WO2021203480A1 - 基于可靠性约束的配电网自动化系统综合规划方法 - Google Patents

基于可靠性约束的配电网自动化系统综合规划方法 Download PDF

Info

Publication number
WO2021203480A1
WO2021203480A1 PCT/CN2020/085971 CN2020085971W WO2021203480A1 WO 2021203480 A1 WO2021203480 A1 WO 2021203480A1 CN 2020085971 W CN2020085971 W CN 2020085971W WO 2021203480 A1 WO2021203480 A1 WO 2021203480A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
node
indicates
fails
circuit breaker
Prior art date
Application number
PCT/CN2020/085971
Other languages
English (en)
French (fr)
Inventor
吴文传
张伯明
栗子豪
孙宏斌
王彬
郭庆来
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021203480A1 publication Critical patent/WO2021203480A1/zh
Priority to US17/724,473 priority Critical patent/US20220244692A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0286Modifications to the monitored process, e.g. stopping operation or adapting control
    • G05B23/0294Optimizing process, e.g. process efficiency, product quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • This application relates to the technical field of power system planning and evaluation, and in particular to a method for comprehensive planning of distribution network automation systems based on reliability constraints.
  • the primary equipment in distribution automation mainly includes circuit breakers, switches, feeder terminal control units and control centers.
  • the secondary equipment is a communication device that connects each primary equipment with the control center.
  • reliability refers to the ability of the power system to continuously meet the quantity and quality of end users' power needs.
  • the reliability of the distribution network mainly includes the following indicators: Customer Interruption Frequency (CIF), Customer Interruption Duration (CID), and System Average Interruption Frequency Index (SAIFI) ), System Average Interruption Duration Index (SAIDI) and Expected Energy Not Supplied (EENS).
  • CIF Customer Interruption Frequency
  • CID Customer Interruption Duration
  • SAIFI System Average Interruption Frequency Index
  • SAIDI System Average Interruption Duration Index
  • EENS Expected Energy Not Supplied
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • This application proposes a comprehensive planning method for a distribution network automation system based on reliability constraints.
  • the optimal plan is obtained directly by solving the model without trial search.
  • the scheme reduces the investment cost under the premise of satisfying the reliability constraints.
  • This application is simple and efficient, and effectively reduces costs on the premise of satisfying system reliability.
  • This application proposes a comprehensive planning method for a distribution network automation system based on reliability constraints, which is characterized in that it includes the following steps:
  • the circuit breaker and the knife switch are installed at both ends of the branch, and the feeder control terminal unit is installed on the circuit breaker and the knife switch to receive commands from the control center to control the switch state of the circuit breaker and the knife switch, assuming normal operation Close the circuit breaker;
  • c Total is the comprehensive investment cost of the distribution network
  • c CB is the investment cost of a single circuit breaker, Is the 0-1 variable of the installation state of the circuit breaker close to node i on branch ij, Means installation, Indicates that it is not installed
  • c SW is the investment cost of a single knife gate, Is the 0-1 variable of the installation state of the knife gate close to node i on the branch ij, Means installation, Indicates that it is not installed
  • c FTU is the investment cost of a single feeder terminal control unit, Is the 0-1 variable of the installation status of the feeder terminal control unit on branch ij close to node i, Means installation, Indi
  • the superscript xy represents the scene under the failure of branch xy; in sc ⁇ A,M ⁇ , sc represents the stage, A represents the automatic action stage, and M represents the manual action stage; Represents the load of node i when branch xy fails, Represents the power flowing from node j to node i on branch xy when branch xy fails, ⁇ i represents the set of branches directly connected to node i, ⁇ LN represents the set of load nodes, and ⁇ represents the set of all branches, Represents all branch failure scenarios;
  • M is a positive number
  • ⁇ F represents the set of all transformer nodes
  • Is the 0-1 variable of the state of the switch close to the node i on the branch ij under the normal operating state Indicates that the switch is closed, Indicates that the switch is open;
  • Is the 0-1 variable of the state of the switch close to node j on branch ij under normal operating conditions Indicates that the switch is closed, Indicates that the switch is open; the superscript NO represents normal operation;
  • Is the 0-1 variable of the failure influence flag of node i when the branch xy fails Indicates that node i is affected by the failure when the branch xy fails, Indicates that node i is not affected by the fault when the branch xy fails;
  • CID i represents the user interruption duration of the i-node
  • ⁇ xy represents the annual failure rate of branch xy
  • CIF i represents the user interruption frequency of the i-node
  • NC i is the number of users of a given i-node
  • SAIFI is the system's annual average interruption duration index
  • ASAI is the system's average power supply index
  • B is the set of all load levels
  • ⁇ h is the annual duration of load level h
  • ⁇ h ⁇ 1 is the peak load ratio of load level h
  • Li represents the peak load of node i;
  • ⁇ SAIFI is the upper limit of the average annual power outage frequency of the system
  • ⁇ SAIDI is the upper limit of the average annual power outage time of the system
  • ⁇ EENS is the upper limit of the system's expected energy failure
  • the optimal solution is the optimized result of the planned installation state of the circuit breaker,
  • the optimal solution is the optimized result of the planned installation state of the knife gate,
  • the optimal solution of X is the optimized result of the planned installation state of the feeder terminal control unit, and the optimal solution of x CCS is the optimized result of the planned installation state of the control center, and the optimal results of CID i , CIF i , SAIDI, SAIFI, ASAI, EENS are obtained.
  • the optimal solution is the index optimization result of the reliability of the planning scheme.
  • This application takes the investment cost of the distribution network as the objective function, and models the integrated planning of the entire distribution network as a mixed integer linear programming model. By solving the model, the planning results that meet the reliability constraints can be directly obtained. When calculating reliability constraints, this method also considers circuit breaker tripping after a fault, automatic fault, manual isolation, and restoration of power supply to the affected load based on network reconstruction. , Effectively reduce costs.
  • This application proposes a comprehensive planning method for a distribution network automation system based on reliability constraints.
  • the application will be further described in detail below in conjunction with specific embodiments.
  • This application proposes a comprehensive planning method for a distribution network automation system based on reliability constraints, including the following steps:
  • the circuit breaker (which can break the fault current) and the switch (the switch includes the segmented switch and the contact switch, and the non-breakable fault current) are installed at both ends of the branch, and the feeder control terminal unit ( Feeder Terminal Unit (FTU) is installed on the circuit breaker and the switch and can receive instructions from the control center to control the switching state of the circuit breaker and the switch, and assume that the circuit breaker is closed under normal operating conditions;
  • FTU Feeder Terminal Unit
  • the circuit breaker closest to the faulty branch upstream of the branch first acts to open and break the fault current (circuit breaker action stage), and then the downstream node of the circuit breaker is powered off; All the switches in the distribution network with feeder terminal control units open or close (automatic action stage) to automatically isolate the fault and isolate the faulty branch; at the same time, pass all the switches and equipped with the feeder terminal control unit All circuit breaker actions of the feeder terminal control unit are reconfigured to maximize the restoration of the load on the power-off node; then, all switches and circuit breakers are manually operated (manual action stage) to further restore the load of the power-off node to the maximum; finally, Repair the faulty branch and restore the original power supply network structure through the action switch and circuit breaker after the repair.
  • c CB is the investment cost of a single circuit breaker, Is the 0-1 variable ( Means installation, Means not installed); Is the 0-1 variable ( Indicates that the circuit breaker is installed, Means that the circuit breaker is not installed); c SW is the investment cost of a single switch, Is the 0-1 variable ( Means installation, Means not installed); Is the 0-1 variable ( Means installation, Means not installed); c FTU is the investment cost of a single feeder terminal control unit, Is the 0-1 variable ( Means installation, Means not installed); Is the 0-1 variable ( Means installation, Means it is not installed).
  • the superscript xy represents the scene under the failure of branch xy; in sc ⁇ A,M ⁇ , sc represents the stage, A represents the automatic action stage, and M represents the manual action stage.
  • M is a given arbitrary larger number (the value range is 10000-10000000, in this example, it is 1000000), 0-1 variable representing the state of the switch near node i on branch ij when branch xy fails ( Indicates that the switch is closed, Means the switch is on), The 0-1 variable representing the state of the switch near node j on branch ij when branch xy fails ( Indicates that the switch is closed, Means the switch is on), Indicates the rated transmission capacity of branch ij.
  • ⁇ F represents the set of all transformer nodes.
  • n BR is the number of branches of the distribution network.
  • Is the 0-1 variable Indicates that the switch is closed, Means the switch is on
  • Is the 0-1 variable Indicates that the switch is closed, Indicates that the switch is open).
  • Is the 0-1 variable Indicates that the circuit breaker is closed, Means the circuit breaker is open
  • Is the 0-1 variable Indicates that the circuit breaker is closed, Indicates that the circuit breaker is open).
  • Is the 0-1 variable Indicates that node i is affected by the failure when the branch xy fails, It means that node i is not affected by the fault when the branch xy fails).
  • F i xy,sc 0 means that node i is in a power-off state affected by the maintenance of the faulty branch after the branch xy fails
  • F i xy,sc 1 means that node i is not affected by the maintenance of the faulty branch after the branch xy fails And in normal operation state).
  • CID i represents the user interruption duration of the i-node
  • ⁇ xy represents the annual failure rate of branch xy
  • Indicates the interruption time of the automatic fault action of branch xy (specifically, the time from the occurrence of the fault to the action of the circuit breaker and the switch of the control unit of the feeder terminal)
  • Indicates the interruption time of the manual action of the branch xy (specifically the time from the occurrence of the fault to the manual operation of the circuit breaker and the switch)
  • CIF i represents the user interruption frequency of the i-node
  • NC i is the number of users of the given i-node
  • SAIFI is the annual average of the system Interruption duration index
  • ASAI is the average power supply index of the system
  • EENS is the expected loss of load energy
  • B is the set of all load levels
  • ⁇ SAIFI is the upper limit of the average annual power outage time of the system
  • ⁇ SAIDI is the upper limit of the average annual power outage time of the system
  • ⁇ EENS is the upper limit of the system's expected energy failure.
  • the model established in step 2) is solved by the optimization software CPLEX or Gurobi to obtain x
  • the optimal solution of CCS is the optimized result of the planned installation state of circuit breaker, switch, feeder terminal control unit and control center respectively.
  • the optimal solution of CID i , CIF i , SAIDI, SAIFI, ASAI, EENS is the corresponding plan
  • the optimization result of the reliability index of the scheme is the corresponding plan. Based on the above optimal solution, the distribution network automation system can be planned, so that the cost can be effectively reduced under the premise of satisfying the reliability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Automation & Control Theory (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请提出一种基于可靠性约束的配电网自动化系统综合规划方法,属于电力系统规划与评估技术领域。该方法将配电网自动化系统统筹规划,其中配电网自动化系统包括断路器、刀闸、馈线终端控制单元和控制中心;建立由目标函数和约束条件构成的配电网可靠性评估优化模型,对模型求解得出满足系统可靠性要求的断路器、刀闸、馈线终端控制单元的安装位置,以及是否需要建设配电自动化系统控制中心。在可靠性约束中,本申请同时考虑了故障后断路器跳闸、故障自动及人工隔离和基于网络重构后的受影响负荷供电恢复,方法简单方便,同时实现了在满足系统可靠性的前提下,有效降低成本。

Description

基于可靠性约束的配电网自动化系统综合规划方法
相关申请的交叉引用
本申请要求清华大学于2020年4月9日提交的、申请名称为“基于可靠性约束的配电网自动化系统综合规划方法”的、中国专利申请号“202010272358.5”的优先权。
技术领域
本申请涉及电力系统规划与评估技术领域,尤其涉及一种基于可靠性约束的配电网自动化系统综合规划方法。
背景技术
随着电力用户对供电可靠性要求的提升,配电自动化系统广泛应用于城区配电网中,投资巨大。对配电自动化系统中的设备进行精益化规划,需要在满足系统可靠性要求的前提下尽可能降低投资成本。配电自动化中的一次设备主要包括断路器、刀闸、馈线终端控制单元和控制中心,二次设备为其配套的连通各一次设备与控制中心的通讯装置。
在电力领域,可靠性是指电力系统持续满足终端用户电力需求数量和质量的能力。配电网可靠性主要包括以下几个指标:用户中断频率(Customer Interruption Frequency,CIF)、用户中断持续时间(Customer Interruption Duration,CID)、系统年平均中断频率指数(System Average Interruption Frequency Index,SAIFI))、系统年平均中断持续时间指数(System Average Interruption Duration Index,SAIDI)和期望失负荷能量(Expected Energy Not Supplied,EENS)。
在目前应用的配电网自动化系统综合规划方法中,需要采用规划计算和可靠性评估迭代方法进行试探。首先,产生一种规划方案,并计算该方案下的系统可靠性指标;再产生另一种规划方案,重新计算系统可靠性指标,如果后一种方案的可靠性满足要求,同时成本更低,则以该方案为当前最优方案。重复上述流程直到找到满足可靠性要求的成本最低方案。这种方法耗时较长,需要较大的存储空间,如果所有方案未能遍历,则不能在满足系统可靠性的前提下,降低成本。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
本申请提出一种基于可靠性约束的配电网自动化系统综合规划方法,通过构建基于可靠 性约束的配电网可靠性评估优化模型,不通过试探搜索,而直接通过求解该模型得到最优规划方案,在满足可靠性约束的前提下降低投资成本。本申请简单高效,实现了在满足系统可靠性的前提下,有效降低成本。
本申请提出一种基于可靠性约束的配电网自动化系统综合规划方法,其特征在于,包括以下步骤:
1)定义器件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,如下所示:
1-1)断路器和刀闸安装在支路的两端,馈线控制终端单元安装在断路器和刀闸上用于接收控制中心指令控制该断路器和刀闸的开关状态,假设正常运行状态下断路器闭合;
1-2)在支路故障发生后,首先支路上游最靠近故障支路的断路器动作打开,开断故障电流,断路器下游节点断电;在自动动作阶段,装有馈线终端控制单元的所有配电网中的刀闸进行打开或闭合动作,进行故障自动隔离,隔离故障支路;同时,通过装有馈线终端控制单元的所有刀闸和装有馈线终端控制单元的所有断路器动作进行网络重构以恢复断电节点负荷;在人工动作阶段,人工操作所有刀闸和断路器,进一步恢复断电节点负荷;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构;
2)构建基于混合整数线性规划的配电网可靠性评估优化模型,该模型由目标函数和约束条件构成;具体步骤如下:
2-1)确定模型的目标函数;如式(1)所示:
Figure PCTCN2020085971-appb-000001
其中,c Total为配电网综合投资成本,c CB为单个断路器投资成本,
Figure PCTCN2020085971-appb-000002
为支路ij上靠近节点i断路器的安装状态的0-1变量,
Figure PCTCN2020085971-appb-000003
表示安装,
Figure PCTCN2020085971-appb-000004
表示未安装;
Figure PCTCN2020085971-appb-000005
为支路ij上靠近节点j断路器的安装状态的0-1变量,
Figure PCTCN2020085971-appb-000006
表示安装,
Figure PCTCN2020085971-appb-000007
表示未安装;c SW为单个刀闸投资成本,
Figure PCTCN2020085971-appb-000008
为支路ij上靠近节点i刀闸的安装状态的0-1变量,
Figure PCTCN2020085971-appb-000009
表示安装,
Figure PCTCN2020085971-appb-000010
表示未安装;
Figure PCTCN2020085971-appb-000011
为支路ij上靠近节点j刀闸的安装状态的0-1变量,
Figure PCTCN2020085971-appb-000012
表示安装,
Figure PCTCN2020085971-appb-000013
表示未安装;c FTU为单个馈线终端控制单元投资成本,
Figure PCTCN2020085971-appb-000014
为支路ij上靠近节点i馈线终端控制单元的安装状态的0-1变量,
Figure PCTCN2020085971-appb-000015
表示安装,
Figure PCTCN2020085971-appb-000016
表示未安装;
Figure PCTCN2020085971-appb-000017
为支路ij上靠近节点j馈线终端控制单元的安装状态的0-1变量,
Figure PCTCN2020085971-appb-000018
表示安装,
Figure PCTCN2020085971-appb-000019
表示未安装;c CCS为控制中心投资成本,x CCS为控制中心的建设状态的0-1变量,x CCS=1表示建设,x CCS=0表示未建设;
2-2)确定模型的约束条件,具体如下:
2-2-1)配电网功率平衡约束,如式(2)和(3)所示:
Figure PCTCN2020085971-appb-000020
Figure PCTCN2020085971-appb-000021
其中,上标xy表示在支路xy发生故障下的场景;sc∈{A,M}中,sc代表所处阶段,A代表自动动作阶段,M代表人工动作阶段;
Figure PCTCN2020085971-appb-000022
表示在支路xy发生故障时节点i的负荷,
Figure PCTCN2020085971-appb-000023
表示在支路xy发生故障时支路ij上由节点j流向节点i的功率,Ψ i表示与节点i直接相连的支路集合,Ψ LN表示负荷节点集合,Υ表示所有支路的集合,
Figure PCTCN2020085971-appb-000024
代表所有支路故障场景;
2-2-2)支路功率约束,如式(4)~(6)所示:
Figure PCTCN2020085971-appb-000025
Figure PCTCN2020085971-appb-000026
Figure PCTCN2020085971-appb-000027
其中,M为正数,
Figure PCTCN2020085971-appb-000028
表示在支路xy发生故障时支路ij上靠近节点i开关的状态的0-1变量,
Figure PCTCN2020085971-appb-000029
表示开关闭合,
Figure PCTCN2020085971-appb-000030
表示开关打开;
Figure PCTCN2020085971-appb-000031
表示在支路xy发生故障时支路ij上靠近节点j开关的状态的0-1变量,
Figure PCTCN2020085971-appb-000032
表示开关闭合,
Figure PCTCN2020085971-appb-000033
表示开关打开;
Figure PCTCN2020085971-appb-000034
表示支路ij额定传输容量;
2-2-3)变压器功率约束,如式(7)~(8)所示:
Figure PCTCN2020085971-appb-000035
Figure PCTCN2020085971-appb-000036
其中,
Figure PCTCN2020085971-appb-000037
为在支路xy发生故障时变压器f的功率,
Figure PCTCN2020085971-appb-000038
为在支路xy发生故障时连接变压器的支路tr f由变压器节点流向下游节点的功率,Ψ F表示所有变压器节点的集合;
2-2-4)断路器动作约束,如式(9)~(16)所示:
Figure PCTCN2020085971-appb-000039
Figure PCTCN2020085971-appb-000040
Figure PCTCN2020085971-appb-000041
Figure PCTCN2020085971-appb-000042
Figure PCTCN2020085971-appb-000043
Figure PCTCN2020085971-appb-000044
Figure PCTCN2020085971-appb-000045
Figure PCTCN2020085971-appb-000046
Figure PCTCN2020085971-appb-000047
其中,
Figure PCTCN2020085971-appb-000048
为在支路xy发生故障时在断路器动作阶段支路ij的故障波及标志的0-1变,
Figure PCTCN2020085971-appb-000049
表示支路xy发生故障时支路ij受故障波及而处于断电状态,
Figure PCTCN2020085971-appb-000050
表示支路xy发生故障时支路ij处于正常运行状态;F i xy,B为在支路xy发生故障时在断路器动作阶段节点i的故障波及标志的0-1变量,F i xy,B=0表示支路xy发生故障时节点i受故障波及而处于断电状 态,F i xy,B=1表示支路xy发生故障时节点i处于正常运行状态;上标B代表断路器动作阶段;n BR为配电网的支路数;
Figure PCTCN2020085971-appb-000051
为在正常运行状态下支路ij上靠近节点i开关的状态的的0-1变量,
Figure PCTCN2020085971-appb-000052
表示开关闭合,
Figure PCTCN2020085971-appb-000053
表示开关打开;
Figure PCTCN2020085971-appb-000054
为在正常运行状态下支路ij上靠近节点j开关的状态的0-1变量,
Figure PCTCN2020085971-appb-000055
表示开关闭合,
Figure PCTCN2020085971-appb-000056
表示开关打开;上标NO代表正常运行状态;
Figure PCTCN2020085971-appb-000057
为在支路xy发生故障时支路ij上靠近节点i断路器的状态的0-1变量,
Figure PCTCN2020085971-appb-000058
表示断路器闭合,
Figure PCTCN2020085971-appb-000059
表示断路器打开;
Figure PCTCN2020085971-appb-000060
为在支路xy发生故障时支路ij上靠近节点j断路器的状态的0-1变量,
Figure PCTCN2020085971-appb-000061
表示断路器闭合,
Figure PCTCN2020085971-appb-000062
表示断路器打开;
Figure PCTCN2020085971-appb-000063
为在支路xy发生故障时节点i的故障影响标志的0-1变量,
Figure PCTCN2020085971-appb-000064
表示支路xy发生故障时节点i受故障影响,
Figure PCTCN2020085971-appb-000065
表示支路xy发生故障时节点i不受故障影响;
2-2-5)开关动作约束,如式(17)~(25)所示:
Figure PCTCN2020085971-appb-000066
Figure PCTCN2020085971-appb-000067
Figure PCTCN2020085971-appb-000068
Figure PCTCN2020085971-appb-000069
Figure PCTCN2020085971-appb-000070
Figure PCTCN2020085971-appb-000071
Figure PCTCN2020085971-appb-000072
Figure PCTCN2020085971-appb-000073
Figure PCTCN2020085971-appb-000074
Figure PCTCN2020085971-appb-000075
其中,
Figure PCTCN2020085971-appb-000076
为在支路xy发生故障后在自动动作阶段sc=A或人工动作阶段sc=M支路ij的维修影响标志的0-1变量,
Figure PCTCN2020085971-appb-000077
表示支路xy发生故障后支路ij受故障支路维修影响而处于断电状态,
Figure PCTCN2020085971-appb-000078
表示支路xy发生故障后支路ij不受故障支路维修影响而处于正常运行状态;F i xy,sc为在支路xy发生故障后在自动动作阶段sc=A或人工动作阶段sc=M节点i的维修影响标志的0-1变量,F i xy,sc=0表示支路xy发生故障后节点i受故障支路维修影响而处于断电状态,F i xy,sc=1表示支路xy发生故障后节点i不受故障支路维修影响而处于正常运行状态;
Figure PCTCN2020085971-appb-000079
在支路xy发生故障后在自动动作阶段sc=A或人工动作阶段sc=M节点i的供电标志的0-1变量,
Figure PCTCN2020085971-appb-000080
表示支路xy发生故障后且开关动作后节点i正常供电,
Figure PCTCN2020085971-appb-000081
表示支路xy发生故障后且开关动作后节点i处于断电状态;
2-2-6)可靠性约束,如式(26)~(36)所示:
Figure PCTCN2020085971-appb-000082
Figure PCTCN2020085971-appb-000083
Figure PCTCN2020085971-appb-000084
Figure PCTCN2020085971-appb-000085
Figure PCTCN2020085971-appb-000086
Figure PCTCN2020085971-appb-000087
Figure PCTCN2020085971-appb-000088
Figure PCTCN2020085971-appb-000089
SAIFI≤ε SAIFI   (34);
SAIDI≤ε SAIDI   (35);
EENS≤ε EENS   (36);
其中CID i表示i节点的用户中断持续时间,λ xy表示支路xy的年故障率,
Figure PCTCN2020085971-appb-000090
表示支路xy的故障自动动作中断时间,
Figure PCTCN2020085971-appb-000091
表示支路xy的故障人工动作中断时间,
Figure PCTCN2020085971-appb-000092
表示支路xy的故障修复中断时间,CIF i表示i节点的用户中断频率,NC i为给定的i节点的用户数量,SAIFI为系统年平均中断持续时间指数,ASAI为系统平均供电指数,EENS为期望失负荷能量,B为所有负荷水平的集合,Δ h为负荷水平h的年持续小时数,μ h≤1为负荷水平h的峰值负荷比,L i表示i节点的峰值负荷;
Figure PCTCN2020085971-appb-000093
为i节电年均停电频率上限,
Figure PCTCN2020085971-appb-000094
为i节电年均停电时间上限,ε SAIFI为系统年均停电频率上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足的上限;
2-2-7)设备投资约束,如式(37)~(51)所示:
Figure PCTCN2020085971-appb-000095
Figure PCTCN2020085971-appb-000096
Figure PCTCN2020085971-appb-000097
Figure PCTCN2020085971-appb-000098
Figure PCTCN2020085971-appb-000099
Figure PCTCN2020085971-appb-000100
Figure PCTCN2020085971-appb-000101
Figure PCTCN2020085971-appb-000102
Figure PCTCN2020085971-appb-000103
Figure PCTCN2020085971-appb-000104
Figure PCTCN2020085971-appb-000105
Figure PCTCN2020085971-appb-000106
Figure PCTCN2020085971-appb-000107
Figure PCTCN2020085971-appb-000108
Figure PCTCN2020085971-appb-000109
3)对步骤2)建立的模型求解,得到
Figure PCTCN2020085971-appb-000110
的最优解为断路器的规划安装状态的优化结果,
Figure PCTCN2020085971-appb-000111
的最优解为刀闸的规划安装状态的优化结果,
Figure PCTCN2020085971-appb-000112
的最优解为馈线终端控制单元的规划安装状态的优化结果,x CCS的最优解为控制中心的规划安装状态的优化结果,得到CID i、CIF i、SAIDI、SAIFI、ASAI、EENS的最优解为规划方案的可靠性的指标优化结果。
本申请提供的技术方案具有如下的有益效果:
本申请将配电网投资成本作为目标函数,并将整个配电网的自动化系统综合规划建模为一混合整数线性规划模型,通过求解该模型,可直接得到满足可靠性约束的规划结果。在计算可靠性约束时,该方法同时考虑了故障后断路器跳闸、故障自动、人工隔离和基于网络重构后的受影响负荷供电恢复,方法简单方便,同时实现了在满足系统可靠性的前提下,有效降低成本。
具体实施方式
本申请提出一种基于可靠性约束的配电网自动化系统综合规划方法,下面结合具体实施例对本申请进一步详细说明如下。
本申请提出一种基于可靠性约束的配电网自动化系统综合规划方法,包括以下步骤:
1)定义器件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,如下所示:
1-1)断路器(可开断故障电流)和刀闸(所述刀闸包括分段刀闸和联络刀闸,不可开断故障电流)安装在支路的两端,馈线控制终端单元(Feeder Terminal Unit,FTU)安装在断路器和刀闸上并能接收控制中心指令控制该断路器和刀闸的开关状态,并假设正常运行状态下断路器闭合;
1-2)在支路故障发生后,首先支路上游最靠近故障支路的断路器先动作打开、开断故障电流(断路器动作阶段),此时断路器下游节点断电;之后,装有馈线终端控制单元的所有配电网中的刀闸进行打开或闭合动作(自动动作阶段),进行故障自动隔离,隔离故障支路;同时,通过装有馈线终端控制单元的所有刀闸和装有馈线终端控制单元的所有断路器动 作进行网络重构,最大限度恢复断电节点负荷;而后,所有刀闸和断路器被人工操作(人工动作阶段),进一步最大限度恢复断电节点负荷;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构。
2)构建基于混合整数线性规划的配电网可靠性评估优化模型,该模型由目标函数和约束条件构成;具体步骤如下:
2-1)确定模型的目标函数;
该模型的目标函数为最小化配电网综合投资成本c Total,如式(1)所示:
Figure PCTCN2020085971-appb-000113
其中c CB为单个断路器投资成本,
Figure PCTCN2020085971-appb-000114
为支路ij上靠近节点i断路器的安装状态的0-1变量(
Figure PCTCN2020085971-appb-000115
表示安装,
Figure PCTCN2020085971-appb-000116
表示未安装);
Figure PCTCN2020085971-appb-000117
为支路ij上靠近节点j断路器的安装状态的0-1变量(
Figure PCTCN2020085971-appb-000118
表示断路器安装,
Figure PCTCN2020085971-appb-000119
表示断路器未安装);c SW为单个刀闸投资成本,
Figure PCTCN2020085971-appb-000120
为支路ij上靠近节点i刀闸的安装状态的0-1变量(
Figure PCTCN2020085971-appb-000121
表示安装,
Figure PCTCN2020085971-appb-000122
表示未安装);
Figure PCTCN2020085971-appb-000123
为支路ij上靠近节点j刀闸的安装状态的0-1变量(
Figure PCTCN2020085971-appb-000124
表示安装,
Figure PCTCN2020085971-appb-000125
表示未安装);c FTU为单个馈线终端控制单元投资成本,
Figure PCTCN2020085971-appb-000126
为支路ij上靠近节点i馈线终端控制单元的安装状态的0-1变量(
Figure PCTCN2020085971-appb-000127
表示安装,
Figure PCTCN2020085971-appb-000128
表示未安装);
Figure PCTCN2020085971-appb-000129
为支路ij上靠近节点j馈线终端控制单元的安装状态的0-1变量(
Figure PCTCN2020085971-appb-000130
表示安装,
Figure PCTCN2020085971-appb-000131
表示未安装)。c CCS为控制中心投资成本,x CCS为控制中心的建设状态的0-1变量(x CCS=1表示建设,x CCS=0表示未建设)。
2-2)确定模型的约束条件,具体如下:
2-2-1)配电网功率平衡约束,如式(2)和(3)所示:
Figure PCTCN2020085971-appb-000132
Figure PCTCN2020085971-appb-000133
其中,上标xy表示在支路xy发生故障下的场景;sc∈{A,M}中,sc代表所处阶段,A代表自动动作阶段,M代表人工动作阶段。
Figure PCTCN2020085971-appb-000134
表示在支路xy发生故障时节点i的负荷,
Figure PCTCN2020085971-appb-000135
表示在支路xy发生故障时支路ij上由节点j流向节点i的功率,Ψ i表示与节点i直接相连的支路集合,Ψ LN表示负荷节点集合,Υ表示所有支路的集合,
Figure PCTCN2020085971-appb-000136
代表所有支路故障场景。
2-2-2)支路功率约束,如式(4)~(6)所示:
Figure PCTCN2020085971-appb-000137
Figure PCTCN2020085971-appb-000138
Figure PCTCN2020085971-appb-000139
其中,M为给定任意取值较大的数(取值范围是10000-10000000,本实例中取为 1000000),
Figure PCTCN2020085971-appb-000140
表示在支路xy发生故障时支路ij上靠近节点i开关的状态的0-1变量(
Figure PCTCN2020085971-appb-000141
表示开关闭合,
Figure PCTCN2020085971-appb-000142
表示开关打开),
Figure PCTCN2020085971-appb-000143
表示在支路xy发生故障时支路ij上靠近节点j开关的状态的0-1变量(
Figure PCTCN2020085971-appb-000144
表示开关闭合,
Figure PCTCN2020085971-appb-000145
表示开关打开),
Figure PCTCN2020085971-appb-000146
表示支路ij额定传输容量。
2-2-3)变压器功率约束,如式(7)~(8)所示:
Figure PCTCN2020085971-appb-000147
Figure PCTCN2020085971-appb-000148
其中,
Figure PCTCN2020085971-appb-000149
为在支路xy发生故障时变压器f的功率,
Figure PCTCN2020085971-appb-000150
为在支路xy发生故障时连接变压器的支路tr f由变压器节点流向下游节点的功率,Ψ F表示所有变压器节点的集合。
2-2-4)断路器动作约束,如式(9)~(16)所示:
Figure PCTCN2020085971-appb-000151
Figure PCTCN2020085971-appb-000152
Figure PCTCN2020085971-appb-000153
Figure PCTCN2020085971-appb-000154
Figure PCTCN2020085971-appb-000155
Figure PCTCN2020085971-appb-000156
Figure PCTCN2020085971-appb-000157
Figure PCTCN2020085971-appb-000158
Figure PCTCN2020085971-appb-000159
其中,
Figure PCTCN2020085971-appb-000160
为在支路xy发生故障时在断路器动作阶段(上标B)支路ij的故障波及标志的0-1变量(
Figure PCTCN2020085971-appb-000161
表示支路xy发生故障时支路ij受故障波及而处于断电状态,
Figure PCTCN2020085971-appb-000162
表示支路xy发生故障时支路ij处于正常运行状态),
Figure PCTCN2020085971-appb-000163
为在支路xy发生故障时在断路器动作阶段节点i的故障波及标志的0-1变量(
Figure PCTCN2020085971-appb-000164
表示支路xy发生故障时节点i受故障波及而处于断电状态,
Figure PCTCN2020085971-appb-000165
表示支路xy发生故障时节点i处于正常运行状态)。n BR为配电网的支路数。
Figure PCTCN2020085971-appb-000166
为在正常运行状态下(上标NO)支路ij上靠近节点i开关的状态的的0-1变量(
Figure PCTCN2020085971-appb-000167
表示开关闭合,
Figure PCTCN2020085971-appb-000168
表示开关打开),
Figure PCTCN2020085971-appb-000169
为在正常运行状态下(上标NO)支路ij上靠近节点j开关的状态的0-1变量(
Figure PCTCN2020085971-appb-000170
表示开关闭合,
Figure PCTCN2020085971-appb-000171
表示开关打开)。
Figure PCTCN2020085971-appb-000172
为在支路xy发生故障时支路ij上靠近节点i断路器的状态的0-1变量(
Figure PCTCN2020085971-appb-000173
表示断路器闭合,
Figure PCTCN2020085971-appb-000174
表示断路器打开),
Figure PCTCN2020085971-appb-000175
为在支路xy发生故障时支路ij上靠近节点j断路器的状态的0-1变量(
Figure PCTCN2020085971-appb-000176
表示断路器闭合,
Figure PCTCN2020085971-appb-000177
表示断路器打开)。
Figure PCTCN2020085971-appb-000178
为在支路xy发生故障时节点i的故障影响标志的0-1变量(
Figure PCTCN2020085971-appb-000179
表示支路xy发生故障时节点i受故障影响,
Figure PCTCN2020085971-appb-000180
表示支路xy发生故障时节点i不受故障影响)。
2-2-5)开关动作约束,如式(17)~(25)所示:
Figure PCTCN2020085971-appb-000181
Figure PCTCN2020085971-appb-000182
Figure PCTCN2020085971-appb-000183
Figure PCTCN2020085971-appb-000184
Figure PCTCN2020085971-appb-000185
Figure PCTCN2020085971-appb-000186
Figure PCTCN2020085971-appb-000187
Figure PCTCN2020085971-appb-000188
Figure PCTCN2020085971-appb-000189
Figure PCTCN2020085971-appb-000190
其中,
Figure PCTCN2020085971-appb-000191
为在支路xy发生故障后在自动动作阶段(上标sc=A)或人工动作阶段(上标sc=M)支路ij的维修影响标志的0-1变量(
Figure PCTCN2020085971-appb-000192
表示支路xy发生故障后支路ij受故障支路维修影响而处于断电状态,
Figure PCTCN2020085971-appb-000193
表示支路xy发生故障后支路ij不受故障支路维修影响而处于正常运行状态),F i xy,sc为在支路xy发生故障后节点i的维修影响标志的0-1变量(F i xy,sc=0表示支路xy发生故障后节点i受故障支路维修影响而处于断电状态,F i xy,sc=1表示支路xy发生故障后节点i不受故障支路维修影响而处于正常运行状态)。
Figure PCTCN2020085971-appb-000194
在支路xy发生故障后(自动动作阶段sc=A和人工动作阶段sc=M)节点i的供电标志的0-1变量(
Figure PCTCN2020085971-appb-000195
表示支路xy发生故障后(开关动作后)节点i正常供电,
Figure PCTCN2020085971-appb-000196
表示支路xy发生故障后(开关动作后)节点i处于断电状态)。
2-2-6)可靠性约束,如式(26)~(36)所示:
Figure PCTCN2020085971-appb-000197
Figure PCTCN2020085971-appb-000198
Figure PCTCN2020085971-appb-000199
Figure PCTCN2020085971-appb-000200
Figure PCTCN2020085971-appb-000201
Figure PCTCN2020085971-appb-000202
Figure PCTCN2020085971-appb-000203
Figure PCTCN2020085971-appb-000204
SAIFI≤ε SAIFI   (34);
SAIDI≤ε SAIDI   (35);
EENS≤ε EENS   (36);
其中CID i表示i节点的用户中断持续时间,λ xy表示支路xy的年故障率,
Figure PCTCN2020085971-appb-000205
表示支路xy的故障自动动作中断时间(具体为从故障发生后到受馈线终端控制单元的断路器和刀闸动作的时间),
Figure PCTCN2020085971-appb-000206
表示支路xy的故障人工动作中断时间(具体为从故障发生后到人工操作断路器和刀闸动作的时间),
Figure PCTCN2020085971-appb-000207
表示支路xy的故障修复中断时间(具体为从故障发生后到故障修复的时间),CIF i表示i节点的用户中断频率,NC i为给定的i节点的用户数量,SAIFI为系统年平均中断持续时间指数,ASAI为系统平均供电指数,EENS为期望失负荷能量,B为所有负荷水平的集合,Δ h为负荷水平h的年持续小时数,μ h≤1为负荷水平h的峰值负荷比,L i表示i节点的峰值负荷。
Figure PCTCN2020085971-appb-000208
为i节电年均停电频率上限,
Figure PCTCN2020085971-appb-000209
为i节电年均停电时间上限,ε SAIFI为系统年均停电频率上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足的上限。
2-2-7)设备投资约束,如式(37)~(51)所示:
Figure PCTCN2020085971-appb-000210
Figure PCTCN2020085971-appb-000211
Figure PCTCN2020085971-appb-000212
Figure PCTCN2020085971-appb-000213
Figure PCTCN2020085971-appb-000214
Figure PCTCN2020085971-appb-000215
Figure PCTCN2020085971-appb-000216
Figure PCTCN2020085971-appb-000217
Figure PCTCN2020085971-appb-000218
Figure PCTCN2020085971-appb-000219
Figure PCTCN2020085971-appb-000220
Figure PCTCN2020085971-appb-000221
Figure PCTCN2020085971-appb-000222
Figure PCTCN2020085971-appb-000223
Figure PCTCN2020085971-appb-000224
3)根据目标函数(1)和约束条件(2)~(51),通过优化软件CPLEX或Gurobi对步骤2)建立的模型求解该,得到
Figure PCTCN2020085971-appb-000225
x CCS的最优解即分别为断路器、刀闸、馈线终端控制单元和控制中心的规划安装状态的优化结果,CID i、CIF i、SAIDI、SAIFI、ASAI、EENS的最优解为对应规划方案的可靠性指标的优化结果。基于 上述最优解即可对配电网自动化系统进行规划,以使得在满足系统可靠性的前提下,有效降低成本。

Claims (1)

  1. 一种基于可靠性约束的配电网自动化系统综合规划方法,其特征在于,包括以下步骤:
    1)定义器件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,如下所示:
    1-1)断路器和刀闸安装在支路的两端,馈线控制终端单元安装在断路器和刀闸上用于接收控制中心指令控制该断路器和刀闸的开关状态,假设正常运行状态下断路器闭合;
    1-2)在支路故障发生后,首先支路上游最靠近故障支路的断路器动作打开,开断故障电流,断路器下游节点断电;在自动动作阶段,装有馈线终端控制单元的所有配电网中的刀闸进行打开或闭合动作,进行故障自动隔离,隔离故障支路;同时,通过装有馈线终端控制单元的所有刀闸和装有馈线终端控制单元的所有断路器动作进行网络重构以恢复断电节点负荷;在人工动作阶段,人工操作所有刀闸和断路器,进一步恢复断电节点负荷;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构;
    2)构建基于混合整数线性规划的配电网可靠性评估优化模型,该模型由目标函数和约束条件构成;具体步骤如下:
    2-1)确定模型的目标函数;如式(1)所示:
    Figure PCTCN2020085971-appb-100001
    其中,c Total为配电网综合投资成本,c CB为单个断路器投资成本,
    Figure PCTCN2020085971-appb-100002
    为支路ij上靠近节点i断路器的安装状态的0-1变量,
    Figure PCTCN2020085971-appb-100003
    表示安装,
    Figure PCTCN2020085971-appb-100004
    表示未安装;
    Figure PCTCN2020085971-appb-100005
    为支路ij上靠近节点j断路器的安装状态的0-1变量,
    Figure PCTCN2020085971-appb-100006
    表示安装,
    Figure PCTCN2020085971-appb-100007
    表示未安装;c SW为单个刀闸投资成本,
    Figure PCTCN2020085971-appb-100008
    为支路ij上靠近节点i刀闸的安装状态的0-1变量,
    Figure PCTCN2020085971-appb-100009
    表示安装,
    Figure PCTCN2020085971-appb-100010
    表示未安装;
    Figure PCTCN2020085971-appb-100011
    为支路ij上靠近节点j刀闸的安装状态的0-1变量,
    Figure PCTCN2020085971-appb-100012
    表示安装,
    Figure PCTCN2020085971-appb-100013
    表示未安装;c FTU为单个馈线终端控制单元投资成本,
    Figure PCTCN2020085971-appb-100014
    为支路ij上靠近节点i馈线终端控制单元的安装状态的0-1变量,
    Figure PCTCN2020085971-appb-100015
    表示安装,
    Figure PCTCN2020085971-appb-100016
    表示未安装;
    Figure PCTCN2020085971-appb-100017
    为支路ij上靠近节点j馈线终端控制单元的安装状态的0-1变量,
    Figure PCTCN2020085971-appb-100018
    表示安装,
    Figure PCTCN2020085971-appb-100019
    表示未安装;c CCS为控制中心投资成本,x CCS为控制中心的建设状态的0-1变量,x CCS=1表示建设,x CCS=0表示未建设;
    2-2)确定模型的约束条件,具体如下:
    2-2-1)配电网功率平衡约束,如式(2)和(3)所示:
    Figure PCTCN2020085971-appb-100020
    Figure PCTCN2020085971-appb-100021
    其中,上标xy表示在支路xy发生故障下的场景;sc∈{A,M}中,sc代表所处阶段,A代表自动动作阶段,M代表人工动作阶段;
    Figure PCTCN2020085971-appb-100022
    表示在支路xy发生故障时节点i的负荷,
    Figure PCTCN2020085971-appb-100023
    表示在支路xy发生故障时支路ij上由节点j流向节点i的功率,Ψ i表示与节点i直接相连的支路集合,Ψ LN表示负荷节点集合,Υ表示所有支路的集合,
    Figure PCTCN2020085971-appb-100024
    代表所有支路故障场景;
    2-2-2)支路功率约束,如式(4)~(6)所示:
    Figure PCTCN2020085971-appb-100025
    Figure PCTCN2020085971-appb-100026
    Figure PCTCN2020085971-appb-100027
    其中,M为正数,
    Figure PCTCN2020085971-appb-100028
    表示在支路xy发生故障时支路ij上靠近节点i开关的状态的0-1变量,
    Figure PCTCN2020085971-appb-100029
    表示开关闭合,
    Figure PCTCN2020085971-appb-100030
    表示开关打开;
    Figure PCTCN2020085971-appb-100031
    表示在支路xy发生故障时支路ij上靠近节点j开关的状态的0-1变量,
    Figure PCTCN2020085971-appb-100032
    表示开关闭合,
    Figure PCTCN2020085971-appb-100033
    表示开关打开;
    Figure PCTCN2020085971-appb-100034
    表示支路ij额定传输容量;
    2-2-3)变压器功率约束,如式(7)~(8)所示:
    Figure PCTCN2020085971-appb-100035
    Figure PCTCN2020085971-appb-100036
    其中,
    Figure PCTCN2020085971-appb-100037
    为在支路xy发生故障时变压器f的功率,
    Figure PCTCN2020085971-appb-100038
    为在支路xy发生故障时连接变压器的支路tr f由变压器节点流向下游节点的功率,Ψ F表示所有变压器节点的集合;
    2-2-4)断路器动作约束,如式(9)~(16)所示:
    Figure PCTCN2020085971-appb-100039
    Figure PCTCN2020085971-appb-100040
    Figure PCTCN2020085971-appb-100041
    Figure PCTCN2020085971-appb-100042
    Figure PCTCN2020085971-appb-100043
    Figure PCTCN2020085971-appb-100044
    Figure PCTCN2020085971-appb-100045
    Figure PCTCN2020085971-appb-100046
    Figure PCTCN2020085971-appb-100047
    其中,
    Figure PCTCN2020085971-appb-100048
    为在支路xy发生故障时在断路器动作阶段支路ij的故障波及标志的0-1变,
    Figure PCTCN2020085971-appb-100049
    表示支路xy发生故障时支路ij受故障波及而处于断电状态,
    Figure PCTCN2020085971-appb-100050
    表示支路xy发生故障时支路ij处于正常运行状态;
    Figure PCTCN2020085971-appb-100051
    为在支路xy发生故障时在断路器动作阶段节点i的故障波及标志的0-1变量,
    Figure PCTCN2020085971-appb-100052
    表示支路xy发生故障时节点i受故障波及而处于断电状态,
    Figure PCTCN2020085971-appb-100053
    表示支路xy发生故障时节点i处于正常运行状态;上标B代表断路器动作阶段; n BR为配电网的支路数;
    Figure PCTCN2020085971-appb-100054
    为在正常运行状态下支路ij上靠近节点i开关的状态的的0-1变量,
    Figure PCTCN2020085971-appb-100055
    表示开关闭合,
    Figure PCTCN2020085971-appb-100056
    表示开关打开;
    Figure PCTCN2020085971-appb-100057
    为在正常运行状态下支路ij上靠近节点j开关的状态的0-1变量,
    Figure PCTCN2020085971-appb-100058
    表示开关闭合,
    Figure PCTCN2020085971-appb-100059
    表示开关打开;上标NO代表正常运行状态;
    Figure PCTCN2020085971-appb-100060
    为在支路xy发生故障时支路ij上靠近节点i断路器的状态的0-1变量,
    Figure PCTCN2020085971-appb-100061
    表示断路器闭合,
    Figure PCTCN2020085971-appb-100062
    表示断路器打开;
    Figure PCTCN2020085971-appb-100063
    为在支路xy发生故障时支路ij上靠近节点j断路器的状态的0-1变量,
    Figure PCTCN2020085971-appb-100064
    表示断路器闭合,
    Figure PCTCN2020085971-appb-100065
    表示断路器打开;
    Figure PCTCN2020085971-appb-100066
    为在支路xy发生故障时节点i的故障影响标志的0-1变量,
    Figure PCTCN2020085971-appb-100067
    表示支路xy发生故障时节点i受故障影响,
    Figure PCTCN2020085971-appb-100068
    表示支路xy发生故障时节点i不受故障影响;
    2-2-5)开关动作约束,如式(17)~(25)所示:
    Figure PCTCN2020085971-appb-100069
    Figure PCTCN2020085971-appb-100070
    Figure PCTCN2020085971-appb-100071
    Figure PCTCN2020085971-appb-100072
    Figure PCTCN2020085971-appb-100073
    Figure PCTCN2020085971-appb-100074
    Figure PCTCN2020085971-appb-100075
    Figure PCTCN2020085971-appb-100076
    Figure PCTCN2020085971-appb-100077
    其中,
    Figure PCTCN2020085971-appb-100078
    其中,
    Figure PCTCN2020085971-appb-100079
    为在支路xy发生故障后在自动动作阶段sc=A或人工动作阶段sc=M支路ij的维修影响标志的0-1变量,
    Figure PCTCN2020085971-appb-100080
    表示支路xy发生故障后支路ij受故障支路维修影响而处于断电状态,
    Figure PCTCN2020085971-appb-100081
    表示支路xy发生故障后支路ij不受故障支路维修影响而处于正常运行状态;
    Figure PCTCN2020085971-appb-100082
    为在支路xy发生故障后在自动动作阶段sc=A或人工动作阶段sc=M节点i的维修影响标志的0-1变量,
    Figure PCTCN2020085971-appb-100083
    表示支路xy发生故障后节点i受故障支路维修影响而处于断电状态,
    Figure PCTCN2020085971-appb-100084
    表示支路xy发生故障后节点i不受故障支路维修影响而处于正常运行状态;
    Figure PCTCN2020085971-appb-100085
    在支路xy发生故障后在自动动作阶段sc=A或人工动作阶段sc=M节点i的供电标志的0-1变量,
    Figure PCTCN2020085971-appb-100086
    表示支路xy发生故障后且开关动作后节点i正常供电,
    Figure PCTCN2020085971-appb-100087
    表示支路xy发生故障后且开关动作后节点i处于断电状态;
    2-2-6)可靠性约束,如式(26)~(36)所示:
    Figure PCTCN2020085971-appb-100088
    Figure PCTCN2020085971-appb-100089
    Figure PCTCN2020085971-appb-100090
    Figure PCTCN2020085971-appb-100091
    Figure PCTCN2020085971-appb-100092
    Figure PCTCN2020085971-appb-100093
    Figure PCTCN2020085971-appb-100094
    Figure PCTCN2020085971-appb-100095
    SAIFI≤ε SAIFI(34);
    SAIDI≤ε SAIDI(35);
    EENS≤ε EENS(36);
    其中,CID i表示i节点的用户中断持续时间,λ xy表示支路xy的年故障率,
    Figure PCTCN2020085971-appb-100096
    表示支路xy的故障自动动作中断时间,
    Figure PCTCN2020085971-appb-100097
    表示支路xy的故障人工动作中断时间,
    Figure PCTCN2020085971-appb-100098
    表示支路xy的故障修复中断时间,CIF i表示i节点的用户中断频率,NC i为给定的i节点的用户数量,SAIFI为系统年平均中断持续时间指数,ASAI为系统平均供电指数,EENS为期望失负荷能量,B为所有负荷水平的集合,Δ h为负荷水平h的年持续小时数,μ h≤1为负荷水平h的峰值负荷比,L i表示i节点的峰值负荷;
    Figure PCTCN2020085971-appb-100099
    为i节电年均停电频率上限,
    Figure PCTCN2020085971-appb-100100
    为i节电年均停电时间上限,ε SAIFI为系统年均停电频率上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足的上限;
    2-2-7)设备投资约束,如式(37)~(51)所示:
    Figure PCTCN2020085971-appb-100101
    Figure PCTCN2020085971-appb-100102
    Figure PCTCN2020085971-appb-100103
    Figure PCTCN2020085971-appb-100104
    Figure PCTCN2020085971-appb-100105
    Figure PCTCN2020085971-appb-100106
    Figure PCTCN2020085971-appb-100107
    Figure PCTCN2020085971-appb-100108
    Figure PCTCN2020085971-appb-100109
    Figure PCTCN2020085971-appb-100110
    Figure PCTCN2020085971-appb-100111
    Figure PCTCN2020085971-appb-100112
    Figure PCTCN2020085971-appb-100113
    Figure PCTCN2020085971-appb-100114
    Figure PCTCN2020085971-appb-100115
    3)对步骤2)建立的模型求解,得到
    Figure PCTCN2020085971-appb-100116
    的最优解为断路器的规划安装状态的优化结果,
    Figure PCTCN2020085971-appb-100117
    的最优解为刀闸的规划安装状态的优化结果,
    Figure PCTCN2020085971-appb-100118
    的最优解为馈线终端控制单元的规划安装状态的优化结果,x CCS的最优解为控制中心的规划安装状态的优化结果,得到CID i、CIF i、SAIDI、SAIFI、ASAI、EENS的最优解为规划方案的可靠性指标的优化结果。
PCT/CN2020/085971 2020-04-09 2020-04-21 基于可靠性约束的配电网自动化系统综合规划方法 WO2021203480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/724,473 US20220244692A1 (en) 2020-04-09 2022-04-19 Planning method for power distribution automation system considering reliability constraints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010272358.5A CN111555266B (zh) 2020-04-09 2020-04-09 一种基于可靠性约束的配电网自动化系统综合规划方法
CN202010272358.5 2020-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/724,473 Continuation US20220244692A1 (en) 2020-04-09 2022-04-19 Planning method for power distribution automation system considering reliability constraints

Publications (1)

Publication Number Publication Date
WO2021203480A1 true WO2021203480A1 (zh) 2021-10-14

Family

ID=72002371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085971 WO2021203480A1 (zh) 2020-04-09 2020-04-21 基于可靠性约束的配电网自动化系统综合规划方法

Country Status (3)

Country Link
US (1) US20220244692A1 (zh)
CN (1) CN111555266B (zh)
WO (1) WO2021203480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114218727A (zh) * 2021-12-15 2022-03-22 国家电网有限公司 一种配电网网架规划与多模块智能终端配置联合优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274956A (ja) * 2003-03-12 2004-09-30 Hitachi Ltd 発電計画・電力売買計画作成方法,装置及びプログラム
CN106815657A (zh) * 2017-01-05 2017-06-09 国网福建省电力有限公司 一种考虑时序性和可靠性的配电网双层规划方法
CN110210659A (zh) * 2019-05-24 2019-09-06 清华大学 一种考虑可靠性约束的配电网规划方法
CN110210095A (zh) * 2019-05-24 2019-09-06 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687451A (zh) * 2019-01-22 2019-04-26 华北电力大学 一种复杂配电网中自动化设备的最优配置模型

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274956A (ja) * 2003-03-12 2004-09-30 Hitachi Ltd 発電計画・電力売買計画作成方法,装置及びプログラム
CN106815657A (zh) * 2017-01-05 2017-06-09 国网福建省电力有限公司 一种考虑时序性和可靠性的配电网双层规划方法
CN110210659A (zh) * 2019-05-24 2019-09-06 清华大学 一种考虑可靠性约束的配电网规划方法
CN110210095A (zh) * 2019-05-24 2019-09-06 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114218727A (zh) * 2021-12-15 2022-03-22 国家电网有限公司 一种配电网网架规划与多模块智能终端配置联合优化方法

Also Published As

Publication number Publication date
CN111555266B (zh) 2021-08-17
US20220244692A1 (en) 2022-08-04
CN111555266A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN102496937B (zh) 一种适用于智能配电网的基于负荷均衡故障恢复方法
WO2021203481A1 (zh) 一种基于馈线走廊的可靠性约束配电网规划方法
WO2021203502A1 (zh) 一种基于可靠性约束的馈线自动化设备最优改造方法
WO2020237839A1 (zh) 一种考虑可靠性约束的配电网规划方法
CN109449945B (zh) 基于DG调节的10kV合环电流约束的配电网转供优化方法
CN112260282B (zh) 一种考虑合环电流约束的主动配电网转供优化方法
CN110929212B (zh) 大电网薄弱热稳定断面搜索及限额制定的在线计算方法
WO2020237847A1 (zh) 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN109787224A (zh) 一种防止连锁过载的地区电网负荷转供策略生成方法
WO2021189754A1 (zh) 一种双联接变压器海上风电直流送出系统及控制方法
CN103199512B (zh) 配电网单相接地故障网络重构方法
CN109066654B (zh) 基于混合整数线性规划的配电网最大供电能力评估方法
CN113852084B (zh) 考虑智能软开关优化配置的配电网多阶段韧性提升方法
WO2021203480A1 (zh) 基于可靠性约束的配电网自动化系统综合规划方法
CN116169673A (zh) 配电网的弹性评估方法、系统、电子设备及可读存储介质
CN116128110A (zh) 一种电热综合能源系统的多阶段韧性提升方法及终端
CN113270871B (zh) 基于配电网n-1安全评估的柔性互联装置容量配置优化方法
CN111404161B (zh) 智慧用电管理及台区间互济转供系统及方法
CN111200286B (zh) 一种用于配电网自愈的智能供电恢复方法
Shen et al. Comprehensive coordinated model of active distribution network planning
CN112217201A (zh) 一种高低压双电源双环网供电系统及备自投控制方法
CN113872184B (zh) 解决故障后输电线路过流问题的电网运行优化方法和系统
Lei et al. Rooted tree based searching strategies for intentional islanding of distributed generation
CN117458411B (zh) 一种电力系统下的配电网保护自适应系统
Penghou Design and implementation of feeder automation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929696

Country of ref document: EP

Kind code of ref document: A1