WO2023051406A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023051406A1
WO2023051406A1 PCT/CN2022/120902 CN2022120902W WO2023051406A1 WO 2023051406 A1 WO2023051406 A1 WO 2023051406A1 CN 2022120902 W CN2022120902 W CN 2022120902W WO 2023051406 A1 WO2023051406 A1 WO 2023051406A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal resource
resource set
target
node
Prior art date
Application number
PCT/CN2022/120902
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to CN202280007389.5A priority Critical patent/CN116458108A/zh
Publication of WO2023051406A1 publication Critical patent/WO2023051406A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for beam management and link recovery.
  • Network Controlled mobility includes cell level mobility (cell level) and beam level mobility (beam level), where cell level mobility depends on RRC (Radio Resource Control, Radio Resource Control) signaling, beam-level mobility does not involve RRC signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • Beam Management was only for beam management (Beam Management) in a single cell.
  • the 3GPP RAN#80 meeting decided to carry out the "Further enhancements on MIMO for NR" work item (Work Iterm, WI), which supports multi-beam (multi-beam) operation (operation), aiming at Layer 1 (Layer 1, L1)/Layer Two (Layer 2, L2)-centric inter-cell mobility (L1/L2-centric inter-cell mobility) and inter-cell multi-TRP (multiple Transmit/Receive Point, mTRP) are enhanced.
  • Working Iterm, WI Work Iterm, WI
  • Layer 1 Layer 1, L1/Layer Two (Layer 2, L2)-centric inter-cell mobility
  • inter-cell multi-TRP multiple Transmit/Receive Point
  • 3GPP introduced the BFR (Beam Failure Recovery, beam failure recovery) mechanism.
  • UE User Equipment, user equipment evaluates according to a set of reference signals belonging to the serving cell. If the evaluation result is worse than the predetermined threshold for a number of times The predetermined value triggers a BFR or random access (Random Access, RA) process.
  • RA Random Access
  • the network configures at least one additional cell for the UE through the RRC message for the serving cell, and the UE is within the coverage of the serving cell.
  • the TRP of the additional cell is used for data transmission, and the additional cell and the serving cell have different PCIs (Physical Cell Identifier, physical cell identifier).
  • the measurement reference signal resource set used to determine whether to trigger the BFR mechanism, and the candidate reference signal resource set used for selection and reporting are all obtained through network side configuration, and the terminal device will not trigger and change the above two A set of reference signal resources.
  • the terminal can implicitly inform the base station which TRP it is under the coverage of according to the PCI associated with the reported reference signal resources, and then the reference signal resources reported in the above beam management process can be applied to BFR , to improve the efficiency of the BFR process.
  • the present application provides a solution.
  • the uu interface scenario is used as an example; the present application is also applicable to, for example, a sidelink (Sidelink) scenario, and achieves a technical effect similar to that in the uu interface scenario.
  • Sidelink Sidelink
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • This application is also applicable to other scenarios facing similar problems (such as self-organizing networks, or scenarios where the central node is a non-base station node, or high-speed mobile scenarios, or for different application scenarios, such as eMBB and URLLC, similar technologies can also be obtained Effect.
  • the present application discloses a method in a first node for wireless communication, including:
  • the first message is used to determine a first reference signal resource pool, where the first reference signal resource pool includes at least one reference signal resource;
  • the first counter is incremented by 1; as a response to the first counter reaching the first value, sending a second a wireless signal, the second wireless signal being used for beam failure recovery;
  • the second wireless signal indicates a second reference signal resource; the second reference signal resource is related to the first target reference signal resource set.
  • a technical feature of the above method is: applying the first reference signal resource reported by the first wireless signal used for beam management to the BFR process to affect the selection of the first node
  • the first target reference signal resource set which affects the beam set used to detect whether BLF (Beam Link Failure, beam link failure) occurs in the wireless link, is used to reflect the coverage of which TRP the first node is located in below, or used to reflect which TRP the first node tends to be served by.
  • the serving base station of the first node has two TRPs, namely the first TRP and the second TRP; Under the beam signal coverage under the first TRP, the first node monitors the beams in the beam set for BLF monitoring corresponding to the first TRP to determine whether it is BLF; when the first node passes the beam management process Finding that it is under the coverage of the beam signal under the second TRP, the first node monitors the beam in the beam set for BLF monitoring corresponding to the second TRP to determine whether it is BLF; the above method is compared with the existing Some solutions can better reflect the advantages and benefits brought by mTRP, and can reduce unnecessary power consumption of terminals.
  • the first reference signal resource pool includes a first reference signal resource set and a second reference signal resource set; the first reference signal resource set and the second reference signal resource set are respectively associated to a first physical cell identity and a second physical cell identity; when the first reference signal resource is associated to the first physical cell identity, the first target reference signal resource set is the first reference signal resource A set; when the first reference signal resource is associated with the second physical cell identity, the first set of target reference signal resources is the second set of reference signal resources.
  • the second reference signal resource is a reference signal resource in the second target reference signal resource set;
  • the second reference signal resource pool includes a third reference signal resource set and a fourth reference signal resource set;
  • the third reference signal resource set and the fourth reference signal resource set are respectively associated to a first physical cell identity and a second physical cell identity; when the first target reference signal resource set is associated to the first When the physical cell identity is used, the second target reference signal resource set is the third reference signal resource set; when the first target reference signal resource set is associated with the second physical cell identity, the second The target reference signal resource set is the fourth reference signal resource set.
  • the technical feature of the above method is that: when the beam set used for BLF monitoring is associated with the first reference signal resource used for beam management reporting, the beam set used to recommend the beam belongs also Establishing a relationship with the first reference signal resource; that is, when the first node judges that BLF has occurred in the beam set used for BLF monitoring corresponding to the first TRP, the first node is in the Selecting one of the candidate beam sets corresponding to the first TRP to report for BFR; when the first node judges that BLF has occurred through monitoring beams in the beam set for BLF monitoring corresponding to the second TRP, The first node selects one of the candidate beam sets corresponding to the second TRP to report for BFR.
  • the first signaling is used to determine that the demodulation reference signal of the PDCCH in the control resource set 0 and the first reference signal resource are quasi co-located.
  • the technical feature of the above method is: confirming to the first node the receipt of the first reference signal resource through the first signaling, and then the spatial reception parameter corresponding to the first reference signal resource It will be used to receive the control signaling transmitted in CORESET (Control Resource Set, control resource set) #0.
  • CORESET Control Resource Set, control resource set
  • the first time-frequency resource set is associated with control resource set 0, and the second reference signal resource is quasi-co-located with the demodulation reference signal included in the first time-frequency resource set.
  • the technical feature of the above method is that: when the first node reports the second reference signal resource through the BFR process, the spatial receiving parameters corresponding to the second reference signal resource will be used for CORESET#0 The reception of the control signaling transmitted in.
  • the second reference signal resource is the first reference signal resource, or the second reference signal resource and the first reference signal resource are quasi-co-located.
  • the first wireless signal is used to determine the first TCI state.
  • the technical feature of the above method is that: the first reference signal resource reported by the beam management process can also be used to update the reference signal resource corresponding to the TCI state, and the above method avoids excessive interaction between the base station and the terminal , reducing signaling overhead and improving efficiency.
  • the second reference signal resource is updated into the second reference signal resource pool.
  • the technical feature of the above method is: while reporting the second reference signal resource, update the second reference signal resource to the set of candidate reference signals for reference signal resources recommended in the subsequent BFR process option to further optimize the BFR process and reduce signaling interactions.
  • the present application discloses a method in a second node for wireless communication, including:
  • the receiver of the first message includes the first node; whenever the quality of the first type of radio link evaluated by the first node according to the first target reference signal resource set is worse than the first threshold, the first The counter is increased by 1; as a response to the first counter reaching the first value, the first node sends a second wireless signal; the second wireless signal indicates a second reference signal resource; the second reference signal resource and the related to the first target reference signal resource set.
  • the first reference signal resource pool includes a first reference signal resource set and a second reference signal resource set; the first reference signal resource set and the second reference signal resource set are respectively associated to a first physical cell identity and a second physical cell identity; when the first reference signal resource is associated to the first physical cell identity, the first target reference signal resource set is the first reference signal resource A set; when the first reference signal resource is associated with the second physical cell identity, the first set of target reference signal resources is the second set of reference signal resources.
  • the second reference signal resource is a reference signal resource in the second target reference signal resource set;
  • the second reference signal resource pool includes a third reference signal resource set and a fourth reference signal resource set;
  • the third reference signal resource set and the fourth reference signal resource set are respectively associated to a first physical cell identity and a second physical cell identity; when the first target reference signal resource set is associated to the first When the physical cell identity is used, the second target reference signal resource set is the third reference signal resource set; when the first target reference signal resource set is associated with the second physical cell identity, the second The target reference signal resource set is the fourth reference signal resource set.
  • the first signaling is used to determine that the demodulation reference signal of the PDCCH in the control resource set 0 and the first reference signal resource are quasi co-located.
  • the first time-frequency resource set is associated with control resource set 0, and the second reference signal resource is quasi-co-located with the demodulation reference signal included in the first time-frequency resource set.
  • the second reference signal resource is the first reference signal resource, or the second reference signal resource and the first reference signal resource are quasi-co-located.
  • the first wireless signal is used to determine the first TCI state.
  • the second reference signal resource is updated into the second reference signal resource pool.
  • This application discloses a first node for wireless communication, including:
  • the first receiver receives a first message, where the first message is used to determine a first reference signal resource pool, where the first reference signal resource pool includes at least one reference signal resource;
  • a first transmitter sending a first wireless signal for beam management, the first wireless signal indicating a first reference signal resource; determining a first target from the first reference signal resource pool according to at least the first reference signal resource A set of reference signal resources;
  • the first transceiver whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold, the first counter is incremented by 1; as the first counter reaches the first value In response, sending a second wireless signal, the second wireless signal being used for beam failure recovery;
  • the second wireless signal indicates a second reference signal resource; the second reference signal resource is related to the first target reference signal resource set.
  • the present application discloses a second node for wireless communication, including:
  • the second transmitter sends a first message, where the first message is used to determine a first reference signal resource pool, where the first reference signal resource pool includes at least one reference signal resource;
  • the second receiver sends a first wireless signal for beam management, where the first wireless signal indicates a first reference signal resource; and determines a first target from the first reference signal resource pool according to at least the first reference signal resource A set of reference signal resources;
  • a second transceiver receiving a second wireless signal, where the second wireless signal is used for beam failure recovery;
  • the receiver of the first message includes the first node; whenever the quality of the first type of radio link evaluated by the first node according to the first target reference signal resource set is worse than the first threshold, the first The counter is increased by 1; as a response to the first counter reaching the first value, the first node sends a second wireless signal; the second wireless signal indicates a second reference signal resource; the second reference signal resource and the related to the first target reference signal resource set.
  • this application has the following advantages:
  • the first TRP There are two TRPs in the serving base station of the first node, which are the first TRP and the second TRP; when the first node finds that it is under the beam signal coverage of the first TRP through the beam management process, the The first node monitors the beam in the beam set used for BLF monitoring corresponding to the first TRP to determine whether it is BLF; when the first node finds the beam signal located under the second TRP through the beam management process Under coverage, the first node monitors the beams in the beam set used for BLF monitoring corresponding to the second TRP to determine whether it is BLF; the above method can better reflect the advantages and advantages brought by mTRP than the existing scheme Benefits, and can reduce unnecessary power consumption of the terminal;
  • the beam set to which the recommended beam belongs is also associated with the first reference signal resource ; That is, when the first node judges that BLF has occurred through the monitoring beam in the beam set for BLF monitoring corresponding to the first TRP, the first node in the candidate beam corresponding to the first TRP Select one of the set to report for BFR; when the first node judges that BLF has occurred in the beam set for BLF monitoring corresponding to the second TRP, the first node determines that BLF has occurred in the beam set corresponding to the second TRP. Select one of the candidate beam sets corresponding to the TRP to report for BFR;
  • the spatial reception parameter corresponding to the second reference signal resource will be used for receiving the control signaling transmitted in CORESET#0;
  • the first reference signal resource reported in the beam management process can also be used to update the reference signal resource corresponding to the TCI state.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of a first message according to an embodiment of the present application
  • FIG. 6 shows a flowchart of the first signaling according to an embodiment of the present application
  • FIG. 7 shows a flow chart of second signaling according to an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 9 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application.
  • Fig. 10 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application receives the first message in step 101, and the first message is used to determine the first reference signal resource pool; in step 102, the first wireless signal is sent for beam management , the first wireless signal indicates a first reference signal resource, and a first target reference signal resource set is determined from the first reference signal resource pool according to at least the first reference signal resource; in step 103 whenever according to When the first type of radio link quality evaluated by the first target reference signal resource set is worse than the first threshold, the first counter is incremented by 1, and as a response to the first counter reaching the first value, sending a second radio signal, The second wireless signal is used for beam failure recovery.
  • the first reference signal resource pool includes at least one reference signal resource
  • the second wireless signal indicates a second reference signal resource; the second reference signal resource and the first target reference signal resource set related.
  • the first message is used to implicitly indicate the first reference signal resource set.
  • the first message is used to display and indicate the first reference signal resource set.
  • the sender of the first message is the maintenance base station of the serving cell of the first node.
  • the first message is transmitted through the uu interface.
  • the first message is transmitted through the PC5 port.
  • the logical channel of the first message includes BCCH (Broadcast Control Channel, broadcast control channel), or DCCH (Dedicated Control Channel, dedicated control channel), or CCCH (Common Control Channel, public control channel), or SCCH (Sidelink Control Channel, secondary link control channel), or SBCCH (Sidelink Broadcast Control Channel, secondary link broadcast control channel).
  • BCCH Broadcast Control Channel, broadcast control channel
  • DCCH Dedicated Control Channel, dedicated control channel
  • CCCH Common Control Channel, public control channel
  • SCCH Systemlink Control Channel, secondary link control channel
  • SBCCH Seglink Broadcast Control Channel, secondary link broadcast control channel
  • the first message includes a downlink (Downlink, DL) signaling.
  • Downlink Downlink
  • the first message includes sidelink (Sidelink, SL) signaling.
  • the first message is an RRC message.
  • the first message includes at least one RRC message.
  • the first message includes at least one IE (Information element, information element) in the RRC message.
  • IE Information element, information element
  • the first message includes at least one field (Field) in the RRC message.
  • the first message includes an RRCReconfiguration message.
  • the first message includes a SIB1 (System Information Block 1, system information block 1) message.
  • SIB1 System Information Block 1, system information block 1
  • the first message includes a SystemInformation message.
  • the first message is a field other than IE RadioLinkMonitoringConfig or an IE.
  • the first message includes at least one IE other than IE RadioLinkMonitoringConfig.
  • the first message includes M sub-signalings, each of the M sub-signalings includes an IE RadioLinkMonitoringConfig, and M is the number of BWP (Bandwidth Part, bandwidth part).
  • the first message includes at least one IE RadioLinkMonitoringConfig.
  • the first message includes at least two IE RadioLinkMonitoringConfig.
  • the two IEs RadioLinkMonitoringConfig are respectively aimed at the first PCI and the second PCI in this application.
  • the first message includes at least one failureDetectionResourcesToAddModList field.
  • the first message includes at least two failureDetectionResourcesToAddModList fields.
  • the two failureDetectionResourcesToAddModList fields are respectively aimed at the first PCI and the second PCI in this application.
  • the first message is a failureDetectionResourcesToAddModList field.
  • At least one IE or at least one field other than IE RadioLinkMonitoringConfig in the first message indicates the first reference signal resource pool.
  • the first message includes at least one ControlResourceSet IE, and at least one field in the one ControlResourceSet IE indicates the first reference signal resource pool.
  • the first message includes at least one TCI-State IE, and at least one field in the one TCI-State IE indicates the first reference signal resource pool.
  • the first message includes at least one referenceSignal field, and the at least one referenceSignal field indicates the first reference signal resource pool.
  • the IE RadioLinkMonitoringConfig in the first message is used to indicate the first reference signal resource pool.
  • At least one RadioLinkMonitoringRS field in the first message is used to configure a reference signal (Reference Signal, RS) resource (Resource) in the first reference signal resource pool, and the purpose of the RadioLinkMonitoringRS field Domain is set to rlf or both.
  • RS Reference Signal
  • At least one detectionResource field in the first message is used to configure at least one of an index or a type of an RS resource in the first reference signal resource pool.
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: the first message indicates at least one reference signal resource in the first reference signal resource pool.
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: the first message implicitly indicates at least one reference signal resource in the first reference signal resource pool .
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: the first message is used to configure at least one reference signal resource of the first reference signal resource pool .
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: the first message indicates at least one reference signal resource of the first reference signal resource pool.
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: the first message indicates the index of each reference signal resource in the first reference signal resource pool .
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: each reference signal resource in the first reference signal resource pool is configured through the first message.
  • the meaning of the phrase that the first message is used to determine the first reference signal resource pool includes: the reference signal resource in the first reference signal resource pool is the reference signal indicated by the first message resource.
  • the first reference signal resource pool includes M1 reference signal resources, where M1 is a positive integer not greater than M, and M is a positive integer.
  • said M is equal to 1.
  • said M is equal to 2.
  • said M is equal to 4.
  • said M is not greater than 32.
  • At least one reference signal resource in the first reference signal resource pool is a CSI-RS (Channel state information Reference signal, channel state information reference signal) resource.
  • CSI-RS Channel state information Reference signal, channel state information reference signal
  • At least one reference signal resource in the first reference signal resource pool is an SSB (Synchronization Signal Block, synchronization signal block) resource.
  • SSB Synchronization Signal Block, synchronization signal block
  • At least one reference signal resource in the first reference signal resource pool is a SS (Synchronization Signal)/PBCH (Physical Broadcast Channel) block.
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • At least one reference signal resource in the first reference signal resource pool corresponds to one TCI-State.
  • At least one reference signal resource in the first reference signal resource pool corresponds to one TCI-StateId.
  • any reference signal resource in the first reference signal resource pool is periodic (periodic).
  • any reference signal resource in the first reference signal resource pool is aperiodic (aperiodic).
  • any reference signal resource in the first reference signal resource pool is QCL-Type D.
  • one reference signal resource in the first reference signal resource pool is a CSI-RS resource identified by csi-RS-Index, or the one reference signal resource is an SSB resource identified by ssb-Index.
  • one reference signal resource in the first reference signal resource pool is a CSI-RS resource identified by csi-rs, or the one reference signal resource is an SSB resource identified by ssb.
  • one reference signal resource in the first reference signal resource pool is a CSI-RS resource identified by NZP-CSI-RS-ResourceId, or the one reference signal resource is an SSB identified by SSB-Index resource.
  • the first reference signal resource pool is used for RLM (Radio Link Monitoring, radio link monitoring).
  • the first reference signal resource pool is used for link recovery procedures (Link recovery procedures).
  • any reference signal resource in the first reference signal resource pool is sent by a TRP of the maintaining base station of the cell identified by the first PCI in this application.
  • the first reference signal resource pool is one of TS 38.213
  • the first reference signal resource pool corresponds to the
  • the first reference signal resource pool is two in TS 38.213
  • the first reference signal resource pool corresponds to two of TS 38.213
  • the first reference signal resource pool is configured on one BWP.
  • the first reference signal resource pool is determined by failureDetectionResources or beamFailureDetectionResourceList.
  • the first target reference signal resource set is based on the reference signal indicated in the TCI state corresponding to the CORESET (Control resource set, control resource set) used to monitor the PDCCH (Physical Downlink Control Channel, physical downlink control channel) Collection OK.
  • CORESET Control resource set, control resource set
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the first target reference signal resource set is determined by the first node.
  • the meaning of the sentence "whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold, the first counter is increased by 1" includes: according to the The first type of radio link quality evaluated by the first target reference signal resource set is worse than the first threshold, triggering the first counter to increase by 1.
  • the meaning of the sentence "whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold, the first counter is increased by 1" includes: if according to the The first counter is incremented by 1 only if the quality of the first type of wireless link evaluated by the first target reference signal resource set is worse than the first threshold; if the quality of the first type of wireless link evaluated according to the first target reference signal resource set If the link quality is not worse than the first threshold, the first counter is not incremented by 1.
  • the meaning of the sentence "whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold, the first counter is increased by 1" includes: if according to the The quality of the first type of radio link evaluated by the first target reference signal resource set is worse than the first threshold, report an indication of the first type to a higher layer, and when the upper layer receives the indication of the first type, The first counter is incremented by one.
  • the first counter is set to 0.
  • the first counter is set to 0.
  • the meaning of whenever includes: once, or as long as, or if, or as long as.
  • the phrase that the quality of the first type of radio link evaluated according to the first set of target reference signal resources is worse than the first threshold includes: for all reference signal resources in the first set of target reference signal resources The radio link quality of all is worse than the first threshold.
  • the phrase that the quality of the first type of radio link evaluated according to the first set of target reference signal resources is worse than the first threshold includes: for each reference signal in the first set of target reference signal resources The radio link qualities of the resources are all lower than the first threshold.
  • the phrase that the quality of the first type of radio link evaluated according to the first set of target reference signal resources is worse than the first threshold includes: for each reference signal in the first set of target reference signal resources The radio link qualities of the resources are all higher than the first threshold.
  • the first type of radio link quality is evaluated according to the first target reference signal resource set in each evaluation period.
  • the evaluation period of the first type of radio link quality includes at least 1 time unit.
  • the time unit includes a Slot, or a subframe (subframe), or a radio frame (Radio Frame), or a frame, or a plurality of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol, or at least one of multiple SC-FDMA (Single Carrier Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access, single carrier frequency division multiple access
  • the time unit includes a time interval of at least 1 millisecond (ms).
  • the evaluation period of the quality of the first type of radio link is 1 frame (Frame).
  • the evaluation period of the first type of radio link quality is 1 radio frame (Radio Frame).
  • the first threshold is configurable.
  • the first threshold is preconfigured.
  • the first threshold is configured through an RRC message.
  • the first threshold includes a BLER (Block Error Ratio, block error rate) threshold.
  • BLER Block Error Ratio, block error rate
  • the first threshold includes an RSRP (Reference Signal Received Power, reference signal received power) threshold.
  • RSRP Reference Signal Received Power, reference signal received power
  • the first threshold includes a RSRQ (Reference Signal Received Quality, reference signal received quality) threshold.
  • RSRQ Reference Signal Received Quality, reference signal received quality
  • the first threshold includes an SNR (Signal-to-noise ratio, signal-to-noise ratio) threshold.
  • the first threshold includes a SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) threshold.
  • SINR Signal to Interference plus Noise Ratio, signal to interference plus noise ratio
  • the unit of the first threshold is dBm (millidb).
  • the unit of the first threshold is dB (decibel).
  • the first threshold includes Q out .
  • the first threshold is indicated by a field in the RRC message.
  • the first threshold is indicated by an RRC message.
  • the first threshold is indicated by a field in the RRC message, and the name of the field includes rlmInSyncOutOfSyncThreshold.
  • the first threshold is indicated by a field in the RRC message, and the name of the field includes rsrp-ThresholdSSB.
  • the first threshold is indicated by a field in the RRC message, and the name of the field includes rsrp-ThresholdBFR.
  • a first class instructions whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold, a first class instructions.
  • the reporting period of the first type of radio link quality includes at least one time slot.
  • the reporting period of the first type of radio link quality is 2 milliseconds.
  • the reporting period of the first type of radio link quality is 10 milliseconds.
  • the reporting period of the first type of radio link quality is the shortest period of all reference signal resources in the first target reference signal resource set.
  • the behavior as a response that the first counter reaches the first value further includes: the PHY layer of the first node sends the first A class of instructions.
  • the first type of indication is used to indicate to the target higher layer that the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than a first threshold .
  • the first type of indication is used to indicate beam failure to the upper layer of the target.
  • the first type of indication is a beam failure instance indication (beam failure instance indication).
  • the first type of indication is for a cell identified by the first PCI, or the first type of indication is for a cell identified by the second PCI.
  • the physical layer of the first node moves closer to the target of the first node.
  • a higher layer reports an indication of the second type, and the first counter is incremented by 1 as a response to receiving the indication of the second type at the target higher layer of the first node.
  • the behavior of "incrementing the first counter by 1" includes: increasing the count value of the first counter by 1.
  • the behavior "incrementing the first counter by 1" includes: increment the first counter by 1.
  • the first counter is used to count the number of indications of the second type in this application.
  • the first counter is BFI_COUNTER.
  • the name of the first counter includes at least one of BFI, COUNTER, TRP, RS, Set, per, or Per.
  • the first counter is for the cell identified by the first PCI, or the first counter is for the cell identified by the second PCI.
  • the first counter is aimed at a TRP in the cell identified by the first PCI, or the first counter is aimed at a TRP in the cell identified by the second PCI.
  • the first counter is configured in the first node.
  • the first counter is a counter belonging to the first node.
  • the first type of radio link quality includes at least one of RSRP, RSRQ, RSSI (Received Signal Strength Indication, received signal strength indication), SNR or SINR.
  • the first type of wireless link quality is for quality between wireless links.
  • the first type of radio link quality is the quality between the maintenance base station of the cell identified by the first PCI and the first node.
  • the first type of radio link quality is the quality between the maintenance base station of the cell identified by the second PCI and the first node.
  • the first type of radio link quality is the quality between at least one TRP in the cell identified by the first PCI and the first node.
  • the first type of radio link quality is the quality between at least one TRP in the cell identified by the second PCI and the first node.
  • the first type of radio link quality is the quality between all TRPs in the cell identified by the first PCI and the first node.
  • the first type of radio link quality is the quality between all TRPs in the cell identified by the second PCI and the first node.
  • the beam management in this application includes beam management based on network control.
  • the beam management in this application includes beam management based on the control of the second node.
  • the beam management in this application includes beam management initiated by the first node.
  • the beam management in this application includes beam management initiated by a UE.
  • the beam management process in this application includes the beam management.
  • the beam management in this application does not belong to the beam failure detection and recovery process.
  • the beam management in this application does not belong to the beam failure detection process.
  • the beam management in this application does not belong to the beam failure recovery process.
  • the beam management in this application does not include: receiving an instruction from a lower layer.
  • the beam management in this application does not include: starting or restarting a timer in response to receiving an indication from a lower layer.
  • the beam management in this application does not include: incrementing a counter by 1 in response to receiving an indication from a lower layer.
  • the beam management in this application does not include: increasing the first counter by 1 when the quality of the first type of radio link evaluated according to the first reference signal resource set is worse than a first threshold.
  • the beam management in this application does not depend on the evaluation of the first reference signal resource set.
  • the beam management in this application does not depend on whether the first counter reaches a certain given value.
  • the beam management in this application does not depend on the beam failure detection process.
  • the beam management in this application includes beam refinement.
  • the beam management in this application includes beam tracking (beam tracking).
  • the beam management in this application includes beam adjustment (beam adjustment).
  • the beam management in this application includes beam level mobility.
  • the beam management in this application includes beam handover.
  • the beam management in this application includes beam change.
  • the beam management in this application includes beam switching (beam switch).
  • the beam management in this application includes beam measurement (beam measurement).
  • the beam management in this application includes beam reporting (beam reporting).
  • the beam management in this application includes changing a QCL (Quasi Co-located, quasi-co-located) relationship of a reference signal resource.
  • QCL Quadrature Co-located, quasi-co-located
  • the beam management in this application includes changing the TCI state of a physical channel.
  • the beam management in this application includes changing a TCI state corresponding to a CORESET of a physical channel.
  • the beam management in this application includes changing the corresponding relationship between a TCI and a reference signal resource.
  • the beam management in this application includes CSI (Channel State Information, channel state information) reporting.
  • CSI Channel State Information, channel state information
  • the beam management in this application includes beam level measurement (Beam Level Measurement).
  • the beam management in this application includes beam level mobility (Beam Level Mobility).
  • the beam management in this application does not need to be triggered by explicit RRC signaling (Not Require Explicit RRC Signaling to be triggered).
  • the beam management in this application includes beam adjustment below the RRC layer.
  • the beam management in this application does not include BFR.
  • the beam management in this application does not include cell-level mobility management.
  • the first wireless signal is transmitted through UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the physical layer channel occupied by the first wireless signal includes PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel) transmission.
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the first wireless signal is CSI.
  • the first wireless signal is sent through a beam management process.
  • the first wireless signal implicitly indicates the first reference signal resource.
  • At least one of the position of the frequency domain resource occupied by the first wireless signal or the position of the time domain resource occupied by the first wireless signal is used to indicate the first reference signal resource.
  • the scrambling code used by the demodulation reference signal included in the first wireless signal is used to indicate the first reference signal resource.
  • the first wireless signal indicates the first reference signal resource.
  • the first reference signal resource is a CSI-RS resource.
  • the first reference signal resource is an SSB resource.
  • the first reference signal resource is an SS/PBCH (Physical Broadcast Channel) block.
  • SS/PBCH Physical Broadcast Channel
  • the first reference signal resource corresponds to one TCI-State.
  • the first reference signal resource corresponds to one TCI-StateId.
  • the wireless channel quality determined by the first node according to the reference signal transmitted in the first reference signal resource is greater than a second threshold, and the second threshold is fixed, or the second threshold is determined by RRC signaling configuration.
  • the second threshold includes a BLER threshold.
  • the second threshold includes an RSRP threshold.
  • the second threshold includes an RSRQ threshold.
  • the second threshold includes an SNR threshold.
  • the second threshold includes an SINR threshold.
  • the unit of the second threshold is dBm.
  • the unit of the second threshold is dB.
  • the meaning of the above phrase determining the first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource includes: the first node sends the first wireless signal, and After receiving the feedback for the first wireless signal, determine the first target reference signal resource set from the first reference signal resource pool according to the first reference signal resource.
  • the feedback for the first wireless signal is sent by the second node in this application.
  • the feedback for the first wireless signal is sent by at least one TRP in the cell identified by the first PCI.
  • the feedback for the first wireless signal is sent by at least one TRP in the cell identified by the second PCI.
  • the feedback for the first wireless signal includes HARQ-ACK (Hybrid Automatic Repeat reQuest Acknowledgment, hybrid automatic repeat request acknowledgment).
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgment, hybrid automatic repeat request acknowledgment
  • the feedback for the first wireless signal includes a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the feedback for the first wireless signal includes MAC (Medium Access Control, Media Access Control) CE (Control Elements, control unit).
  • the physical layer channel occupied by the feedback for the first wireless signal includes a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the feedback for the first radio signal is used to determine that the demodulation reference signal resource of the first reference signal resource and the PDCCH in CORESET#0 is QCL .
  • the feedback for the first radio signal is used to determine that the spatial reception parameter corresponding to the first reference signal resource can be used for the PDCCH in CORESET#0 demodulation.
  • the meaning of the above phrase determining the first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource includes: the first node sends the first wireless signal, and After determining that the first reference signal resource and the demodulation reference signal resource of the PDCCH in CORESET#0 are QCL, determine the first target from the first reference signal resource pool according to the first reference signal resource A collection of reference signal resources.
  • the meaning of the above phrase determining the first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource includes: the first node sends the first wireless signal, and After determining that the spatial reception parameter corresponding to the first reference signal resource can be used for demodulation of the PDCCH in CORESET#0, determine the first reference signal resource from the first reference signal resource pool according to the first reference signal resource A first set of target reference signal resources.
  • the reference signal resources in this application are CSI-RS resources.
  • the reference signal resources in this application are SSB resources.
  • the reference signal resources in this application are SS/PBCH (Physical Broadcast Channel) blocks.
  • SS/PBCH Physical Broadcast Channel
  • the reference signal resource in this application corresponds to one TCI-State.
  • the reference signal resource in this application corresponds to one TCI-StateId.
  • the first reference signal resource pool includes Q reference signal resource sets, where Q is a positive integer greater than 1, and any candidate reference signal resource set in the Q reference signal resource sets includes at least A reference signal resource.
  • the Q is equal to 2
  • the Q candidate reference signal resource sets are respectively a first reference signal resource set and a second reference signal resource set.
  • the first set of reference signal resources is associated with the first PCI.
  • the second reference signal resource set is associated with the second PCI.
  • the first target reference signal resource set is one of the first reference signal resource set or the second reference signal resource set.
  • the Q is greater than 2
  • the Q reference signal resource sets are respectively associated with Q different PCIs.
  • the first target reference signal resource set is one of the Q reference signal resource sets.
  • the first reference signal resource pool is one in TS 38.213
  • the first reference signal resource pool corresponds to the
  • the first reference signal resource pool is configured on one BWP.
  • the first reference signal resource pool is configured through the BeamFailureRecoveryConfig IE.
  • the name of the RRC signaling for configuring the first reference signal resource pool includes Beam.
  • the name of the RRC signaling for configuring the first reference signal resource pool includes Failure.
  • the name of the RRC signaling for configuring the first reference signal resource pool includes Recovery.
  • the first reference signal resource pool is configured through failureDetectionResourcesToAddModList in TS 38.331.
  • the first reference signal resource pool is configured through failureDetectionResourcesToReleaseList in TS 38.331.
  • the first reference signal resource pool is configured through RadioLinkMonitoringRS in TS 38.331.
  • the signaling for configuring the first reference signal resource pool further includes the first PCI and the second PCI.
  • the second wireless signal is a MAC CE.
  • the physical layer channel occupied by the second wireless signal includes a PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the physical layer channel occupied by the second wireless signal includes a PUSCH.
  • the beam management does not include beam failure recovery.
  • the first counter is a BFI_COUNTER, and any BFI_COUNTER is not used to trigger the first wireless signal.
  • the second reference signal resource is a CSI-RS resource.
  • the second reference signal resource is an SSB resource.
  • the second reference signal resource is an SS/PBCH (Physical Broadcast Channel) block.
  • SS/PBCH Physical Broadcast Channel
  • the second reference signal resource corresponds to one TCI-State.
  • the second reference signal resource corresponds to one TCI-StateId.
  • the second reference signal resource is q new .
  • the second wireless signal implicitly indicates the second reference signal resource.
  • At least one of the position of the frequency domain resource occupied by the second wireless signal or the position of the time domain resource occupied by the second wireless signal is used to indicate the second reference signal resource.
  • the scrambling code used by the demodulation reference signal included in the second wireless signal is used to indicate the second reference signal resource.
  • generating the second radio signal sequence is used to indicate the second reference signal resource.
  • the second wireless signal indicates a second reference signal resource.
  • the time-frequency resource occupied by the first wireless signal is configured through RRC signaling.
  • the time-frequency resource occupied by the first wireless signal is periodic.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include a UE (User Equipment, user equipment) 201, NR-RAN (next generation radio access network) 202, EPC (Evolved Packet Core, evolved packet core)/5G-CN (5G-Core Network, 5G core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE 201 is a terminal (ender).
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station device (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the node 203 is a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the node 203 is a Node B (NodeB, NB), or gNB, or eNB, or ng-eNB, or en-gNB, or user equipment, or a relay, or a gateway (Gateway), or At least one TRP.
  • the node 203 includes at least one TRP.
  • the node 203 includes at least one TRP in the cell identified by the first PCI, and the node 203 includes at least one TRP in the cell identified by the second PCI.
  • the node 203 is a logical node.
  • the user equipment supports terrestrial network (Non-Terrestrial Network, NTN) transmission.
  • NTN Non-Terrestrial Network
  • the user equipment supports non-terrestrial network (Terrestrial Network, terrestrial network) transmission.
  • Non-terrestrial Network Terrestrial Network, terrestrial network
  • the user equipment supports transmission in a network with a large delay difference.
  • the user equipment supports dual connection (Dual Connection, DC) transmission.
  • Dual Connection DC
  • the user equipment supports NR.
  • the user equipment supports UTRA.
  • the user equipment supports EUTRA.
  • the user equipment includes equipment supporting low-latency and highly reliable transmission.
  • the user equipment includes an aircraft, or a vehicle-mounted terminal, or a ship, or an Internet of Things terminal, or a terminal of the Industrial Internet of Things, or a test device, or a signaling tester.
  • the base station device supports transmission on a non-terrestrial network.
  • the base station device supports transmission in a network with a large delay difference.
  • the base station device supports the transmission of the terrestrial network.
  • the base station equipment includes base station equipment supporting a large delay difference.
  • the base station equipment includes a macro cellular (Marco Cellular) base station, or a micro cell (Micro Cell) base station, or a pico cell (Pico Cell) base station, or a home base station (Femtocell).
  • a macro cellular (Marco Cellular) base station or a micro cell (Micro Cell) base station, or a pico cell (Pico Cell) base station, or a home base station (Femtocell).
  • the base station equipment includes flight platform equipment, or satellite equipment, or TRP (Transmitter Receiver Point, sending and receiving node), or CU (Centralized Unit, centralized unit), or DU (Distributed Unit, distributed unit), Or test equipment, or signaling tester, or IAB (Integrated Access and Backhaul)-node, or IAB-donor, or IAB-donor-CU, or IAB-donor-DU, or IAB-DU, or IAB-MT.
  • TRP Transmitter Receiver Point, sending and receiving node
  • CU Centralized Unit, centralized unit
  • DU Distributed Unit, distributed unit
  • test equipment or signaling tester
  • IAB Integrated Access and Backhaul
  • the relay includes a relay, or an L3relay, or an L2relay, or a router, or a switch.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for a link between the first communication node device and the second communication node device through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304 , these sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first message in this application is generated by the RRC306.
  • the first message in this application is generated by the MAC302 or the MAC352.
  • the first message in this application is generated by the PHY301 or the PHY351.
  • the first wireless signal in this application is generated by the RRC306.
  • the first wireless signal in this application is generated by the MAC302 or the MAC352.
  • the first wireless signal in this application is generated by the PHY301 or the PHY351.
  • the second wireless signal in this application is generated by the RRC306.
  • the second wireless signal in this application is generated by the MAC302 or the MAC352.
  • the second wireless signal in this application is generated by the PHY301 or the PHY351.
  • the first signaling in this application is generated by the MAC302 or the MAC352.
  • the first signaling in this application is generated by the PHY301 or the PHY351.
  • the second signaling in this application is generated by the RRC306.
  • the second signaling in this application is generated by the MAC302 or the MAC352.
  • the second signaling in this application is generated by the PHY301 or the PHY351.
  • the first node is a terminal.
  • the second node is a terminal.
  • the second node is a TRP (Transmitter Receiver Point, sending and receiving point).
  • TRP Transmitter Receiver Point, sending and receiving point
  • the second node is a cell (Cell).
  • the second node is an eNB.
  • the second node is a base station.
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • the second node is a node for managing multiple carriers.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 apparatus at least: firstly receive a first message, said first message is used to determine a first reference signal resource pool, said first reference signal resource pool includes at least A reference signal resource; secondly, a first wireless signal is sent for beam management, and the first wireless signal indicates a first reference signal resource; and a second reference signal resource is determined from the first reference signal resource pool according to at least the first reference signal resource A set of target reference signal resources; then, whenever the quality of the first type of radio link evaluated according to the first set of target reference signal resources is worse than the first threshold, the first counter is increased by 1; as the first counter reaches In response to the first value, send a second wireless signal, the second wireless signal is used for beam failure recovery; the second wireless signal indicates a second reference signal resource; the second reference signal resource is the same as the first
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first receiving A first message, the first message is used to determine a first reference signal resource pool, the first reference signal resource pool includes at least one reference signal resource; secondly, a first wireless signal is sent for beam management, and the first wireless A signal indicating a first reference signal resource; and determining a first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource; subsequently, whenever according to the first target reference signal resource
  • the first counter is increased by 1; as a response to the first counter reaching the first value, sending a second wireless signal, and the second wireless signal is used Recovery from beam failure; the second wireless signal indicates a second reference signal resource; the second reference signal resource is related to the first target reference signal resource set.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: first sending a first message, the first message is used to determine a first reference signal resource pool, and the first reference signal resource pool includes at least one reference signal resource; secondly, for Sending a first radio signal by beam management, where the first radio signal indicates a first reference signal resource; and determining a first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource; Then receive a second wireless signal, the second wireless signal is used for beam failure recovery; the recipient of the first message includes the first node; whenever the first node sets according to the first target reference signal resource When the evaluated quality of the first type of wireless link is worse than the first threshold, the first counter increases by 1; as a response to the first counter reaching the first value, the first node sends a second
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first Sending a first message, where the first message is used to determine a first reference signal resource pool, where the first reference signal resource pool includes at least one reference signal resource; secondly, sending a first wireless signal for beam management, the first A wireless signal indicates a first reference signal resource; and determining a first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource; then receiving a second wireless signal, the second The wireless signal is used for beam failure recovery; the receiver of the first message includes the first node; whenever the quality of the first type of wireless link evaluated by the first node according to the first target reference signal resource set is higher than the first When a threshold difference is reached, the first counter is increased by 1; as a response to the first counter reaching the first value, the first node sends a second wireless signal; the second wireless signal indicates a second reference signal
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 can identify multiple TRPs under one base station.
  • the second communication device 410 is a base station.
  • the second communications device 410 is a UE.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • the second communications device 410 supports maintaining multiple TRPs.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive A first message, the first message is used to determine a first reference signal resource pool, the first reference signal resource pool includes at least one reference signal resource; the antenna 420, the transmitter 418, the multi-antenna
  • the transmit processor 471, the transmit processor 416, and at least the first four of the controller/processor 475 are used to send a first message, and the first message is used to determine a first reference signal resource pool,
  • the first reference signal resource pool includes at least one reference signal resource.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used for beam Manage to send a first wireless signal, the first wireless signal indicates a first reference signal resource; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the control At least the first four of the processors/processors 475 are used to receive a first wireless signal for beam management, the first wireless signal indicating a first reference signal resource.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used for at least The first reference signal resource determines a first target reference signal resource set from the first reference signal resource pool; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processing
  • the controller 470, at least the first four of the controllers/processors 475 are used to determine a first target reference signal resource set from the first reference signal resource pool according to at least the first reference signal resource.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used for each When the quality of the first type of radio link evaluated according to the first set of target reference signal resources is worse than the first threshold, the first counter is incremented by 1.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used as the In response to the first counter reaching the first value, sending a second wireless signal, the second wireless signal is used for beam failure recovery; the antenna 420, the receiver 418, the multi-antenna receiving processor 472, At least the first four of the receive processor 470, the controller/processor 475 are used to receive a second wireless signal that is used for beam failure recovery.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First signaling; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first signaling.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to The second signaling is received in the first time-frequency resource set; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 At least the first four are used to send the second signaling in the first set of time-frequency resources.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to The reference signal resource associated with the first TCI state is updated to the first reference signal resource; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller At least the first four of the processors/processors 475 are used to update the reference signal resource associated with the first TCI state to the first reference signal resource.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to The second reference signal resource is updated to the second reference signal resource pool; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller At least the first four of the processors 475 are used to update the second reference signal resources into the second reference signal resource pool.
  • Embodiment 5 illustrates a flowchart of a first message, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node N2 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be applied to any one of Embodiment 6 or 7; otherwise, in the case of no conflict, Embodiment 6 Embodiments, sub-embodiments, and subsidiary embodiments in any one of or 7 can be applied to Embodiment 5.
  • the first message is received in step S10; the first wireless signal is sent in step S11; the first target is determined from the first reference signal resource pool according to at least the first reference signal resource in step S12 reference signal resource set; in step S13, whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold, the first counter is incremented by 1; in step S14, the second wireless signal.
  • For the second node N2 send the first message in step S20; receive the first wireless signal in step S21; receive the second wireless signal in step S22.
  • the first message is used to determine the first reference signal resource pool, and the first reference signal resource pool includes at least one reference signal resource; the first wireless signal belongs to a beam management process; the The first wireless signal indicates the first reference signal resource; the second wireless signal is sent as a response to the first counter reaching a first value, and the second wireless signal is used for beam failure recovery; the The second radio signal indicates a second reference signal resource; the second reference signal resource is related to the first target reference signal resource set.
  • the first node U1 determines the first target reference signal resource set from a first reference signal resource pool according to at least the first reference signal resource.
  • the second node N2 determines the first target reference signal resource set from a first reference signal resource pool according to at least the first reference signal resource.
  • the first reference signal resource pool includes a first reference signal resource set and a second reference signal resource set; the first reference signal resource set and the second reference signal resource set are respectively associated with the first reference signal resource set A PCI and a second PCI; when the first reference signal resource is associated with the first PCI, the first target reference signal resource set is the first reference signal resource set; when the first reference When signal resources are associated to the second PCI, the first set of target reference signal resources is the second set of reference signal resources.
  • the meaning of the above phrase that the first reference signal resource is associated with the first PCI includes: the RRC signaling configuring the first reference signal resource includes the first PCI .
  • the meaning of the above phrase that the first reference signal resource is associated with the first PCI includes: the first reference signal resource is sent by the TRP corresponding to the first PCI.
  • the meaning of the above phrase that the first reference signal resource is associated with the first PCI includes: the first reference signal resource is maintained by the TRP corresponding to the first PCI .
  • the meaning of the above phrase that the first reference signal resource is associated with the second PCI includes: the RRC signaling configuring the first reference signal resource includes the second PCI .
  • the meaning of the above phrase that the first reference signal resource is associated with the second PCI includes: the first reference signal resource is sent by the TRP corresponding to the second PCI.
  • the meaning of the above phrase that the first reference signal resource is associated with the second PCI includes: the first reference signal resource is maintained by the TRP corresponding to the second PCI .
  • the phrase that the first reference signal resource set is associated with the first PCI includes: each reference signal resource in the first reference signal resource set is associated with the first PCI .
  • the phrase that the first reference signal resource set is associated with the first PCI includes: all reference signal resources in the first reference signal resource set are associated with the first PCI.
  • the phrase that the first set of reference signal resources is associated with the first PCI includes: the first set of reference signal resources is directed to the cell identified by the first PCI.
  • the phrase that the first reference signal resource set is associated with the first PCI includes: the first reference signal resource set is associated with at least one TRP in the first PCI.
  • the phrase that the first set of reference signal resources is associated with the first PCI includes: the first set of reference signal resources is only associated with one TRP in the first PCI.
  • the phrase that the first reference signal resource set is associated with the first PCI includes: the first reference signal resource set is associated with all TRPs in the first PCI.
  • the phrase that the second reference signal resource set is associated with the second PCI includes: each reference signal resource in the second reference signal resource set is associated with the second PCI .
  • the phrase that the second reference signal resource set is associated with the second PCI includes: all reference signal resources in the second reference signal resource set are associated with the second PCI.
  • the phrase that the second reference signal resource set is associated with the second PCI includes: the second reference signal resource set is for a cell identified by the second PCI.
  • the phrase that the second reference signal resource set is associated with the second PCI includes: the second reference signal resource set is associated with at least one TRP in the second PCI.
  • the phrase that the second reference signal resource set is associated with the second PCI includes: the second reference signal resource set is only associated with one TRP in the second PCI.
  • the phrase that the second reference signal resource set is associated with the second PCI includes: the second reference signal resource set is associated with all TRPs in the second PCI.
  • the first reference signal resource set includes M2 reference signal resources, where M2 is a positive integer greater than 1.
  • At least one reference signal resource among the M2 reference signal resources is a CSI-RS resource.
  • At least one reference signal resource among the M2 reference signal resources is an SSB resource.
  • At least one reference signal resource among the M2 reference signal resources is an SS/PBCH block.
  • At least one reference signal resource among the M2 reference signal resources corresponds to one TCI-State.
  • At least one reference signal resource among the M2 reference signal resources corresponds to one TCI-StateId.
  • any reference signal resource in the M2 reference signal resources is periodic (periodic).
  • any reference signal resource in the M2 reference signal resources is aperiodic (aperiodic).
  • any reference signal resource in the M2 reference signal resources is QCL-Type D.
  • one of the M2 reference signal resources is a CSI-RS resource identified by csi-RS-Index, or the one reference signal resource is a CSI-RS resource identified by ssb-Index The identified SSB resource.
  • one of the M2 reference signal resources is a CSI-RS resource identified by csi-rs, or the one reference signal resource is an SSB resource identified by ssb .
  • one of the M2 reference signal resources is a CSI-RS resource identified by NZP-CSI-RS-ResourceId, or the one reference signal resource is identified by SSB - The SSB resource identified by Index.
  • the second reference signal resource set includes M3 reference signal resources, where M3 is a positive integer greater than 1.
  • At least one reference signal resource among the M3 reference signal resources is a CSI-RS resource.
  • At least one reference signal resource among the M3 reference signal resources is an SSB resource.
  • At least one reference signal resource among the M3 reference signal resources is an SS/PBCH block.
  • At least one reference signal resource among the M3 reference signal resources corresponds to one TCI-State.
  • At least one reference signal resource among the M3 reference signal resources corresponds to one TCI-StateId.
  • any reference signal resource among the M3 reference signal resources is periodic.
  • any reference signal resource in the M3 reference signal resources is aperiodic (aperiodic).
  • any reference signal resource among the M3 reference signal resources is QCL-Type D.
  • one of the M3 reference signal resources is a CSI-RS resource identified by csi-RS-Index, or the one reference signal resource is a CSI resource identified by ssb-Index The identified SSB resource.
  • one of the M3 reference signal resources is a CSI-RS resource identified by csi-rs, or the one reference signal resource is an SSB resource identified by ssb .
  • one of the M3 reference signal resources is a CSI-RS resource identified by NZP-CSI-RS-ResourceId, or the one reference signal resource is identified by SSB - The SSB resource identified by Index.
  • the first PCI is a non-negative integer.
  • the second PCI is a non-negative integer.
  • the second reference signal resource is the first reference signal resource.
  • the meaning of the above phrase that the second reference signal resource is the first reference signal resource includes: the reference signal corresponding to the second reference signal resource and the first reference signal The reference signals corresponding to the resources occupy the same time-frequency resource.
  • the meaning of the above phrase that the second reference signal resource is the first reference signal resource includes: the TCI-StateId corresponding to the second reference signal resource and the first reference The TCI-StateIds corresponding to the signal resources are the same.
  • the meaning of the above phrase that the second reference signal resource is the first reference signal resource includes: the second reference signal resource and the first reference signal resource are QCL.
  • the meaning of the above phrase that the second reference signal resource is the first reference signal resource includes: the second identifier corresponding to the second reference signal resource and the first reference The first identifier corresponding to the signal resource is related.
  • the meaning that the second identifier is related to the first identifier includes: the second identifier is the same as the first identifier.
  • the meanings related to the second identifier and the first identifier include: the second identifier and the first identifier belong to the QCL-Info in the same TCI-State IE .
  • the first identifier is one of NZP-CSI-RS-ResourceId or SSB-Index.
  • the second identifier is one of NZP-CSI-RS-ResourceId or SSB-Index.
  • the second reference signal resource is a reference signal resource in the second target reference signal resource set;
  • the second reference signal resource pool includes a third reference signal resource set and a fourth reference signal resource set;
  • the third reference signal resource set and the fourth reference signal resource set are respectively associated to the first PCI and the second PCI; when the first target reference signal resource set is associated to the first PCI, the first PCI
  • the second target reference signal resource set is the third reference signal resource set; when the first target reference signal resource set is associated with the second PCI, the second target reference signal resource set is the fourth target reference signal resource set A collection of reference signal resources.
  • the second reference signal resource pool is at least one of TS 38.213
  • the second reference signal resource pool corresponds to at least one of TS 38.213
  • the second reference signal resource pool is two in TS 38.213
  • the second reference signal resource pool corresponds to two of TS 38.213
  • the second reference signal resource pool is configured on one BWP.
  • the second reference resource pool is configured through RRC signaling.
  • the second reference signal resource pool is configured through the BeamFailureRecoveryConfig IE.
  • the name of the RRC signaling configuring the second reference signal resource pool includes Beam.
  • the name of the RRC signaling for configuring the second reference signal resource pool includes Failure.
  • the name of the RRC signaling configuring the second reference signal resource pool includes Recovery.
  • the second reference signal resource pool is configured through candidateBeamRSList in TS 38.331.
  • the second reference signal resource pool is configured through candidateBeamResourceList in TS 38.331.
  • all reference signal resources that may be selected as the second reference signal resources form the second reference signal resource pool.
  • the meaning of the phrase that the third reference signal resource set is associated with the first PCI includes: each reference signal resource in the third reference signal resource set is associated with the first PCI a PCI.
  • the meaning of the phrase that the third reference signal resource set is associated with the first PCI includes: all reference signal resources in the third reference signal resource set are associated with the first PCI PCI.
  • the meaning of the phrase that the third reference signal resource set is associated with the first PCI includes: the third reference signal resource set is aimed at the cell identified by the first PCI.
  • the meaning of the phrase that the third reference signal resource set is associated with the first PCI includes: the third reference signal resource set is associated with at least one TRP in the first PCI .
  • the meaning of the phrase that the third reference signal resource set is associated with the first PCI includes: the third reference signal resource set is only associated with one TRP in the first PCI .
  • the meaning of the phrase that the third reference signal resource set is associated with the first PCI includes: the third reference signal resource set is associated with all TRPs in the first PCI.
  • the meaning of the phrase that the fourth reference signal resource set is associated with the second PCI includes: each reference signal resource in the fourth reference signal resource set is associated with the second PCI Two PCI.
  • the meaning of the phrase that the fourth reference signal resource set is associated with the second PCI includes: all reference signal resources in the fourth reference signal resource set are associated with the second PCI PCI.
  • the meaning of the phrase that the fourth reference signal resource set is associated with the second PCI includes: the fourth reference signal resource set is aimed at the cell identified by the second PCI.
  • the meaning of the phrase that the fourth reference signal resource set is associated with the second PCI includes: the fourth reference signal resource set is associated with at least one TRP in the second PCI .
  • the meaning of the phrase that the fourth reference signal resource set is associated with the second PCI includes: the fourth reference signal resource set is only associated with one TRP in the second PCI .
  • the meaning of the phrase that the fourth reference signal resource set is associated with the second PCI includes: the fourth reference signal resource set is associated with all TRPs in the second PCI.
  • the third reference signal resource set includes Q2 reference signal resources, where Q2 is a positive integer greater than 1.
  • At least one reference signal resource among the Q2 reference signal resources is a CSI-RS resource.
  • At least one reference signal resource among the Q2 reference signal resources is an SSB resource.
  • At least one reference signal resource among the Q2 reference signal resources is an SS/PBCH block.
  • At least one reference signal resource among the Q2 reference signal resources corresponds to one TCI-State.
  • At least one reference signal resource among the Q2 reference signal resources corresponds to one TCI-StateId.
  • any reference signal resource in the Q2 reference signal resources is periodic (periodic).
  • any reference signal resource in the Q2 reference signal resources is aperiodic (aperiodic).
  • any reference signal resource in the Q2 reference signal resources is QCL-Type D.
  • one of the Q2 reference signal resources is a CSI-RS resource identified by csi-RS-Index, or the one reference signal resource is a CSI resource identified by ssb-Index The identified SSB resource.
  • one of the Q2 reference signal resources is a CSI-RS resource identified by csi-rs, or the one reference signal resource is an SSB resource identified by ssb .
  • one of the Q2 reference signal resources is a CSI-RS resource identified by NZP-CSI-RS-ResourceId, or the one reference signal resource is identified by SSB - The SSB resource identified by Index.
  • the fourth reference signal resource set includes Q3 reference signal resources, where Q3 is a positive integer greater than 1.
  • At least one reference signal resource among the Q3 reference signal resources is a CSI-RS resource.
  • At least one reference signal resource among the Q3 reference signal resources is an SSB resource.
  • At least one reference signal resource among the Q3 reference signal resources is an SS/PBCH block.
  • At least one reference signal resource among the Q3 reference signal resources corresponds to one TCI-State.
  • At least one reference signal resource among the Q3 reference signal resources corresponds to one TCI-StateId.
  • any reference signal resource in the Q3 reference signal resources is periodic (periodic).
  • any reference signal resource in the Q3 reference signal resources is aperiodic (aperiodic).
  • any reference signal resource among the Q3 reference signal resources is QCL-Type D.
  • one of the Q3 reference signal resources is a CSI-RS resource identified by csi-RS-Index, or the one reference signal resource is a CSI resource identified by ssb-Index The identified SSB resource.
  • one of the Q3 reference signal resources is a CSI-RS resource identified by csi-rs, or the one reference signal resource is an SSB resource identified by ssb .
  • one of the Q3 reference signal resources is a CSI-RS resource identified by NZP-CSI-RS-ResourceId, or the one reference signal resource is identified by SSB - The SSB resource identified by Index.
  • the meaning of the phrase that the first target reference signal resource set is associated with the first PCI includes: each reference signal resource in the first target reference signal resource set is associated with the first PCI Describe the first PCI.
  • the meaning of the phrase that the first target reference signal resource set is associated with the first PCI includes: all reference signal resources in the first target reference signal resource set are associated with the First PCI.
  • the meaning of the phrase that the first target reference signal resource set is associated with the first PCI includes: the first target reference signal resource set is for the cell identified by the first PCI .
  • the meaning of the phrase that the first set of target reference signal resources is associated with the first PCI includes: the first set of target reference signal resources is associated with at least one of the first PCIs a TRP.
  • the meaning of the phrase that the first target reference signal resource set is associated with the first PCI includes: the first target reference signal resource set is only associated with the first PCI a TRP.
  • the meaning of the phrase that the first target reference signal resource set is associated with the first PCI includes: the first target reference signal resource set is associated with all of the first PCI TRP.
  • the meaning of the phrase that the first target reference signal resource set is associated with the second PCI includes: each reference signal resource in the first target reference signal resource set is associated with the Describe the second PCI.
  • the meaning of the phrase that the first target reference signal resource set is associated with the second PCI includes: all reference signal resources in the first target reference signal resource set are associated with the Second PCI.
  • the meaning of the phrase that the first target reference signal resource set is associated with the second PCI includes: the first target reference signal resource set is for the cell identified by the second PCI .
  • the meaning of the phrase that the first set of target reference signal resources is associated with the second PCI includes: the first set of target reference signal resources is associated with at least one of the second PCIs a TRP.
  • the meaning of the phrase that the first target reference signal resource set is associated with the second PCI includes: the first target reference signal resource set is only associated with the second PCI a TRP.
  • the meaning of the phrase that the first set of target reference signal resources is associated with the second PCI includes: the first set of target reference signal resources is associated with all of the second PCIs TRP.
  • the first node U1 updates the reference signal resource associated with the first TCI state to the first reference signal resource, and the first radio signal is used to determine the first TCI state.
  • the second node N2 updates the reference signal resource associated with the first TCI state to the first reference signal resource, and the first radio signal is used to determine the first TCI state.
  • the first TCI state is associated with a reference signal resource other than the first reference signal resource .
  • the first TCI state is associated with a reference signal other than the first reference signal resource resource.
  • the first TCI state corresponds to one TCI-StateId.
  • the operation of updating the reference signal resource associated with the first TCI state to the first reference signal resource is completed at the first node.
  • the first node U1 before the first node U1 updates the reference signal resource associated with the first TCI state to the first reference signal resource, it does not need to wait for the second An acknowledgment of the first wireless signal by node N2.
  • the first node U1 before the first node U1 updates the reference signal resource associated with the first TCI state to the first reference signal resource, it does not need to wait for the Describe the first signaling.
  • the first wireless signal is used to indicate the first TCI.
  • the second reference signal resource is updated into the second reference signal resource pool.
  • the second reference signal resource is updated into the second reference signal resource pool.
  • the meaning of the above phrase that the second reference signal resource is updated into the second reference signal resource pool includes: the second reference signal resource is added to the second reference signal resource pool In the set of three reference signal resources.
  • the meaning of the above phrase that the second reference signal resource is updated into the second reference signal resource pool includes: the second reference signal resource is added to the second reference signal resource pool In the set of four reference signal resources.
  • the meaning of the above phrase that the second reference signal resource is updated into the second reference signal resource pool includes: the second reference signal resource pool includes a third reference signal A resource set and a fourth reference signal resource set; the third reference signal resource set and the fourth reference signal resource set are respectively associated with the first PCI and the second PCI; when the first reference signal resource is associated with When the first PCI is used, the second reference signal resource is added to the third reference signal resource set; when the first reference signal resource is associated with the second PCI, the second reference signal resource Signal resources are added to the fourth set of reference signal resources.
  • Embodiment 6 illustrates a flow chart of the first signaling, as shown in FIG. 6 .
  • the communication between the first node U3 and the second node N4 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to any of Embodiment 5 or 7; otherwise, in the case of no conflict, Embodiment 5 or Embodiments, sub-embodiments, and subsidiary embodiments in any one of 7 can be applied to Embodiment 6.
  • the first signaling is received in step S30.
  • the first signaling is sent in step S40.
  • the first signaling is used to determine that the demodulation reference signal of the PDCCH in the control resource set 0 and the first reference signal resource are quasi-co-located.
  • step S30 in embodiment 6 is located after step S11 and before step S12 in embodiment 5.
  • step S30 in embodiment 6 is located after step S14 in embodiment 5.
  • step S40 in embodiment 6 is located after step S21 and before step S22 in embodiment 5.
  • step S40 in embodiment 6 is located after step S22 in embodiment 5.
  • the first signaling is used to indicate that the demodulation reference signal of the PDCCH in the control resource set 0 and the first reference signal resource are quasi-co-located
  • the first signaling is HARQ-ACK for the first wireless signal.
  • the first signaling is a MAC CE.
  • the physical layer channel occupied by the first signaling includes a PDCCH.
  • the type of quasi-co-location in this application includes QCL Type A.
  • the type of quasi-co-location in this application includes QCL Type B.
  • the type of quasi-co-location in this application includes QCL Type C.
  • the type of quasi-co-location in this application includes QCL Type D.
  • the beam management in this application includes receiving the first signaling.
  • the first node U3 determines the first reference signal resource from the first reference signal resource pool according to the first reference signal resource. A set of target reference signal resources.
  • Embodiment 7 illustrates a flow chart of the second signaling, as shown in FIG. 7 .
  • the first node U5 communicates with the second node N6 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be applied to any one of Embodiment 5 or 6; otherwise, in the case of no conflict, Embodiment 5 Embodiments, sub-embodiments, and subsidiary embodiments in any one of or 6 can be applied to Embodiment 7.
  • step S50 the second signaling is received in the first set of time-frequency resources.
  • step S60 the second signaling is sent in the first set of time-frequency resources.
  • the first time-frequency resource set is associated with control resource set 0, and the second reference signal resource and the demodulation reference signal included in the second time-frequency resource set are quasi-co-located .
  • step S50 in embodiment 7 is located after step S14 in embodiment 5.
  • step S60 in embodiment 7 is located after step S22 in embodiment 5.
  • the symbols in this application are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the symbols described in this application are SC-FDMA (Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the symbols described in this application are FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbols.
  • the symbols described in this application are OFDM symbols including CP (Cyclic Prefix, cyclic prefix).
  • the symbols described in this application are DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing, discrete Fourier transform extended Orthogonal Frequency Division Multiplexing) symbols including CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing, discrete Fourier transform extended Orthogonal Frequency Division Multiplexing
  • the first set of time-frequency resources occupies frequency domain resources corresponding to a positive integer number of RBs (Resource Blocks, resource blocks) in the frequency domain, and the first set of time-frequency resources occupies a positive integer number in the time domain symbols.
  • RBs Resource Blocks, resource blocks
  • the first time-frequency resource set occupies a positive integer number of REs (Resource Elements, resource units) greater than 1.
  • the first node U5 receives the second signaling in the first time-frequency resource set after sending the second wireless signal.
  • the first node U5 after sending the second radio signal, assumes that the demodulation reference signal of the PDCCH in the control resource set 0 and the second reference signal resource are QCL.
  • the first node U5 assumes the demodulation reference signal of the PDCCH in the control resource set 0 and the second reference signal resource is QCL.
  • the meaning of the above phrase that the first time-frequency resource set is associated with control resource set 0 includes: the frequency domain resource occupied by the first time-frequency resource set belongs to the control resource set 0 occupied frequency domain resources.
  • the meaning of the above phrase that the first time-frequency resource set is associated with the control resource set 0 includes: the symbols occupied by the first time-frequency resource set belong to the symbols occupied by the control resource set 0 .
  • the meaning of the above phrase that the first time-frequency resource set is associated with control resource set 0 includes: the time slot where the first time-frequency resource set is located belongs to the search associated with the control resource set 0 The time slot occupied by the space.
  • the first set of time-frequency resources corresponds to one CORESET.
  • the first time-frequency resource set corresponds to a search space set.
  • Embodiment 8 illustrates a schematic diagram of an application scenario, as shown in FIG. 8 .
  • TRP-1 and TRP-2 shown in the figure are both managed by the second node in this application; the first PCI in this application is associated to TRP-1, this application The second PCI in is associated to the TRP-2; the first node moves between the coverage of the TRP-1 and the coverage of the TRP-2.
  • the first reference signal resource is in the second candidate reference signal resource set one of.
  • the second candidate reference signal resource set is the second reference signal resource set in this application.
  • the second reference signal resource is in the second candidate reference signal resource set one of.
  • the second candidate reference signal resource set is the fourth reference signal resource set in this application.
  • the first reference signal resource is in the first candidate reference signal resource set one of.
  • the first candidate reference signal resource set is the first reference signal resource set in this application.
  • the second reference signal resource is in the first candidate reference signal resource set one of.
  • the first set of candidate reference signal resources is the third set of reference signal resources in this application.
  • Embodiment 9 illustrates a structural block diagram of a first node, as shown in FIG. 9 .
  • a first node 900 includes a first receiver 901 , a first transmitter 902 and a first transceiver 903 .
  • the first receiver 901 receives a first message, where the first message is used to determine a first reference signal resource pool, where the first reference signal resource pool includes at least one reference signal resource;
  • the first transmitter 902 is configured to send a first wireless signal for beam management, where the first wireless signal indicates a first reference signal resource; determine a first reference signal resource from the first reference signal resource pool according to at least the first reference signal resource A set of target reference signal resources;
  • the first transceiver 903 increases the first counter by 1 whenever the quality of the first type of radio link evaluated according to the first target reference signal resource set is worse than the first threshold; as the first counter reaches the first value In response, sending a second wireless signal, the second wireless signal is used for beam failure recovery;
  • the second radio signal indicates a second reference signal resource; the second reference signal resource is related to the first target reference signal resource set.
  • the first reference signal resource pool includes a first reference signal resource set and a second reference signal resource set; the first reference signal resource set and the second reference signal resource set are respectively associated with the first reference signal resource set A physical cell identity and a second physical cell identity; when the first reference signal resource is associated with the first physical cell identity, the first set of target reference signal resources is the first set of reference signal resources; When the first reference signal resource is associated with the second physical cell identity, the first set of target reference signal resources is the second set of reference signal resources.
  • the second reference signal resource is a reference signal resource in the second target reference signal resource set;
  • the second reference signal resource pool includes a third reference signal resource set and a fourth reference signal resource set;
  • the third reference signal resource set and the fourth reference signal resource set are respectively associated to a first physical cell identity and a second physical cell identity; when the first target reference signal resource set is associated to the first physical cell When identified, the second target reference signal resource set is the third reference signal resource set; when the first target reference signal resource set is associated with the second physical cell identity, the second target reference signal resource set is The signal resource set is the fourth reference signal resource set.
  • the first transceiver 903 receives the first signaling; the first signaling is used to determine whether the demodulation reference signal of the PDCCH in the control resource set 0 and the first reference signal resource are accurate co-located.
  • the first transceiver 903 receives the second signaling in the first set of time-frequency resources; the first set of time-frequency resources is associated with control resource set 0, and the second reference signal resource is associated with The demodulation reference signals included in the first set of time-frequency resources are quasi-co-located.
  • the second reference signal resource is the first reference signal resource, or the second reference signal resource and the first reference signal resource are quasi co-located.
  • the first transceiver 903 updates the reference signal resource associated with the first TCI state to the first reference signal resource, and the first wireless signal is used to determine the first TCI state.
  • the first node updates the reference signal resource associated with the first TCI state to the first reference signal resource, and the first radio signal is used to determine the first TCI state.
  • the second reference signal resource is updated into the second reference signal resource pool.
  • the first receiver 901 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in Embodiment 4.
  • the first transmitter 902 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in Embodiment 4.
  • the first transceiver 903 includes the antenna 452, the receiver/transmitter 454, the multi-antenna receiving processor 458, the multi-antenna transmitting processor 457, the receiving processor 456, and the transmitting processor in Embodiment 4. 468. At least the first six of the controller/processor 459.
  • Embodiment 10 illustrates a structural block diagram of a second node, as shown in FIG. 10 .
  • the second node 1000 includes a second transmitter 1001 , a second receiver 1002 and a second transceiver 1003 .
  • the second transmitter 1001 sends a first message, where the first message is used to determine a first reference signal resource pool, where the first reference signal resource pool includes at least one reference signal resource;
  • the second receiver 1002 receives a first wireless signal for beam management, where the first wireless signal indicates a first reference signal resource; and determines a first reference signal resource from the first reference signal resource pool according to at least the first reference signal resource A set of target reference signal resources;
  • the second transceiver 1003 receives a second wireless signal, and the second wireless signal is used for beam failure recovery;
  • the receiver of the first message includes the first node; whenever the quality of the first type of radio link evaluated by the first node according to the first target reference signal resource set is worse than the first threshold , the first counter is increased by 1; as a response to the first counter reaching the first value, the first node sends a second wireless signal; the second wireless signal indicates a second reference signal resource; the second reference signal
  • the resources are related to the first set of target reference signal resources.
  • the first reference signal resource pool includes a first reference signal resource set and a second reference signal resource set; the first reference signal resource set and the second reference signal resource set are respectively associated with the first reference signal resource set A physical cell identity and a second physical cell identity; when the first reference signal resource is associated with the first physical cell identity, the first set of target reference signal resources is the first set of reference signal resources; When the first reference signal resource is associated with the second physical cell identity, the first set of target reference signal resources is the second set of reference signal resources.
  • the second reference signal resource is a reference signal resource in the second target reference signal resource set;
  • the second reference signal resource pool includes a third reference signal resource set and a fourth reference signal resource set;
  • the third reference signal resource set and the fourth reference signal resource set are respectively associated to a first physical cell identity and a second physical cell identity; when the first target reference signal resource set is associated to the first physical cell When identified, the second target reference signal resource set is the third reference signal resource set; when the first target reference signal resource set is associated with the second physical cell identity, the second target reference signal resource set is The signal resource set is the fourth reference signal resource set.
  • the second transceiver 1003 sends the first signaling; the first signaling is used to determine whether the demodulation reference signal of the PDCCH in the control resource set 0 and the first reference signal resource are accurate co-located.
  • the second transceiver 1003 sends the second signaling in the first set of time-frequency resources; the first set of time-frequency resources is associated with control resource set 0, and the second reference signal resource is associated with The demodulation reference signals included in the first set of time-frequency resources are quasi-co-located.
  • the second reference signal resource is the first reference signal resource, or the second reference signal resource and the first reference signal resource are quasi co-located.
  • the second transceiver 1003 updates the reference signal resource associated with the first TCI state to the first reference signal resource, and the first radio signal is used to determine the first TCI state.
  • the second reference signal resource is updated into the second reference signal resource pool.
  • the second transmitter 1001 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1002 includes at least the first four of the antenna 420 , receiver 418 , multi-antenna receiving processor 472 , receiving processor 470 , and controller/processor 475 in Embodiment 4.
  • the second transceiver 1003 includes the antenna 420, the transmitter/receiver 418, the multi-antenna transmit processor 471, the multi-antenna receive processor 472, the transmit processor 416, and the receive processor in Embodiment 4 470. At least the first six of the controllers/processors 475.
  • the first node in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, vehicles, vehicles, RSUs, aircrafts, airplanes, wireless Man-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial base station , RSU, unmanned aerial vehicles, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。通信节点首先接收第一消息,所述第一消息被用于确定第一参考信号资源池;随后为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;所述第二无线信号指示的第二参考信号资源与所述第一目标参考信号资源集合有关。本申请优化多TRP下的波束管理相关过程,进而优化系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及波束管理和链路恢复的传输方案和装置。
背景技术
传统的网络控制(Network Controlled)的移动性(mobility)包括小区级的移动性(cell level)和波束级的移动性(beam level),其中,小区级的移动性依赖于RRC(Radio Resource Control,无线资源控制)信令,波束级的移动性不涉及RRC信令。3GPP(the 3rd Generation Partnership Project,第三代合作伙伴项目)R16之前,波束级的移动性仅针对单个小区内的波束管理(Beam Management)等。3GPP RAN#80次会议决定开展“Further enhancements on MIMO for NR”工作项目(Work Iterm,WI),支持多波束(multi-beam)操作(operation),针对以层一(Layer 1,L1)/层二(Layer 2,L2)为中心的小区间移动性(L1/L2-centric inter-cell mobility)以及小区间多TRP(multiple Transmit/Receive Point,mTRP)进行增强。
发明内容
针对NR系统,3GPP引入了BFR(Beam Failure Recovery,波束失败恢复)机制,UE(User Equipment,用户设备)根据属于服务小区的一个参考信号集合进行评估,如果评估结果比预定门限差的次数达到一个预定数值,触发BFR或者随机接入(Random Access,RA)过程。为实现inter-cell L1/L2mobility或者inter-cell mTRP,当UE在服务小区(Serving Cell)时,网络通过RRC消息针对服务小区给UE配置至少一个附加小区,UE在服务小区的覆盖范围内,可以使用附加小区的TRP进行数据传输,附加小区和服务小区具有不同的PCI(Physical Cell Identifier,物理小区标识)。
现有的NR系统中,用于确定是否触发BFR机制的测量用的参考信号资源集合,以及用于选择上报的候选参考信号资源集合都通过网络侧配置获得,终端设备不会去触发更改上述两个参考信号资源集合。而在波束管理过程中,终端能够根据上报的参考信号资源所关联的PCI隐性告知基站其位于哪一个TRP的覆盖之下,进而上述波束管理过程中上报的参考信号资源能够被应用到BFR中,以提高BFR流程的效率。
针对上述问题,本申请提供了一种解决方案。针对上述问题描述中,采用uu口场景作为一个例子;本申请也同样适用于例如副链路(Sidelink)场景,取得类似uu口场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。本申请也同样适用于面临相似问题的其它场景(例如自组织网络,或者中心节点是非基站节点的场景,或者高速移动场景,或者针对不同的应用场景,比如eMBB和URLLC,也可以取得类似的技术效果。此外,不同场景(包括但不限于eMBB和URLLC的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(Technical Specification)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;
其中,所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,上述方法的一个技术特征在于:将用于波束管理的所述第一无线信号所上报的所述第一参考信号资源应用到BFR的过程中,去影响所述第一节点选择的所述第一目标参考信号资源集合,即影响用于检测无线链路是否发生BLF(Beam Link Failure,波束链路失败)的波束集合,用于体现所述第一节点位于哪一个TRP的覆盖之下,或者用于体现所述第一节点倾向于被哪一个TRP服务。
作为一个实施例,上述方法的另一个技术特征在于:所述第一节点的服务基站存在两个TRP,分别是第一TRP和第二TRP;当所述第一节点通过波束管理过程发现位于所述第一TRP下的波束信号覆盖下,所述第一节点在所述第一TRP所对应的用于BLF监测的波束集合中监测波束以判断是否BLF;当所述第一节点通过波束管理过程发现位于所述第二TRP下的波束信号的覆盖下,所述第一节点在在所述第二TRP所对应的用于BLF监测的波束集合中监测波束以判断是否BLF;上述方法较之现有方案更能体现mTRP所带来的优势和好处,且更能够降低终端不必要的功耗。
根据本申请的一个方面,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
根据本申请的一个方面,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
作为一个实施例,上述方法的技术特征在于:当将用于BLF监测的波束集合和用于波束管理的上报的所述第一参考信号资源建立联系时,用于推荐波束所属于的波束集合也和所述第一参考信号资源建立联系;即,当所述第一节点在所述第一TRP所对应的用于BLF监测的波束集合中通过监测波束判断发生了BLF,所述第一节点在所述第一TRP所对应的候选波束集合中选择一个上报用于BFR;当所述第一节点在所述第二TRP所对应的用于BLF监测的波束集合中通过监测波束判断发生了BLF,所述第一节点在所述第二TRP所对应的候选波束集合中选择一个上报用于BFR。
根据本申请的一个方面,包括:
接收第一信令;
其中,所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
作为一个实施例,上述方法的技术特征在于:通过所述第一信令向所述第一节点确认收到所述第一参考信号资源,进而所述第一参考信号资源所对应的空间接收参数将用于CORESET(Control Resource Set,控制资源集合)#0中传输的控制信令的接收。
根据本申请的一个方面,包括:
在第一时频资源集合中接收第二信令;
其中,所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
作为一个实施例,上述方法的技术特征在于:当所述第一节点通过BFR过程上报所述第二参考信号资源时,所述第二参考信号资源所对应的空间接收参数将用于CORESET#0中传输的控制信令的接收。
根据本申请的一个方面,所述第二参考信号资源是所述第一参考信号资源,或者所述第二参考信号资源与所述第一参考信号资源是准共址的。
根据本申请的一个方面,包括:
将第一TCI(Transmission Configuration Indicator,发送配置指示)状态(State)所关联的参考信号资源更新为所述第一参考信号资源
其中,所述第一无线信号被用于确定所述第一TCI状态。
作为一个实施例,上述方法的技术特征在于:波束管理过程上报的所述第一参考信号资源还能够用于更新TCI状态所对应的参考信号资源,上述方式避免基站和终端之间的过多交互,降低信令开销,提高效率。
根据本申请的一个方面,当所述第一节点发送所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
作为一个实施例,上述方法的技术特征在于:上报所述第二参考信号资源的同时将所述第二参考信号资源更新到候选参考信号的集合中,用于后续BFR过程中推荐的参考信号资源的选择,进一步优化BFR流程,减少信令交互。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
接收第二无线信号,所述第二无线信号被用于波束失败恢复;
其中,所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
根据本申请的一个方面,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
根据本申请的一个方面,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
根据本申请的一个方面,包括:
发送第一信令;
其中,所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
根据本申请的一个方面,包括:
在第一时频资源集合中发送第二信令;
其中,所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
根据本申请的一个方面,所述第二参考信号资源是所述第一参考信号资源,或者所述第二参考信号资源与所述第一参考信号资源是准共址的。
根据本申请的一个方面,包括:
将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源
其中,所述第一无线信号被用于确定所述第一TCI状态。
根据本申请的一个方面,当所述第二节点接收到所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
第一发射机,为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
第一收发机,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;
其中,所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
第二接收机,为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
第二收发机,接收第二无线信号,所述第二无线信号被用于波束失败恢复;
其中,所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.将用于波束管理的所述第一无线信号所上报的所述第一参考信号资源应用到BFR的过程中,去影响所述第一节点选择的所述第一目标参考信号资源集合,即影响用于检测无线链路是否发生BLF的波束集合,用于体现所述第一节点位于哪一个TRP的覆盖之下,或者用于体现所述第一节点倾向于被哪一个TRP服务;
-.所述第一节点的服务基站存在两个TRP,分别是第一TRP和第二TRP;当所述第一节点通过波束管理过程发现位于所述第一TRP下的波束信号覆盖下,所述第一节点在所述第一TRP所对应的用于BLF监测的波束集合中监测波束以判断是否BLF;当所述第一节点通过波束管理过程发现位于所述第二TRP下的波束信号的覆盖下,所述第一节点在在所述第二TRP所对应的用于BLF监测的波束集合中监测波束以判断是否BLF;上述方法较之现有方案更能体现mTRP所带来的优势和好处,且更能够降低终端不必要的功耗;
-.当将用于BLF监测的波束集合和用于波束管理的上报的所述第一参考信号资源建立联系时,用于推荐波束所属于的波束集合也和所述第一参考信号资源建立联系;即,当所述第一节点在所述第一TRP所对应的用于BLF监测的波束集合中通过监测波束判断发生了BLF,所述第一节点在所述第一TRP所对应的候选波束集合中选择一个上报用于BFR;当所述第一节点在所述第二TRP所对应的用于BLF监测的波束集合中通过监测波束判断发生了BLF,所述第一节点在所述第二TRP所对应的候选波束集合中选择一个上报用于BFR;
-.当所述第一节点通过BFR过程上报所述第二参考信号资源时,所述第二参考信号资源所对应的空间接收参数将用于CORESET#0中传输的控制信令的接收;
-.波束管理过程上报的所述第一参考信号资源还能够用于更新TCI状态所对应的参考信号资源,上述方式避免基站和终端之间的过多交互,降低信令开销,提高效率;
-.上报所述第二参考信号资源的同时将所述第二参考信号资源更新到候选参考信号的集合中,用于后续BFR过程中推荐的参考信号资源的选择,进一步优化BFR流程,减少信令交互。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会 变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一消息的流程图;
图6示出了根据本申请的一个实施例的第一信令的流程图;
图7示出了根据本申请的一个实施例的第二信令的流程图;
图8示出了根据本申请的一个实施例的应用场景的示意图;
图9示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一消息,所述第一消息被用于确定第一参考信号资源池;在步骤102中为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源,并根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;在步骤103中每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1,作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复。
实施例1中,所述第一参考信号资源池包括至少一个参考信号资源,所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第一消息被用于隐式指示所述第一参考信号资源集合。
作为一个实施例,所述第一消息被用于显示指示所述第一参考信号资源集合。
作为一个实施例,所述第一消息的发送者是所述第一节点的服务小区的维持基站。
作为一个实施例,所述第一消息通过uu口传输。
作为一个实施例,所述第一消息通过PC5口传输。
作为一个实施例,所述第一消息的逻辑信道包括BCCH(Broadcast Control Channel,广播控制信道),或者DCCH(Dedicated Control Channel,专用控制信道),或者CCCH(Common Control Channel,公共控制信道),或者SCCH(Sidelink Control Channel,副链路控制信道),或者SBCCH(Sidelink Broadcast Control Channel,副链路广播控制信道)。
作为一个实施例,所述第一消息包括一个下行链路(Downlink,DL)信令。
作为一个实施例,所述第一消息包括一个副链路(Sidelink,SL)信令。
作为一个实施例,所述第一消息是RRC消息。
作为一个实施例,所述第一消息包括至少一个RRC消息。
作为一个实施例,所述第一消息包括RRC消息中的至少一个IE(Information element,信息元素)。
作为一个实施例,所述第一消息包括RRC消息中的至少一个域(Field)。
作为一个实施例,所述第一消息包括RRCReconfiguration消息。
作为一个实施例,所述第一消息包括SIB1(System Information Block 1,系统消息块1)消息。
作为一个实施例,所述第一消息包括SystemInformation消息。
作为一个实施例,所述第一消息是IE RadioLinkMonitoringConfig之外的一个域或者一个IE。
作为一个实施例,所述第一消息包括IE RadioLinkMonitoringConfig之外的至少一个IE。
作为一个实施例,所述第一消息包括M个子信令,所述M个子信令中的每个子信令包括一个IE  RadioLinkMonitoringConfig,M是BWP(Bandwidth Part,带宽部分)的数量。
作为一个实施例,所述第一消息包括至少一个IE RadioLinkMonitoringConfig。
作为一个实施例,所述第一消息包括至少两个IE RadioLinkMonitoringConfig。
作为该实施例的一个子实施例,所述两个IE RadioLinkMonitoringConfig分别针对本申请中的所述第一PCI和所述第二PCI。
作为一个实施例,所述第一消息包括至少一个failureDetectionResourcesToAddModList域。
作为一个实施例,所述第一消息包括至少两个failureDetectionResourcesToAddModList域。
作为该实施例的一个子实施例,所述两个failureDetectionResourcesToAddModList域分别针对本申请中的所述第一PCI和所述第二PCI。
作为一个实施例,所述第一消息是failureDetectionResourcesToAddModList域。
作为一个实施例,所述第一消息中IE RadioLinkMonitoringConfig之外的至少一个IE或者至少一个域指示所述第一参考信号资源池。
作为该实施例的一个子实施例,所述第一消息中包括至少一个ControlResourceSet IE,所述一个ControlResourceSet IE中的至少一个域指示所述第一参考信号资源池。
作为该实施例的一个子实施例,所示第一消息中包括至少一个TCI-State IE,所述一个TCI-State IE中的至少一个域指示所述第一参考信号资源池。
作为该实施例的一个子实施例,所示第一消息中包括至少一个referenceSignal域,所述至少一个referenceSignal域指示所述第一参考信号资源池。
作为一个实施例,所述第一消息中的IE RadioLinkMonitoringConfig被用于指示所述第一参考信号资源池。
作为一个实施例,所述第一消息中的至少一个RadioLinkMonitoringRS域被用于配置所述第一参考信号资源池中的一个参考信号(Reference Signal,RS)资源(Resource),所述RadioLinkMonitoringRS域的purpose域被设置为rlf或者both。
作为一个实施例,所述第一消息中的至少一个detectionResource域被用于配置所述第一参考信号资源池中的一个RS资源的索引或者类型中的至少之一。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一消息显示指示所述第一参考信号资源池中的至少一个参考信号资源。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一消息隐式指示所述第一参考信号资源池中的至少一个参考信号资源。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一消息被用于配置所述第一参考信号资源池的至少一个参考信号资源。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一消息指示所述第一参考信号资源池的至少一个参考信号资源。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一消息指示所述第一参考信号资源池中的每个参考信号资源的索引。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一参考信号资源池中的每个参考信号资源通过所述第一消息配置。
作为一个实施例,所述短语所述第一消息被用于确定第一参考信号资源池的意思包括:所述第一参考信号资源池中的参考信号资源是所述第一消息指示的参考信号资源。
作为一个实施例,所述第一参考信号资源池包括M1个参考信号资源,所述M1是不大于M的正整数,所述M是正整数。
作为该实施例的一个子实施例,所述M等于1。
作为该实施例的一个子实施例,所述M等于2。
作为该实施例的一个子实施例,所述M等于4。
作为该实施例的一个子实施例,所述M不大于32。
作为一个实施例,所述第一参考信号资源池中的至少一个参考信号资源是CSI-RS(Channel state  information Reference signal,信道状态信息参考信号)资源。
作为一个实施例,所述第一参考信号资源池中的至少一个参考信号资源是SSB(Synchronization Signal Block,同步信号块)资源。
作为一个实施例,所述第一参考信号资源池中的至少一个参考信号资源是SS(Synchronization Signal)/PBCH(Physical Broadcast Channel)块(block)。
作为一个实施例,所述第一参考信号资源池中的至少一个参考信号资源对应一个TCI-State。
作为一个实施例,所述第一参考信号资源池中的至少一个参考信号资源对应一个TCI-StateId。
作为一个实施例,所述第一参考信号资源池中的任一参考信号资源是周期性(periodic)的。
作为一个实施例,所述第一参考信号资源池中的任一参考信号资源是非周期性(aperiodic)的。
作为一个实施例,所述第一参考信号资源池中的任一参考信号资源是QCL-Type D的。
作为一个实施例,所述第一参考信号资源池中的一个参考信号资源是被csi-RS-Index标识的CSI-RS资源,或者所述一个参考信号资源是被ssb-Index标识的SSB资源。
作为一个实施例,所述第一参考信号资源池中的一个参考信号资源是被csi-rs标识的CSI-RS资源,或者所述一个参考信号资源是被ssb标识的SSB资源。
作为一个实施例,所述第一参考信号资源池中的一个参考信号资源是被NZP-CSI-RS-ResourceId标识的CSI-RS资源,或者所述一个参考信号资源是被SSB-Index标识的SSB资源。
作为一个实施例,所述第一参考信号资源池被用于RLM(Radio Link Monitoring,无线链路监测)。
作为一个实施例,所述第一参考信号资源池被用于链路恢复过程(Link recovery procedures)。
作为一个实施例,所述第一参考信号资源池中的任一参考信号资源由本申请中的所述第一PCI标识的小区的维持基站的一个TRP发送。
作为一个实施例,所述第一参考信号资源池是TS 38.213中的一个
Figure PCTCN2022120902-appb-000001
作为一个实施例,所述第一参考信号资源池对应TS 38.213中的
Figure PCTCN2022120902-appb-000002
作为一个实施例,所述第一参考信号资源池是TS 38.213中的两个
Figure PCTCN2022120902-appb-000003
作为一个实施例,所述第一参考信号资源池对应TS 38.213中的两个
Figure PCTCN2022120902-appb-000004
作为一个实施例,所述第一参考信号资源池在一个BWP上被配置。
作为一个实施例,所述第一参考信号资源池通过failureDetectionResources或者beamFailureDetectionResourceList确定。
作为一个实施例,所述第一目标参考信号资源集合根据用于监听PDCCH(Physical Downlink Control Channel,物理下行控制信道)的CORESET(Control resource set,控制资源集合)对应的TCI状态中指示的参考信号集合确定。
作为一个实施例,所述第一目标参考信号资源集合由所述第一节点确定。
作为一个实施例,所述句子“每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1”的意思包括:根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差触发所述第一计数器增加1。
作为一个实施例,所述句子“每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1”的意思包括:如果根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差,所述第一计数器才被增加1;如果根据所述第一目标参考信号资源集合评估的第一类无线链路质量不比第一阈值差,所述第一计数器不被增加1。
作为一个实施例,所述句子“每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1”的意思包括:如果根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差,给更上层上报一个所述第一类指示,在所述更上层接收到所述第一类指示时,所述第一计数器才被增加1。
作为一个实施例,如果所述第一目标参考信号资源集合被更高层重新配置,将所述第一计数器设置为0。
作为一个实施例,如果所述第一计数器关联的波束失败恢复计时器过期,将所述第一计数器设置为0。
作为一个实施例,所述每当的意思包括:一旦,或者只要,或者如果,或者只要。
作为一个实施例,所述短语根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差包括:针对所述第一目标参考信号资源集合中的所有参考信号资源的无线链路质量都比所述第一阈值差。
作为一个实施例,所述短语根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差包括:针对所述第一目标参考信号资源集合中的每个参考信号资源的无线链路质量都低于所述第一阈值。
作为一个实施例,所述短语根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差包括:针对所述第一目标参考信号资源集合中的每个参考信号资源的无线链路质量都高于所述第一阈值。
作为一个实施例,在每个评估周期根据所述第一目标参考信号资源集合评估第一类无线链路质量。
作为一个实施例,所述第一类无线链路质量的所述评估周期包括至少1个时间单元。
作为一个实施例,所述时间单元包括Slot,或者子帧(subframe),或者无线帧(Radio Frame),或者帧,或者多个OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用技术)符号,或者多个SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)符号中的至少之一。
作为一个实施例,所述时间单元包括至少1毫秒(ms)的时间间隔。
作为一个实施例,所述第一类无线链路质量的所述评估周期是1帧(Frame)。
作为一个实施例,所述第一类无线链路质量的所述评估周期是1无线帧(Radio Frame)。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第一阈值是预配置的。
作为一个实施例,所述第一阈值通过RRC消息配置。
作为一个实施例,所述第一阈值包括BLER(Block Error Ratio,块误码率)阈值。
作为一个实施例,所述第一阈值包括RSRP(Reference Signal Received Power,参考信号接收功率)阈值。
作为一个实施例,所述第一阈值包括RSRQ(Reference Signal Received Quality,参考信号接收质量)阈值。
作为一个实施例,所述第一阈值包括SNR(Signal-to-noise ratio,信噪比)阈值。
作为一个实施例,所述第一阈值包括SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)阈值。
作为一个实施例,所述第一阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一阈值的单位是dB(分贝)。
作为一个实施例,所述第一阈值包括Q out
作为一个实施例,所述第一阈值由RRC消息中的一个域进行指示。
作为一个实施例,所述第一阈值由RRC消息进行指示。
作为一个实施例,所述第一阈值由RRC消息中的一个域进行指示,所述一个域的名字包括rlmInSyncOutOfSyncThreshold。
作为一个实施例,所述第一阈值由RRC消息中的一个域进行指示,所述一个域的名字中包括rsrp-ThresholdSSB。
作为一个实施例,所述第一阈值由RRC消息中的一个域进行指示,所述一个域的名字中包括rsrp-ThresholdBFR。
作为一个实施例,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,在所述评估周期对应的上报周期向目标更高层上报一个第一类指示。
作为一个实施例,所述第一类无线链路质量的所述上报周期包括至少1个时隙。
作为一个实施例,所述第一类无线链路质量的所述上报周期是2毫秒。
作为一个实施例,所述第一类无线链路质量的所述上报周期是10毫秒。
作为一个实施例,所述第一类无线链路质量的所述上报周期是所述第一目标参考信号资源集合中的所 有参考信号资源的最短周期。
作为一个实施例,所述作为所述第一计数器达到第一数值的响应的行为还包括:所述第一节点的PHY层通过层间接口给所述第一节点的更高层发送所述一个第一类指示。
作为该实施例的一个子实施例,所述第一类指示被用于给所述目标更上层指示根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差。
作为该实施例的一个子实施例,所述第一类指示被用于给所述目标更上层指示波束失败。
作为该实施例的一个子实施例,所述第一类指示是波束失败实例指示(beam failure instance indication)。
作为该实施例的一个子实施例,所述第一类指示针对被所述第一PCI标识的小区,或者所述第一类指示针对被所述第二PCI标识的小区。
作为一个实施例,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,所述第一节点的物理层向所述第一节点的目标更高层上报一个第二类指示,作为在所述第一节点的所述目标更高层接收到所述第二类指示的响应,所述第一计数器增加1。
作为一个实施例,所述行为“第一计数器增加1”包括:所述第一计数器的计数值增加1。
作为一个实施例,所述行为“第一计数器增加1”包括:increment the first counter by 1。
作为一个实施例,所述第一计数器被用于统计本申请中的所述第二类指示的个数。
作为一个实施例,所述第一计数器是BFI_COUNTER。
作为一个实施例,所述第一计数器的名字中包括BFI或者COUNTER或者TRP或者RS或者Set或者per或者Per中的至少之一。
作为一个实施例,所述第一计数器针对所述被所述第一PCI标识的小区,或者所述第一计数器针对所述被所述第二PCI标识的小区。
作为一个实施例,所述第一计数器针对所述被所述第一PCI标识的小区中的一个TRP,或者所述第一计数器针对所述被所述第二PCI标识的小区中的一个TRP。
作为一个实施例,所述第一计数器被配置于所述第一节点中。
作为一个实施例,所述第一计数器是隶属于所述第一节点的计数器。
作为一个实施例,所述第一类无线链路质量包括RSRP,RSRQ,RSSI(Received Signal Strength Indication,接收的信号强度指示),SNR或SINR中的至少之一。
作为一个实施例,所述第一类无线链路质量是针对无线链路之间的质量。
作为一个实施例,所述第一类无线链路质量是所述第一PCI标识的小区的维持基站与所述第一节点之间的质量。
作为一个实施例,所述第一类无线链路质量是所述第二PCI标识的小区的维持基站与所述第一节点之间的质量。
作为一个实施例,所述第一类无线链路质量是所述第一PCI标识的小区中的至少一个TRP与所述第一节点之间的质量。
作为一个实施例,所述第一类无线链路质量是所述第二PCI标识的小区中的至少一个TRP与所述第一节点之间的质量。
作为一个实施例,所述第一类无线链路质量是所述第一PCI标识的小区中的所有TRP与所述第一节点之间的质量。
作为一个实施例,所述第一类无线链路质量是所述第二PCI标识的小区中的所有TRP与所述第一节点之间的质量。
作为一个实施例,本申请中的所述波束管理包括基于网络控制的波束管理。
作为一个实施例,本申请中的所述波束管理包括基于所述第二节点控制的波束管理。
作为一个实施例,本申请中的所述波束管理包括所述第一节点发起的波束管理。
作为一个实施例,本申请中的所述波束管理包括UE发起的波束管理。
作为一个实施例,本申请中的所述波束管理过程包括所述波束管理。
作为一个实施例,本申请中的所述波束管理不属于所述波束失败检测和恢复过程。
作为一个实施例,本申请中的所述波束管理不属于所述波束失败检测过程。
作为一个实施例,本申请中的所述波束管理不属于所述波束失败恢复过程。
作为一个实施例,本申请中的所述波束管理不包括:接收来自更低层的指示。
作为一个实施例,本申请中的所述波束管理不包括:作为接收来自更低层的指示的响应,启动或者重新启动一个计时器。
作为一个实施例,本申请中的所述波束管理不包括:作为接收来自更低层的指示的响应,计数器加1。
作为一个实施例,本申请中的所述波束管理不包括:根据所述第一参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1。
作为一个实施例,本申请中的所述波束管理不依赖于针对所述第一参考信号资源集合评估。
作为一个实施例,本申请中的所述波束管理不依赖于所述第一计数器是否达到某个给定数值。
作为一个实施例,本申请中的所述波束管理不依赖于所述波束失败检测过程。
作为一个实施例,本申请中的所述波束管理包括波束改善(beam refinement)。
作为一个实施例,本申请中的所述波束管理包括波束追踪(beam tracking)。
作为一个实施例,本申请中的所述波束管理包括波束调整(beam adjustment)。
作为一个实施例,本申请中的所述波束管理包括波束级移动性(beam level mobility)。
作为一个实施例,本申请中的所述波束管理包括波束切换(beam handover)。
作为一个实施例,本申请中的所述波束管理包括波束更改(beam change)。
作为一个实施例,本申请中的所述波束管理包括波束转换(beam switch)。
作为一个实施例,本申请中的所述波束管理包括波束测量(beam measurement)。
作为一个实施例,本申请中的所述波束管理包括波束上报(beam reporting)。
作为一个实施例,本申请中的所述波束管理包括改变一个参考信号资源的QCL(Quasi Co-located,准共址)关系。
作为一个实施例,本申请中的所述波束管理包括改变一个物理信道的TCI状态。
作为一个实施例,本申请中的所述波束管理包括改变一个物理信道的一个CORESET对应的TCI状态。
作为一个实施例,本申请中的所述波束管理包括改变一个TCI和一个参考信号资源的对应关系。
作为一个实施例,本申请中的所述波束管理包括CSI(Channel State Information,信道状态信息)上报。
作为一个实施例,本申请中的所述波束管理包括波束级测量(Beam Level Measurement)。
作为一个实施例,本申请中的所述波束管理包括波束级移动性(Beam Level Mobility)。
作为一个实施例,本申请中的所述波束管理不需要通过显性的RRC信令触发(Not Require Explicit RRC Signaling to be triggered)。
作为一个实施例,本申请中的所述波束管理包括RRC层以下的波束调整。
作为一个实施例,本申请中的所述波束管理不包括BFR。
作为一个实施例,本申请中的所述波束管理不包括小区级别的移动性管理。
作为一个实施例,所述第一无线信号通过UCI(Uplink Control Information,上行控制信息)传输。
作为一个实施例,所述第一无线信号所占用的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输。
作为一个实施例,所述第一无线信号是CSI。
作为一个实施例,所述第一无线信号通过波束管理过程发送。
作为一个实施例,所述第一无线信号隐式指示第一参考信号资源。
作为该实施例的一个子实施例,所述第一无线信号所占用的频域资源的位置或所占用的时域资源的位置中的至少之一被用于指示所述第一参考信号资源。
作为该实施例的一个子实施例,所述第一无线信号所包括的解调参考信号所采用的扰码被用于指示所述第一参考信号资源。
作为一个实施例,所述第一无线信号显示指示所述第一参考信号资源。
作为一个实施例,所述第一参考信号资源是CSI-RS资源。
作为一个实施例,所述第一参考信号资源是SSB资源。
作为一个实施例,所述第一参考信号资源是SS/PBCH(Physical Broadcast Channel)块。
作为一个实施例,所述第一参考信号资源对应一个TCI-State。
作为一个实施例,所述第一参考信号资源对应一个TCI-StateId。
作为一个实施例,所述第一节点根据所述第一参考信号资源中传输的参考信号确定的无线信道质量大于第二阈值,所述第二阈值是固定的,或者所述第二阈值是通过RRC信令配置的。
作为该实施例的一个子实施例,所述第二阈值包括BLER阈值。
作为该实施例的一个子实施例,所述第二阈值包括RSRP阈值。
作为该实施例的一个子实施例,所述第二阈值包括RSRQ阈值。
作为该实施例的一个子实施例,所述第二阈值包括SNR阈值。
作为该实施例的一个子实施例,所述第二阈值包括SINR阈值。
作为该实施例的一个子实施例,所述第二阈值的单位是dBm。
作为该实施例的一个子实施例,所述第二阈值的单位是dB。
作为一个实施例,上述短语根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合的意思包括:所述第一节点发送第一无线信号,且接收到针对所述第一无线信号的反馈后,根据所述第一参考信号资源从所述第一参考信号资源池中确定所述第一目标参考信号资源集合。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈由本申请中的所述第二节点发送。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈由所述第一PCI标识的小区中的至少一个TRP发送。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈由所述第二PCI标识的小区中的至少一个TRP发送。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈包括HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgement,混合自动重传请求确认)。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈包括MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制单元)。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈所占用的物理层信道包括PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈被用于确定所述第一参考信号资源与CORESET#0中的PDCCH的解调参考信号资源是QCL的。
作为该实施例的一个子实施例,所述针对所述第一无线信号的所述反馈被用于确定所述第一参考信号资源所对应的空间接收参数能够被用于CORESET#0中的PDCCH的解调。
作为一个实施例,上述短语根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合的意思包括:所述第一节点发送第一无线信号,且确定所述第一参考信号资源与CORESET#0中的PDCCH的解调参考信号资源是QCL的后,根据所述第一参考信号资源从所述第一参考信号资源池中确定所述第一目标参考信号资源集合。
作为一个实施例,上述短语根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合的意思包括:所述第一节点发送第一无线信号,且确定所述第一参考信号资源所对应的空间接收参数能够被用于CORESET#0中的PDCCH的解调后,根据所述第一参考信号资源从所述第一参考信号资源池中确定所述第一目标参考信号资源集合。
作为一个实施例,本申请中的所述参考信号资源是CSI-RS资源。
作为一个实施例,本申请中的所述参考信号资源是SSB资源。
作为一个实施例,本申请中的所述参考信号资源是SS/PBCH(Physical Broadcast Channel)块。
作为一个实施例,本申请中的所述参考信号资源对应一个TCI-State。
作为一个实施例,本申请中的所述参考信号资源对应一个TCI-StateId。
作为一个实施例,所述第一参考信号资源池包括Q个参考信号资源集合,所述Q是大于1的正整数,所述Q个参考信号资源集合中的任一候选参考信号资源集合至少包括一个参考信号资源。
作为该实施例的一个子实施例,所述Q等于2,所述Q个候选参考信号资源集合分别是第一参考信号资源集合和第二参考信号资源集合。
作为该子实施例的一个附属实施例,所述第一参考信号资源集合被关联到所述第一PCI。
作为该子实施例的一个附属实施例,所述第二参考信号资源集合被关联到所述第二PCI。
作为该子实施例的一个附属实施例,所述第一目标参考信号资源集合是所述第一参考信号资源集合或所述第二参考信号资源集合中的之一。
作为该实施例的一个子实施例,所述Q大于2,所述Q个参考信号资源集合分别被关联到Q个不同的PCI。
作为该子实施例的一个附属实施例,所述第一目标参考信号资源集合是所述Q个参考信号资源集合中的之一。
作为一个实施例,所述第一参考信号资源池是一个TS 38.213中的
Figure PCTCN2022120902-appb-000005
作为一个实施例,所述第一参考信号资源池对应TS 38.213中的
Figure PCTCN2022120902-appb-000006
作为一个实施例,所述第一参考信号资源池在一个BWP上被配置。
作为一个实施例,所述第一参考信号资源池通过BeamFailureRecoveryConfig IE配置。
作为一个实施例,配置所述第一参考信号资源池的RRC信令的名字包括Beam。
作为一个实施例,配置所述第一参考信号资源池的RRC信令的名字包括Failure。
作为一个实施例,配置所述第一参考信号资源池的RRC信令的名字包括Recovery。
作为一个实施例,所述第一参考信号资源池通过TS 38.331中的failureDetectionResourcesToAddModList配置。
作为一个实施例,所述第一参考信号资源池通过TS 38.331中的failureDetectionResourcesToReleaseList配置。
作为一个实施例,所述第一参考信号资源池通过TS 38.331中的RadioLinkMonitoringRS配置。
作为一个实施例,配置所述第一参考信号资源池的信令中还包括所述第一PCI和所述第二PCI。
作为一个实施例,所述第二无线信号是一个MAC CE。
作为一个实施例,所述第二无线信号所占用的物理层信道包括PRACH(Physical RandomAccess Channel,物理随机接入信道)。
作为一个实施例,所述第二无线信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述波束管理不包括所述波束失败恢复。
作为一个实施例,所述第一计数器是一个BFI_COUNTER,任意一个BFI_COUNTER不被用于触发所述第一无线信号。
作为一个实施例,所述第二参考信号资源是CSI-RS资源。
作为一个实施例,所述第二参考信号资源是SSB资源。
作为一个实施例,所述第二参考信号资源是SS/PBCH(Physical Broadcast Channel)块。
作为一个实施例,所述第二参考信号资源对应一个TCI-State。
作为一个实施例,所述第二参考信号资源对应一个TCI-StateId。
作为一个实施例,所述第二参考信号资源是q new
作为一个实施例,所述第二无线信号隐式指示第二参考信号资源。
作为该实施例的一个子实施例,所述第二无线信号所占用的频域资源的位置或所占用的时域资源的位置中的至少之一被用于指示所述第二参考信号资源。
作为该实施例的一个子实施例,所述第二无线信号所包括的解调参考信号所采用的扰码被用于指示所述第二参考信号资源。
作为该实施例的一个子实施例,生成所述第二无线信号序列被用于指示所述第二参考信号资源。
作为一个实施例,所述第二无线信号显示指示第二参考信号资源。
作为一个实施例,所述第一无线信号所占用的时频资源是通过RRC信令配置的。
作为一个实施例,所述第一无线信号所占用的时频资源是周期性的。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个终端(ender)。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备(BaseStation,BS)。
作为一个实施例,所述节点203是一个基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述节点203是一个节点B(NodeB,NB),或者gNB,或者eNB,或者ng-eNB,或者en-gNB,或者用户设备,或者中继,或者网关(Gateway),或者至少一个TRP。
作为一个实施例,所述节点203包括至少一个TRP。
作为一个实施例,所述节点203包括被所述第一PCI标识的小区中的至少一个TRP,并且所述节点203包括被所述第二PCI标识的小区中的至少一个TRP。
作为一个实施例,所述节点203是一个逻辑节点。
作为一个实施例,所述节点203中的不同结构位于同一个实体。
作为一个实施例,所述节点203中的不同结构位于不同实体。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备支持NR。
作为一个实施例,所述用户设备支持UTRA。
作为一个实施例,所述用户设备支持EUTRA。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括飞行器,或者车载终端,或者船只,或者物联网终端,或者工业物联网的终端,或者测试设备,或者信令测试仪。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站,或者微小区(Micro Cell)基站,或者微微小区(Pico Cell)基站,或者家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括飞行平台设备,或者卫星设备,或者TRP(Transmitter Receiver Point,发送接收节点),或者CU(Centralized Unit,集中单元),或者DU(Distributed Unit,分布单元),或者测试设备,或者信令测试仪,或者IAB(Integrated Access and Backhaul)-node,或者IAB-donor,或者IAB-donor-CU,或者IAB-donor-DU,或者IAB-DU,或者IAB-MT。
作为一个实施例,所述中继包括relay,或者L3relay,或者L2relay,或者路由器,或者交换机。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(MediumAccess Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,本申请中的所述第一消息生成于所述RRC306。
作为一个实施例,本申请中的所述第一消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一消息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者PHY351。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点是一个小区(Cell)。
作为一个实施例,所述第二节点是一个eNB。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第二节点是用于管理多个载波的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟 预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;其次为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;并根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;随后,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;其次为了波束管理 发送第一无线信号,所述第一无线信号指示第一参考信号资源;并根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;随后,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;其次,为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;并根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;随后接收第二无线信号,所述第二无线信号被用于波束失败恢复;所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;其次,为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;并根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;随后接收第二无线信号,所述第二无线信号被用于波束失败恢复;所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450能别识别一个基站下的多个TRP。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述第二通信设备410支持维护多个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于为了波束管理接收第一无线信号,所述第一无线信号指示第一参考信号资源。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468, 所述控制器/处理器459中的至少前四者被用于根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第二无线信号,所述第二无线信号被用于波束失败恢复。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一时频资源集合中接收第二信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第一时频资源集合中发送第二信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于将所述第二参考信号资源更新到所述第二参考信号资源池中;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于将所述第二参考信号资源更新到所述第二参考信号资源池中。
实施例5
实施例5示例了一个第一消息的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6或7中的任一之中;反之,在不冲突的情况下,实施例6或7中的任一之中的实施例、子实施例和附属实施例能够被应用到实施例5中。
对于 第一节点U1,在步骤S10中接收第一消息;在步骤S11中发送第一无线信号;在步骤S12中根据至少第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;在步骤S13中每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;在步骤S14中发送第二无线信号。
对于 第二节点N2,在步骤S20中发送第一消息;在步骤S21中接收第一无线信号;在步骤S22中接收第二无线信号。
实施例5中,所述第一消息被用于确定所述第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;所述第一无线信号属于波束管理过程;所述第一无线信号指示所述第一参考信号资源;所述第二无线信号的发送作为所述第一计数器达到第一数值的响应,所述第二无线信号被用于波束失败恢复;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第一节点U1根据至少所述第一参考信号资源从第一参考信号资源池中确定所述第一目标参考信号资源集合。
作为一个实施例,所述第二节点N2根据至少所述第一参考信号资源从第一参考信号资源池中确定所述第一目标参考信号资源集合。
作为一个实施例,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一PCI和第二PCI;当所述第一参考信号资源被关联到所述第一PCI时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二PCI时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被关联到所述第一PCI的意思包括:配置所述第一参考信号资源的RRC信令中包括所述第一PCI。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被关联到所述第一PCI的意思包括:所述第一参考信号资源由所述第一PCI所对应的TRP发送。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被关联到所述第一PCI的意思包括:所述第一参考信号资源由所述第一PCI所对应的TRP所维护。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被关联到所述第二PCI的意思包括:配置所述第一参考信号资源的RRC信令中包括所述第二PCI。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被关联到所述第二PCI的意思包括:所述第一参考信号资源由所述第二PCI所对应的TRP发送。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被关联到所述第二PCI的意思包括:所述第一参考信号资源由所述第二PCI所对应的TRP所维护。
作为该实施例的一个子实施例,所述短语所述第一参考信号资源集合关联到第一PCI包括:所述第一参考信号资源集合中的每个参考信号资源关联到所述第一PCI。
作为该实施例的一个子实施例,所述短语所述第一参考信号资源集合关联到第一PCI包括:所述第一参考信号资源集合中的所有参考信号资源关联到所述第一PCI。
作为该实施例的一个子实施例,所述短语所述第一参考信号资源集合关联到第一PCI包括:所述第一参考信号资源集合针对被所述第一PCI标识的小区。
作为该实施例的一个子实施例,所述短语所述第一参考信号资源集合关联到第一PCI包括:所述第一参考信号资源集合关联到所述第一PCI中的至少一个TRP。
作为该实施例的一个子实施例,所述短语所述第一参考信号资源集合关联到第一PCI包括:所述第一参考信号资源集合仅关联到所述第一PCI中的一个TRP。
作为该实施例的一个子实施例,所述短语所述第一参考信号资源集合关联到第一PCI包括:所述第一参考信号资源集合关联到所述第一PCI中的全部TRP。
作为该实施例的一个子实施例,所述短语所述第二参考信号资源集合关联到第二PCI包括:所述第二参考信号资源集合中的每个参考信号资源关联到所述第二PCI。
作为该实施例的一个子实施例,所述短语所述第二参考信号资源集合关联到第二PCI包括:所述第二参考信号资源集合中的所有参考信号资源关联到所述第二PCI。
作为该实施例的一个子实施例,所述短语所述第二参考信号资源集合关联到第二PCI包括:所述第二参考信号资源集合针对被所述第二PCI标识的小区。
作为一个实施例,所述短语所述第二参考信号资源集合关联到第二PCI包括:所述第二参考信号资源集合关联到所述第二PCI中的至少一个TRP。
作为一个实施例,所述短语所述第二参考信号资源集合关联到第二PCI包括:所述第二参考信号资源集合仅关联到所述第二PCI中的一个TRP。
作为该实施例的一个子实施例,所述短语所述第二参考信号资源集合关联到第二PCI包括:所述第二参考信号资源集合关联到所述第二PCI中的全部TRP。
作为该实施例的一个子实施例,所述第一参考信号资源集合包括M2个参考信号资源,所述M2是大于 1的正整数。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的至少一个参考信号资源是CSI-RS资源。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的至少一个参考信号资源是SSB资源。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的至少一个参考信号资源是SS/PBCH块。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的至少一个参考信号资源对应一个TCI-State。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的至少一个参考信号资源对应一个TCI-StateId。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的任一参考信号资源是周期性(periodic)的。
作为该实施例的一个子实施例,所述M2个参考信号资源中的任一参考信号资源是非周期性(aperiodic)的。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的任一参考信号资源是QCL-Type D的。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的一个参考信号资源是被csi-RS-Index标识的CSI-RS资源,或者所述一个参考信号资源是被ssb-Index标识的SSB资源。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的一个参考信号资源是被csi-rs标识的CSI-RS资源,或者所述一个参考信号资源是被ssb标识的SSB资源。
作为该子实施例的一个附属实施例,所述M2个参考信号资源中的一个参考信号资源是被NZP-CSI-RS-ResourceId标识的CSI-RS资源,或者所述一个参考信号资源是被SSB-Index标识的SSB资源。
作为该实施例的一个子实施例,所述第二参考信号资源集合包括M3个参考信号资源,所述M3是大于1的正整数。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的至少一个参考信号资源是CSI-RS资源。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的至少一个参考信号资源是SSB资源。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的至少一个参考信号资源是SS/PBCH块。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的至少一个参考信号资源对应一个TCI-State。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的至少一个参考信号资源对应一个TCI-StateId。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的任一参考信号资源是周期性(periodic)的。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的任一参考信号资源是非周期性(aperiodic)的。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的任一参考信号资源是QCL-Type D的。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的一个参考信号资源是被csi-RS-Index标识的CSI-RS资源,或者所述一个参考信号资源是被ssb-Index标识的SSB资源。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的一个参考信号资源是被csi-rs标识的CSI-RS资源,或者所述一个参考信号资源是被ssb标识的SSB资源。
作为该子实施例的一个附属实施例,所述M3个参考信号资源中的一个参考信号资源是被NZP-CSI-RS-ResourceId标识的CSI-RS资源,或者所述一个参考信号资源是被SSB-Index标识的SSB资源。
作为该实施例的一个子实施例,所述第一PCI是非负整数。
作为该实施例的一个子实施例,所述第二PCI是非负整数。
作为一个实施例,所述第二参考信号资源是所述第一参考信号资源。
作为该实施例的一个子实施例,上述短语所述第二参考信号资源是所述第一参考信号资源的意思包括:所述第二参考信号资源所对应的参考信号和所述第一参考信号资源所对应的参考信号占用相同的时频资源。
作为该实施例的一个子实施例,上述短语所述第二参考信号资源是所述第一参考信号资源的意思包括:所述第二参考信号资源所对应的TCI-StateId和所述第一参考信号资源所对应的TCI-StateId相同。
作为该实施例的一个子实施例,上述短语所述第二参考信号资源是所述第一参考信号资源的意思包括:所述第二参考信号资源和所述第一参考信号资源是QCL的。
作为该实施例的一个子实施例,上述短语所述第二参考信号资源是所述第一参考信号资源的意思包括:所述第二参考信号资源所对应的第二标识和所述第一参考信号资源所对应的第一标识有关。
作为该子实施例的一个附属实施例,所述第二标识和所述第一标识有关的意思包括:所述第二标识与所述第一标识相同。
作为该子实施例的一个附属实施例,所述第二标识和所述第一标识有关的意思包括:所述第二标识与所述第一标识属于同一个TCI-State IE中的QCL-Info。
作为该子实施例的一个附属实施例,所述第一标识是NZP-CSI-RS-ResourceId或SSB-Index中的之一。
作为该子实施例的一个附属实施例,所述第二标识是NZP-CSI-RS-ResourceId或SSB-Index中的之一。
作为一个实施例,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一PCI和第二PCI;当所述第一目标参考信号资源集合被关联到所述第一PCI时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二PCI时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
作为该实施例的一个子实施例,所述第二参考信号资源池是TS 38.213中的至少一个
Figure PCTCN2022120902-appb-000007
作为该实施例的一个子实施例,所述第二参考信号资源池对应TS 38.213中的至少一个
Figure PCTCN2022120902-appb-000008
作为该实施例的一个子实施例,所述第二参考信号资源池是TS 38.213中的两个
Figure PCTCN2022120902-appb-000009
作为该实施例的一个子实施例,所述第二参考信号资源池对应TS 38.213中的两个
Figure PCTCN2022120902-appb-000010
作为该实施例的一个子实施例,所述第二参考信号资源池在一个BWP上被配置。
作为该实施例的一个子实施例,所述第二参考资源池通过RRC信令配置。
作为该实施例的一个子实施例,所述第二参考信号资源池通过BeamFailureRecoveryConfig IE配置。
作为该实施例的一个子实施例,配置所述第二参考信号资源池的RRC信令的名字包括Beam。
作为该实施例的一个子实施例,配置所述第二参考信号资源池的RRC信令的名字包括Failure。
作为该实施例的一个子实施例,配置所述第二参考信号资源池的RRC信令的名字包括Recovery。
作为该实施例的一个子实施例,所述第二参考信号资源池通过TS 38.331中的candidateBeamRSList配置。
作为该实施例的一个子实施例,所述第二参考信号资源池通过TS 38.331中的candidateBeamResourceList配置。
作为该实施例的一个子实施例,所有可能被选为所述第二参考信号资源的参考信号资源组成所述第二参考信号资源池。
作为该实施例的一个子实施例,所述短语所述第三参考信号资源集合关联到第一PCI的意思包括:所述第三参考信号资源集合中的每个参考信号资源关联到所述第一PCI。
作为该实施例的一个子实施例,所述短语所述第三参考信号资源集合关联到第一PCI的意思包括:所述第三参考信号资源集合中的所有参考信号资源关联到所述第一PCI。
作为该实施例的一个子实施例,所述短语所述第三参考信号资源集合关联到第一PCI的意思包括:所述第三参考信号资源集合针对被所述第一PCI标识的小区。
作为该实施例的一个子实施例,所述短语所述第三参考信号资源集合关联到第一PCI的意思包括:所述第三参考信号资源集合关联到所述第一PCI中的至少一个TRP。
作为该实施例的一个子实施例,所述短语所述第三参考信号资源集合关联到第一PCI的意思包括:所述第三参考信号资源集合仅关联到所述第一PCI中的一个TRP。
作为该实施例的一个子实施例,所述短语所述第三参考信号资源集合关联到第一PCI的意思包括:所述第三参考信号资源集合关联到所述第一PCI中的全部TRP。
作为该实施例的一个子实施例,所述短语所述第四参考信号资源集合关联到第二PCI的意思包括:所述第四参考信号资源集合中的每个参考信号资源关联到所述第二PCI。
作为该实施例的一个子实施例,所述短语所述第四参考信号资源集合关联到第二PCI的意思包括:所述第四参考信号资源集合中的所有参考信号资源关联到所述第二PCI。
作为该实施例的一个子实施例,所述短语所述第四参考信号资源集合关联到第二PCI的意思包括:所述第四参考信号资源集合针对被所述第二PCI标识的小区。
作为该实施例的一个子实施例,所述短语所述第四参考信号资源集合关联到第二PCI的意思包括:所述第四参考信号资源集合关联到所述第二PCI中的至少一个TRP。
作为该实施例的一个子实施例,所述短语所述第四参考信号资源集合关联到第二PCI的意思包括:所述第四参考信号资源集合仅关联到所述第二PCI中的一个TRP。
作为该实施例的一个子实施例,所述短语所述第四参考信号资源集合关联到第二PCI的意思包括:所述第四参考信号资源集合关联到所述第二PCI中的全部TRP。
作为该实施例的一个子实施例,所述第三参考信号资源集合包括Q2个参考信号资源,所述Q2是大于1的正整数。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的至少一个参考信号资源是CSI-RS资源。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的至少一个参考信号资源是SSB资源。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的至少一个参考信号资源是SS/PBCH块。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的至少一个参考信号资源对应一个TCI-State。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的至少一个参考信号资源对应一个TCI-StateId。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的任一参考信号资源是周期性(periodic)的。
作为该实施例的一个子实施例,所述Q2个参考信号资源中的任一参考信号资源是非周期性(aperiodic)的。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的任一参考信号资源是QCL-Type D的。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的一个参考信号资源是被csi-RS-Index标识的CSI-RS资源,或者所述一个参考信号资源是被ssb-Index标识的SSB资源。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的一个参考信号资源是被csi-rs标识的CSI-RS资源,或者所述一个参考信号资源是被ssb标识的SSB资源。
作为该子实施例的一个附属实施例,所述Q2个参考信号资源中的一个参考信号资源是被NZP-CSI-RS-ResourceId标识的CSI-RS资源,或者所述一个参考信号资源是被SSB-Index标识的SSB资源。
作为该实施例的一个子实施例,所述第四参考信号资源集合包括Q3个参考信号资源,所述Q3是大于1的正整数。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的至少一个参考信号资源是CSI-RS资源。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的至少一个参考信号资源是SSB资源。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的至少一个参考信号资源是SS/PBCH块。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的至少一个参考信号资源对应一个TCI-State。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的至少一个参考信号资源对应一个 TCI-StateId。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的任一参考信号资源是周期性(periodic)的。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的任一参考信号资源是非周期性(aperiodic)的。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的任一参考信号资源是QCL-Type D的。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的一个参考信号资源是被csi-RS-Index标识的CSI-RS资源,或者所述一个参考信号资源是被ssb-Index标识的SSB资源。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的一个参考信号资源是被csi-rs标识的CSI-RS资源,或者所述一个参考信号资源是被ssb标识的SSB资源。
作为该子实施例的一个附属实施例,所述Q3个参考信号资源中的一个参考信号资源是被NZP-CSI-RS-ResourceId标识的CSI-RS资源,或者所述一个参考信号资源是被SSB-Index标识的SSB资源。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第一PCI的意思包括:所述第一目标参考信号资源集合中的每个参考信号资源关联到所述第一PCI。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第一PCI的意思包括:所述第一目标参考信号资源集合中的所有参考信号资源关联到所述第一PCI。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第一PCI的意思包括:所述第一目标参考信号资源集合针对被所述第一PCI标识的小区。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第一PCI的意思包括:所述第一目标参考信号资源集合关联到所述第一PCI中的至少一个TRP。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第一PCI的意思包括:所述第一目标参考信号资源集合仅关联到所述第一PCI中的一个TRP。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第一PCI的意思包括:所述第一目标参考信号资源集合关联到所述第一PCI中的全部TRP。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第二PCI的意思包括:所述第一目标参考信号资源集合中的每个参考信号资源关联到所述第二PCI。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第二PCI的意思包括:所述第一目标参考信号资源集合中的所有参考信号资源关联到所述第二PCI。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第二PCI的意思包括:所述第一目标参考信号资源集合针对被所述第二PCI标识的小区。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第二PCI的意思包括:所述第一目标参考信号资源集合关联到所述第二PCI中的至少一个TRP。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第二PCI的意思包括:所述第一目标参考信号资源集合仅关联到所述第二PCI中的一个TRP。
作为该实施例的一个子实施例,所述短语所述第一目标参考信号资源集合关联到第二PCI的意思包括:所述第一目标参考信号资源集合关联到所述第二PCI中的全部TRP。
作为一个实施例,所述第一节点U1将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
作为一个实施例,所述第二节点N2将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
作为上述两个实施例的一个子实施例,所述第一节点U1在发送所述第一无线信号之前,所述第一TCI状态被关联到所述第一参考信号资源之外的参考信号资源。
作为上述两个实施例的一个子实施例,所述第二节点N2在接收到所述第一无线信号之前,所述第一TCI状态被关联到所述第一参考信号资源之外的参考信号资源。
作为上述两个实施例的一个子实施例,所述第一TCI状态对应一个TCI-StateId。
作为上述两个实施例的一个子实施例,所述将第一TCI状态所关联的参考信号资源更新为所述第一参 考信号资源的操作在所述第一节点完成。
作为上述两个实施例的一个子实施例,所述第一节点U1在将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源的之前,不需要等待来自所述第二节点N2的针对所述第一无线信号的确认。
作为上述两个实施例的一个子实施例,所述第一节点U1在将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源的之前,不需要等待本申请中的所述第一信令。
作为上述两个实施例的一个子实施例,所述第一无线信号被用于指示所述第一TCI。
作为一个实施例,当所述第一节点U1发送所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
作为一个实施例,当所述第二节点N2接收到所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
作为上述两个实施例的一个子实施例,上述短语所述第二参考信号资源被更新到所述第二参考信号资源池中的意思包括:所述第二参考信号资源被添加到所述第三参考信号资源集合中。
作为上述两个实施例的一个子实施例,上述短语所述第二参考信号资源被更新到所述第二参考信号资源池中的意思包括:所述第二参考信号资源被添加到所述第四参考信号资源集合中。
作为上述两个实施例的一个子实施例,上述短语所述第二参考信号资源被更新到所述第二参考信号资源池中的意思包括:所述第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一PCI和第二PCI;当所述第一参考信号资源被关联到所述第一PCI时,所述第二参考信号资源被添加到所述第三参考信号资源集合中;当所述第一参考信号资源被关联到所述第二PCI时,所述第二参考信号资源被添加到所述第四参考信号资源集合中。
实施例6
实施例6示例了一个第一信令的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5或7的任一之中;反之,在不冲突的情况下,实施例5或7中的任一之中的实施例、子实施例和附属实施例能够被应用到实施例6中。
对于 第一节点U3,在步骤S30中接收第一信令。
对于 第二节点N4,在步骤S40中发送第一信令。
实施例6中,所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
作为一个实施例,实施例6中的步骤S30位于实施例5中的步骤S11之后且步骤S12之前。
作为一个实施例,实施例6中的步骤S30位于实施例5中的步骤S14之后。
作为一个实施例,实施例6中的步骤S40位于实施例5中的步骤S21之后且步骤S22之前。
作为一个实施例,实施例6中的步骤S40位于实施例5中的步骤S22之后。
作为一个实施例,所述第一信令被用于指示控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的
作为一个实施例,所述第一信令是针对所述第一无线信号的HARQ-ACK。
作为一个实施例,所述第一信令是一个MAC CE。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH。
作为一个实施例,本申请中的所述准共址的类型包括QCL Type A。
作为一个实施例,本申请中的所述准共址的类型包括QCL Type B。
作为一个实施例,本申请中的所述准共址的类型包括QCL Type C。
作为一个实施例,本申请中的所述准共址的类型包括QCL Type D。
作为一个实施例,本申请中的所述波束管理包括接收所述第一信令。
作为一个实施例,当所述第一节点U3接收到所述第一信令时,所述第一节点U3根据所述第一参考信 号资源从所述第一参考信号资源池中确定所述第一目标参考信号资源集合。
实施例7
实施例7示例了一个第二信令的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例5或6中的任一之中;反之,在不冲突的情况下,实施例5或6中的任一之中的实施例、子实施例和附属实施例能够被应用到实施例7中。
对于 第一节点U5,在步骤S50中在第一时频资源集合中接收第二信令。
对于 第二节点N6,在步骤S60中在第一时频资源集合中发送第二信令。
实施例7中,所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第二时频资源集合中所包括的解调参考信号是准共址的。
作为一个实施例,实施例7中的步骤S50位于实施例5中的步骤S14之后。
作为一个实施例,实施例7中的步骤S60位于实施例5中的步骤S22之后。
作为一个实施例,本申请中的所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用技术)符号。
作为一个实施例,本申请中所述符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展的正交频分复用)符号。
作为一个实施例,所述第一时频资源集合在频域占用正整数个RB(Resource Block,资源块)所对应的频域资源,且所述第一时频资源集合在时域占用正整数个符号。
作为一个实施例,所述第一时频资源集合占用大于1的正整数个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一节点U5在发送所述第二无线信号之后,在所述第一时频资源集合中接收所述第二信令。
作为一个实施例,所述第一节点U5在发送所述第二无线信号之后,假设所述控制资源集合0中的PDCCH的解调参考信号与所述第二参考信号资源是QCL的。
作为一个实施例,当且仅当所述第二参考信号资源集合是所述第一候选参考信号资源集合时,所述第一节点U5假设所述控制资源集合0中的PDCCH的解调参考信号与所述第二参考信号资源是QCL的。
作为一个实施例,上述短语所述第一时频资源集合被关联到控制资源集合0的意思包括:所述第一时频资源集合所占用的频域资源属于所述控制资源集合0所占用的频域资源。
作为一个实施例,上述短语所述第一时频资源集合被关联到控制资源集合0的意思包括:所述第一时频资源集合所占用的符号属于所述控制资源集合0所占用的符号。
作为一个实施例,上述短语所述第一时频资源集合被关联到控制资源集合0的意思包括:所述第一时频资源集合所位于的时隙属于所述控制资源集合0所关联的搜索空间所占用的时隙。
作为一个实施例,所述第一时频资源集合对应一个CORESET。
作为一个实施例,所述第一时频资源集合对应一个搜索空间集合。
实施例8
实施例8示例了一个应用场景的示意图,如附图8所示。在附图8中,图中所示的TRP-1和TRP-2均由本申请中的所述第二节点管理;本申请中的所述第一PCI被关联到所述TRP-1,本申请中的所述第二PCI被关联到所述TRP-2;所述第一节点在所述TRP-1的覆盖范围和所述TRP-2的覆盖范围中移动。
作为一个实施例,当所述第一节点从所述TRP-1覆盖范围移动到所述TRP-2的覆盖范围中时, 所述第一参考信号资源是所述第二候选参考信号资源集合中的之一。
作为该实施例的一个子实施例,所述第二候选参考信号资源集合是本申请中的所述第二参考信号资源集合。
作为一个实施例,当所述第一节点从所述TRP-1覆盖范围移动到所述TRP-2的覆盖范围中时,所述第二参考信号资源是所述第二候选参考信号资源集合中的之一。
作为该实施例的一个子实施例,所述第二候选参考信号资源集合是本申请中的所述第四参考信号资源集合。
作为一个实施例,当所述第一节点从所述TRP-2覆盖范围移动到所述TRP-1的覆盖范围中时,所述第一参考信号资源是所述第一候选参考信号资源集合中的之一。
作为该实施例的一个子实施例,所述第一候选参考信号资源集合是本申请中的所述第一参考信号资源集合。
作为一个实施例,当所述第一节点从所述TRP-2覆盖范围移动到所述TRP-1的覆盖范围中时,所述第二参考信号资源是所述第一候选参考信号资源集合中的之一。
作为该实施例的一个子实施例,所述第一候选参考信号资源集合是本申请中的所述第三参考信号资源集合。
实施例9
实施例9示例了一个第一节点中的结构框图,如附图9所示。附图9中,第一节点900包括第一接收机901、第一发射机902和第一收发机903。
第一接收机901,接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
第一发射机902,为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
第一收发机903,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;
实施例9中,所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
作为一个实施例,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
作为一个实施例,所述第一收发机903接收第一信令;所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
作为一个实施例,所述第一收发机903在第一时频资源集合中接收第二信令;所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
作为一个实施例,所述第二参考信号资源是所述第一参考信号资源,或者所述第二参考信号资源与所述第一参考信号资源是准共址的。
作为一个实施例,所述第一收发机903将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
作为一个实施例,所述第一节点将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
作为一个实施例,当所述第一节点发送所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
作为一个实施例,所述第一接收机901包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机902包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机903包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、多天线发射处理器457、接收处理器456、发射处理器468、控制器/处理器459中的至少前6者。
实施例10
实施例10示例了一个第二节点中的结构框图,如附图10所示。附图10中,第二节点1000包括第二发射机1001、第二接收机1002和第二收发机1003。
第二发射机1001,发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
第二接收机1002,为了波束管理接收第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
第二收发机1003,接收第二无线信号,所述第二无线信号被用于波束失败恢复;
实施例10中,所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
作为一个实施例,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
作为一个实施例,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
作为一个实施例,所述第二收发机1003发送第一信令;所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
作为一个实施例,所述第二收发机1003在第一时频资源集合中发送第二信令;所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
作为一个实施例,所述第二参考信号资源是所述第一参考信号资源,或者所述第二参考信号资源与所述第一参考信号资源是准共址的。
作为一个实施例,所述第二收发机1003将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
作为一个实施例,当所述第二节点接收到所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
作为一个实施例,所述第二发射机1001包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1002包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二收发机1003包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、多天线接收处理器472、发射处理器416、接收处理器470、控制器/处理器475中的至少前6者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
    第一发射机,为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
    第一收发机,每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;
    其中,所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一收发机接收第一信令;所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一收发机在第一时频资源集合中接收第二信令;所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一节点将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
  7. 根据权利要求3至6中任一权利要求所述的第一节点,其特征在于,当所述第一节点发送所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
    第二接收机,为了波束管理接收第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
    第二收发机,接收第二无线信号,所述第二无线信号被用于波束失败恢复;
    其中,所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
  9. 根据权利要求8所述的第二节点,其特征在于,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
  10. 根据权利要求8或9所述的第二节点,其特征在于,所述第二参考信号资源是第二目标参考信号 资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
  11. 根据权利要求8至10中任一权利要求所述的第二节点,其特征在于,所述第二收发机发送第一信令;所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
  12. 根据权利要求8至11中任一权利要求所述的第二节点,其特征在于,所述第二收发机在第一时频资源集合中发送第二信令;所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
  13. 根据权利要求8至12中任一权利要求所述的第二节点,其特征在于,所述第二收发机将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
  14. 根据权利要求10至13中任一权利要求所述的第二节点,其特征在于,当所述第二节点接收到所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
    为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
    每当根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,发送第二无线信号,所述第二无线信号被用于波束失败恢复;
    其中,所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
  16. 根据权利要求15所述的第一节点中的方法,其特征在于,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
  17. 根据权利要求15或16所述的第一节点中的方法,其特征在于,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
  18. 根据权利要求15至17中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第一信令;
    其中,所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
  19. 根据权利要求15至18中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    在第一时频资源集合中接收第二信令;
    其中,所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
  20. 根据权利要求15至19中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
  21. 根据权利要求17至20中任一权利要求所述的第一节点中的方法,其特征在于,当所述第一节点发送所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一消息,所述第一消息被用于确定第一参考信号资源池,所述第一参考信号资源池包括至少一个参考信号资源;
    为了波束管理发送第一无线信号,所述第一无线信号指示第一参考信号资源;根据至少所述第一参考信号资源从所述第一参考信号资源池中确定第一目标参考信号资源集合;
    接收第二无线信号,所述第二无线信号被用于波束失败恢复;
    其中,所述第一消息的接收者包括第一节点;每当所述第一节点根据所述第一目标参考信号资源集合评估的第一类无线链路质量比第一阈值差时,第一计数器增加1;作为所述第一计数器达到第一数值的响应,所述第一节点发送第二无线信号;所述第二无线信号指示第二参考信号资源;所述第二参考信号资源与所述第一目标参考信号资源集合有关。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,所述第一参考信号资源池包括第一参考信号资源集合和第二参考信号资源集合;所述第一参考信号资源集合和所述第二参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一参考信号资源被关联到所述第一物理小区标识时,所述第一目标参考信号资源集合是所述第一参考信号资源集合;当所述第一参考信号资源被关联到所述第二物理小区标识时,所述第一目标参考信号资源集合是所述第二参考信号资源集合。
  24. 根据权利要求22或23所述的第二节点中的方法,其特征在于,所述第二参考信号资源是第二目标参考信号资源集合中的一个参考信号资源;第二参考信号资源池包括第三参考信号资源集合和第四参考信号资源集合;所述第三参考信号资源集合和所述第四参考信号资源集合分别被关联到第一物理小区标识和第二物理小区标识;当所述第一目标参考信号资源集合被关联到所述第一物理小区标识时,所述第二目标参考信号资源集合是所述第三参考信号资源集合;当所述第一目标参考信号资源集合被关联到所述第二物理小区标识时,所述第二目标参考信号资源集合是所述第四参考信号资源集合。
  25. 根据权利要求22至24中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第一信令;
    其中,所述第一信令被用于确定控制资源集合0中的PDCCH的解调参考信号和所述第一参考信号资源是准共址的。
  26. 根据权利要求22至25中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    在第一时频资源集合中发送第二信令;
    其中,所述第一时频资源集合被关联到控制资源集合0,所述第二参考信号资源与所述第一时频资源集合中所包括的解调参考信号是准共址的。
  27. 根据权利要求22至26中任一权利要求所述的第二节点中的方法,其特征在于,包括;
    将第一TCI状态所关联的参考信号资源更新为所述第一参考信号资源,所述第一无线信号被用于确定所述第一TCI状态。
  28. 根据权利要求24至27中任一权利要求所述的第二节点中的方法,其特征在于,当所述第二节点接收到所述第二无线信号时,所述第二参考信号资源被更新到所述第二参考信号资源池中。
PCT/CN2022/120902 2021-09-29 2022-09-23 一种被用于无线通信的节点中的方法和装置 WO2023051406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007389.5A CN116458108A (zh) 2021-09-29 2022-09-23 一种被用于无线通信的节点中的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111150088.1 2021-09-29
CN202111150088 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023051406A1 true WO2023051406A1 (zh) 2023-04-06

Family

ID=85781299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120902 WO2023051406A1 (zh) 2021-09-29 2022-09-23 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116458108A (zh)
WO (1) WO2023051406A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111543024A (zh) * 2020-04-09 2020-08-14 北京小米移动软件有限公司 波束失败的检测方法、装置、设备及可读存储介质
US20200351813A1 (en) * 2019-04-30 2020-11-05 Qualcomm Incorporated Systems and methods for beam group reporting for new radio positioning
CN111953457A (zh) * 2019-05-14 2020-11-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351813A1 (en) * 2019-04-30 2020-11-05 Qualcomm Incorporated Systems and methods for beam group reporting for new radio positioning
CN111953457A (zh) * 2019-05-14 2020-11-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111543024A (zh) * 2020-04-09 2020-08-14 北京小米移动软件有限公司 波束失败的检测方法、装置、设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining Issues on Beam Failure Recovery", 3GPP DRAFT; R1-1804715 REMAINING ISSUES ON BEAM FAILURE RECOVERY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 7 April 2018 (2018-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051414079 *

Also Published As

Publication number Publication date
CN116458108A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US11678303B2 (en) Method and device in node for sidelink transmission in wireless communication
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
US20230111152A1 (en) Method and apparatus for node used for wireless communication
US20220368479A1 (en) Method and device in nodes used for wireless communication
CN117335944A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022063145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023051406A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040921A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114389770A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023147763A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160463A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023280192A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023202413A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114257274B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022242617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030425A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023041080A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005964A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280007389.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE