb-000066
u tr、u SS的最优解分别为馈线、馈线段、馈线走廊、节点联络开关、变压器和变电站的规划建设状态,得到CID i、CIF i、SAIDI、SAIFI、EENS的最优解为对应规划方案的可靠性指标,规划完毕。
本申请的特点及有益效果在于:
本申请将配电网投入成本作为目标函数,基于变电站、负荷布点和馈线走廊信息,将配电网中的变电站、变压器、馈线和联络开关统筹规划,构建配电网规划模型;该模型为一混合整数线性规划模型,可以被求解器直接求解,避免了传统规划方法中先生成备选线路集再进行遴选的复杂性和不可靠性,计算效率高且精确。通过求解该模型,可确定满足可靠性约束的规划结果,降低配电网成本。
另外,由于馈线走廊通常是在城市规划中预先规划的,比备选线路集更容易提供。本申请直接基于馈线走廊信息的配电网规划模型可以跳过生成备选线路集的步骤,在实际规划项目中更具实用性和有效性。在计算可靠性指标时,本申请基于馈线走廊直接建模,不需要生成备选线路集,避免了生成备选线路集过程中时间投入和人力成本。
本申请方法简单,易于实施,所得到的最有规划方案在满足可靠性约束的前提下降低投入成本。
具体实施方式
下面针对本申请实施例的基于馈线走廊的可靠性约束配电网规划方法,进行详细说明。
本申请提出的一种基于馈线走廊的可靠性约束配电网规划方法,包括以下步骤:
1)确定元件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,具体如下:
1-1)每条馈线首端安装有断路器(可开断故障电流),馈线段(馈线在某馈线走廊中的对应段支路)两端安装有隔离刀闸(不可开断故障电流),假设正常运行状态下断路器闭合。
1-2)在支路故障发生后,首先支路上游的断路器先动作打开、开断故障电流,此时断路器下游节点断电;而后,人工操作该配电网里所有刀闸和断路器,最大限度恢复断电节点负荷;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构。
2)构建基于混合整数线性规划模型的配电网规划模型;该模型由目标函数和约束条件构成,具体步骤如下:
2-1)构建配电网规划模型的目标函数;
该模型的目标函数为最小化配电网综合投资成本c Total,如式(1)所示:
Figure PCTCN2020085972-appb-000067
其中c f为馈线f断路器和重合器成本,l f表示是否建设馈线f的0-1变量(l f=1建设,l f=0不建设);
Figure PCTCN2020085972-appb-000068
为馈线f在馈线走廊ij的馈线段建设成本,
Figure PCTCN2020085972-appb-000069
表示是否建设馈线f在馈线走廊ij的馈线段的0-1变量(
Figure PCTCN2020085972-appb-000070
建设,
Figure PCTCN2020085972-appb-000071
不建设);c i j为馈线走廊ij的占用成本,l ij表示是否占用馈线走廊ij的0-1变量(l ij=1占用,l ij=0不占用);
Figure PCTCN2020085972-appb-000072
为位于节点i的馈线f和馈线g之间的节点联络开关的成本,
Figure PCTCN2020085972-appb-000073
表示是否建设位于节点i的馈线f和馈线g之间的节点联络开关的0-1变量(
Figure PCTCN2020085972-appb-000074
建设,
Figure PCTCN2020085972-appb-000075
不建设);c tr为变压器tr的建设成本,u tr表示是否建设变压器tr的0-1变量,(u tr=1建设,u tr=0不建设);c SS为变电站SS的建设成本,u SS表示是否假设变电站SS的0-1变量(u SS=1建设,u SS=0不建设);ωSAIDI为可靠性成本,其中ω为权重因子(取值1-100),SAIDI为系统年平均停电时间。
2-2)确定配电网规划模型的约束条件,具体如下:
2-2-1)配电网正常运行状态功率平衡和支路约束,如式(2)-(9)所示:
Figure PCTCN2020085972-appb-000076
Figure PCTCN2020085972-appb-000077
Figure PCTCN2020085972-appb-000078
Figure PCTCN2020085972-appb-000079
Figure PCTCN2020085972-appb-000080
Figure PCTCN2020085972-appb-000081
Figure PCTCN2020085972-appb-000082
Figure PCTCN2020085972-appb-000083
其中
Figure PCTCN2020085972-appb-000084
为正常运行状态下馈线f从节点i流向节点j的有功功率,Ψ i为与节点i直接相连的节点集合,
Figure PCTCN2020085972-appb-000085
为正常运行状态下馈线f所带节点i的有功负荷功率,Ψ SS为变电站所在节点组成的集合,Ω为所有馈线组成的集合。
Figure PCTCN2020085972-appb-000086
为正常运行状态下从变压器tr输出到馈线f的有功功率。P i为节点i的有功负荷功率,Ψ为所有节点组成的集合。M为一个大的正数(取值范围10000-10000000,本实施例取1000000,),F i f表示正常运行状态下节点i是否由馈线f供电的0-1变量(F i f=1是,F i f=0否)。
Figure PCTCN2020085972-appb-000087
表示正常运行状态下馈线f在馈线走廊ij的馈线段的连通状态的0-1变量(
Figure PCTCN2020085972-appb-000088
连通,
Figure PCTCN2020085972-appb-000089
不连通),Υ为所有馈线走廊组成的集合。
Figure PCTCN2020085972-appb-000090
为馈线f的容量,S tr为变压器tr的容量,Ω tr为属于变压器tr的馈线组成的集合。
2-2-2)配电网故障状态功率平衡和支路约束,如式(10)-(20)所示:
Figure PCTCN2020085972-appb-000091
Figure PCTCN2020085972-appb-000092
Figure PCTCN2020085972-appb-000093
Figure PCTCN2020085972-appb-000094
Figure PCTCN2020085972-appb-000095
Figure PCTCN2020085972-appb-000096
Figure PCTCN2020085972-appb-000097
Figure PCTCN2020085972-appb-000098
Figure PCTCN2020085972-appb-000099
Figure PCTCN2020085972-appb-000100
Figure PCTCN2020085972-appb-000101
其中,
Figure PCTCN2020085972-appb-000102
适用于公式(46)-(56)
其中,
Figure PCTCN2020085972-appb-000103
为馈线f在馈线走廊ij的馈线段在馈线h在馈线走廊xy的馈线段发生故障情况下的连通状态的0-1变量(
Figure PCTCN2020085972-appb-000104
连通,
Figure PCTCN2020085972-appb-000105
不连通),
Figure PCTCN2020085972-appb-000106
为节点i的负荷在馈线h在馈线走廊xy的馈线段发生故障情况下的受影响状态的0-1变量(
Figure PCTCN2020085972-appb-000107
受影响失电,
Figure PCTCN2020085972-appb-000108
不受影响)。
Figure PCTCN2020085972-appb-000109
为在馈线h在馈线走廊xy的馈线段发生故障情况下馈线f从节点i流向节点j的有功功率,
Figure PCTCN2020085972-appb-000110
为在馈线h在馈线走廊xy的馈线段发生故障情况下馈线f所带节点i的有功负荷功率,
Figure PCTCN2020085972-appb-000111
为在馈线h在馈线走廊xy的馈线段发生故障情况下在节点i经节点联络开关由馈线f流向馈线g的有功功率,
Figure PCTCN2020085972-appb-000112
为在馈线h在馈线走廊xy的馈线段发生故障情况下从变压器tr输出到馈线f的有功功率。P i f,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下节点i的有功负荷功率。
Figure PCTCN2020085972-appb-000113
表示在馈线h在馈线走廊xy的馈线段发生故障情况下节点i的供电情况的0-1变量(
Figure PCTCN2020085972-appb-000114
正常供电,
Figure PCTCN2020085972-appb-000115
失电)。[xy,h]代表馈线h在馈线走廊xy的馈线段发生故障时的场景。
2-2-3)设备建设约束,如式(21)-(26)所示:
Figure PCTCN2020085972-appb-000116
Figure PCTCN2020085972-appb-000117
Figure PCTCN2020085972-appb-000118
Figure PCTCN2020085972-appb-000119
Figure PCTCN2020085972-appb-000120
Figure PCTCN2020085972-appb-000121
其中N ij为馈线走廊ij能容纳的馈线段数目,N tr为变压器tr能出的馈线条数,N SS为变电站SS能承载的变压器个数,Λ SS为属于变电站SS的变压器组成的集合。
2-2-4)可靠性约束,如式(27)-(36)所示:
Figure PCTCN2020085972-appb-000122
Figure PCTCN2020085972-appb-000123
Figure PCTCN2020085972-appb-000124
Figure PCTCN2020085972-appb-000125
Figure PCTCN2020085972-appb-000126
Figure PCTCN2020085972-appb-000127
Figure PCTCN2020085972-appb-000128
SAIFI≤ε SAIFI   (70);
SAIDI≤ε SAIDI   (71);
EENS≤ε EENS   (72);
其中,CID i表示节点i的用户中断持续时间,λ [xy,h]表示馈线h在馈线走廊xy的馈线段的年故障率,
Figure PCTCN2020085972-appb-000129
表示馈线h在馈线走廊xy的馈线段故障情况下的故障隔离和转供时间(具体为从故障发生后到人工操作断路器和刀闸动作进行故障隔离和受影响负荷恢复供电的时间),
Figure PCTCN2020085972-appb-000130
表示馈线h在馈线走廊xy的馈线段故障情况下的故障修复时间(具体为从故障发生后到故障修复的时间),CIF i表示节点i的用户中断频率,NC i为给定的节点i的用户数量,SAIFI为系统年平均中断持续时间指数,ASAI为系统平均供电指数,EENS为期望失负荷能量,B为所有负荷水平的集合,Δ b为负荷水平b的年持续小时数,μ b≤1为负荷水平b的峰值负荷比,L i表示节点i的峰值负荷。其中
Figure PCTCN2020085972-appb-000131
为节点i电年均停电频率上限,
Figure PCTCN2020085972-appb-000132
为节电i年均停电时间上限,ε SAIFI为系统年均停电频率上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足上限,其中,上述的上限均由规划人员制定,本实施例中不进行限定。
3)根据目标函数式(1)和约束条件式(2)-(36),通过分支定界和线性规划方法对步骤2)建立的模型求解,得到l f
Figure PCTCN2020085972-appb-000133
l ij
Figure PCTCN2020085972-appb-000134
u tr、u SS的最优解即分别为馈线、馈线段、馈线走廊、节点联络开关、变压器和变电站的规划建设状态,得到CID i、CIF i、SAIDI、SAIFI、EENS的最优解为对应规划方案的可靠性指标,规划完毕。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (1)

  1. 一种基于馈线走廊的可靠性约束配电网规划方法,其特征在于,包括以下步骤:
    1)确定元件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,具体如下:
    1-1)每条馈线首端安装断路器,馈线段两端安装隔离刀闸,假设正常运行状态下断路器闭合;
    1-2)在支路故障发生后,首先打开支路上游的断路器,开断故障电流,断路器下游节点断电;然后,操作该配电网里所有刀闸和断路器,恢复断电节点负荷;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构;
    2)构建基于混合整数线性规划模型的配电网规划模型,该模型由目标函数和约束条件构成;具体步骤如下:
    2-1)构建配电网规划模型的目标函数,如式(37)所示:
    Figure PCTCN2020085972-appb-100001
    其中,c Total为配电网综合投资成本,c f为馈线f断路器和重合器成本,l f表示是否建设馈线f的0-1变量,l f=1表示建设,l f=0表示不建设;
    Figure PCTCN2020085972-appb-100002
    为馈线f在馈线走廊ij的馈线段建设成本,
    Figure PCTCN2020085972-appb-100003
    表示是否建设馈线f在馈线走廊ij的馈线段的0-1变量,
    Figure PCTCN2020085972-appb-100004
    表示建设,
    Figure PCTCN2020085972-appb-100005
    表示不建设;c ij为馈线走廊ij的占用成本,l ij表示是否占用馈线走廊ij的0-1变量,l ij=1表示占用,l ij=0表示不占用;
    Figure PCTCN2020085972-appb-100006
    为位于节点i的馈线f和馈线g之间的节点联络开关的成本,
    Figure PCTCN2020085972-appb-100007
    表示是否建设位于节点i的馈线f和馈线g之间的节点联络开关的0-1变量,
    Figure PCTCN2020085972-appb-100008
    表示建设,
    Figure PCTCN2020085972-appb-100009
    表示不建设;c tr为变压器tr的建设成本,u tr表示是否建设变压器tr的0-1变量,u tr=1表示建设,u tr=0表示不建设;c SS为变电站SS的建设成本,u SS表示是否假设变电站SS的0-1变量,u SS=1表示建设,u SS=0表示不建设;ωSAIDI为可靠性成本,其中ω为权重因子,SAIDI为系统年平均停电时间;
    2-2)确定配电网规划模型的约束条件,具体如下:
    2-2-1)配电网正常运行状态功率平衡和支路约束,如式(38)-(45)所示:
    Figure PCTCN2020085972-appb-100010
    Figure PCTCN2020085972-appb-100011
    Figure PCTCN2020085972-appb-100012
    Figure PCTCN2020085972-appb-100013
    Figure PCTCN2020085972-appb-100014
    Figure PCTCN2020085972-appb-100015
    Figure PCTCN2020085972-appb-100016
    Figure PCTCN2020085972-appb-100017
    其中
    Figure PCTCN2020085972-appb-100018
    为正常运行状态下馈线f从节点i流向节点j的有功功率,Ψ i为与节点i直接相连的节点集合,P i f,NO为正常运行状态下馈线f所带节点i的有功负荷功率,Ψ SS为变电站所在节点组成的集合,Ω为所有馈线组成的集合,
    Figure PCTCN2020085972-appb-100019
    为正常运行状态下从变压器tr输出到馈线f的有功功率,P i为节点i的有功负荷功率,Ψ为所有节点组成的集合,M为正数,F i f表示正常运行状态下节点i是否由馈线f供电的0-1变量,F i f=1表示是,F i f=0表示否;
    Figure PCTCN2020085972-appb-100020
    表示正常运行状态下馈线f在馈线走廊ij的馈线段的连通状态的0-1变量,
    Figure PCTCN2020085972-appb-100021
    表示连通,
    Figure PCTCN2020085972-appb-100022
    表示不连通,Υ为所有馈线走廊组成的集合,
    Figure PCTCN2020085972-appb-100023
    为馈线f的容量,S tr为变压器tr的容量,Ω tr为属于变压器tr的馈线组成的集合;
    2-2-2)配电网故障状态功率平衡和支路约束,如式(46)-(56)所示:
    Figure PCTCN2020085972-appb-100024
    Figure PCTCN2020085972-appb-100025
    Figure PCTCN2020085972-appb-100026
    Figure PCTCN2020085972-appb-100027
    Figure PCTCN2020085972-appb-100028
    Figure PCTCN2020085972-appb-100029
    Figure PCTCN2020085972-appb-100030
    Figure PCTCN2020085972-appb-100031
    Figure PCTCN2020085972-appb-100032
    Figure PCTCN2020085972-appb-100033
    Figure PCTCN2020085972-appb-100034
    其中,
    Figure PCTCN2020085972-appb-100035
    适用于公式(46)-(56);
    其中
    Figure PCTCN2020085972-appb-100036
    为馈线f在馈线走廊ij的馈线段在馈线h在馈线走廊xy的馈线段发生故障情况下的连通状态的0-1变量,
    Figure PCTCN2020085972-appb-100037
    表示连通,
    Figure PCTCN2020085972-appb-100038
    表示不连通;
    Figure PCTCN2020085972-appb-100039
    为节点i的负荷在馈线h在馈线走廊xy的馈线段发生故障情况下的受影响状态的0-1变量,
    Figure PCTCN2020085972-appb-100040
    表示受影响失电,
    Figure PCTCN2020085972-appb-100041
    表示不受影响;
    Figure PCTCN2020085972-appb-100042
    为在馈线h在馈线走廊xy的馈线段发生故障情况下馈线f从节点i流向节点j的有功功率,P i f,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下馈线f所带节点i的有功负荷功率,P i fg,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下在节点i经节点联络开关由馈线f流向馈线g的有功功率,
    Figure PCTCN2020085972-appb-100043
    为在馈线h在馈线走廊xy的馈线段发生故障情况下从变压器tr输出到馈线f的有功功率,P i f,[xy,h]为在馈线h在馈线走廊xy的馈线段发生故障情况下节点i的有功负荷功率,
    Figure PCTCN2020085972-appb-100044
    表示在馈线h在馈线走 廊xy的馈线段发生故障情况下节点i的供电情况的0-1变量,
    Figure PCTCN2020085972-appb-100045
    表示正常供电,
    Figure PCTCN2020085972-appb-100046
    表示失电,[xy,h]代表馈线h在馈线走廊xy的馈线段发生故障时的场景;
    2-2-3)设备建设约束,如式(57)-(62)所示:
    Figure PCTCN2020085972-appb-100047
    Figure PCTCN2020085972-appb-100048
    Figure PCTCN2020085972-appb-100049
    Figure PCTCN2020085972-appb-100050
    Figure PCTCN2020085972-appb-100051
    Figure PCTCN2020085972-appb-100052
    其中N ij为馈线走廊ij能容纳的馈线段数目,N tr为变压器tr能出的馈线条数,N SS为变电站SS能承载的变压器个数,Λ SS为属于变电站SS的变压器组成的集合;
    2-2-4)可靠性约束,如式(63)-(36)所示:
    Figure PCTCN2020085972-appb-100053
    Figure PCTCN2020085972-appb-100054
    Figure PCTCN2020085972-appb-100055
    Figure PCTCN2020085972-appb-100056
    Figure PCTCN2020085972-appb-100057
    Figure PCTCN2020085972-appb-100058
    Figure PCTCN2020085972-appb-100059
    SAIFI≤ε SAIFI(106);
    SAIDI≤ε SAIDI(107);
    EENS≤ε EENS(108);
    其中CID i表示节点i的用户中断持续时间,λ [xy,h]表示馈线h在馈线走廊xy的馈线段的年故障率,
    Figure PCTCN2020085972-appb-100060
    表示馈线h在馈线走廊xy的馈线段故障情况下的故障隔离和转供时间,
    Figure PCTCN2020085972-appb-100061
    表示馈线h在馈线走廊xy的馈线段故障情况下的故障修复时间,CIF i表示节点i的用户中断频率,NC i为给定的节点i的用户数量,SAIFI为系统年平均中断持续时间指数,ASAI为系统平均供电指数,EENS为期望失负荷能量,B为所有负荷水平的集合,Δ b为负荷水平b的年持续小时数,μ b≤1为负荷水平b的峰值负荷比,L i表示节点i的峰值负荷;
    Figure PCTCN2020085972-appb-100062
    为节点i电年均停电频率上限,
    Figure PCTCN2020085972-appb-100063
    为节电i年均停电时间上限,ε SAIFI为系统年均停电频率上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足上限;
    3)对步骤2)建立的模型求解,得到l f
    Figure PCTCN2020085972-appb-100064
    l ij
    Figure PCTCN2020085972-appb-100065
    u tr、u SS的最优解分别为馈线、馈线段、馈线走廊、节点联络开关、变压器和变电站的规划建设状态,得到CID i、CIF i、SAIDI、SAIFI、EENS的最优解为对应规划方案的可靠性指标,规划完毕。
PCT/CN2020/085972 2020-04-08 2020-04-21 一种基于馈线走廊的可靠性约束配电网规划方法 WO2021203481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/366,199 US11954409B2 (en) 2020-04-08 2021-07-02 Method for planning distribution network with reliability constraints based on feeder corridor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010268609.2A CN111611662B (zh) 2020-04-08 2020-04-08 一种基于馈线走廊的可靠性约束配电网规划方法
CN202010268609.2 2020-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/366,199 Continuation US11954409B2 (en) 2020-04-08 2021-07-02 Method for planning distribution network with reliability constraints based on feeder corridor

Publications (1)

Publication Number Publication Date
WO2021203481A1 true WO2021203481A1 (zh) 2021-10-14

Family

ID=72202170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085972 WO2021203481A1 (zh) 2020-04-08 2020-04-21 一种基于馈线走廊的可靠性约束配电网规划方法

Country Status (3)

Country Link
US (1) US11954409B2 (zh)
CN (1) CN111611662B (zh)
WO (1) WO2021203481A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937768A (zh) * 2021-10-22 2022-01-14 国网四川省电力公司天府新区供电公司 一种计及接线单元及输电阻塞的高压配电网转供优化方法
CN115329513A (zh) * 2022-07-11 2022-11-11 国网江苏省电力有限公司徐州供电分公司 一种基于配电规划的可靠性指标设计方法及系统
CN115511274A (zh) * 2022-09-15 2022-12-23 东南大学 一种配电网与氢能系统的联合规划方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110210095B (zh) * 2019-05-24 2020-07-10 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN112597634B (zh) * 2020-12-06 2022-11-18 国网山东省电力公司电力科学研究院 一种配电网拓扑数据校验方法及系统
CN116227888B (zh) * 2023-05-05 2023-07-28 山东大学 考虑路段内线路不交叉约束的城市配电网规划方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090265296A1 (en) * 2007-11-08 2009-10-22 Telcordia Technologies, Inc. Scalable and Interactive Method of Generating and Modifying Network Configurations to Enforce Compliance with High-Level Requirements
CN110210659A (zh) * 2019-05-24 2019-09-06 清华大学 一种考虑可靠性约束的配电网规划方法
CN110210095A (zh) * 2019-05-24 2019-09-06 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN110866702A (zh) * 2019-11-20 2020-03-06 国网天津市电力公司 考虑动态网架重构和差异化可靠性的配电网规划方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988325B (zh) * 2018-07-11 2020-05-15 国网能源研究院有限公司 一种计及分布式电源和电动汽车接入的配电网规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090265296A1 (en) * 2007-11-08 2009-10-22 Telcordia Technologies, Inc. Scalable and Interactive Method of Generating and Modifying Network Configurations to Enforce Compliance with High-Level Requirements
CN110210659A (zh) * 2019-05-24 2019-09-06 清华大学 一种考虑可靠性约束的配电网规划方法
CN110210095A (zh) * 2019-05-24 2019-09-06 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN110866702A (zh) * 2019-11-20 2020-03-06 国网天津市电力公司 考虑动态网架重构和差异化可靠性的配电网规划方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937768A (zh) * 2021-10-22 2022-01-14 国网四川省电力公司天府新区供电公司 一种计及接线单元及输电阻塞的高压配电网转供优化方法
CN115329513A (zh) * 2022-07-11 2022-11-11 国网江苏省电力有限公司徐州供电分公司 一种基于配电规划的可靠性指标设计方法及系统
CN115329513B (zh) * 2022-07-11 2024-02-13 国网江苏省电力有限公司徐州供电分公司 一种基于配电规划的可靠性指标设计方法及系统
CN115511274A (zh) * 2022-09-15 2022-12-23 东南大学 一种配电网与氢能系统的联合规划方法
CN115511274B (zh) * 2022-09-15 2023-04-21 东南大学 一种配电网与氢能系统的联合规划方法

Also Published As

Publication number Publication date
US11954409B2 (en) 2024-04-09
US20210334429A1 (en) 2021-10-28
CN111611662A (zh) 2020-09-01
CN111611662B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2021203481A1 (zh) 一种基于馈线走廊的可靠性约束配电网规划方法
Guo et al. Allocation of centrally switched fault current limiters enabled by 5G in transmission system
CN107730093B (zh) 一种电网事故复电路径的系统与方法
CN104318374A (zh) 计及上游恢复供电操作时间的中压配电网可靠性评估方法
CN109449945B (zh) 基于DG调节的10kV合环电流约束的配电网转供优化方法
CN109103879B (zh) 一种全维度配电网合环评估方法
CN111555265B (zh) 一种基于可靠性约束的馈线自动化设备最优改造方法
WO2020237847A1 (zh) 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN110929212B (zh) 大电网薄弱热稳定断面搜索及限额制定的在线计算方法
CN107846015A (zh) 基于对等式通讯的智能配电网负荷转供最优路径选择方法
CN109687432B (zh) 一种基于多阶段协同的配电终端选址定型方法和系统
CN109768544B (zh) 地区电网负荷转供方法
CN105391030B (zh) 基于网络拓扑结构负荷逐渐加载聚合的计划孤岛划分方法
CN111082422A (zh) 一种可靠供电的复合网架结构
CN113328437A (zh) 一种智能配电网cps拓扑构建方法及故障恢复方法
CN113964816A (zh) 一种配网馈线故障自愈率的分析方法
CN114221326B (zh) 集中式自愈功能转供能力不足情况下的分段转供方法
CN207853185U (zh) 变电站母兼旁系统结构
CN115495989A (zh) 一种考虑风特性的海上风电场集电系统拓扑结构设计方法
CN113054658B (zh) 一种多端口低压配电网无缝合环转电装置及其方法
CN115333150A (zh) 一种反孤岛保护下的含分布式电源配电网故障恢复方法
CN113270871B (zh) 基于配电网n-1安全评估的柔性互联装置容量配置优化方法
WO2021203480A1 (zh) 基于可靠性约束的配电网自动化系统综合规划方法
CN113872184B (zh) 解决故障后输电线路过流问题的电网运行优化方法和系统
Qiulin et al. Optimal configuration model of distribution network automation terminal considering branch line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930527

Country of ref document: EP

Kind code of ref document: A1