WO2021203502A1 - 一种基于可靠性约束的馈线自动化设备最优改造方法 - Google Patents

一种基于可靠性约束的馈线自动化设备最优改造方法 Download PDF

Info

Publication number
WO2021203502A1
WO2021203502A1 PCT/CN2020/088979 CN2020088979W WO2021203502A1 WO 2021203502 A1 WO2021203502 A1 WO 2021203502A1 CN 2020088979 W CN2020088979 W CN 2020088979W WO 2021203502 A1 WO2021203502 A1 WO 2021203502A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
automatic
switch
circuit breaker
fault
Prior art date
Application number
PCT/CN2020/088979
Other languages
English (en)
French (fr)
Inventor
吴文传
张伯明
栗子豪
孙宏斌
王彬
郭庆来
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021203502A1 publication Critical patent/WO2021203502A1/zh
Priority to US17/555,498 priority Critical patent/US20220114507A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • This application belongs to the technical field of power system planning and evaluation, and in particular relates to a method for optimal transformation of feeder automation equipment based on reliability constraints.
  • reliability refers to the ability of the power system to continuously meet the quantity and quality of end users' power needs.
  • the reliability of the distribution network mainly includes the following indicators: customer interruption frequency (CIF), customer interruption duration (CID), system average interruption frequency index( SAIFI), system average interruption duration index (SAIDI) and expected energy not supplied (EENS)).
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • this application proposes an optimal reformation method for feeder automation equipment based on reliability constraints.
  • This application realizes that by constructing a distribution network reliability evaluation optimization model based on reliability constraints, instead of tentative search, the optimal distribution network automation equipment transformation plan is obtained directly by solving the model, and the reduction is reduced on the premise of satisfying the reliability constraints. Transformation costs.
  • This application proposes a method for optimal transformation of feeder automation equipment based on reliability constraints, which is characterized in that it includes the following steps:
  • a circuit breaker is installed at the head end of each feeder, and each feeder is divided into feeder segments by a sectional switch. There is at most one tie switch for each feeder. Automatically actuated circuit breakers and switches sense the current and voltage of the interfaces at both ends and then do The non-automatic circuit breaker and switch are operated manually;
  • the first automatic action switch downstream of the circuit breaker senses the normal voltage on one side and then closes; if the reclosing triggers the circuit breaker to trip again, go to step 1-7) ;
  • the other automatic action switches After the first automatic action switch downstream of the circuit breaker is closed, the other automatic action switches in turn sense the normal voltage on one side and then close until the just closed automatic action switch closes and triggers a secondary fault trip, then the just closed The upstream circuit breaker of the automatic action switch is tripped, and the automatic action switches on this feeder are all opened again, and the just-closed automatic action switch is opened and locked to the open state;
  • the first auto-action switch upstream of the auto-action tie switch senses the unilateral normal voltage and then closes; if closing the auto-action tie switch triggers the trip, then Go to step 1-11);
  • c Total is to minimize the comprehensive investment cost of the distribution network
  • is a collection of all equipment, including circuit breakers and switches; Is the automatic state 0-1 variable after the equipment ij is transformed, Is an automatic device, Non-automatic equipment; Is the automatic state 0-1 variable before equipment ij transformation, Is an automatic device, Non-automatic equipment;
  • CID i is the average annual power outage time of branch i
  • NC i is the number of users of branch i
  • SAIDI is the average annual power outage time of the system
  • ⁇ f is the set of all branches on the feeder f
  • ⁇ s is the branch
  • the annual failure rate of road s Is the outage time of branch i in the failure scenario of branch s
  • EENS is the expected load loss energy
  • H is the set of all load levels
  • ⁇ h is the annual duration of load level h
  • ⁇ h ⁇ 1 is load level h
  • the peak load ratio of, Li represents the peak load of node i
  • is the set of all nodes in the distribution network
  • ⁇ SAIDI is the upper limit of the average annual power outage time of the system
  • ⁇ EENS is the upper limit of the system's expected energy unsatisfied
  • branch i is the upstream branch of branch j in the direction of the root node
  • branch i is the upstream branch of branch j in the direction of the root node
  • branch i is the upstream branch of branch j in the direction of the tie switch
  • branch i is the upstream branch of branch j in the direction of the tie switch
  • ⁇ SW is the set of switches
  • ⁇ CB is the set of circuit breakers
  • is the set of all devices
  • step 2) Solve the model established in step 2) to obtain The optimal solution of is the optimization result of the automatic transformation state of the circuit breaker and switch, and the optimal solution of CID i , SAIDI and EENS is the optimization result of the reliability index of the corresponding transformation scheme.
  • This application takes the distribution network reconstruction cost as the objective function, and models the entire distribution network circuit breaker and switch automation reconstruction problem as a mixed integer linear programming model; by solving this model, the reconstruction meeting the reliability constraints can be directly obtained result.
  • the method also considers circuit breaker tripping, automatic and manual fault isolation, and restoration of power supply to affected loads based on network reconstruction.
  • This application is simple and efficient, and the results obtained can effectively reduce the cost of transformation of the distribution network, and guide the staff of the distribution network to accurately and efficiently upgrade and transform the feeder automation of the distribution network.
  • This application proposes a method for optimal transformation of feeder automation equipment based on reliability constraints, including the following steps:
  • a circuit breaker is installed at the head end of each feeder (which can interrupt the fault current), and each feeder is divided into multiple feeder sections (branches) by a section switch (non-breakable fault current), and there may be a feeder and a feeder.
  • Tie switch each feeder has at most one tie switch.
  • Automatically actuated circuit breakers and switches can sense the current and voltage at the two ends of the interface and then respond to actions, while non-automatically actuated breakers and switches require manual operation;
  • the automatic or manual circuit breaker at the head end of the feeder where the branch is located opens and interrupts the fault current.
  • the downstream node of the circuit breaker is powered off, and the feeder where the branch is located Turn on all the automatic action switches above; enter the automatic action stage upstream of the fault; if the circuit breaker is an automatically operated circuit breaker, go to step 1-3); if the circuit breaker is a manually operated circuit breaker, go to step 1-7 );
  • is a collection of all equipment (including circuit breakers and switches), Automatic state 0-1 variable after modification of equipment ij ( Is an automatic device, Is a non-automatic device), Is the automatic state 0-1 variable before equipment ij transformation ( Is an automatic device, It is a non-automatic device).
  • CID i is the average annual power outage time of branch i
  • NC i is the number of users of branch i
  • SAIDI is the average annual power outage time of the system
  • ⁇ f is the set of all branches on the feeder f.
  • ⁇ s is the annual failure rate of branch s
  • Is the power outage time of branch i in the failure scenario of branch s.
  • EENS is the expected loss of load energy
  • H is the set of all load levels
  • ⁇ h is the annual duration of load level h
  • ⁇ h ⁇ 1 is the peak load ratio of load level h
  • Li represents the peak load of node i
  • ⁇ It is a collection of all nodes in the distribution network.
  • ⁇ SAIDI is the upper limit of the average annual power outage time of the system
  • ⁇ EENS is the upper limit of the system's unsatisfied expected energy.
  • branch i is the upstream branch of branch j in the direction of the root node
  • branch i is the upstream branch of branch j in the direction of the root node
  • branch i is the upstream branch of branch j in the direction of the tie switch
  • branch i is the upstream branch of branch j in the direction of the tie switch
  • M is a large positive number (the value range is 10000-10000000, here is set to 1000000),
  • the 0-1 variable Means located at, Means not located), 0-1 variable ( Means located at, Means not located).
  • the 0-1 variable Is closed, For opening
  • ⁇ SW is a collection of switches
  • ⁇ CB is a collection of circuit breakers
  • is a collection of all devices.
  • step 2 the model established in step 2) is solved by branch and bound and linear programming methods, and we get The optimal solution of is the optimization result of the automatic transformation state of the circuit breaker and switch, and the optimal solution of CID i , SAIDI and EENS is the optimization result of the reliability index of the corresponding transformation scheme. Based on the above optimal solution, the automation equipment of the distribution network can be transformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Power Engineering (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于可靠性约束的馈线自动化设备最优改造方法,属于电力系统规划技术领域。该方法将配电网中非自动动作的断路器和开关(包括分段和联络开关)部分或全部改造为本地自动动作的断路器和开关,建立有目标函数和约束条件构成的基于混合整数线性规划的配电网可靠性评估优化模型,对模型求解从而得出满足系统可靠性要求的断路器及开关改造方案。在可靠性约束中,该方法同时考虑了故障后断路器跳闸、故障自动及人工隔离和基于网络重构的受影响负荷供电恢复。该方法简单高效,所得结果可以有效降低配电网改造成本,指导配电网工作人员精确、高效地对配电网进行馈线自动化升级、改造。

Description

一种基于可靠性约束的馈线自动化设备最优改造方法
相关申请的交叉引用
本申请要求清华大学于2020年04月09日提交中国专利局、申请号为202010272353.2、申请名称为“一种基于可靠性约束的馈线自动化设备最优改造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电力系统规划与评估技术领域,特别涉及一种基于可靠性约束的馈线自动化设备最优改造方法。
背景技术
随着电力用户对供电可靠性要求的提升,馈线自动化系统广泛应用于城区配电网中。为了提升配电网的可靠性和灵活性,需要对传统的配电网进行自动化改造,即将原仅能人工操作的断路器和开关设备升级为可自动动作的断路器和开关设备,如果全面升级改造则投资巨大。
在电力领域,可靠性是指电力系统持续满足终端用户电力需求数量和质量的能力。配电网可靠性主要包括以下几个指标:用户中断频率(customer interruption frequency(CIF))、用户中断持续时间(customer interruption duration(CID))、系统年平均中断频率指数(system average interruption frequency index(SAIFI))、系统年平均中断持续时间指数(system average interruption duration index(SAIDI))和期望失负荷能量(expected energy not supplied(EENS))。
在目前应用的针对配电网断路器和开关的改造方法中,需要采用启发式优化算法,如蚁群算法、遗传算法、模拟退火算法等。这种方法耗时较长,需要较大的存储空间,每次计算得到的解不稳定,且不能保证搜索结果的最优性,因此无法得到配电网自动化设备(断路器和开关)理想的改造结果。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种基于可靠性约束的馈线自动化设备最优改造方法。本申请实现通过构建基于可靠性约束的配电网可靠性评估优化模型,不通过试探搜索,而直接通过求解该 模型得到最优配电网自动化设备改造方案,在满足可靠性约束的前提下降低改造成本。
本申请提出一种基于可靠性约束的馈线自动化设备最优改造方法,其特征在于,包括以下步骤:
1)定义器件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,如下所示:
1-1)每条馈线首端安装断路器,每条馈线被分段开关分成馈线段,每条馈线最多存在一个联络开关,自动动作的断路器和开关感知两端接口的电流、电压进而做出动作响应,非自动动作的断路器和开关由人工操作;
1-2)在支路故障发生后,首先该支路所在馈线首端的自动动作或人工动作的断路器动作打开,开断故障电流,断路器下游节点断电,该支路所在馈线上所有自动动作开关打开;如果该断路器是自动动作的断路器,则进入步骤1-3);如果该断路器是人工动作的断路器,则进入步骤1-7);
1-3)在故障上游自动动作阶段,自动动作的断路器重合闸;
1-4)如果重合闸未触发断路器再次跳闸,该断路器下游第一个自动动作开关感应到单侧正常电压后闭合;如果重合闸触发断路器再次跳闸,则转到步骤1-7);
1-5)从断路器下游第一个自动动作开关闭合后,其它自动动作开关依次感应到单侧正常电压后闭合,直至刚闭合的自动动作开关闭合后引发二次故障跳闸,则该刚闭合的自动动作开关的上游断路器跳闸,本条馈线上自动动作开关再次全部打开,该刚闭合的自动动作开关打开并锁定为打开状态;
1-6)自动动作的断路器再次重合闸,重复步骤1-4)至1-5),直至故障上游非锁定状态的开关全部重新闭合,进入故障下游自动动作阶段;
1-7)在故障下游自动动作阶段,如果故障下游存在自动动作的联络开关,则在故障发生后的设定延迟时间后闭合该自动动作的联络开关;
1-8)如果闭合自动动作的联络开关未触发联络开关跳闸,该自动动作的联络开关上游第一个自动动作开关感应到单侧正常电压后闭合;如果闭合自动动作的联络开关触发跳闸,则转到步骤1-11);
1-9)从自动动作的联络开关上游第一个自动动作开关闭合后,其它自动动作开关依次感应到单侧正常电压后闭合,直至刚闭合的自动动作开关闭合后引发自动动作的联络开关跳闸,本条馈线上故障下游的自动动作开关再次全部打开,该刚闭合的自动动作开关打开并锁定为打开状态;
1-10)再次闭合自动动作的联络开关,重复步骤1-8)至1-9),直至故障下游非锁定状态的自动动作开关全部重新闭合,进入故障后人工操作阶段;
1-11)在故障后人工操作阶,人工操作断路器和开关,隔离故障并恢复受影响负荷故障;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构;
2)构建基于混合整数线性规划的配电网可靠性评估优化模型,该模型由目标函数和约束条件构成;具体步骤如下:
2-1)确定模型的目标函数,如式(41)所示:
Figure PCTCN2020088979-appb-000001
其中,c Total为最小化配电网综合投资成本,
Figure PCTCN2020088979-appb-000002
为设备ij升级改造成本,Ω为所有设备构成的集合,所述设备包括断路器和开关;
Figure PCTCN2020088979-appb-000003
为设备ij改造后的自动状态0-1变量,
Figure PCTCN2020088979-appb-000004
为自动设备,
Figure PCTCN2020088979-appb-000005
为非自动设备;
Figure PCTCN2020088979-appb-000006
为设备ij改造前的自动状态0-1变量,
Figure PCTCN2020088979-appb-000007
为自动设备,
Figure PCTCN2020088979-appb-000008
为非自动设备;
2-2)确定模型的约束条件,具体如下:
2-2-1)可靠性约束,如式(42)-(7)所示:
Figure PCTCN2020088979-appb-000009
Figure PCTCN2020088979-appb-000010
Figure PCTCN2020088979-appb-000011
Figure PCTCN2020088979-appb-000012
SAIDI≤ε SAIDI          (6)
EENS≤ε EENS         (7)
其中,CID i为支路i的年均停电时间,NC i为支路i的用户数,SAIDI为系统的年均停电时间,Υ f为馈线f上所有支路构成的集合;λ s为支路s的年故障率,
Figure PCTCN2020088979-appb-000013
为支路i在支路s故障场景时的停电时间;EENS为期望失负荷能量,H为所有负荷水平的集合,Δ h为负荷水平h的年持续小时数,μ h≤1为负荷水平h的峰值负荷比,L i表示i节点的峰值负荷,Ψ为配电网中所有节点构成的集合;
Figure PCTCN2020088979-appb-000014
为i支路年均停电时间上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足的上限;
2-2-2)停电时间约束,如式(48)-(52)所示:
Figure PCTCN2020088979-appb-000015
Figure PCTCN2020088979-appb-000016
如果支路i是支路j位于根节点方向的上游支路,
Figure PCTCN2020088979-appb-000017
Figure PCTCN2020088979-appb-000018
如果支路i是支路j位于根节点方向的上游支路,
Figure PCTCN2020088979-appb-000019
Figure PCTCN2020088979-appb-000020
如果支路i是支路j位于联络开关方向的上游支路,
Figure PCTCN2020088979-appb-000021
Figure PCTCN2020088979-appb-000022
如果支路i是支路j位于联络开关方向的上游支路,
Figure PCTCN2020088979-appb-000023
Figure PCTCN2020088979-appb-000024
Figure PCTCN2020088979-appb-000025
Figure PCTCN2020088979-appb-000026
Figure PCTCN2020088979-appb-000027
Figure PCTCN2020088979-appb-000028
其中,
Figure PCTCN2020088979-appb-000029
表示设备ij在支路s故障情况下自动动作后的状态的0-1变量,
Figure PCTCN2020088979-appb-000030
为闭合,
Figure PCTCN2020088979-appb-000031
为打开;
Figure PCTCN2020088979-appb-000032
为在s支路故障情况i支路的有功负荷,
Figure PCTCN2020088979-appb-000033
为在s支路故障情况支路j通过设备ij流向支路i的有功功率,
Figure PCTCN2020088979-appb-000034
为设备ij通过的最大有功功率;
2-2-4)设备状态约束,如式(58)-(60)所示:
Figure PCTCN2020088979-appb-000035
Figure PCTCN2020088979-appb-000036
Figure PCTCN2020088979-appb-000037
其中,Ω SW为开关的集合,Ω CB为断路器的集合,Ω为所有设备的集合;
3)对步骤2)建立的模型求解,得到
Figure PCTCN2020088979-appb-000038
的最优解即为断路器和开关的自动化改造状态的优化结果,CID i、SAIDI、EENS的最优解为对应改造方案的可靠性指标优化结果。
本申请的特点及有益效果在于:
本申请将配电网改造成本作为目标函数,并将整个配电网断路器和开关的自动化改造问题建模为一混合整数线性规划模型;通过求解该模型,可直接得到满足可靠性约束的改造结果。在计算可靠性指标时,该方法同时考虑了断路器跳闸、故障自动及人工隔离和基于网络重构的受影响负荷供电恢复。本申请简单高效,所得结果可以有效降低配电网改造成本,指 导配电网工作人员精确、高效地对配电网进行馈线自动化升级、改造。
具体实施方式
下面针对本申请实施例的一种基于可靠性约束的馈线自动化设备最优改造方法,进行详细说明。
本申请提出一种基于可靠性约束的馈线自动化设备最优改造方法,包括以下步骤:
1)定义器件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,如下所示:
1-1)每条馈线首端安装断路器(可开断故障电流),每条馈线被分段开关(不可开断故障电流)分成多个馈线段(支路),馈线和馈线间可能存在联络开关(每条馈线最多存在一个联络开关),自动动作的断路器和开关可以感知两端接口的电流、电压进而做出动作响应,而非自动动作的断路器和开关需要进行人工操作;
1-2)在支路故障发生后,首先该支路所在馈线首端的自动动作或人工动作的断路器先动作打开、开断故障电流,此时断路器下游节点断电,该支路所在馈线上所有自动动作开关打开;进入故障上游自动动作阶段;如果该断路器是自动动作的断路器,则进入步骤1-3);如果该断路器是人工动作的断路器,则进入步骤1-7);
1-3)在故障上游自动动作阶段,自动动作的断路器重合闸;
1-4)如果重合闸未触发断路器再次跳闸,短暂间隔时间后(通常为3-5秒,该断路器下游第一个自动动作开关感应到单侧正常电压后闭合;如果重合闸触发断路器再次跳闸,则转到步骤1-7);
1-5)从断路器下游第一个自动动作开关闭合后,每间隔一段时间(通常为3-5秒),其它自动动作开关依次感应到单侧正常电压后闭合,直至刚闭合的自动动作开关闭合后引发二次故障跳闸,则该刚闭合的自动动作开关的上游断路器跳闸,本条馈线上自动动作开关再次全部打开,此时该引发二次故障跳闸的刚闭合的自动动作开关打开并锁定为打开状态;
1-6)自动动作的断路器再次重合闸,重复步骤1-4)至1-5),直至故障上游非锁定状态的开关全部重新闭合;进入故障下游自动动作阶段;
1-7)在故障下游自动动作阶段,如果故障下游存在自动动作的联络开关,则在故障发生后的一定延迟时间后(通常为30秒)闭合该自动动作的联络开关;
1-8)如果闭合自动动作的联络开关未触发联络开关跳闸,短暂间隔时间后(通常为3-5秒),该自动动作的联络开关上游第一个自动动作开关感应到单侧正常电压后闭合;如果闭合自动动作的联络开关触发跳闸,则转到步骤1-11);
1-9)从自动动作的联络开关上游第一个自动动作开关闭合后,每间隔一段时间(通常 为3-5秒),其它自动动作开关依次感应到单侧正常电压后闭合,直至刚闭合的自动动作开关闭合后引发自动动作的联络开关跳闸,本条馈线上故障下游的自动动作开关再次全部打开,此时该引发自动动作的联络开关跳闸的刚闭合的自动动作开关打开并锁定为打开状态;
1-10)再次闭合自动动作的联络开关,重复步骤1-8)至1-9),直至故障下游非锁定状态的自动动作开关全部重新闭合;进入故障后人工操作阶段;
1-11)在故障后人工操作阶段(通常在故障发生后30分钟至2小时后),通过人工操作断路器和开关,进行故障进一步地隔离和受影响负荷故障恢复操作;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构。
2)构建基于混合整数线性规划的配电网可靠性评估优化模型,该模型由目标函数和约束条件构成;具体步骤如下:
2-1)确定模型的目标函数;
该模型的目标函数为最小化配电网综合投资成本c Total,如式(41)所示:
Figure PCTCN2020088979-appb-000039
其中
Figure PCTCN2020088979-appb-000040
为设备ij升级改造成本,Ω为所有设备(包括断路器和开关)构成的集合,
Figure PCTCN2020088979-appb-000041
为设备ij改造后的自动状态0-1变量(
Figure PCTCN2020088979-appb-000042
为自动设备,
Figure PCTCN2020088979-appb-000043
为非自动设备),
Figure PCTCN2020088979-appb-000044
为设备ij改造前的自动状态0-1变量(
Figure PCTCN2020088979-appb-000045
为自动设备,
Figure PCTCN2020088979-appb-000046
为非自动设备)。
2-2)确定模型的约束条件,具体如下:
2-2-1)可靠性约束,如式(42)-(7)所示:
Figure PCTCN2020088979-appb-000047
Figure PCTCN2020088979-appb-000048
Figure PCTCN2020088979-appb-000049
Figure PCTCN2020088979-appb-000050
SAIDI≤ε SAIDI         (26)
EENS≤ε EENS        (27)
其中,CID i为支路i的年均停电时间,NC i为支路i的用户数,SAIDI为系统的年均停电时间,Υ f为馈线f上所有支路构成的集合。λ s为支路s的年故障率,
Figure PCTCN2020088979-appb-000051
为支路i在支路s故障场景时的停电时间。EENS为期望失负荷能量,H为所有负荷水平的集合,Δ h为负荷水平h的年持续小时数,μ h≤1为负荷水平h的峰值负荷比,L i表示i节点的峰值负荷,Ψ为配电网中所有节点构成的集合。
Figure PCTCN2020088979-appb-000052
为i支路年均停电时间上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足的上限。
2-2-2)停电时间约束,如式(48)-(52)所示:
Figure PCTCN2020088979-appb-000053
Figure PCTCN2020088979-appb-000054
如果支路i是支路j位于根节点方向的上游支路,
Figure PCTCN2020088979-appb-000055
Figure PCTCN2020088979-appb-000056
如果支路i是支路j位于根节点方向的上游支路,
Figure PCTCN2020088979-appb-000057
Figure PCTCN2020088979-appb-000058
如果支路i是支路j位于联络开关方向的上游支路,
Figure PCTCN2020088979-appb-000059
Figure PCTCN2020088979-appb-000060
如果支路i是支路j位于联络开关方向的上游支路,
Figure PCTCN2020088979-appb-000061
其中,M是一个大的正数(取值范围是10000-10000000,这里设定为1000000),
Figure PCTCN2020088979-appb-000062
代表在支路s发生故障时支路i在断路器和开关自动动作之后是否恢复供电的0-1变量(
Figure PCTCN2020088979-appb-000063
恢复供电,
Figure PCTCN2020088979-appb-000064
未恢复供电)。
Figure PCTCN2020088979-appb-000065
表示支路j是否位于支路s到根节点(变压器节点)的通路上的0-1变量(
Figure PCTCN2020088979-appb-000066
表示位于,
Figure PCTCN2020088979-appb-000067
表示不位于),
Figure PCTCN2020088979-appb-000068
表示支路j是否位于支路s到联络开关的通路上的0-1变量(
Figure PCTCN2020088979-appb-000069
表示位于,
Figure PCTCN2020088979-appb-000070
表示不位于)。
Figure PCTCN2020088979-appb-000071
表示支路j根节点方向上游的第一个设备的首次自动重合时间变量,
Figure PCTCN2020088979-appb-000072
表示支路j根节点方向上游的第一个设备的首次自动重合时间设定值(通常为3-5秒),
Figure PCTCN2020088979-appb-000073
表示支路j根节点方向上游的第一个设备的二次自动重合时间变量,
Figure PCTCN2020088979-appb-000074
表示支路j根节点方向上游的第一个设备的二次自动重合时间设定值(通常为3-5秒),
Figure PCTCN2020088979-appb-000075
表示支路j联络开关方向上游的第一个设备的首次自动重合时间变量,
Figure PCTCN2020088979-appb-000076
表示支路j联络开关方向上游的第一个设备的首次自动重合时间设定值(通常为3-5秒),
Figure PCTCN2020088979-appb-000077
表示支路j联络开关方向上游的第一个设备的二次自动重合时间变量,
Figure PCTCN2020088979-appb-000078
表示支路j联络开关方向上游的第一个设备的二次自动重合时间设定值(通常为3-5秒)。
Figure PCTCN2020088979-appb-000079
为支路s故障情况下断路器和开关的人工操作时间,
Figure PCTCN2020088979-appb-000080
为s支路故障情况下的故障修复时间。
2-2-3)故障后网络重构约束,如式(53)-(57)所示:
Figure PCTCN2020088979-appb-000081
Figure PCTCN2020088979-appb-000082
Figure PCTCN2020088979-appb-000083
Figure PCTCN2020088979-appb-000084
Figure PCTCN2020088979-appb-000085
其中,
Figure PCTCN2020088979-appb-000086
表示设备ij在支路s故障情况下自动动作后的状态的0-1变量(
Figure PCTCN2020088979-appb-000087
为闭合,
Figure PCTCN2020088979-appb-000088
为打开),
Figure PCTCN2020088979-appb-000089
为在s支路故障情况i支路的有功负荷,
Figure PCTCN2020088979-appb-000090
为在s支路故障情况支路j通过设备ij流向支路i的有功功率
Figure PCTCN2020088979-appb-000091
为设备ij能通过的最大有功功率。
2-2-4)设备状态约束,如式(58)-(60)所示:
Figure PCTCN2020088979-appb-000092
Figure PCTCN2020088979-appb-000093
Figure PCTCN2020088979-appb-000094
其中,Ω SW为开关的集合,Ω CB为断路器的集合,Ω为所有设备的集合。
3)根据目标函数(21)和约束条件(22)-(40),通过分支定界和线性规划方法对步骤2)建立的模型求解,得到
Figure PCTCN2020088979-appb-000095
的最优解即为断路器和开关的自动化改造状态的优化结果,CID i、SAIDI、EENS的最优解为对应改造方案的可靠性指标优化结果。基于上述最优解即可对配电网的自动化设备进行改造。

Claims (1)

  1. 一种基于可靠性约束的馈线自动化设备最优改造方法,其特征在于,包括以下步骤:
    1)定义器件安装状态和支路故障后故障隔离、负荷转供和故障恢复动作原则,如下所示:
    1-1)每条馈线首端安装断路器,每条馈线被分段开关分成馈线段,每条馈线最多存在一个联络开关,自动动作的断路器和开关感知两端接口的电流、电压进而做出动作响应,非自动动作的断路器和开关由人工操作;
    1-2)在支路故障发生后,首先该支路所在馈线首端的自动动作或人工动作的断路器动作打开,开断故障电流,断路器下游节点断电,该支路所在馈线上所有自动动作开关打开;如果该断路器是自动动作的断路器,则进入步骤1-3);如果该断路器是人工动作的断路器,则进入步骤1-7);
    1-3)在故障上游自动动作阶段,自动动作的断路器重合闸;
    1-4)如果重合闸未触发断路器再次跳闸,该断路器下游第一个自动动作开关感应到单侧正常电压后闭合;如果重合闸触发断路器再次跳闸,则转到步骤1-7);
    1-5)从断路器下游第一个自动动作开关闭合后,其它自动动作开关依次感应到单侧正常电压后闭合,直至刚闭合的自动动作开关闭合后引发二次故障跳闸,则该刚闭合的自动动作开关的上游断路器跳闸,本条馈线上自动动作开关再次全部打开,该刚闭合的自动动作开关打开并锁定为打开状态;
    1-6)自动动作的断路器再次重合闸,重复步骤1-4)至1-5),直至故障上游非锁定状态的开关全部重新闭合,进入故障下游自动动作阶段;
    1-7)在故障下游自动动作阶段,如果故障下游存在自动动作的联络开关,则在故障发生后的设定延迟时间后闭合该自动动作的联络开关;
    1-8)如果闭合自动动作的联络开关未触发联络开关跳闸,该自动动作的联络开关上游第一个自动动作开关感应到单侧正常电压后闭合;如果闭合自动动作的联络开关触发跳闸,则转到步骤1-11);
    1-9)从自动动作的联络开关上游第一个自动动作开关闭合后,其它自动动作开关依次感应到单侧正常电压后闭合,直至刚闭合的自动动作开关闭合后引发自动动作的联络开关跳闸,本条馈线上故障下游的自动动作开关再次全部打开,该刚闭合的自动动作开关打开并锁定为打开状态;
    1-10)再次闭合自动动作的联络开关,重复步骤1-8)至1-9),直至故障下游非锁定状态的自动动作开关全部重新闭合,进入故障后人工操作阶段;
    1-11)在故障后人工操作阶,人工操作断路器和开关,隔离故障并恢复受影响负荷故障;最后,修复故障支路,修复后通过动作开关和断路器恢复原供电网络结构;
    2)构建基于混合整数线性规划的配电网可靠性评估优化模型,该模型由目标函数和约束条件构成;具体步骤如下:
    2-1)确定模型的目标函数,如式(21)所示:
    Figure PCTCN2020088979-appb-100001
    其中,c Total为最小化配电网综合投资成本,
    Figure PCTCN2020088979-appb-100002
    为设备ij升级改造成本,Ω为所有设备构成的集合,所述设备包括断路器和开关;
    Figure PCTCN2020088979-appb-100003
    为设备ij改造后的自动状态0-1变量,
    Figure PCTCN2020088979-appb-100004
    为自动设备,
    Figure PCTCN2020088979-appb-100005
    为非自动设备;
    Figure PCTCN2020088979-appb-100006
    为设备ij改造前的自动状态0-1变量,
    Figure PCTCN2020088979-appb-100007
    为自动设备,
    Figure PCTCN2020088979-appb-100008
    为非自动设备;
    2-2)确定模型的约束条件,具体如下:
    2-2-1)可靠性约束,如式(22)-(7)所示:
    Figure PCTCN2020088979-appb-100009
    Figure PCTCN2020088979-appb-100010
    Figure PCTCN2020088979-appb-100011
    Figure PCTCN2020088979-appb-100012
    SAIDI≤ε SAIDI    (46)
    EENS≤ε EENS    (47)
    其中,CID i为支路i的年均停电时间,NC i为支路i的用户数,SAIDI为系统的年均停电时间,Υ f为馈线f上所有支路构成的集合;λ s为支路s的年故障率,
    Figure PCTCN2020088979-appb-100013
    为支路i在支路s故障场景时的停电时间;EENS为期望失负荷能量,H为所有负荷水平的集合,Δ h为负荷水平h的年持续小时数,μ h≤1为负荷水平h的峰值负荷比,L i表示i节点的峰值负荷,Ψ为配电网中所有节点构成的集合;
    Figure PCTCN2020088979-appb-100014
    为i支路年均停电时间上限,ε SAIDI为系统年均停电时间上限,ε EENS为系统期望能量不满足的上限;
    2-2-2)停电时间约束,如式(28)-(32)所示:
    Figure PCTCN2020088979-appb-100015
    Figure PCTCN2020088979-appb-100016
    如果支路i是支路j位于根节点方向的上游支路,
    Figure PCTCN2020088979-appb-100017
    Figure PCTCN2020088979-appb-100018
    如果支路i是支路j位于根节点方向的上游支路,
    Figure PCTCN2020088979-appb-100019
    Figure PCTCN2020088979-appb-100020
    如果支路i是支路j位于联络开关方向的上游支路,
    Figure PCTCN2020088979-appb-100021
    Figure PCTCN2020088979-appb-100022
    如果支路i是支路j位于联络开关方向的上游支路,
    Figure PCTCN2020088979-appb-100023
    Figure PCTCN2020088979-appb-100024
    Figure PCTCN2020088979-appb-100025
    Figure PCTCN2020088979-appb-100026
    Figure PCTCN2020088979-appb-100027
    Figure PCTCN2020088979-appb-100028
    其中,
    Figure PCTCN2020088979-appb-100029
    表示设备ij在支路s故障情况下自动动作后的状态的0-1变量,
    Figure PCTCN2020088979-appb-100030
    为闭合,
    Figure PCTCN2020088979-appb-100031
    为打开;
    Figure PCTCN2020088979-appb-100032
    为在s支路故障情况i支路的有功负荷,
    Figure PCTCN2020088979-appb-100033
    为在s支路故障情况支路j通过设备ij流向支路i的有功功率,
    Figure PCTCN2020088979-appb-100034
    为设备ij通过的最大有功功率;
    2-2-4)设备状态约束,如式(38)-(40)所示:
    Figure PCTCN2020088979-appb-100035
    Figure PCTCN2020088979-appb-100036
    Figure PCTCN2020088979-appb-100037
    其中,Ω SW为开关的集合,Ω CB为断路器的集合,Ω为所有设备的集合;
    3)对步骤2)建立的模型求解,得到
    Figure PCTCN2020088979-appb-100038
    的最优解即为断路器和开关的自动化改造状态的优化结果,CID i、SAIDI、EENS的最优解为对应改造方案的可靠性指标优化结果。
PCT/CN2020/088979 2020-04-09 2020-05-07 一种基于可靠性约束的馈线自动化设备最优改造方法 WO2021203502A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/555,498 US20220114507A1 (en) 2020-04-09 2021-12-19 Method for optimizing transformation of automation equipment in a power distribution network based on reliability constraints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010272353.2 2020-04-09
CN202010272353.2A CN111555265B (zh) 2020-04-09 2020-04-09 一种基于可靠性约束的馈线自动化设备最优改造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/555,498 Continuation US20220114507A1 (en) 2020-04-09 2021-12-19 Method for optimizing transformation of automation equipment in a power distribution network based on reliability constraints

Publications (1)

Publication Number Publication Date
WO2021203502A1 true WO2021203502A1 (zh) 2021-10-14

Family

ID=72005602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088979 WO2021203502A1 (zh) 2020-04-09 2020-05-07 一种基于可靠性约束的馈线自动化设备最优改造方法

Country Status (3)

Country Link
US (1) US20220114507A1 (zh)
CN (1) CN111555265B (zh)
WO (1) WO2021203502A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050607B (zh) * 2021-10-25 2024-04-05 国网冀北电力有限公司经济技术研究院 配电网重构数字模型的构建系统
CN117993740A (zh) * 2024-04-03 2024-05-07 国网山西省电力公司营销服务中心 一种计及n-1故障失负荷成本的多元配电网配置方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725940A (zh) * 2022-06-09 2022-07-08 国网天津市电力公司电力科学研究院 配电网供电恢复方法、装置、终端设备及存储介质
CN115879742B (zh) * 2023-02-21 2023-06-06 国网浙江省电力有限公司宁波市北仑区供电公司 配电网改造方法、系统、电子设备及存储介质
CN117010206A (zh) * 2023-08-14 2023-11-07 广东工业大学 一种配电网就地式馈线自动化的仿真模拟方法及终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110313581A1 (en) * 2010-06-18 2011-12-22 General Electric Company Self-healing power grid and method thereof
CN104376376A (zh) * 2014-11-06 2015-02-25 国家电网公司 一种面向配电自动化终端类型的优化配置方法
CN106786568A (zh) * 2017-03-09 2017-05-31 天津大学 一种配电自动化终端布点规划配置方法
CN110210095A (zh) * 2019-05-24 2019-09-06 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN110222889A (zh) * 2019-05-29 2019-09-10 华南理工大学 基于多种智能算法的配电网馈线自动化终端配置方法
CN110334962A (zh) * 2019-07-11 2019-10-15 南方电网科学研究院有限责任公司 一种馈线自动化设备的构建方法、装置及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687451A (zh) * 2019-01-22 2019-04-26 华北电力大学 一种复杂配电网中自动化设备的最优配置模型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110313581A1 (en) * 2010-06-18 2011-12-22 General Electric Company Self-healing power grid and method thereof
CN104376376A (zh) * 2014-11-06 2015-02-25 国家电网公司 一种面向配电自动化终端类型的优化配置方法
CN106786568A (zh) * 2017-03-09 2017-05-31 天津大学 一种配电自动化终端布点规划配置方法
CN110210095A (zh) * 2019-05-24 2019-09-06 清华大学 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN110222889A (zh) * 2019-05-29 2019-09-10 华南理工大学 基于多种智能算法的配电网馈线自动化终端配置方法
CN110334962A (zh) * 2019-07-11 2019-10-15 南方电网科学研究院有限责任公司 一种馈线自动化设备的构建方法、装置及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050607B (zh) * 2021-10-25 2024-04-05 国网冀北电力有限公司经济技术研究院 配电网重构数字模型的构建系统
CN117993740A (zh) * 2024-04-03 2024-05-07 国网山西省电力公司营销服务中心 一种计及n-1故障失负荷成本的多元配电网配置方法

Also Published As

Publication number Publication date
CN111555265A (zh) 2020-08-18
CN111555265B (zh) 2021-08-17
US20220114507A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021203502A1 (zh) 一种基于可靠性约束的馈线自动化设备最优改造方法
CN111611662B (zh) 一种基于馈线走廊的可靠性约束配电网规划方法
CN109449945B (zh) 基于DG调节的10kV合环电流约束的配电网转供优化方法
CN109347093B (zh) 一种主站与就地控制结合的配电网自愈控制方法
CN110210095B (zh) 一种基于混合整数线性规划的配电网可靠性指标计算方法
CN105527541B (zh) 一种判定配电线路故障跳闸的方法
CN109768527B (zh) 一种智能牵引变电站层次化保护方法及系统
Vitorino et al. Loss and reliability optimization for power distribution system operation
CN110808633A (zh) 一种主动配电网配电自动化终端优化配置方法
CN104318374A (zh) 计及上游恢复供电操作时间的中压配电网可靠性评估方法
CN112366809B (zh) 一种带有新能源的纵联电站备自投装置
CN109787224A (zh) 一种防止连锁过载的地区电网负荷转供策略生成方法
CN113852084B (zh) 考虑智能软开关优化配置的配电网多阶段韧性提升方法
CN109617132B (zh) 提升弹性配电网恢复力的资源配置与网络重构优化方法
US20220244692A1 (en) Planning method for power distribution automation system considering reliability constraints
CN114221326B (zh) 集中式自愈功能转供能力不足情况下的分段转供方法
CN111126841A (zh) 一种基于随机潮流的配电网负荷转供能力评价方法
CN116169673A (zh) 配电网的弹性评估方法、系统、电子设备及可读存储介质
CN116014790A (zh) 一种含分布式能源的配电网弹性评估方法
CN109768529B (zh) 一种基于布尔型变量的配电系统开关的配置方法
CN109902361A (zh) 一种基于逻辑算子的配电网开关优化配置方法
Lin et al. Implementation of Feeder Automation Using Colored Petri Nets.
CN218733254U (zh) 一种用于低压线路供电恢复的网荷协控装置
Qiulin et al. Optimal configuration model of distribution network automation terminal considering branch line
CN113872184B (zh) 解决故障后输电线路过流问题的电网运行优化方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930119

Country of ref document: EP

Kind code of ref document: A1