WO2021203342A1 - 波束失败的检测方法、装置、设备及可读存储介质 - Google Patents

波束失败的检测方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2021203342A1
WO2021203342A1 PCT/CN2020/083873 CN2020083873W WO2021203342A1 WO 2021203342 A1 WO2021203342 A1 WO 2021203342A1 CN 2020083873 W CN2020083873 W CN 2020083873W WO 2021203342 A1 WO2021203342 A1 WO 2021203342A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
reference signal
neighboring cell
signal resource
reporting
Prior art date
Application number
PCT/CN2020/083873
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP20929767.0A priority Critical patent/EP4135472A4/en
Priority to JP2022560050A priority patent/JP2023521650A/ja
Priority to US17/915,896 priority patent/US20230143378A1/en
Priority to KR1020227038653A priority patent/KR20220164041A/ko
Priority to PCT/CN2020/083873 priority patent/WO2021203342A1/zh
Priority to CN202080000705.7A priority patent/CN111543024B/zh
Priority to BR112022020226A priority patent/BR112022020226A2/pt
Publication of WO2021203342A1 publication Critical patent/WO2021203342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • This application relates to the field of communications, and in particular to a method, device, equipment and readable storage medium for detecting beam failure.
  • NR New Radio
  • FR Frequency Range, frequency range
  • the beam configured for the UE for transmitting and receiving PDCCH may have a problem, that is, a beam failure problem may occur.
  • the embodiments of the present application provide a beam failure detection method, device, device, and readable storage medium, which can provide a beam failure detection method for neighboring cells.
  • the technical solution is as follows:
  • a method for detecting beam failure is provided, which is applied to a terminal device, and the method includes:
  • a method for detecting beam failure is provided, which is applied to a network device, and the method includes:
  • the configuration signaling includes a target information field
  • the target information field is used to indicate the time-frequency resource location of the target reference signal resource received
  • the target reference signal resource is used by the terminal for the second A neighboring cell performs beam failure detection.
  • a device for detecting beam failure which is applied to terminal equipment, and the device includes:
  • a processing module configured to determine a target reference signal resource used for beam failure detection of the first neighboring cell
  • the processing module is further configured to perform beam failure detection on the first neighboring cell according to the target reference signal resource.
  • a device for detecting beam failure which is applied to network equipment, and the device includes:
  • the sending module is configured to send configuration signaling to the terminal.
  • the configuration signaling includes a target information field, and the target information field is used to indicate the position of the time-frequency resource for receiving the target reference signal resource, and the target reference signal resource is used Perform beam failure detection on the first neighboring cell at the terminal.
  • a terminal device in another aspect, includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the beam failure detection method described in the foregoing embodiment of the present application.
  • a network device in another aspect, includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the beam failure detection method described in the foregoing embodiment of the present application.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the above at least one instruction, at least one program, code set or instruction The set is loaded and executed by the processor to implement the beam failure detection method described in the foregoing embodiment of the present application.
  • the beam failure detection of the terminal to the neighboring cell is realized, and the beam failure detection method of the terminal to the neighboring cell is provided.
  • Fig. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application
  • FIG. 2 is a schematic diagram of data transmission based on multiple TRPs or multiple antenna panels (multi-TRP/panel) provided by an exemplary embodiment of the present disclosure
  • Fig. 3 shows a flow chart of a method for detecting beam failure provided by an exemplary embodiment of the present application
  • FIG. 4 is a flowchart of a method for detecting beam failure provided by another exemplary embodiment of the present application.
  • Fig. 5 is a flowchart of a method for detecting beam failure provided by another exemplary embodiment of the present application.
  • Fig. 6 is a flowchart of a method for detecting beam failure provided by another exemplary embodiment of the present application.
  • Fig. 7 is a structural block diagram of a beam failure detection device provided by an exemplary embodiment of the present application.
  • FIG. 8 is a structural block diagram of a beam failure detection device provided by another exemplary embodiment of the present application.
  • Fig. 9 is a structural block diagram of a communication device shown in an exemplary embodiment of the present application.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • the communication system may include: an access network 12 and a terminal device 14.
  • the access network 12 includes several network devices 120.
  • the network device 120 may be a base station, which is a device deployed in an access network to provide wireless communication functions for terminal devices.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR-U systems, they are called gNodeB or gNB. .
  • the description of "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal device 14 are collectively referred to as network devices.
  • the terminal device 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment, and mobile stations (Mobile Station, MS). , Terminal (terminal device) and so on.
  • Terminal terminal device
  • the network device 120 and the terminal device 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle networking
  • the aforementioned network device 120 can be implemented as N transmission reception points (TRP) instead.
  • TRP transmission reception points
  • Fig. 2 shows a schematic diagram of data transmission based on multiple TRPs or multiple antenna panels (multi-TRP/panel) provided by an exemplary embodiment of the present application.
  • the terminal device 210 is in a serving cell and also in a neighboring cell.
  • each cell can be covered by more than one TRP.
  • the serving cell is jointly covered by TRP1 and TRP2, thereby increasing the coverage radius of the serving cell.
  • the neighboring cell is covered by TRP3.
  • Each TRP can be provided with more than one antenna panel (panel).
  • the orientation of different antenna panels can be different, so that beams of different transmission directions can be sent and received, thereby realizing multi-space diversity.
  • the network device may use multiple panels (the multiple panels may be from the same TRP or different TRPs) to send the PDCCH to the terminal device 210 at the same time.
  • the sending directions of different panels are different, so the terminal device 210 also needs to use different panels to receive the PDCCH, so the network device needs to indicate different transmission configuration indication (Transmission Configuration Indication, TCI) states to the terminal device.
  • TCI Transmission Configuration Indication
  • Each TCI state corresponds to one receiving beam direction on each panel of the terminal device.
  • the terminal device 210 moves to the edge of the cell, it is possible that the performance of the serving cell measured on panel #1 is good, and the performance of the neighboring cell measured on panel #2 is good, then the terminal device 210 will continue to stay in the serving cell or switch to the neighboring cell.
  • the throughput is not optimal, because the terminal may be in the overlapping position of the coverage of the two cells, the optimal method is that different cells simultaneously perform data transmission based on the beam and the terminal device 210, and the beam is dynamically switched.
  • the downlink control information (DCI) signaling method is used, that is, the multi-DCI method .
  • DCI scheduling Physical Downlink Shared Channel, PDSCH
  • Physical Uplink Shared Channel PUSCH
  • PDCCH Physical Downlink Control Channel
  • the network device may indicate the TCI status through signaling, so as to inform the terminal device 210 of the receiving beam that needs to be used when receiving.
  • each TCI state corresponds to a reference signal (Reference Signal, RS) identifier.
  • the RS can be either a non-zero power channel state information reference signal (Channel State Information Reference Signal, CSI-RS) or a synchronization signal block (Synchronization Signal). Signal Block, SSB) or sounding reference signal (Sounding Reference Signal, SRS).
  • FIG. 3 shows a flow chart of a method for detecting beam failure provided by an exemplary embodiment of the present application.
  • the method is applied to the terminal device shown in FIG. 1 as an example for description. As shown in FIG. 3, the method include:
  • Step 301 Determine a target reference signal resource used for beam failure detection of the first neighboring cell.
  • the target reference channel resource may be a reference signal resource specially configured by the base station for the terminal device for detecting beam failure of the first neighboring cell, or it may be a default reference signal resource.
  • the time-frequency resource location of the target reference signal resource is configured by the base station to the terminal device.
  • the terminal device receives a configuration instruction.
  • the configuration instruction includes a target information field.
  • the target information field is used to indicate the time-frequency resource for receiving the target reference signal resource.
  • Location where the target reference signal resource includes one or more reference signal resources, and the terminal device detects the target reference signal resource at the time-frequency resource location indicated by the configuration instruction according to the configuration instruction.
  • the configuration instruction is an instruction sent to the terminal device by the base station of the serving cell where the terminal device is located, and the configuration instruction may be Radio Resource Control (RRC) signaling, that is, the signal of the serving cell
  • RRC Radio Resource Control
  • the base station configures RS resources for detecting beam failure of the first neighboring cell through RRC signaling.
  • the base station also needs to inform the terminal equipment of the information required to receive the RS resource, such as: the first neighboring cell ID, which can be the physical cell ID Physical Cell ID; or the ID One or more information of the cell number, RS ID, RS type, and time-frequency resource location corresponding to the RS of the first neighboring cell in multiple serving cells and/or neighboring cells that provide services for the terminal.
  • the first neighboring cell ID which can be the physical cell ID Physical Cell ID
  • the ID One or more information of the cell number, RS ID, RS type, and time-frequency resource location corresponding to the RS of the first neighboring cell in multiple serving cells and/or neighboring cells that provide services for the terminal.
  • the target reference signal resource includes the default reference signal resource.
  • the terminal device uses the default RS resource.
  • the default RS resource includes the RS resource corresponding to the TCI state used when the terminal receives the Control Resource Set (CORESET) sent by the first neighboring cell.
  • CORESET Control Resource Set
  • each CORESET corresponds to one TCI state
  • each TCI state corresponds to one RS resource.
  • the base station informs the terminal equipment of at least one TCI status through RRC signaling, including the identifier of the TCI status and its corresponding RS type and RS identifier, and the terminal equipment
  • the receiving beam used when receiving the PDCCH is the same as the receiving beam used when the received power is the strongest when receiving the RS corresponding to the TCI state. That is, the TCI state is used to instruct the terminal equipment to use the same receiving beam as the target RS sent by the receiving base station when receiving the PDCCH or PDSCH; or to instruct the terminal equipment to use the same transmission beam as the target RS when sending the PUCCH or PUSCH.
  • the terminal device determines m CORESETs among the n CORESETs of the first neighboring cell, and determines m CORESETs.
  • the RS resource corresponding to the TCI state of is the default reference signal resource, where m and n are positive integers, and m ⁇ n.
  • the terminal device selects the RS resource corresponding to the TCI state of the m CORESET with the smallest CORESET ID from the n CORESETs for beam failure detection.
  • Step 302 Perform beam failure detection on the first neighboring cell according to the target reference signal resource.
  • the UE when the UE detects that the channel quality of all target RS resources that need to be detected in the first neighboring cell are lower than the first threshold, it determines that beam failure has occurred in the first neighboring cell.
  • the channel quality includes the L1 Reference Signal Received Power (L1-RSRP), and/or the channel quality includes the L1 Signal-to-Interference and Noise Ratio (L1). -SINR).
  • L1-RSRP L1 Reference Signal Received Power
  • L1-SINR L1 Signal-to-Interference and Noise Ratio
  • the UE when the UE detects beam failure in the first neighboring cell, it detects the candidate RS resources corresponding to the candidate beams of the first neighboring cell according to the configuration of the base station, and responds to the candidate RS resources corresponding to the candidate beams.
  • the reference signal receiving power (RSRP) of the candidate RS resource reaches the second threshold, the candidate beam direction corresponding to the first candidate RS resource is taken as the new beam direction of the first neighboring cell.
  • the beam failure detection method implements the beam failure detection of the neighboring cell by the terminal through the configured target reference signal resource or the default reference signal resource, and provides a beam failure detection method for the neighboring cell .
  • Fig. 4 is a flow chart of a method for detecting beam failure provided by another exemplary embodiment of the present application.
  • the application of the method to the terminal equipment and network equipment shown in Fig. 1 is taken as an example for description, as shown in Fig. 4, The method includes:
  • Step 401 The network device sends configuration signaling to the terminal device.
  • the configuration signaling includes a target information field, and the target information field is used to indicate the time-frequency resource location of the received target reference signal resource.
  • the target RS resource is used for the terminal to perform beam failure detection on the first neighboring cell.
  • the network device may be a base station of a serving cell where the terminal device is located, and the base station configures the target RS resource to the terminal device.
  • the configuration instruction may be RRC signaling, that is, the base station of the serving cell configures RS resources for detecting beam failure of the first neighboring cell through RRC signaling.
  • the base station also needs to inform the terminal of the information required to receive the RS resource, such as: the first neighboring cell ID, RS ID, RS type, and the time-frequency resource location corresponding to the RS One or more of the information in.
  • Step 402 The terminal device receives the configuration signaling.
  • the target reference signal resource includes one or more reference signal resources.
  • Step 403 The terminal device determines a target reference signal resource used for beam failure detection of the first neighboring cell.
  • the terminal device receives the target RS resource according to the time-frequency resource location indicated in the configuration signaling.
  • Step 404 The terminal device performs beam failure detection on the first neighboring cell according to the target reference signal resource.
  • the UE when the UE detects that the channel quality of all target RS resources that need to be detected in the first neighboring cell are lower than the first threshold, it determines that beam failure has occurred in the first neighboring cell.
  • the UE when the UE detects beam failure in the first neighboring cell, it detects the candidate RS resources corresponding to the candidate beams of the first neighboring cell according to the configuration of the base station, and responds to the candidate RS resources corresponding to the candidate beams.
  • the RSRP of the candidate RS resource reaches the second threshold, the candidate beam direction corresponding to the first candidate RS resource is taken as the new beam direction of the first neighboring cell.
  • the beam failure detection method implements the beam failure detection of the neighboring cell through the configured target reference signal resource or the default reference signal resource, and provides a beam failure detection method of the neighboring cell.
  • FIG. 5 is the flow of the method for reporting beam failure according to an exemplary embodiment of the present application.
  • the method is applied to a terminal device as an example for description. As shown in Fig. 5, the method includes:
  • Step 501 Determine a target reference signal resource used for beam failure detection of the first neighboring cell.
  • the target reference channel resource may be a reference signal resource specially configured by the base station for the terminal device for beam failure detection of the first neighboring cell, or it may be a default reference signal resource.
  • the time-frequency resource location of the target reference signal resource is configured by the base station to the terminal device.
  • the terminal device receives a configuration instruction.
  • the configuration instruction includes a target information field.
  • the target information field is used to indicate the time-frequency resource for receiving the target reference signal resource.
  • the target reference signal resource includes the default reference signal resource.
  • Step 502 In response to the channel quality of the target reference signal resource being lower than the first threshold, it is determined that beam failure occurs in the first neighboring cell.
  • the UE when the UE detects that the channel quality of all target RS resources that need to be detected in the first neighboring cell are lower than the first threshold, it determines that beam failure has occurred in the first neighboring cell.
  • Step 503 Report beam failure information of the first neighboring cell to the serving cell.
  • the serving cell includes a primary cell (Primary Cell, PCell) or a primary secondary cell (Primary Secondary Cell, PScell) or a secondary cell (Secondary Cell, SCell) configured with PUCCH.
  • Primary Cell PCell
  • Primary Secondary Cell PScell
  • Secondary Cell SCell
  • Step 504 Report beam failure information to the second neighboring cell.
  • the second neighboring cell is a primary neighboring cell or a primary secondary neighboring cell.
  • the second neighboring cell is a primary neighboring cell or a primary secondary neighboring cell.
  • there are multiple neighboring cells serving the terminal and one of the neighboring cells is set as the primary neighboring cell or the primary secondary neighboring cell of the terminal.
  • steps 503 and 504 may be executed only in step 503, or only step 504 may be executed, or step 503 and step 504 may be executed at the same time.
  • the reporting of beam failure information may be performed after the beam failure of the first neighboring cell is detected, or it may be performed after the beam failure of the first neighboring cell is detected, and the new beam failure of the first neighboring cell is detected. Executed after beam direction.
  • the beam failure information is used to indicate the beam failure of the first neighboring cell; when the reporting of beam failure information is performed when the first neighboring cell is detected.
  • the beam failure information is used to indicate the beam failure of the first neighboring cell and the new beam direction of the first neighboring cell.
  • when reporting beam failure information it can be reported through PUCCH or PUSCH.
  • beam failure information when reporting beam failure information through PUCCH, beam failure information is used to indicate that beam failure occurs in the first neighboring cell, where the method of reporting beam failure of the first neighboring cell and the method of reporting beam failure of the serving cell may be The same can also be different.
  • the method of reporting the beam failure of the first neighboring cell is the same as the method of reporting the beam failure of the serving cell
  • the PUCCH used for beam failure recovery BFR
  • the scheduling request (SR) is reported
  • the scheduling request used when beam failure occurs in the first neighboring cell is reported
  • the scheduling request used when beam failure occurs in the serving cell is reported.
  • the time-frequency domain resources and codeword indication methods are the same. That is, reporting the beam failure of the first neighboring cell and reporting the beam failure of the serving cell share the same SR.
  • the difference includes at least one of the following situations:
  • the scheduling request used when reporting the beam failure of the first neighboring cell is different from the scheduling request used when reporting the beam failure of the serving cell.
  • the time-frequency domain resources are different;
  • the time domain resource of the SR used when the beam failure of the first neighboring cell is reported is different from the time domain resource of the SR when the beam failure of the reporting serving cell occurs; and/or the SR used when the first neighboring cell sends the beam failure
  • the frequency domain resources are different from the frequency domain resources of the SR when the beam failure occurs in the reported serving cell.
  • the SR used when reporting the beam failure of the first neighboring cell is different from the SR codeword indication method used when the reporting serving cell sends the beam failure.
  • the scheduling request includes an indication field.
  • the indication field takes the first value
  • the indication field is used to indicate beam failure of the neighboring cell; when the indication field takes the second value, it indicates the serving cell Beam failure occurred. That is, an indication field is added on the original basis of the SR codeword to distinguish whether the indication object of the SR is the serving cell or the neighboring cell.
  • the indication field of 1 bit Take the indication field of 1 bit as an example. For example, when the indication field value is 1, it means that the SR indicates beam failure for the neighboring cell, and when the indication field value is 0, it means the SR has beam failure for the serving cell. Give instructions.
  • the SR of the serving cell is sent first.
  • the indication field of 2bit Take the indication field of 2bit as an example. For example, when the indication field value is 00, it means there is uplink data to be sent, 01 means beam failure in the serving cell, 10 means beam failure in the neighboring cell, and 11 means beam failure in the neighboring cell. Uplink data needs to be sent, and beam failure occurs in the serving cell and/or neighboring cells.
  • the beam failure information when the beam failure information is reported through the PUSCH, the beam failure information is used to indicate the cell number of the first neighboring cell, that is, the cell number of the first neighboring cell where the beam failure occurs is reported through the PUSCH.
  • the indication signaling is sent through the PUSCH, and the indication signaling includes the cell number of the first neighboring cell where the beam failure occurred.
  • the cell number of the first neighboring cell where the beam failure occurs is sent through the media intervention control control unit MAC CE signaling on the PUSCH.
  • the serving cell and the neighboring cell are jointly numbered; or, the serving cell and the neighboring cell are independently numbered.
  • the cell number of the first neighboring cell is determined from the joint number of the serving cell and the neighboring cell; or, when the serving cell and the neighboring cell are independently numbered, the first neighboring cell is determined from the independent numbering of the neighboring cell.
  • the cell number of a neighboring cell is determined from the joint number of the serving cell and the neighboring cell; or, when the serving cell and the neighboring cell are independently numbered, the first neighboring cell is determined from the independent numbering of the neighboring cell. The cell number of a neighboring cell.
  • the neighboring cell when the serving cell and the neighboring cell are numbered jointly, the neighboring cell also uses the SCell number to take values 1, 2, 3, ...; when the serving cell and the neighboring cell are independently numbered, the neighboring cell's number is the neighboring cell (Neighboring Cell). Cell, NCell) number, take values 0, 1, 2, 3,... in sequence.
  • the cell number of the first neighboring cell when reporting beam failure information through PUSCH, after determining that beam failure occurs in the first neighboring cell, the cell number of the first neighboring cell may be reported through PUSCH, that is, the above indication signaling includes the first neighboring cell It is also possible to determine the beam failure of the first neighboring cell, and after determining the new beam direction of the first neighboring cell, report the cell number of the first neighboring cell through PUSCH, and indicate the new beam direction of the first neighboring cell; also It can be determined that when beam failure occurs in the first neighboring cell, the cell number of the first neighboring cell is reported through the PUSCH, and the first neighboring cell has no new beam direction.
  • the terminal When detecting the beam failure of the first neighboring cell, the terminal detects the candidate RS resource corresponding to the candidate beam of the first neighboring cell, and responds to the reference signal received power RSRP corresponding to the first candidate RS resource reaching the second threshold through the PUSCH Reporting new beam direction indication information, which includes the reference signal resource number corresponding to the first candidate reference signal resource; or, reporting new beam direction indication information through PUSCH, and the new beam direction indication information is used to indicate no new beam direction, In some embodiments, when the candidate RS resource corresponding to the candidate beam of the first neighboring cell is detected, and the candidate RS resource whose RSRP reaches the second threshold is not detected, the new beam direction indication information is used to indicate that the first neighboring cell has no new beam. direction.
  • Step 505 Report beam failure information to the first neighboring cell.
  • the beam failure information when reporting beam failure information to the first neighboring cell, may be reported to the first neighboring cell through a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the beam failure information is used to indicate the first neighboring cell. Beam failure occurred in a neighboring cell.
  • the terminal after detecting beam failure in the first neighboring cell, the terminal detects the candidate RS resource corresponding to the candidate beam of the first neighboring cell, and when there is a second candidate RS resource corresponding to the reference signal received power RSRP reaches the second At the threshold, the terminal sends the corresponding random access preamble on the corresponding PRACH time-frequency resource according to the PRACH time-frequency code resource corresponding to the RS resource, that is, sends a beam failure information indication to inform the first neighboring cell of beam failure.
  • the second candidate RS resource and the first candidate RS resource may be the same candidate RS resource, or may be different candidate RS resources, which is not limited in the embodiment of the present application.
  • the uplink and downlink channels between the terminal device and the network device when reporting beam failure information to the first neighboring cell, when the uplink and downlink channels between the terminal device and the network device are asymmetric, it can also be reported through PUCCH or PUSCH; When the uplink and downlink channels are symmetric, the beam failure information reported through PUCCH or PUSCH will fail to be sent due to beam failure.
  • the beam failure detection method implements the beam failure detection of the neighboring cell through the configured target reference signal resource or the default reference signal resource, and provides a beam failure detection method of the neighboring cell.
  • the method provided in this embodiment reports beam failure information through PUCCH or PUSCH, so that the network equipment of the serving cell or the network equipment of the neighboring cell can receive the beam failure information of the neighboring cell, and learn about the beam failure that occurred in the neighboring cell, and thus Realize beam failure recovery.
  • Fig. 6 is a flowchart of a method for detecting beam failure provided by an exemplary embodiment of the present application. Taking the method applied to the terminal device and the network device shown in Fig. 1 as an example, as shown in Fig. 6, the method includes :
  • Step 601 The terminal device determines a target reference signal resource used for beam failure detection of the first neighboring cell.
  • the target reference channel resource may be a reference signal resource specially configured by the base station for the terminal device for beam failure detection of the first neighboring cell, or it may be a default reference signal resource.
  • Step 602 In response to the channel quality of the target reference signal resource being lower than the first threshold, the terminal device determines that beam failure occurs in the first neighboring cell.
  • the UE when the UE detects that the channel quality of all target RS resources that need to be detected in the first neighboring cell are lower than the first threshold, it determines that beam failure has occurred in the first neighboring cell.
  • Step 603 The terminal device reports the beam failure information of the first neighboring cell.
  • the terminal device can report the beam failure information of the first neighboring cell to the network device of the serving cell, or it can report the beam failure information of the first neighboring cell to the network device of the neighboring cell, and it can also report the beam failure information of the first neighboring cell to the network device of the serving cell.
  • the network device reports the beam failure information of the first neighboring cell, and then reports the beam failure information of the first neighboring cell to the network device of the neighboring cell.
  • the terminal device may report beam failure information to the first neighboring cell itself, and may also report beam failure information to the second neighboring cell.
  • Step 604 The network device receives the beam failure information reported by the terminal.
  • the network device may be a network device corresponding to a serving cell of the terminal device, or a network device corresponding to a neighboring cell of the terminal device.
  • beam failure information when the network device is a network device of a serving cell or a network device of a second neighboring cell, beam failure information may be received through PUCCH, or beam failure information may be received through PUSCH.
  • the scheduling request used when reporting the beam failure of the first neighboring cell is the same as the scheduling request used when reporting the beam failure of the serving cell, and the time-frequency domain resources and codeword indication methods are the same; or, reporting the beam failure of the first neighboring cell
  • the scheduling request used when reporting the beam failure of the serving cell is different from the scheduling request time-frequency domain resource used when reporting the beam failure of the serving cell; or, the scheduling request used when reporting the beam failure of the first neighboring cell is different from the one used when reporting the beam failure of the serving cell.
  • the scheduling request codeword indication method is different.
  • the indication signaling is received from the PUSCH, and the indication signaling includes the cell number of the first neighboring cell where the beam failure occurred.
  • the serving cell and the neighboring cell are jointly numbered; or, the serving cell and the neighboring cell are independently numbered.
  • the serving cell and the neighboring cell When the serving cell and the neighboring cell are numbered jointly, determine the first neighboring cell corresponding to the cell number indicated in the indication signaling from the joint number; or, when the serving cell and the neighboring cell are independently numbered, determine from the independent number of the neighboring cell Indicate the first neighboring cell corresponding to the cell number indicated in the signaling.
  • the indication signaling also includes new beam direction indication information.
  • the new beam direction indication information includes the reference signal resource number of the first candidate reference signal resource, and the first candidate reference signal resource is a candidate signal resource whose reference signal received power reaches the second threshold; or, the new beam direction indication information is used for Indicate that the first neighboring cell has no new beam direction, that is, the reference signal received power of the candidate reference signal resource not detected reaches the second threshold.
  • beam failure information may be received through PRACH, and the beam failure information is used to indicate that beam failure occurs between the first neighboring cell itself and the terminal device.
  • the beam failure detection method implements the beam failure detection of the neighboring cell through the configured target reference signal resource or the default reference signal resource, and provides a beam failure detection method of the neighboring cell.
  • the method provided in this embodiment reports beam failure information through PUCCH or PUSCH, so that the network equipment of the serving cell or the network equipment of the neighboring cell can receive the beam failure information of the neighboring cell, and learn about the beam failure that occurred in the neighboring cell, and thus Realize beam failure recovery.
  • Fig. 7 is a structural block diagram of a beam failure detection device provided by an exemplary embodiment of the present application. Taking the device applied to a terminal device as an example, the device includes:
  • the processing module 710 is configured to determine a target reference signal resource used for beam failure detection of the first neighboring cell
  • the processing module 710 is further configured to perform beam failure detection on the first neighboring cell according to the target reference signal resource.
  • the device further includes:
  • the receiving module 720 is configured to receive configuration signaling, the configuration signaling includes a target information field, and the target information field is used to indicate a time-frequency resource location for receiving the target reference signal resource, and the target reference signal resource includes One or more reference signal resources.
  • the target reference signal resource includes a default reference signal resource; the default reference signal resource includes a reference signal resource corresponding to a TCI state indicated by the transmission configuration of the control resource set of the first neighboring cell.
  • the processing module 710 is further configured to determine m control resource sets among the n control resource sets of the first neighboring cell; determine m control resource sets;
  • the reference signal resource corresponding to the TCI state of the resource set is the default reference signal resource, where m and n are positive integers, and m ⁇ n.
  • the processing module 710 is further configured to determine that a beam failure occurs in the first neighboring cell in response to the channel quality of the target reference signal resource being lower than a first threshold.
  • the device further includes:
  • the sending module 730 is configured to report beam failure information of the first neighboring cell to the serving cell;
  • the sending module 730 is also configured to report beam failure information of the first neighboring cell to a second neighboring cell.
  • the sending module 730 is further configured to report the beam failure information through the physical uplink control channel PUCCH;
  • the sending module 730 is also configured to report the beam failure information through the physical uplink shared channel PUSCH.
  • the sending module 730 is further configured to report the beam failure information through a scheduling request for beam failure recovery in the PUCCH.
  • reporting the scheduling request used when beam failure occurs in the first neighboring cell is the same as reporting the scheduling request used when beam failure occurs in the serving cell, and the time-frequency domain resources and codeword indication methods are the same .
  • reporting the scheduling request used when beam failure occurs in the first neighboring cell is different from the scheduling request used when reporting beam failure in the serving cell, in terms of time-frequency domain resources
  • Reporting the scheduling request used when beam failure occurs in the first neighboring cell is different from the scheduling request used when reporting beam failure in the serving cell, and the codeword indication method is different.
  • the sending module 730 is further configured to report the cell number of the first neighboring cell where the beam failure occurs through the PUSCH.
  • the processing module 710 is further configured to determine the cell number of the first neighboring cell from the joint number of the serving cell and neighboring cells;
  • the processing module 710 is further configured to determine the cell number of the first neighboring cell from the independent numbers of neighboring cells.
  • the sending module 730 is further configured to detect candidate reference signal resources corresponding to the candidate beams of the first neighboring cell;
  • the sending module 730 is further configured to report new beam direction indication information through the PUSCH in response to the reference signal received power corresponding to the first candidate reference signal resource reaching a second threshold, where the new beam direction indication information includes the The reference signal resource number corresponding to the first candidate reference signal resource; or, the sending module 730 is further configured to report through the PUSCH in response to not detecting the candidate reference signal resource whose reference signal received power reaches the second threshold
  • the new beam direction indication information, the new beam direction indication information includes an information field for indicating no new beam direction.
  • the sending module 730 is further configured to report the beam failure information to the first neighboring cell.
  • the sending module 730 is further configured to report the beam failure information to the first neighboring cell through a physical random access channel PRACH.
  • Fig. 8 is a structural block diagram of a beam failure detection device provided by an exemplary embodiment of the present application. Taking the device applied to a network device as an example, the device includes:
  • the sending module 810 is configured to send configuration signaling to the terminal, where the configuration signaling includes a target information field, and the target information field is used to indicate a time-frequency resource location for receiving a target reference signal resource, and the target reference signal resource It is used for the terminal to perform beam failure detection on the first neighboring cell.
  • the device further includes:
  • the receiving module 820 is configured to receive beam failure information reported by the terminal, where the beam failure information is used to indicate that beam failure occurs in the first neighboring cell.
  • the receiving module 820 is further configured to receive the beam failure information through the physical uplink control channel PUCCH;
  • the receiving module 820 is also configured to receive the beam failure information through the physical uplink shared channel PUSCH.
  • the receiving module 820 is further configured to receive a scheduling request for beam failure recovery through the PUCCH, and the scheduling request includes the beam failure information.
  • reporting the scheduling request used when beam failure occurs in the first neighboring cell is the same as the time-frequency domain resource and codeword indication method used when reporting beam failure in the serving cell .
  • reporting the scheduling request used when beam failure occurs in the first neighboring cell is different from the scheduling request used when reporting beam failure in the serving cell, and the location of the time-frequency resource is different;
  • Reporting the scheduling request used when beam failure occurs in the first neighboring cell is different from the scheduling request used when reporting beam failure in the serving cell, and the codeword indication method is different.
  • the receiving module 820 is further configured to receive indication signaling through the PUSCH, and the indication signaling includes the cell number of the first neighboring cell where the beam failure occurred.
  • the indication signaling further includes new beam direction indication information
  • the new beam direction indication information includes a reference signal resource number of a first candidate reference signal resource, and the first candidate reference signal resource is a candidate signal resource whose reference signal received power reaches a second threshold; or, the new beam direction indication The information is used to indicate that there is no new beam direction.
  • the beam failure detection apparatus implemented in the embodiments of the present application implements beam failure detection of neighboring cells through configured target reference signal resources or default reference signal resources, and provides a beam failure detection method of neighboring cells.
  • FIG. 9 shows a schematic structural diagram of a communication device 900 (terminal device or network device) provided by an exemplary embodiment of the present application.
  • the communication device 900 includes: a processor 901, a receiver 902, a transmitter 903, a memory 904, and a bus. 905.
  • the processor 901 includes one or more processing cores, and the processor 901 executes various functional applications and information processing by running software programs and modules.
  • the receiver 902 and the transmitter 903 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 904 is connected to the processor 901 through the bus 905.
  • the memory 904 may be used to store at least one instruction, and the processor 901 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • An exemplary embodiment of the present application also provides a beam failure detection system, the system includes: a terminal device and a network device;
  • the terminal equipment includes the beam failure detection device provided in the embodiment shown in FIG. 7;
  • the network equipment includes the beam failure detection device provided in the embodiment shown in FIG. 8.
  • An exemplary embodiment of the present application further provides a computer-readable storage medium, the computer-readable storage medium stores at least one instruction, at least a program, code set or instruction set, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the steps performed by the terminal in the beam failure detection method provided by the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种波束失败的检测方法、装置、设备及可读存储介质,涉及通信领域。该方法包括:确定用于第一邻小区波束失败beam failure检测的目标参考信号资源;根据目标参考信号资源对第一邻小区进行beam failure检测。通过配置的目标参考信号资源,或者默认的参考信号资源实现终端对邻小区的波束失败检测,提供了邻小区的波束失败检测方法。

Description

波束失败的检测方法、装置、设备及可读存储介质 技术领域
本申请涉及通信领域,特别涉及一种波束失败的检测方法、装置、设备及可读存储介质。
背景技术
在新空口(New Radio,NR)中,当通信频段位于FR(Frequency Range,频率范围)2时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
相关技术中,当该用户设备(User Equipment,UE)发生移动,或者天线方向发生旋转时,配置给UE的用于发送接收PDCCH的beam可能会出现问题,即出现了beam failure的问题。
目前,尚未有关于邻小区beam failure的检测方法。
发明内容
本申请实施例提供了一种波束失败的检测方法、装置、设备及可读存储介质,能够提供对邻小区进行beam failure检测的方法。所述技术方案如下:
根据本申请的一方面,提供了一种波束失败的检测方法,应用于终端设备中,所述方法包括:
确定用于第一邻小区波束失败beam failure检测的目标参考信号资源;
根据所述目标参考信号资源对所述第一邻小区进行beam failure检测。
另一方面,提供了一种波束失败的检测方法,应用于网络设备中,所述方法包括:
向终端发送配置信令,所述配置信令中包括目标信息字段,所述目标信息字段用于指示接收目标参考信号资源的时频资源位置,所述目标参考信号资源用于所述终端对第一邻小区进行波束失败beam failure检测。
另一方面,提供了一种波束失败的检测装置,应用于终端设备中,所述装置包括:
处理模块,被配置为确定用于第一邻小区波束失败beam failure检测的目标参考信号资源;
所述处理模块,还被配置为根据所述目标参考信号资源对所述第一邻小区进行beam failure检测。
另一方面,提供了一种波束失败的检测装置,应用于网络设备中,所述装置包括:
发送模块,被配置为向终端发送配置信令,所述配置信令中包括目标信息字段,所述目标信息字段用于指示接收目标参考信号资源的时频资源位置,所述目标参考信号资源用于所述终端对第一邻小区进行波束失败beam failure检测。
另一方面,提供了一种终端设备,该终端设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本申请实施例所述的波束失败的检测方法。
另一方面,提供了一种网络设备,该网络设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本申请实施例所述的波束失败的检测方法。
另一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述本申请实施例所述的波束失败的检测方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过配置的参考信号资源,或者默认的参考信号资源实现终端对邻小区的波束失败检测,提供了终端对邻小区的波束失败检测方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的基于多个TRP或多个天线面板(multi-TRP/panel)的数据传输的示意图;
图3示出了本申请一个示例性实施例提供的波束失败的检测方法的流程图;
图4是本申请另一个示例性实施例提供的波束失败的检测方法的流程图;
图5是本申请另一个示例性实施例提供的波束失败的检测方法的流程图;
图6是本申请另一个示例性实施例提供的波束失败的检测方法的流程图;
图7是本申请一个示例性实施例提供的波束失败的检测装置的结构框图;
图8是本申请另一个示例性实施例提供的波束失败的检测装置的结构框图;
图9是本申请一示例性实施例示出的通信设备的结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端设备14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端设备提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR-U系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本申请实施例中的描述,上述为终端设备14提供无线通信功能的装置统称为网络设备。
终端设备14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端设备。网络设备120与终端设备14之间通 过某种空口技术互相通信,例如Uu接口。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本申请实施例也可以应用于这些通信系统。
在5G NR系统中,上述网络设备120可以替换实现为N个传输接收点(Transmission Reception Point,TRP)。
图2示出了本申请一个示例性实施例提供的基于多个TRP或多个天线面板(multi-TRP/panel)的数据传输的示意图。
终端设备210处于服务小区(serving cell)之中,也处于邻小区(neighboring cell)之中。
其中,每个小区可以由不止一个TRP来覆盖。如图所示,serving cell由TRP1和TRP2联合覆盖,从而增大了serving cell的覆盖半径。neighboring cell由TRP3覆盖。
每个TRP可以设置有一个以上的天线面板(panel)。不同的天线面板的朝 向可以不同,从而可以收发不同传输方向的波束,从而实现多空间分集。网络设备可以使用多个panel(该多个panel可以来自同一个TRP或不同的TRP)同时向终端设备210发送PDCCH。这种情况下,不同panel的发送方向不一样,所以终端设备210也需要使用不同的panel来接收PDCCH,那么网络设备需要指示不同的传输配置指示(Transmission Configuration Indication,TCI)状态给终端设备,每个TCI状态对应终端设备的每个panel上的一个接收波束方向。通过上述基于波束(beam)的发送和接收方式,可以保证覆盖范围。
当终端设备210移动到小区边缘时,可能panel#1上测得服务小区的性能好,而panel#2测得邻小区的性能好,则终端设备210继续留在服务小区或者切换到邻小区,吞吐量都达不到最优,因为终端可能在两个cell覆盖范围的重叠位置,则最优的办法为不同cell同时基于波束与终端设备210进行数据传输,且波束动态切换。而由于不同cell之间通信会带来延时,所以inter-cell multi-TRP为终端设备210服务时,使用多下行控制信息(Downlink Control Information,DCI)信令的方式,也即multi-DCI方式,各个cell各自发送DCI调度(Physical Downlink Shared Channel,PDSCH)物理下行共享信道或(Physical Uplink Shared Channel,PUSCH)物理上行共享信道等信道传输,也就是说,邻小区也需要发送DCI信令给终端,DCI信令是通过(Physical Downlink Control Channel,PDCCH)物理下行控制信道发送的。
具体地,网络设备可以通过信令指示TCI状态,从而告知终端设备210接收时需要使用的接收波束。其中,每个TCI状态对应一个参考信号(Reference Signal,RS)标识,该RS既可以是非零功率信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),也可以是同步信号块(Synchronization Signal Block,SSB)或探测参考信号(Sounding Reference Signal,SRS)。
图3示出了本申请一个示例性实施例提供的波束失败的检测方法的流程图,以该方法应用于如图1所示的终端设备中为例进行说明,如图3所示,该方法包括:
步骤301,确定用于第一邻小区波束失败beam failure检测的目标参考信号资源。
目标参考信道资源可以是基站向终端设备专门配置的用于检测第一邻小区 beam failure的参考信号资源,也可以是默认参考信号资源。
其中,针对基站配置参考信号资源和默认参考信号资源分别进行说明:
第一,目标参考信号资源的时频资源位置为基站向终端设备配置的,终端设备接收配置指令,该配置指令中包括目标信息字段,目标信息字段用于指示接收目标参考信号资源的时频资源位置,其中,目标参考信号资源包括一个或多个参考信号资源内,终端设备根据该配置指令在配置指令指示的时频资源位置上检测目标参考信号资源。
在一种可能的实施方式中,配置指令为终端设备所在的服务小区的基站向终端设备发送的指令,且该配置指令可以是无线资源控制(Radio Resource Control,RRC)信令,即服务小区的基站通过RRC信令配置用于检测第一邻小区beam failure的RS资源。在一些实施例中,在进行RS资源配置过程中,基站还需要告知终端设备接收RS资源所需的信息,如:第一邻小区ID,该ID可以是物理小区标识Physical Cell ID;或该ID为第一邻小区在为该终端提供服务的多个服务小区和/或邻小区中的小区编号,RS ID,RS类型,以及该RS对应的时频资源位置中的一项或多项信息。
第二,目标参考信号资源包括默认参考信号资源。在一些实施例中,当服务小区的基站未向终端设备配置用于对第一邻小区进行beam failure检测的RS资源时,终端设备使用默认的RS资源。在一些实施例中,默认RS资源包括终端接收该第一邻小区发送的控制资源集合(Control Resource Set,CORESET)时使用的TCI状态对应的RS资源。在一种可能的实施方式中,每个CORESET对应一个TCI状态,每个TCI状态对应一个RS资源。
在一种可能的实施方式中,终端设备通过TCI状态来确定接收波束时,基站通过RRC信令通知终端设备至少一个TCI状态,包括TCI状态的标识及其对应的RS类型和RS标识,终端设备接收PDCCH时使用的接收波束与接收该TCI状态对应的RS时接收功率最强时所使用的接收波束相同。也即,TCI状态用于指示终端设备接收PDCCH或PDSCH时,使用与接收基站发送的目标RS一样的接收beam;或指示终端设备发送PUCCH或PUSCH时,使用与发送目标RS一样的发送beam。
在一些实施例中,当终端设备被配置的需要接收的第一邻小区的CORESET中包括n个CORESET时,终端设备确定第一邻小区的n个CORESET中的m个CORESET,并确定m个CORESET的TCI状态对应的RS资源为默认参考信 号资源,其中,m、n为正整数,且m<n。
在一些实施例中,终端设备从n个CORESET中,选择CORESET ID最小的m个CORESET的TCI状态对应的RS资源用于进行beam failure检测。
步骤302,根据目标参考信号资源对第一邻小区进行beam failure检测。
响应于目标参考信号资源的信道质量低于第一门限,确定第一邻小区发生beam failure。
在一些实施例中,当UE检测到第一邻小区所有需要被检测的目标RS资源的信道质量都低于第一门限时,则确定第一邻小区发生了beam failure。
在一些实施例中,信道质量包括层1参考信号接收功率(L1Reference Signal Receiving Power,L1-RSRP),和/或,信道质量包括层1信号干扰噪声比(L1Signal-to-Interference and Noise Ratio,L1-SINR)。
在一些实施例中,当UE检测到第一邻小区发生beam failure时,根据基站的配置检测第一邻小区的候选波束对应的候选RS资源,响应于候选波束对应的候选RS资源中,第一候选RS资源的参考信号接收功率(Reference Signal Receiving Power,RSRP)达到第二门限,则将第一候选RS资源对应的候选波束方向作为第一邻小区的新波束方向。
综上所述,本申请实施例提供的波束失败的检测方法,通过配置的目标参考信号资源,或者默认的参考信号资源实现终端对邻小区的波束失败检测,提供了邻小区的波束失败检测方法。
图4是本申请另一个示例性实施例提供的波束失败的检测方法的流程图,以该方法应用于如图1所示的终端设备和网络设备中为例进行说明,如图4所示,该方法包括:
步骤401,网络设备向终端设备发送配置信令,配置信令中包括目标信息字段,目标信息字段用于指示接收目标参考信号资源的时频资源位置。
在一些实施例中,目标RS资源用于终端对第一邻小区进行波束失败检测。
在一些实施例中,该网络设备可以是终端设备所在服务小区的基站,由该基站向终端设备进行目标RS资源的配置。
在一些实施例中,该配置指令可以是RRC信令,即服务小区的基站通过RRC信令配置用于检测第一邻小区beam failure的RS资源。在一些实施例中,在进行RS资源配置过程中,基站还需要告知终端接收RS资源所需的信息,如: 第一邻小区ID,RS ID,RS类型,以及该RS对应的时频资源位置中的一项或多项信息。
步骤402,终端设备接收配置信令。
在一些实施例中,目标参考信号资源包括一个或多个参考信号资源。
步骤403,终端设备确定用于第一邻小区beam failure检测的目标参考信号资源。
终端设备根据配置信令中指示的时频资源位置接收目标RS资源。
步骤404,终端设备根据目标参考信号资源对第一邻小区进行beam failure检测。
响应于目标参考信号资源的信道质量低于第一门限,确定第一邻小区发生beam failure。
在一些实施例中,当UE检测到第一邻小区所有需要被检测的目标RS资源的信道质量都低于第一门限时,则确定第一邻小区发生了beam failure。
在一些实施例中,当UE检测到第一邻小区发生beam failure时,根据基站的配置检测第一邻小区的候选波束对应的候选RS资源,响应于候选波束对应的候选RS资源中,第一候选RS资源的RSRP达到第二门限,则将第一候选RS资源对应的候选波束方向作为第一邻小区的新波束方向。
综上所述,本申请实施例提供的波束失败的检测方法,通过配置的目标参考信号资源,或者默认的参考信号资源实现对邻小区的波束失败检测,提供了邻小区的波束失败检测方法。
在一个可选的实施例中,UE在检测到第一邻小区beam failure时,还需要将beam failure信息上报至网络设备,图5是本申请一个示例性实施例提供的波束失败的上报方法流程图,以该方法应用于终端设备中为例进行说明,如图5所示,该方法包括:
步骤501,确定用于第一邻小区波束失败beam failure检测的目标参考信号资源。
目标参考信道资源可以是基站向终端设备专门配置的用于第一邻小区beam failure检测的参考信号资源,也可以是默认参考信号资源。
其中,针对基站配置参考信号资源和默认参考信号资源分别进行说明:
第一,目标参考信号资源的时频资源位置为基站向终端设备配置的,终端 设备接收配置指令,该配置指令中包括目标信息字段,目标信息字段用于指示接收目标参考信号资源的时频资源位置;
第二,目标参考信号资源包括默认参考信号资源。
步骤502,响应于目标参考信号资源的信道质量低于第一门限,确定第一邻小区发生beam failure。
在一些实施例中,当UE检测到第一邻小区所有需要被检测的目标RS资源的信道质量都低于第一门限时,则确定第一邻小区发生了beam failure。
步骤503,向服务小区上报第一邻小区的beam failure信息。
服务小区包括主小区(Primary Cell,PCell)或主辅小区(Primary Secondary Cell,PScell)或配置有PUCCH的辅小区(Secondary Cell,SCell)。
步骤504,向第二邻小区上报beam failure信息。
第二邻小区为主邻小区或主辅邻小区,比如有多个邻小区为终端提供服务,而其中有一个邻小区设置为终端的主邻小区或主辅邻小区。
值得注意的是,上述步骤503和步骤504,可以仅执行步骤503,也可以仅执行步骤504,还可以同时执行步骤503和步骤504。
在一些实施例中,beam failure信息的上报可以是在检测到第一邻小区发生beam failure后执行的,也可以是在检测到第一邻小区发生beam failure,并检测到第一邻小区的新波束方向后执行的。当beam failure信息的上报在检测到第一邻小区发生beam failure后直接执行时,该beam failure信息用于指示第一邻小区发生beam failure;当beam failure信息的上报在检测到第一邻小区的新波束方向后执行时,beam failure信息用于指示第一邻小区发生beam failure,以及第一邻小区的新beam方向。
在一些实施例中,在对beam failure信息进行上报时,可以通过PUCCH进行上报,也可以通过PUSCH进行上报。
对PUCCH上报beam failure信息和PUSCH上报beam failure信息分别进行说明:
第一、通过PUCCH上报beam failure信息
在一些实施例中,通过PUCCH上报beam failure信息时,beam failure信息用于指示存在第一邻小区发生beam failure,其中,上报第一邻小区beam failure的方式与上报服务小区beam failure的方式可以是相同的也可以是不同的。
其中,当上报第一邻小区beam failure的方式与上报服务小区beam failure 的方式相同时,在服务小区的beam failure的上报过程中,使用PUCCH中用于波束失败恢复(Beam Failure Recovery,BFR)的调度请求(Scheduling Request,SR)进行上报,则上报第一邻小区发生beam failure时使用的调度请求,与上报服务小区发生beam failure时使用的调度请求,时频域资源和码字指示方法相同,即,上报第一邻小区发生beam failure与上报服务小区发生beam failure共用同一个SR。
当上报第一邻小区beam failure的方式与上报服务小区beam failure的方式不同时,不同点包括如下情况中的至少一种:
1)上报第一邻小区发生beam failure时使用的调度请求,与上报服务小区发生beam failure时使用的调度请求,时频域资源不同;
即,上报第一邻小区发生beam failure时使用的SR的时域资源与上报服务小区发生beam failure时SR的时域资源不同;和/或,上报第一邻小区发送beam failure时使用的SR的频域资源与上报服务小区发生beam failure时SR的频域资源不同。
2)上报第一邻小区发生beam failure时使用的SR与上报服务小区发送beam failure时使用的SR码字指示方法不同。
在一些实施例中,调度请求中包括指示字段,当该指示字段取第一取值,则该指示字段用于指示邻小区发生beam failure;当指示字段取第二取值时,则表示服务小区发生beam failure。也即,在SR码字的原有基础上增加一个指示字段,用于区分SR的指示对象为服务小区还是邻小区。
以该指示字段为1bit为例,如:当指示字段取值为1时,则表示SR针对邻小区发生beam failure进行指示,当指示字段取值为0时,则表示SR针对服务小区发生beam failure进行指示。
在一些实施例中,当服务小区和第一邻小区用于BFR的SR存在资源碰撞,且仅1bit字段可用于指示beam failure时,优先发送服务小区的SR。
以该指示字段为2bit为例,如:当指示字段取值为00,则表示存在上行数据需要发送,01则表示服务小区发生beam failure,10则表示邻小区发生beam failure,11则表示同时存在上行数据需要发送,且服务小区和/或邻小区发生beam failure。
第二、通过PUSCH上报beam failure信息
在一些实施例中,通过PUSCH上报beam failure信息时,beam failure信息 用于指示第一邻小区的小区编号,也即,通过PUSCH上报发生beam failure的第一邻小区的小区编号。在一些实施例中,通过PUSCH发送指示信令,该指示信令中包括发生beam failure的第一邻小区的小区编号。在一些实施例中,通过PUSCH上的媒体介入控制控制单元MAC CE信令发送发生beam failure的第一邻小区的小区编号。
在一些实施例中,服务小区与邻小区联合编号;或,服务小区与邻小区独立编号。
当服务小区与邻小区联合编号时,从服务小区与邻小区的联合编号中确定第一邻小区的小区编号;或,当服务小区与邻小区独立编号时,从邻小区的独立编号中确定第一邻小区的小区编号。
示意性的,当服务小区与邻小区联合编号,则邻小区也使用SCell编号依次取值1,2,3,…;当服务小区与邻小区独立编号,则邻小区的编号为邻小区(Neighboring Cell,NCell)编号,依次取值0,1,2,3,…。
在一些实施例中,通过PUSCH上报beam failure信息时,可以在确定第一邻小区发生beam failure后,通过PUSCH上报第一邻小区的小区编号,也即,上述指示信令中包括第一邻小区的小区编号;也可以确定第一邻小区发生beam failure,且确定第一邻小区的新波束方向后,通过PUSCH上报第一邻小区的小区编号,以及指示第一邻小区的新波束方向;还可以确定第一邻小区发生beam failure时,通过PUSCH上报第一邻小区的小区编号,并指示第一邻小区无新波束方向。
终端在检测到第一邻小区发生beam failure时,检测第一邻小区的候选波束对应的候选RS资源,并响应于第一候选RS资源对应的参考信号接收功率RSRP达到第二门限时,通过PUSCH上报新波束方向指示信息,新波束方向指示信息包括第一候选参考信号资源对应的参考信号资源编号;或,通过PUSCH上报新波束方向指示信息,新波束方向指示信息用于指示无新波束方向,在一些实施例中,当检测第一邻小区的候选波束对应的候选RS资源时,未检测到RSRP达到第二门限的候选RS资源时,通过新波束方向指示信息指示第一邻小区无新波束方向。
步骤505,向第一邻小区上报beam failure信息。
在一些实施例中,向第一邻小区上报beam failure信息时,可以通过物理随机接入信道(Physical Random Access Channel,PRACH)向第一邻小区上报beam  failure信息,该beam failure信息用于指示第一邻小区发生beam failure。在一些实施例中,终端在检测到第一邻小区发生beam failure之后,检测第一邻小区的候选波束对应的候选RS资源,当存在第二候选RS资源对应的参考信号接收功率RSRP达到第二门限时,终端根据该RS资源对应的PRACH时频码资源,在相应的PRACH时频资源上发送相应的随机接入前导码,即发送beam failure信息指示告知第一邻小区发生beam failure。
在一些实施例中,上述第二候选RS资源与第一候选RS资源可以是同一个候选RS资源,也可以是不同的候选RS资源,本申请实施例对此不加以限定。
在一些实施例中,向第一邻小区上报beam failure信息时,当终端设备与网络设备之间的上下行信道不对称时,也可以通过PUCCH或PUSCH上报;当终端设备与网络设置之间的上下行信道对称时,则通过PUCCH或PUSCH上报beam failure信息会由于beam failure而发送失败。
综上所述,本申请实施例提供的波束失败的检测方法,通过配置的目标参考信号资源,或者默认的参考信号资源实现对邻小区的波束失败检测,提供了邻小区的波束失败检测方法。
本实施例提供的方法,通过PUCCH或PUSCH上报beam failure信息,从而服务小区的网络设备或者邻小区的网络设备能够接收到邻小区的beam failure信息,对邻小区发生的beam failure进行获知,并从而实现beam failure的恢复。
图6是本申请一个示例性实施例提供的波束失败的检测方法的流程图,以该方法应用于如图1所示的终端设备和网络设备中为例,如图6所示,该方法包括:
步骤601,终端设备确定用于第一邻小区beam failure检测的目标参考信号资源。
目标参考信道资源可以是基站向终端设备专门配置的用于第一邻小区beam failure检测的参考信号资源,也可以是默认参考信号资源。
步骤602,响应于目标参考信号资源的信道质量低于第一门限,终端设备确定第一邻小区发生beam failure。
在一些实施例中,当UE检测到第一邻小区所有需要被检测的目标RS资源的信道质量都低于第一门限时,则确定第一邻小区发生了beam failure。
步骤603,终端设备上报第一邻小区的beam failure信息。
在一些实施例中,终端设备可以向服务小区的网络设备上报第一邻小区的beam failure信息,也可以向邻小区的网络设备上报第一邻小区的beam failure信息,还可以既向服务小区的网络设备上报第一邻小区的beam failure信息,又向邻小区的网络设备上报第一邻小区的beam failure信息。其中,终端设备可以向第一邻小区本身上报beam failure信息,也可以向第二邻小区上报beam failure信息。
步骤604,网络设备接收终端上报的beam failure信息。
在一些实施例中,该网络设备可以是终端设备的服务小区对应的网络设备,也可以是终端设备的邻小区对应的网络设备。
在一些实施例中,在接收beam failure信息时,当网络设备为服务小区的网络设备,或第二邻小区的网络设备时,可以通过PUCCH接收beam failure信息,也可以通过PUSCH接收beam failure信息。
对通过PUCCH接收beam failure信息和通过PUSCH接收beam failure信息分别进行说明:
第一、通过PUCCH接收beam failure信息
使用PUCCH中用于BFR的SR进行上报。其中,上报第一邻小区发生beam failure时使用的调度请求,与上报服务小区发生beam failure时使用的调度请求,时频域资源和码字指示方法相同;或,上报第一邻小区发生beam failure时使用的调度请求,与上报服务小区发生beam failure时使用的调度请求时频域资源不同;或,上报第一邻小区发生beam failure时使用的调度请求,与上报服务小区发生beam failure时使用的调度请求码字指示方法不同。
第二、通过PUSCH接收beam failure信息
在一些实施例中,从PUSCH接收指示信令,指示信令中包括发生beam failure的第一邻小区的小区编号。
在一些实施例中,服务小区与邻小区联合编号;或,服务小区与邻小区独立编号。
当服务小区与邻小区联合编号时,从联合编号中确定指示信令中指示的小区编号对应的第一邻小区;或,当服务小区与邻小区独立编号时,从邻小区的独立编号中确定指示信令中指示的小区编号对应的第一邻小区。
在一些实施例中,指示信令中还包括新波束方向指示信息。其中,该新波束方向指示信息包括第一候选参考信号资源的参考信号资源编号,第一候选参 考信号资源为参考信号接收功率达到第二门限的候选信号资源;或,新波束方向指示信息用于指示第一邻小区无新波束方向,也即,未检测到候选参考信号资源的参考信号接收功率达到第二门限。
在一些实施例中,当网络设备为第一邻小区的网络设备时,可以通过PRACH接收beam failure信息,该beam failure信息用于指示第一邻小区本身与终端设备之间发生beam failure。
综上所述,本申请实施例提供的波束失败的检测方法,通过配置的目标参考信号资源,或者默认的参考信号资源实现对邻小区的波束失败检测,提供了邻小区的波束失败检测方法。
本实施例提供的方法,通过PUCCH或PUSCH上报beam failure信息,从而服务小区的网络设备或者邻小区的网络设备能够接收到邻小区的beam failure信息,对邻小区发生的beam failure进行获知,并从而实现beam failure的恢复。
图7是本申请一个示例性实施例提供的波束失败的检测装置的结构框图,以该装置应用于终端设备中为例,所述装置包括:
处理模块710,被配置为确定用于第一邻小区波束失败beam failure检测的目标参考信号资源;
所述处理模块710,还被配置为根据所述目标参考信号资源对所述第一邻小区进行beam failure检测。
在一个可选的实施例中,所述装置,还包括:
接收模块720,被配置为接收配置信令,所述配置信令包括目标信息字段,所述目标信息字段用于指示接收所述目标参考信号资源的时频资源位置,所述目标参考信号资源包括一个或多个参考信号资源。
在一个可选的实施例中,所述目标参考信号资源包括默认参考信号资源;所述默认参考信号资源包括所述第一邻小区的控制资源集合的传输配置指示TCI状态对应的参考信号资源。
在一个可选的实施例中,所述处理模块710,还被配置为确定所述第一邻小区的n个所述控制资源集合中的m个所述控制资源集合;确定m个所述控制资源集合的所述TCI状态对应的所述参考信号资源为所述默认参考信号资源,其中m、n为正整数,且m<n。
在一个可选的实施例中,所述处理模块710,还被配置为响应于所述目标参 考信号资源的信道质量低于第一门限,确定所述第一邻小区发生beam failure。
在一个可选的实施例中,所述装置还包括:
发送模块730,被配置为向服务小区上报所述第一邻小区的beam failure信息;
和/或,
所述发送模块730,还被配置为向第二邻小区上报所述第一邻小区的beam failure信息。
在一个可选的实施例中,所述发送模块730,还被配置为通过物理上行控制信道PUCCH上报所述beam failure信息;
和/或,
所述发送模块730,还被配置为通过物理上行分享信道PUSCH上报所述beam failure信息。
在一个可选的实施例中,所述发送模块730,还被配置为通过所述PUCCH中用于波束失败恢复的调度请求上报所述beam failure信息。
在一个可选的实施例中,上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频域资源和码字指示方法相同。
在一个可选的实施例中,上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频域资源不同;
或,
上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,码字指示方法不同。
在一个可选的实施例中,所述发送模块730,还被配置为通过所述PUSCH上报发生beam failure的所述第一邻小区的小区编号。
在一个可选的实施例中,所述处理模块710,还被配置为从所述服务小区与邻小区的联合编号中确定所述第一邻小区的所述小区编号;
或,
所述处理模块710,还被配置为从邻小区的独立编号中确定所述第一邻小区的所述小区编号。
在一个可选的实施例中,所述发送模块730,还被配置为检测所述第一邻小 区的候选波束对应的候选参考信号资源;
所述发送模块730,还被配置为响应于第一候选参考信号资源对应的参考信号接收功率达到第二门限,通过所述PUSCH上报新波束方向指示信息,所述新波束方向指示信息包括所述第一候选参考信号资源对应的参考信号资源编号;或,所述发送模块730,还用于响应于未检测到参考信号接收功率达到第二门限的所述候选参考信号资源,通过所述PUSCH上报所述新波束方向指示信息,所述新波束方向指示信息包括用于指示无新波束方向的信息字段。
在一个可选的实施例中,所述发送模块730,还被配置为向所述第一邻小区上报所述beam failure信息。
在一个可选的实施例中,所述发送模块730,还被配置为通过物理随机接入信道PRACH向所述第一邻小区上报所述beam failure信息。
图8是本申请一个示例性实施例提供的波束失败的检测装置的结构框图,以该装置应用于网络设备中为例,所述装置包括:
发送模块810,被配置为向终端发送配置信令,所述配置信令中包括目标信息字段,所述目标信息字段用于指示接收目标参考信号资源的时频资源位置,所述目标参考信号资源用于所述终端对第一邻小区进行波束失败beam failure检测。
在一个可选的实施例中,所述装置还包括:
接收模块820,被配置为接收所述终端上报的beam failure信息,所述beam failure信息用于指示所述第一邻小区发生beam failure。
在一个可选的实施例中,所述接收模块820,还用于通过物理上行控制信道PUCCH接收所述beam failure信息;
和/或,
所述接收模块820,还被配置为通过物理上行分享信道PUSCH接收所述beam failure信息。
在一个可选的实施例中,所述接收模块820,还被配置为通过所述PUCCH中接收用于波束失败恢复的调度请求,所述调度请求中包括所述beam failure信息。
在一个可选的实施例中,上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求的时频域资源 和码字指示方法相同。
在一个可选的实施例中,上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频资源位置不同;
或,
上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,码字指示方法不同。
在一个可选的实施例中,所述接收模块820,还被配置为通过所述PUSCH接收指示信令,所述指示信令中包括发生beam failure的所述第一邻小区的小区编号。
在一个可选的实施例中,所述指示信令中还包括新波束方向指示信息;
所述新波束方向指示信息包括第一候选参考信号资源的参考信号资源编号,所述第一候选参考信号资源为参考信号接收功率达到第二门限的候选信号资源;或,所述新波束方向指示信息用于指示无新波束方向。
综上所述,本申请实施例提供的波束失败的检测装置,通过配置的目标参考信号资源,或者默认的参考信号资源实现对邻小区的波束失败检测,提供了邻小区的波束失败检测方法。
图9示出了本申请一个示例性实施例提供的通信设备900(终端设备或网络设备)的结构示意图,该通信设备900包括:处理器901、接收器902、发射器903、存储器904和总线905。
处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器902和发射器903可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器904通过总线905与处理器901相连。
存储器904可用于存储至少一个指令,处理器901用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可 擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请一示例性实施例还提供了一种波束失败的检测系统,所述系统包括:终端设备和网络设备;
所述终端设备包括如图7所示实施例提供的波束失败的检测装置;
所述网络设备包括如图8所示实施例提供的波束失败的检测装置。
本申请一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的波束失败的检测方法中由终端执行的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (49)

  1. 一种波束失败的检测方法,其特征在于,应用于终端设备中,所述方法包括:
    确定用于第一邻小区波束失败beam failure检测的目标参考信号资源;
    根据所述目标参考信号资源对所述第一邻小区进行beam failure检测。
  2. 根据权利要求1所述的方法,其特征在于,所述确定用于第一邻小区beam failure检测的目标参考信号资源,还包括:
    接收配置信令,所述配置信令包括目标信息字段,所述目标信息字段用于指示接收所述目标参考信号资源的时频资源位置,所述目标参考信号资源包括一个或多个参考信号资源。
  3. 根据权利要求1所述的方法,其特征在于,所述目标参考信号资源包括默认参考信号资源;所述默认参考信号资源包括所述第一邻小区的控制资源集合的传输配置指示TCI状态对应的参考信号资源。
  4. 根据权利要求3所述的方法,其特征在于,所述确定用于第一邻小区beam failure检测的目标参考信号资源,包括:
    确定所述第一邻小区的n个所述控制资源集合中的m个所述控制资源集合;
    确定m个所述控制资源集合的所述TCI状态对应的所述参考信号资源为所述默认参考信号资源,其中m、n为正整数,且m<n。
  5. 根据权利要求1至4中任一所述的方法,其特征在于,所述根据所述目标参考信号资源对所述第一邻小区进行beam failure检测,包括:
    响应于所述目标参考信号资源的信道质量低于第一门限,确定所述第一邻小区发生beam failure。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向服务小区上报所述第一邻小区的beam failure信息;
    和/或,
    向第二邻小区上报所述第一邻小区的beam failure信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    通过物理上行控制信道PUCCH上报所述beam failure信息;
    和/或,
    通过物理上行分享信道PUSCH上报所述beam failure信息。
  8. 根据权利要求7所述的方法,其特征在于,所述通过物理上行控制信道PUCCH上报所述beam failure信息,包括:
    通过所述PUCCH中用于波束失败恢复的调度请求上报所述beam failure信息。
  9. 根据权利要求8所述的方法,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频域资源和码字指示方法相同。
  10. 根据权利要求8所述的方法,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频域资源不同;
    或,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,码字指示方法不同。
  11. 根据权利要求7所述的方法,其特征在于,所述通过物理上行分享信道PUSCH上报所述beam failure信息,包括:
    通过所述PUSCH上报发生beam failure的所述第一邻小区的小区编号。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    从所述服务小区与邻小区的联合编号中确定所述第一邻小区的所述小区编号;
    或,
    从邻小区的独立编号中确定所述第一邻小区的所述小区编号。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    检测所述第一邻小区的候选波束对应的候选参考信号资源;
    响应于第一候选参考信号资源对应的参考信号接收功率达到第二门限,通过所述PUSCH上报新波束方向指示信息,所述新波束方向指示信息包括所述第一候选参考信号资源对应的参考信号资源编号;或,响应于未检测到参考信号接收功率达到第二门限的所述候选参考信号资源,通过所述PUSCH上报所述新波束方向指示信息,所述新波束方向指示信息包括用于指示无新波束方向的信息字段。
  14. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向所述第一邻小区上报所述beam failure信息。
  15. 根据权利要求14所述的方法,其特征在于,所述向所述第一邻小区上报所述beam failure信息,包括:
    通过物理随机接入信道PRACH向所述第一邻小区上报所述beam failure信息。
  16. 一种波束失败的检测方法,其特征在于,应用于网络设备中,所述方法包括:
    向终端发送配置信令,所述配置信令中包括目标信息字段,所述目标信息字段用于指示接收目标参考信号资源的时频资源位置,所述目标参考信号资源用于所述终端对第一邻小区进行波束失败beam failure检测。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收所述终端上报的beam failure信息,所述beam failure信息用于指示所述第一邻小区发生beam failure。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    通过物理上行控制信道PUCCH接收所述beam failure信息;
    和/或,
    通过物理上行分享信道PUSCH接收所述beam failure信息。
  19. 根据权利要求18所述的方法,其特征在于,所述通过物理上行控制信道PUCCH接收所述beam failure信息,包括:
    通过所述PUCCH中接收用于波束失败恢复的调度请求,所述调度请求中包括所述beam failure信息。
  20. 根据权利要求19所述的方法,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求的时频域资源和码字指示方法相同。
  21. 根据权利要求19所述的方法,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频资源位置不同;
    或,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,码字指示方法不同。
  22. 根据权利要求18所述的方法,其特征在于,所述通过物理上行分享信道PUSCH接收所述beam failure信息,包括:
    通过所述PUSCH接收指示信令,所述指示信令中包括发生beam failure的所述第一邻小区的小区编号。
  23. 根据权利要求22所述的方法,其特征在于,所述指示信令中还包括新波束方向指示信息;
    所述新波束方向指示信息包括第一候选参考信号资源的参考信号资源编号,所述第一候选参考信号资源为参考信号接收功率达到第二门限的候选信号 资源;或,所述新波束方向指示信息用于指示无新波束方向。
  24. 一种波束失败的检测装置,其特征在于,应用于终端设备中,所述装置包括:
    处理模块,被配置为确定用于第一邻小区波束失败beam failure检测的目标参考信号资源;
    所述处理模块,还被配置为根据所述目标参考信号资源对所述第一邻小区进行beam failure检测。
  25. 根据权利要求24所述的装置,其特征在于,所述装置,还包括:
    接收模块,被配置为接收配置信令,所述配置信令包括目标信息字段,所述目标信息字段用于指示接收所述目标参考信号资源的时频资源位置,所述目标参考信号资源包括一个或多个参考信号资源。
  26. 根据权利要求24所述的装置,其特征在于,所述目标参考信号资源包括默认参考信号资源;所述默认参考信号资源包括所述第一邻小区的控制资源集合的传输配置指示TCI状态对应的参考信号资源。
  27. 根据权利要求26所述的装置,其特征在于,所述处理模块,还被配置为确定所述第一邻小区的n个所述控制资源集合中的m个所述控制资源集合;确定m个所述控制资源集合的所述TCI状态对应的所述参考信号资源为所述默认参考信号资源,其中m、n为正整数,且m<n。
  28. 根据权利要求24至27中任一所述的装置,其特征在于,所述处理模块,还被配置为响应于所述目标参考信号资源的信道质量低于第一门限,确定所述第一邻小区发生beam failure。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括:
    发送模块,被配置为向服务小区上报所述第一邻小区的beam failure信息;
    和/或,
    所述发送模块,还被配置为向第二邻小区上报所述第一邻小区的beam failure信息。
  30. 根据权利要求29所述的装置,其特征在于,
    所述发送模块,还被配置为通过物理上行控制信道PUCCH上报所述beam failure信息;
    和/或,
    所述发送模块,还被配置为通过物理上行分享信道PUSCH上报所述beam failure信息。
  31. 根据权利要求30所述的装置,其特征在于,所述发送模块,还被配置为通过所述PUCCH中用于波束失败恢复的调度请求上报所述beam failure信息。
  32. 根据权利要求31所述的装置,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频域资源和码字指示方法相同。
  33. 根据权利要求31所述的装置,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频域资源不同;
    或,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,码字指示方法不同。
  34. 根据权利要求30所述的装置,其特征在于,所述发送模块,还被配置为通过所述PUSCH上报发生beam failure的所述第一邻小区的小区编号。
  35. 根据权利要求34所述的装置,其特征在于,
    所述处理模块,还被配置为从所述服务小区与邻小区的联合编号中确定所述第一邻小区的所述小区编号;
    或,
    所述处理模块,还被配置为从邻小区的独立编号中确定所述第一邻小区的所述小区编号。
  36. 根据权利要求34所述的装置,其特征在于,所述发送模块,还被配置为检测所述第一邻小区的候选波束对应的候选参考信号资源;
    所述发送模块,还被配置为响应于第一候选参考信号资源对应的参考信号接收功率达到第二门限,通过所述PUSCH上报新波束方向指示信息,所述新波束方向指示信息包括所述第一候选参考信号资源对应的参考信号资源编号;或,所述发送模块,还被配置为响应于未检测到参考信号接收功率达到第二门限的所述候选参考信号资源,通过所述PUSCH上报所述新波束方向指示信息,所述新波束方向指示信息包括用于指示无新波束方向的信息字段。
  37. 根据权利要求28所述的装置,其特征在于,所述发送模块,还被配置为向所述第一邻小区上报所述beam failure信息。
  38. 根据权利要求37所述的装置,其特征在于,所述发送模块,还被配置为通过物理随机接入信道PRACH向所述第一邻小区上报所述beam failure信息。
  39. 一种波束失败的检测装置,其特征在于,应用于网络设备中,所述装置包括:
    发送模块,被配置为向终端发送配置信令,所述配置信令中包括目标信息字段,所述目标信息字段用于指示接收目标参考信号资源的时频资源位置,所述目标参考信号资源用于所述终端对第一邻小区进行波束失败beam failure检测。
  40. 根据权利要求39所述的装置,其特征在于,所述装置还包括:
    接收模块,被配置为接收所述终端上报的beam failure信息,所述beam failure信息用于指示所述第一邻小区发生beam failure。
  41. 根据权利要求40所述的装置,其特征在于,
    所述接收模块,还被配置为通过物理上行控制信道PUCCH接收所述beam failure信息;
    和/或,
    所述接收模块,还被配置为通过物理上行分享信道PUSCH接收所述beam failure信息。
  42. 根据权利要求41所述的装置,其特征在于,所述接收模块,还被配置为通过所述PUCCH中接收用于波束失败恢复的调度请求,所述调度请求中包括所述beam failure信息。
  43. 根据权利要求42所述的装置,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求的时频域资源和码字指示方法相同。
  44. 根据权利要求42所述的装置,其特征在于,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,时频资源位置不同;
    或,
    上报所述第一邻小区发生beam failure时使用的调度请求,与上报所述服务小区发生beam failure时使用的调度请求,码字指示方法不同。
  45. 根据权利要求41所述的装置,其特征在于,所述接收模块,还被配置为通过所述PUSCH接收指示信令,所述指示信令中包括发生beam failure的所述第一邻小区的小区编号。
  46. 根据权利要求45所述的装置,其特征在于,所述指示信令中还包括新波束方向指示信息;
    所述新波束方向指示信息包括第一候选参考信号资源的参考信号资源编 号,所述第一候选参考信号资源为参考信号接收功率达到第二门限的候选信号资源;或,所述新波束方向指示信息用于指示无新波束方向。
  47. 一种终端设备,其特征在于,所述终端设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至15任一所述的波束失败的检测方法。
  48. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求16至23任一所述的波束失败的检测方法。
  49. 一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集由处理器加载并执行以实现如权利要求1至23任一所述的波束失败的检测方法。
PCT/CN2020/083873 2020-04-09 2020-04-09 波束失败的检测方法、装置、设备及可读存储介质 WO2021203342A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20929767.0A EP4135472A4 (en) 2020-04-09 2020-04-09 METHOD, APPARATUS AND APPARATUS FOR DETECTING RADIATION DEFECTS AND READABLE STORAGE MEDIUM
JP2022560050A JP2023521650A (ja) 2020-04-09 2020-04-09 ビーム失敗検出方法、装置、デバイス及び読み取り可能な記憶媒体
US17/915,896 US20230143378A1 (en) 2020-04-09 2020-04-09 Method for beam failure detection, and terminal device
KR1020227038653A KR20220164041A (ko) 2020-04-09 2020-04-09 빔 실패 검출 방법, 장치, 기기 및 판독 가능 저장 매체
PCT/CN2020/083873 WO2021203342A1 (zh) 2020-04-09 2020-04-09 波束失败的检测方法、装置、设备及可读存储介质
CN202080000705.7A CN111543024B (zh) 2020-04-09 2020-04-09 波束失败的检测方法、装置、设备及可读存储介质
BR112022020226A BR112022020226A2 (pt) 2020-04-09 2020-04-09 Método para detecção de falha de feixe, e, dispositivos terminal e de rede

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083873 WO2021203342A1 (zh) 2020-04-09 2020-04-09 波束失败的检测方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021203342A1 true WO2021203342A1 (zh) 2021-10-14

Family

ID=71979907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083873 WO2021203342A1 (zh) 2020-04-09 2020-04-09 波束失败的检测方法、装置、设备及可读存储介质

Country Status (7)

Country Link
US (1) US20230143378A1 (zh)
EP (1) EP4135472A4 (zh)
JP (1) JP2023521650A (zh)
KR (1) KR20220164041A (zh)
CN (1) CN111543024B (zh)
BR (1) BR112022020226A2 (zh)
WO (1) WO2021203342A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211219A1 (en) * 2022-04-27 2023-11-02 Samsung Electronics Co., Ltd. Method and device for receiving and transmitting information

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4203337A4 (en) * 2020-08-21 2024-05-01 Beijing Xiaomi Mobile Software Co Ltd METHOD FOR DETERMINING BEAM FAILURE AND APPARATUS, DEVICE AND RECORDING MEDIUM
CN114258054A (zh) * 2020-09-25 2022-03-29 展讯通信(上海)有限公司 传输接收点的确定方法及装置
WO2022120601A1 (zh) * 2020-12-08 2022-06-16 北京小米移动软件有限公司 小区切换方法及装置、通信设备和存储介质
WO2022141303A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 通信方法和通信装置
WO2022151102A1 (zh) * 2021-01-13 2022-07-21 北京小米移动软件有限公司 调度请求资源的确定方法、装置及通信设备
US20240138017A1 (en) * 2021-03-04 2024-04-25 Beijing Xiaomi Mobile Software Co., Ltd. Beam configuration method, beam configuration apparatus and storage medium
EP4319238A4 (en) * 2021-03-30 2024-05-01 Beijing Xiaomi Mobile Software Co Ltd METHOD AND DEVICE FOR DETERMINING A STANDARD BEAM AND COMMUNICATION DEVICE
CN115208439A (zh) * 2021-04-12 2022-10-18 维沃移动通信有限公司 多发送接收点的波束失败恢复方法、装置、设备及可读存储介质
CN115378559A (zh) * 2021-05-18 2022-11-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115913475B (zh) * 2021-08-02 2024-05-24 维沃移动通信有限公司 波束信息确定方法、装置、通信设备及存储介质
WO2023030425A1 (zh) * 2021-09-06 2023-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN115811372A (zh) * 2021-09-14 2023-03-17 中国移动通信有限公司研究院 信息传输方法、装置、网络侧设备及终端
WO2023051406A1 (zh) * 2021-09-29 2023-04-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116156629A (zh) * 2021-11-17 2023-05-23 华为技术有限公司 波束恢复方法、波束失败检测方法以及相关装置
WO2023130390A1 (zh) * 2022-01-07 2023-07-13 富士通株式会社 小区间的波束管理方法及装置
CN117579238A (zh) * 2022-08-07 2024-02-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032017A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) APPARATUSES AND METHODS FOR ACHIEVING BEAM RECOVERY

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3033533A1 (en) * 2018-02-09 2019-08-09 Ali Cirik Beam failure recovery procedure in carrier aggregation
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration
CN110831041B (zh) * 2018-08-07 2023-10-27 维沃移动通信有限公司 小区波束失败处理方法、移动通信终端和网络侧设备
SG11202102430XA (en) * 2018-09-10 2021-04-29 Beijing Xiaomi Mobile Software Co Ltd Method and device for reporting beam failure of secondary serving cell, and storage medium
CN110913428B (zh) * 2018-09-14 2022-04-26 大唐移动通信设备有限公司 一种信息上报方法、信息获取方法、终端及网络设备
CN110972171B (zh) * 2018-09-28 2022-05-06 维沃移动通信有限公司 波束失败恢复请求传输方法、终端设备及网络设备
BR112021021136A2 (pt) * 2019-04-25 2021-12-14 Beijing Xiaomi Mobile Software Co Ltd Método, aparelho e dispositivo para relatar uma falha de feixe, e, meio de armazenamento legível por computador não transitório
WO2021087786A1 (zh) * 2019-11-05 2021-05-14 北京小米移动软件有限公司 波束失败请求资源分配方法、装置及存储介质
CN110945897B (zh) * 2019-11-06 2023-01-10 北京小米移动软件有限公司 波束失败检测资源分配方法、装置及存储介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032017A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) APPARATUSES AND METHODS FOR ACHIEVING BEAM RECOVERY

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussions on node behavior for IAB link management", 3GPP DRAFT; R1-1812567 DISCUSSIONS ON NODE BEHAVIOR FOR IAB LINK MANAGEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, US; 20181112 - 20181116, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051478797 *
See also references of EP4135472A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211219A1 (en) * 2022-04-27 2023-11-02 Samsung Electronics Co., Ltd. Method and device for receiving and transmitting information

Also Published As

Publication number Publication date
CN111543024A (zh) 2020-08-14
JP2023521650A (ja) 2023-05-25
CN111543024B (zh) 2023-07-07
EP4135472A1 (en) 2023-02-15
US20230143378A1 (en) 2023-05-11
KR20220164041A (ko) 2022-12-12
BR112022020226A2 (pt) 2022-11-22
EP4135472A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2021203342A1 (zh) 波束失败的检测方法、装置、设备及可读存储介质
WO2022036709A1 (zh) 波束失败确定方法、装置、设备及存储介质
US20230180304A1 (en) Communication system, communication terminal, and base station for establishing downlink and uplink synchronization with at least one transmitter-receiver
US11937320B2 (en) Method for managing radio link in multi-carrier environment, and device for same
US20220353667A1 (en) Method of connection control for direct communication between terminals, and apparatus therefor
US9854600B2 (en) Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor
US11690105B2 (en) Random access performing method, and device supporting same
KR102138749B1 (ko) 커버리지 확장을 위한 핸드오버
WO2020042123A1 (zh) 发送上行信号的方法和设备
WO2021184170A1 (zh) 数据传输方法、装置、通信设备及存储介质
JP6955024B2 (ja) 無線通信ネットワークにおける通信を扱うための、無線ネットワークノード、および無線ネットワークノードにおいて実施される方法
EP3782317B1 (en) Beam search pilots for paging channel communications
WO2021223221A1 (zh) 上行发送方法、装置、设备及存储介质
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2023086722A1 (en) Techniques for inter-base station messaging for inter-base station cross-link interference mitigation
WO2022077164A1 (zh) 信息的接收、发送方法、装置、设备及可读存储介质
RU2796633C1 (ru) Способ обнаружения отказа луча и оконечное устройство
RU2810605C1 (ru) Способ и устройство для определения отказа луча
WO2023070490A1 (en) Advanced cooperative user equipment update
WO2023013513A1 (ja) 通信システム
WO2022178829A1 (en) Indication of a beam direction associated with a beam application time
WO2021147087A1 (en) Method and apparatus for deactivating user equipment panels
WO2023075665A1 (en) First user equipment, network node and methods for enabling sidelink in a wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560050

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022020226

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227038653

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020929767

Country of ref document: EP

Effective date: 20221109

ENP Entry into the national phase

Ref document number: 112022020226

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221006