WO2021201646A1 - 디스플레이 모듈 및 그의 제조 방법 - Google Patents

디스플레이 모듈 및 그의 제조 방법 Download PDF

Info

Publication number
WO2021201646A1
WO2021201646A1 PCT/KR2021/004124 KR2021004124W WO2021201646A1 WO 2021201646 A1 WO2021201646 A1 WO 2021201646A1 KR 2021004124 W KR2021004124 W KR 2021004124W WO 2021201646 A1 WO2021201646 A1 WO 2021201646A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
forming
layer
barrier
region
Prior art date
Application number
PCT/KR2021/004124
Other languages
English (en)
French (fr)
Inventor
오동건
김진호
정철규
시게타테츠야
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2021201646A1 publication Critical patent/WO2021201646A1/ko
Priority to US17/945,770 priority Critical patent/US20230016687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a display module and a manufacturing method thereof, and more particularly, to a display module driving a pixel and a manufacturing method thereof.
  • a TFT Thin Film Transistor
  • the pixel is composed of sub-pixels, and the pixel can express various colors through a combination of the color and brightness of light expressed in the sub-pixels.
  • the TFTs controlling each pixel respond quickly to operate.
  • high current driving of the TFT may be required for excellent pixel luminance characteristics (eg, high luminance, uniform luminance, etc.).
  • the present disclosure has been made by the above necessity, and an object of the present disclosure is to provide a display module for driving a pixel and a method for manufacturing the same.
  • a method of manufacturing a display module includes the steps of: forming a semiconductor pattern on a substrate; forming a first insulating layer covering the semiconductor pattern on the substrate; forming a gate electrode on a region corresponding to the gate region of the semiconductor pattern in the insulating layer; forming a second insulating layer covering the gate electrode on the first insulating layer; and forming a first hole penetrating the second insulating layer, forming a second hole penetrating the first and second insulating layers so that the source region of the semiconductor pattern is exposed, and drains in the first and second holes and forming a barrier pattern on the region and the source region, and forming a drain electrode and a source electrode on the barrier pattern, respectively.
  • the drain electrode and the source electrode may include Cu, and the barrier pattern may include a Zn-based alloy.
  • the Zn-based alloy includes at least one of Ti, Mo, Au, Al, Mg, Sn, and Sb, and may include Zn having a content of 90 wt% or more.
  • the Zn-based alloy may be formed to a thickness of 50 ⁇ or more and 500 ⁇ or less.
  • the forming of the barrier pattern, the drain electrode, and the source electrode includes: forming a barrier layer on the second insulating layer in which the first and second holes are formed; forming an electrode layer on the barrier layer;
  • the method may include forming a drain electrode and a source electrode on each barrier pattern together with each barrier pattern, respectively.
  • the drain electrode and the source electrode may be formed together with the respective barrier patterns through a photolithography process.
  • the electrode layer may be continuously formed on the barrier layer in a chamber in which the barrier layer is formed in order to prevent oxidation of the barrier pattern.
  • the semiconductor pattern includes LTPS (Low Temperature Poly Silicon), and the step of forming the semiconductor pattern is a step of forming a buffer layer on the substrate to block the material included in the substrate from diffusing into the semiconductor pattern, on the buffer layer Depositing a-Si (Amorphous Silicon) may include irradiating a laser to the a-Si to form an LTPS in which a crystal arrangement of a-Si is changed.
  • LTPS Low Temperature Poly Silicon
  • the method may include forming a pixel electrode on the drain electrode and forming a micro LED on the pixel electrode.
  • a display module includes a substrate, a semiconductor pattern formed on the substrate, including a gate region, a drain region, and a source region, formed on the substrate, and forming the drain region and the source region in the semiconductor pattern
  • a first insulating layer covering the region except for, a gate electrode formed on a region corresponding to the gate region in the first insulating layer, a second insulating layer formed on the first insulating layer and covering the gate electrode, on the drain region and the source region and a drain electrode and a source electrode respectively formed on the barrier pattern and the barrier pattern formed on the .
  • the drain electrode and the source electrode may include Cu, and the barrier pattern may include a Zn-based alloy.
  • the Zn-based alloy includes at least one of Ti, Mo, Au, Al, Mg, Sn, and Sb, and may include Zn having a content of 90 wt% or more.
  • the Zn-based alloy may be formed to a thickness of 50 ⁇ or more and 500 ⁇ or less.
  • the barrier pattern may be formed to surround sidewalls of the first and second insulating layers on the drain region and the source region.
  • the semiconductor pattern may include LTPS (Low Temperature Poly Silicon).
  • the display module may further include a buffer layer formed between the substrate and the semiconductor pattern to block diffusion of a material included in the substrate into the semiconductor pattern.
  • the display module may further include a pixel electrode formed on the drain electrode and a micro LED formed on the pixel electrode.
  • the display module may further include a protective layer formed on the second insulating layer to cover the drain electrode and the source electrode.
  • a display module that prevents occurrence of luminance deviation and flicker, and a method of manufacturing the same.
  • a display module having a high response speed and a manufacturing method thereof it is possible to provide a display module having a high response speed and a manufacturing method thereof.
  • 1A is a diagram for explaining the configuration of a display module according to an embodiment of the present disclosure.
  • 1B is a diagram for explaining an additional configuration of a display module according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a display module according to an embodiment of the present disclosure.
  • FIG 3 is a view for explaining a method of forming a buffer layer according to an embodiment of the present disclosure.
  • FIG. 4 is a view for explaining a method of forming a semiconductor pattern according to an embodiment of the present disclosure.
  • FIG 5 is a view for explaining a method of forming a first insulating layer according to an embodiment of the present disclosure.
  • FIG. 6 is a view for explaining a method of forming a gate electrode according to an embodiment of the present disclosure.
  • FIG. 7 is a view for explaining a method of forming a second insulating layer according to an embodiment of the present disclosure.
  • FIG. 8 is a view for explaining a method of forming a hole according to an embodiment of the present disclosure.
  • FIG. 9 is a view for explaining a method of forming a barrier layer and an electrode layer according to an embodiment of the present disclosure.
  • FIG. 10 is a view for explaining a method of forming a photoresist pattern according to an embodiment of the present disclosure.
  • FIG. 11 is a view for explaining a method of forming a barrier pattern, a drain electrode, and a source electrode according to an embodiment of the present disclosure.
  • FIG. 12 is a view for explaining a method of removing a photoresist pattern according to an embodiment of the present disclosure.
  • FIG. 13 is a view for explaining a method of forming a protective layer according to an embodiment of the present disclosure.
  • FIG. 14 is a view for explaining a method of forming a hole according to an embodiment of the present disclosure.
  • 15 is a view for explaining a method of forming a pixel electrode according to an embodiment of the present disclosure.
  • 16 is a view for explaining a method of forming a light emitting device according to an embodiment of the present disclosure.
  • 17A is a view for explaining etching characteristics according to an embodiment of the present disclosure.
  • 17B is a view for explaining etching characteristics according to an embodiment of the present disclosure.
  • FIG. 18 is a diagram for describing TFT characteristics according to an embodiment of the present disclosure.
  • expressions such as “A or B,” “at least one of A and/and B,” or “one or more of A or/and B” may include all possible combinations of the items listed together.
  • “A or B,” “at least one of A and B,” or “at least one of A or B” means (1) includes at least one A, (2) includes at least one B; Or (3) it may refer to all cases including both at least one A and at least one B.
  • a component eg, a first component is "coupled with/to (operatively or communicatively)" to another component (eg, a second component)
  • another component eg, a second component
  • the certain element may be directly connected to the other element or may be connected through another element (eg, a third element).
  • a component eg, a first component
  • another component eg, a second component
  • a device configured to may mean that the device is “capable of” with other devices or parts.
  • a processor configured (or configured to perform) A, B, and C refers to a dedicated processor (eg, an embedded processor) for performing the above operations, or by executing one or more software programs stored in a memory device.
  • a generic-purpose processor eg, a CPU or an application processor
  • 1A is a diagram for explaining the configuration of a display module according to an embodiment of the present disclosure.
  • the display module 100 includes a substrate 110 , a semiconductor pattern 120 , a first insulating layer 125 , a gate electrode 130 , a second insulating layer 135 , and a barrier pattern 140A. , 140B), a drain electrode 150A, and a source electrode 150B.
  • the substrate 110 may support and protect various electronic devices constituting the circuit.
  • various electronic devices (or metals, semiconductors, insulators, etc.) may be formed in a single-layer or multi-layer structure on the substrate 110 to constitute a circuit.
  • the substrate 110 may be implemented with a material having a transparent property or a rigid property or flexible property according to design characteristics of the display module 100 .
  • the substrate 110 may be implemented with various materials such as glass, polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyvinyl chloride (PVC), poly methyl methacrylate (PMMA), and the like.
  • the semiconductor pattern 120 may be formed on the substrate 110 .
  • the semiconductor pattern 120 may be referred to as an active layer.
  • a channel which is a passage through which a current may flow, may be formed according to a voltage of the gate electrode 130 (eg, a voltage greater than or equal to a threshold voltage).
  • a first insulating layer 125 may be formed between the semiconductor pattern 120 and the gate electrode 130 .
  • the semiconductor pattern 120 may include a gate region G, a drain region D, and a source region S.
  • the gate region G may represent a region adjacent to the gate electrode 130 in the semiconductor pattern 120 .
  • the drain region D is adjacent to the drain electrode 150A in the semiconductor pattern 120 and may represent a region located at one side of the gate region G. Referring to FIG.
  • the source region S may represent a region adjacent to the source electrode 150B in the semiconductor pattern 120 and located at the other side of the gate region G. Referring to FIG. Each region such as the gate region G may be a reference for a region in which each electrode such as the gate electrode 130 is formed.
  • the semiconductor pattern 120 may include low temperature poly silicon (LTPS).
  • the LTPS may be formed at a temperature at which the substrate 110 is not deformed through a laser process.
  • the LTPS may be formed by changing a crystal arrangement of a-Si when a laser is irradiated to a-Si (amorphous silicon).
  • the crystal arrangement of a-Si may have a structure in which Si atoms are arranged in disorder
  • the crystal arrangement of LTPS may have a structure in which Si atoms are arranged in an orderly manner.
  • atoms are periodically arranged according to a specific orientation within the grain, and the orientation may vary at the grain boundary.
  • the LTPS may have a fast movement speed similar to that of single crystal silicon in which electrons move within the same grain boundary. That is, in the case of LTPS, since the electron movement speed is about 100 times faster than that of a-Si, it is possible to drive the pixel by transferring current with a faster response speed. In particular, in the case of LTPS, a desired amount of current can be sufficiently delivered in a short time, so it can be effective for a high-resolution display device in which pixels (or circuit configuration) are dense or a large-sized display device in which wiring is long.
  • the semiconductor pattern 120 may be implemented as an oxide semiconductor.
  • the oxide semiconductor may be made of an oxide including at least one element selected from indium (In), gallium (Ga), zinc (Zn), and tin (Sn).
  • the oxide semiconductor is zinc oxide (Zinc Oxide).
  • tin oxide TeinOxide
  • indium oxide Indume oxide
  • indium-zinc oxide In-Zn Oxide
  • indium-tin oxide In-Sn Oxide
  • indium-gallium-zinc oxide In-Ga-Zn Oxide
  • IGZO indium-zinc-tin oxide
  • indium-gallium-zinc-tin oxide In-Ga-Zn-Sn oxide
  • the semiconductor pattern 120 is not limited to the above-described examples, and may be implemented with various materials such as single crystal silicon, a-Si, graphene, and the like.
  • the first insulating layer 125 may be formed on the substrate 110 to cover the semiconductor pattern 120 . Specifically, the first insulating layer 125 may be formed to cover a region of the semiconductor pattern 120 except for the drain region D and the source region S.
  • the first insulating layer 125 may include an insulating material.
  • the first insulating layer 125 includes an inorganic or organic material such as silicon nitride (SiNx) or silicon oxide (SiO2, SiOx). can do.
  • barrier patterns 140A and 140B may be formed in one region of the layer where the first insulating layer 125 is formed.
  • the one region may be a region in contact with one side of the semiconductor pattern 120 .
  • barrier patterns 140A and 140B may be formed in upper regions of the drain region D and the source region S of the semiconductor pattern 120 .
  • the first insulating layer 125 may be formed to cover the other side except for one side of the semiconductor pattern 120 . As such, the first insulating layer 125 may block the semiconductor pattern 120 from being exposed from the outside.
  • the first insulating layer 125 may serve to protect the semiconductor pattern 120 from external foreign substances, moisture, and the like, and to electrically insulate the semiconductor pattern 120 and the gate electrode 130 .
  • the gate electrode 130 may be formed on a region corresponding to the gate region G in the first insulating layer 125 .
  • a region corresponding to the gate region G may represent a region of the first insulating layer 125 present on the gate region G.
  • the gate electrode 130 may include a low-resistance conductive material, for example, the gate electrode 130 may include Cu.
  • Cu may have higher electrical conductivity than Au or Mo (ie, a lower resistivity).
  • the gate electrode 130 and the semiconductor pattern 120 may be disposed to be spaced apart from each other with the first insulating layer 125 having an insulating property therebetween.
  • the gate electrode 130 may control the flow of current so that the current flows in the semiconductor pattern 120 or does not flow according to the voltage of the gate electrode 130 .
  • the second insulating layer 135 may be formed on the first insulating layer 125 to cover the gate electrode 130 . That is, the second insulating layer 135 may block the gate electrode 130 from being exposed to the outside.
  • the second insulating layer 135 may include an insulating material.
  • the second insulating layer 135 includes an inorganic or organic material such as silicon nitride (SiNx) or silicon oxide (SiO2, SiOx). can do.
  • the second insulating layer 135 may be implemented with the same material as the first insulating layer 125 , or may be implemented with a different material.
  • barrier patterns 140A and 140B or a drain electrode 150A and a source electrode 150B may be formed in one region of the layer where the second insulating layer 135 is formed.
  • barrier patterns 140A and 140B, a drain electrode 150A, and a source electrode 150B may be formed in the upper regions of the drain region D and the source region S of the semiconductor pattern 120 .
  • the drain electrode 150A may be formed to be electrically connected to the drain region D of the semiconductor pattern 120 .
  • the source electrode 150B may be formed to be electrically connected to the source region S of the semiconductor pattern 120 .
  • the drain electrode 150A and the source electrode 150B may serve as an electrode and a wiring.
  • the drain electrode 150A and the source electrode 150B may be disposed to be spaced apart from each other with the first insulating layer 125 and the second insulating layer 135 interposed therebetween. Also, the drain electrode 150A and the source electrode 150B may be disposed to be spaced apart from the gate electrode 130 through the first insulating layer 125 and the second insulating layer 135 having insulating properties.
  • the drain electrode 150A and the source electrode 150B form the barrier pattern 140A. , 140B) and a current may flow along the channel formed in the semiconductor pattern 120 .
  • the drain electrode 150A and the source electrode 150B may include a conductive material.
  • the drain electrode 150A and the source electrode 150B may include Cu.
  • Cu having high electrical conductivity (or low resistivity) may be used as an electrode in order to solve a flicker phenomenon or a luminance deviation caused by a voltage drop occurring in the display device.
  • the drain electrode 150A and the source electrode 150B may include Au or Cu having higher electrical conductivity than Mo.
  • the drain electrode 150A and the source electrode 150B may directly contact the drain region D and the source region S of the semiconductor pattern 120 .
  • the material included in the drain electrode 150A and the source electrode 150B may diffuse into the drain region D and the source region S of the semiconductor pattern 120 .
  • diffusion into the drain region D and the source region S of the semiconductor pattern 120 may vary depending on the type of material included in the drain electrode 150A and the source electrode 150B.
  • drain electrode 150A and the source electrode 150B include Cu
  • Cu atoms or Cu ions of the drain electrode 150A and the source electrode 150B are formed in the drain region D of the semiconductor pattern 120 and The problem of diffusion into the source region S may be exacerbated.
  • the drain electrode 150A and the source electrode 150B when the drain electrode 150A and the source electrode 150B are made of Cu, the drain electrode 150A and the source electrode 150B drain current Ids according to the gate voltage Vgs of the gate electrode 130 . ) characteristics appear as the first curve 1810 , and the first curve 1810 may exhibit abnormal driving characteristics compared to the second curve 1820 .
  • the display module 100 may include barrier patterns 140A and 140B.
  • the barrier patterns 140A and 140B may be formed on the drain region D and the source region S.
  • the barrier patterns 140A and 140B may include a first barrier pattern 140A and a second barrier pattern 140B.
  • the barrier patterns 140A and 140B may be formed to contact the drain region D and the source region S of the semiconductor pattern 120 .
  • the drain electrode 150A and the source electrode 150B may be formed on the barrier patterns 140A and 140B so as not to directly contact the drain region D and the source region S of the semiconductor pattern 120 . have.
  • the barrier patterns 140A and 140B may include a Zn-based alloy.
  • the Zn-based alloy may include at least one of Ti, Mo, Au, Al, Mg, Sn and Sb, and the Zn-based alloy may include Zn having a content of 90 wt% or more.
  • the Zn-based alloy according to an embodiment of the present disclosure may be formed to a thickness of 50 ⁇ or more and 500 ⁇ or less (H1, see FIG. 12 ).
  • the barrier patterns 140A and 140B according to an embodiment of the present disclosure may be formed to have side angles of 30 degrees or more and less than 60 degrees.
  • the barrier patterns 140A and 140B are formed on the drain region D and the source region S on the first insulating layer 125 and the second insulating layer 135 . ) may be formed to surround the sidewall. In this case, in order to omit the content overlapping with the second barrier pattern 140B, the description will be made based on the first barrier pattern 140A.
  • the first barrier pattern 140A may be formed to have a width of W value in a horizontal direction with respect to the sidewalls of the first insulating layer 125 and the second insulating layer 135 . In this case, W is greater than or equal to 0, and may have a value less than or equal to H1.
  • the type, content, thickness, angle, etc. of the material included in the above-described barrier patterns 140A and 140B are determined by the material (eg, Cu) of the drain electrode 150A and the source electrode 150B entering the semiconductor pattern 120 . It is possible to improve the property of blocking diffusion. In addition, the type, content, thickness, angle, etc. of the material included in the above-described barrier patterns 140A and 140B may improve electrical conductivity (or resistivity).
  • the drain electrode 150A and the source electrode 150B may be formed on the barrier patterns 140A and 140B.
  • the drain electrode 150A may be formed on the first barrier pattern 140A
  • the source electrode 150B may be formed on the second barrier pattern 140B.
  • the barrier patterns 140A and 140B are formed by the drain electrode 150A.
  • a material (eg, Cu, etc.) included in the source electrode 150B may block diffusion into the drain region D and the source region S of the semiconductor pattern 120 .
  • the material included in the drain electrode 150A and the source electrode 150B is diffused (or introduced) into the drain region D and the source region S of the semiconductor pattern 120, so that electrical characteristics (eg, electrical conductivity) , characteristics that can be driven by the TFT depending on the gate voltage, etc.) can be prevented from being deteriorated.
  • electrical characteristics eg, electrical conductivity
  • the display module 100 of the present disclosure uses a material having excellent electrical conductivity such as Cu for the drain electrode 150A and the source electrode 150B, while maintaining the electrical characteristics of the semiconductor pattern 120 .
  • the overall electrical characteristics of the module 100 may be improved.
  • the display module 100 may improve the response speed of the display in that the electrical conductivity of the semiconductor pattern may be improved by using the barrier patterns 140A and 140B.
  • the characteristic may appear as the second curve 1820 .
  • the current increases as the voltage of the gate electrode 130 increases, and in a specific voltage section, the current may exhibit a normal driving characteristic having a linear relationship.
  • a display module for driving a pixel and a method for manufacturing the same.
  • a display module that prevents occurrence of luminance deviation and flicker and a method for manufacturing the same.
  • a display module having a high response speed and a manufacturing method thereof it is possible to provide a display module having a high response speed and a manufacturing method thereof.
  • 1B is a diagram for explaining an additional configuration of a display module according to an embodiment of the present disclosure.
  • the display module 100 includes a substrate 110 , a semiconductor pattern 120 , a first insulating layer 125 , a gate electrode 130 , a second insulating layer 135 , a barrier pattern 140A, 140B), in addition to the drain electrode 150A and the source electrode 150B, at least one of a buffer layer 115 , a protective layer 155 , a pixel electrode 160 , a common electrode 170 , and a micro LED 200 . can do.
  • the buffer layer 115 may be formed between the substrate 110 and the semiconductor pattern 120 . That is, the buffer layer 115 may be formed on the substrate 110 . In this case, the buffer layer 115 may improve adhesion between the layers formed on the buffer layer 115 and the substrate 110 . Also, the buffer layer 115 may block diffusion of a material included in the substrate 110 into the semiconductor pattern 120 .
  • the buffer layer 115 may be formed of a single layer of silicon nitride (SiNx) or silicon oxide (SiOx) or a multilayer of silicon nitride (SiNx) and silicon oxide (SiOx).
  • the buffer layer 211 may be variously modified or omitted according to the structure and type of the substrate 110 and the semiconductor pattern 120 .
  • the protective layer 155 may be formed on the second insulating layer 135 to cover the drain electrode 150A and the source electrode 150B.
  • the passivation layer 155 may be referred to as a passivation layer.
  • the protective layer 155 may be an insulating layer for protecting the drain electrode 150A and the source electrode 150B formed thereunder. Specifically, the protective layer 155 can prevent foreign substances, hydrogen, moisture, etc. from penetrating into the inside or physical damage to the drain electrode 150A and the source electrode 150B, etc., and the protective layer ( 155 may prevent the drain electrode 150A and the source electrode 150B from being short-circuited.
  • the passivation layer 155 may be formed of an inorganic material such as silicon nitride (SiNx), silicon oxynitride (SiONx), or silicon oxysilicon (SiOx).
  • a hole 1200 for exposing the drain electrode 150A may be formed in the passivation layer 155 .
  • the pixel electrode 160 may be formed on the drain electrode 150A inside the hole 1200 .
  • the pixel electrode 160 may be formed on the drain electrode 150A.
  • the common electrode 170 may be formed in one region on the passivation layer 155 .
  • the position of the common electrode 170 may vary depending on the structure of the micro LED 200 , such as a flip-chip type or a vertical type.
  • the pixel electrode 160 and the common electrode 170 may include a conductive material.
  • the pixel electrode 160 and the common electrode 170 may include at least one of Cu, Ag, Au, Al, and the like. can However, this is only an example, and the pixel electrode 160 and the common electrode 170 may be modified to include various conductive materials.
  • the micro light emitting diode (u-LED) 200 may be bonded to the pixel electrode 160 to be electrically connected to the pixel electrode 160 and the common electrode 170 .
  • the micro LED 200 may refer to an LED having a size of 1 to 100 micrometers ( ⁇ m) in width, length, and height, respectively.
  • the micro LED 200 (or ⁇ LED) display panel is one of the flat panel display panels and is composed of a plurality of inorganic light emitting diodes (inorganic LEDs) each having a size of 100 micrometers or less.
  • inorganic LEDs inorganic light emitting diodes
  • LCD liquid crystal display
  • micro LED display panels offer better contrast, response time and energy efficiency.
  • Both organic light emitting diodes and inorganic light emitting devices, micro LEDs have good energy efficiency, but micro LEDs have longer brightness, luminous efficiency, and longer lifespan than 0LEDs.
  • the LED recombines the electrons provided from the n-type semiconductor and the holes provided from the p-type semiconductor in the light emitting layer.
  • the LED may refer to a device emitting light (a photon packet) of a specific wavelength (or a specific color) corresponding to band gap energy.
  • the LED may include one or more semiconductor layers based on AlInGaP-based semiconductors to emit red light having a wavelength of 600 to 750 nm.
  • the blue and green semiconductor cells 110 of the LED may include one or more semiconductor layers based on AlInGaN-based semiconductors to emit blue and green light of wavelengths of 450 to 490 nm and 500 to 570 nm, respectively.
  • the micro LED 200 uses an inorganic material, there are advantages such as less burn-in of the screen, a long lifespan, high power efficiency, and a short response time.
  • the micro LED 200 has a flip chip type structure or micro LED in which positive electrodes (eg, cathode and anode) formed under the micro LED 200 are connected to a pixel electrode and common electrodes 160 and 170 .
  • positive electrodes eg, cathode and anode
  • the electrodes respectively formed on the lower and upper portions of 200 may have a vertical type structure in which they are connected to the pixel electrode and the common electrodes 160 and 170 .
  • the micro LED 200 may be bonded to the pixel electrode 160 and the common electrode 170 in a flip-chip type as shown in FIG. 16 .
  • the common electrode 170 is disposed to be spaced apart (separated or insulated) from the pixel electrode 160 , and may be formed in an upper region of the protective layer 155 .
  • the micro LED 200 is bonded on the pixel electrode 160 so that the lower electrode of the micro LED 200 is connected to the pixel electrode 160 , and then the micro LED 200 .
  • a common electrode 170 may be formed on the upper electrode of
  • the micro LED 200 may emit light having a specific amount (brightness) and color according to the supplied current.
  • the micro LED 200 may be individually driven as a pixel unit (or a sub pixel unit).
  • the driving circuit for driving the micro LED 200 may be implemented by a micro IC disposed in the pixel region to control driving of at least 2n pixels, and a TFT layer (or backplane) when the micro IC is applied.
  • the TFT constituting the TFT layer is not limited to a specific structure or type. That is, the TFT of the present disclosure may be implemented as an oxide TFT, a poly silicon, a-silicon (Si TFT), an organic TFT, a graphene TFT, etc. in addition to a low-temperature polycrystalline silicon TFT (LTPS TFT), and a Si wafer CMOS process It can also be applied by making only P-type (or N-type) MOSFETs.
  • the display module 100 has been described as including the micro LED 200 , this is only an embodiment, and the display module 100 replaces the micro LED 200 with various light emitting diodes. It can be modified to include elements.
  • the light emitting device is a mini-LED (LED having a size of 100 to 200 micrometers ( ⁇ m) in width, length, and height, respectively), OLED (Organic Light Emitting Diode) using organic material, QLED (Quantum dot Light Emitting Diode) using quantum dots ) may include at least one of.
  • the display module 100 according to an embodiment of the present disclosure may also control pixels using a backlight unit and liquid crystal.
  • FIGS. 1A and 1B are cross-sectional views illustrating a partial area in one pixel (or sub-pixel) of the display module 100 .
  • the display module 100 may include at least one pixel (or sub-pixel), and the above description may be equally applied to each pixel (or each sub-pixel).
  • the voltage applied to the gate electrode 130 in units of pixels (or sub-pixels) and the voltage difference between the drain electrode 150A and the source electrode 150B Accordingly, an image composed of a plurality of pixels may be visually displayed.
  • the display module 100 may be implemented as a display device by itself, and may be implemented as a single display device by combining a plurality of display modules.
  • the plurality of display modules may be tiled in a matrix type (eg, Q ⁇ W, each of Q and W being a natural number) to configure one display device.
  • the display module 100 may be installed and applied to a wearable device, a portable device, a handheld device, and an electronic product (mainly a small display device) or an electric field requiring various displays as a single unit, and the display module 100 is It can be applied to electronic products (mainly large display devices) or electric fields such as monitors, high-definition TVs, signage (or digital signage), electric billboards, and the like through matrix-type assembly arrangement in a plurality of units.
  • the display module 100 may include a TV, a monitor, a portable multimedia device, a portable communication device, a smart phone, smart glasses, a smart window, a smart watch, a head mount display (HMD), a wearable device, a portable device.
  • HMD head mount display
  • the display module 100 may be implemented as a transparent display device such as a smart window or smart glasses.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a display module according to an embodiment of the present disclosure.
  • forming a semiconductor pattern 120 on a substrate 110 S210
  • a first insulating layer 125 covering the semiconductor pattern 120 Forming on the substrate 110 ( S220 ), forming the gate electrode 130 on a region corresponding to the gate region G of the semiconductor pattern 120 in the first insulating layer 125 ( S230 ) , forming the second insulating layer 135 covering the gate electrode 130 on the first insulating layer 125 ( S240 ), and the first insulating layer so that the source region S of the semiconductor pattern 120 is exposed.
  • a first hole 800B passing through 125 and the second insulating layer 135 is formed, and the first insulating layer 125 and the second insulating layer are exposed such that the drain region D of the semiconductor pattern 120 is exposed.
  • the semiconductor pattern 120 may be formed on the substrate 110 ( S210 ).
  • the semiconductor pattern 120 may include low temperature poly silicon (LTPS). However, this is only an example, and the semiconductor pattern 120 may be implemented to include an oxide semiconductor, a-Si, or the like.
  • LTPS low temperature poly silicon
  • the semiconductor layer may be formed on the substrate 110 through various deposition methods. Thereafter, a portion of the semiconductor layer may be removed through photoresist (PR), exposure, development, and etching (patterning), and a portion of the semiconductor layer is removed from the semiconductor layer and the semiconductor layer remaining on the substrate 110 is applied to the semiconductor pattern. (120).
  • PR photoresist
  • patterning patterning
  • LTPS may be formed by first depositing a-Si and then crystallizing it through a laser. Specific details will be described later.
  • the manufacturing method according to an embodiment of the present disclosure may include forming the buffer layer 115 . This will be described with reference to FIGS. 3 and 4 together.
  • 3 is a view for explaining a method of forming a buffer layer according to an embodiment of the present disclosure.
  • 4 is a view for explaining a method of forming a semiconductor pattern according to an embodiment of the present disclosure.
  • the manufacturing method of the present disclosure includes forming a buffer layer 115 on the substrate 110 to block diffusion of a material included in the substrate 110 into the semiconductor pattern 120 . can do.
  • the step of forming the buffer layer 115 may be performed before forming the semiconductor pattern 120 .
  • the manufacturing method of the present disclosure includes the step of forming the buffer layer 115 .
  • the step of forming the semiconductor pattern 120 is a step of forming the semiconductor pattern 120 on the buffer layer 115 after the buffer layer 115 is formed on the substrate 110 .
  • the semiconductor pattern 120 present in a specific region of the upper region of the substrate 110 may be formed by forming the semiconductor layer through the above-described various deposition methods and removing a portion of the semiconductor layer through etching.
  • the semiconductor pattern 120 may include low temperature poly silicon (LTPS).
  • LTPS low temperature poly silicon
  • the forming of the semiconductor pattern 120 includes depositing a-Si (amorphous silicon) on the buffer layer 115 and irradiating a laser to the a-Si to obtain LTPS in which the crystal arrangement of a-Si is changed. It may include the step of forming.
  • a-Si is formed on the buffer layer 115 according to the various deposition methods described above, and may be formed in the form of a thin film (eg, a thickness of 500 ⁇ m, etc.).
  • the laser an excimer laser may be used, and the excimer laser may refer to pulsed ultraviolet (UV) light.
  • LTPS can be formed through a change in the crystal arrangement by annealing (or heat treatment) by irradiating a-Si with a laser. In the case of the laser, in that only a specific region can be temporarily annealed for a short time, there is an advantage that the substrate 110 is not damaged.
  • RTA rapid thermal annealing
  • SPC solid phase crystallzation
  • MILC metal induced lateral crystallzation
  • SLS sequential lateral solidification
  • a first insulating layer 125 covering the semiconductor pattern 120 may be formed on the substrate 110 ( S220 ). This will be described with reference to FIG. 5 .
  • FIG 5 is a view for explaining a method of forming a first insulating layer according to an embodiment of the present disclosure.
  • the first insulating layer 125 may be formed on the substrate 110 to cover the semiconductor pattern 120 . Specifically, the first insulating layer 125 may be formed to contact the top and side surfaces of the semiconductor pattern 120 and the top surface of the substrate 110 . That is, the first insulating layer 125 may be formed to surround the semiconductor pattern 120 so that the semiconductor pattern 120 is not exposed to the outside.
  • an insulating material such as SiNx or SiOx is applied to the first insulating layer (plasma enhanced chemical vapor deosition), APCVD (atmospheric pressure CVD), LPCVD (low pressure CVD), Atomic Layer Deposition (ALD), etc. 125) can be formed.
  • the gate electrode 130 may be formed on a region corresponding to the gate region G of the semiconductor pattern 120 in the first insulating layer 125 ( S230 ). This will be described with reference to FIG. 6 together.
  • FIG. 6 is a view for explaining a method of forming a gate electrode according to an embodiment of the present disclosure.
  • the gate electrode 130 may be formed on a region corresponding to the gate region G in the first insulating layer 125 .
  • a region corresponding to the gate region G may represent a region of the first insulating layer 125 present on the gate region G.
  • the gate electrode 130 and the semiconductor pattern 120 may be disposed to be spaced apart from each other with the first insulating layer 125 having an insulating property therebetween, and accordingly, the gate electrode 130 and the semiconductor pattern 120 may be electrically insulated.
  • the gate electrode 130 may include a low-resistance conductive material, for example, the gate electrode 130 may include Cu. However, this is only an example, and the gate electrode 130 may be implemented with a material including various metal materials such as Au, Ag, Mo, and Al.
  • Electrolytic Plating EP
  • sputtering evaporation, e-beam evaporation
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • PVD Physical Vapor Deposition
  • the gate electrode 130 may be formed through various methods such as pulsed laser deposition.
  • a second insulating layer 135 covering the gate electrode 130 may be formed on the first insulating layer 125 ( S240 ). This will be described with reference to FIG. 7 together.
  • FIG. 7 is a view for explaining a method of forming a second insulating layer according to an embodiment of the present disclosure.
  • a second insulating layer 135 may be formed on the first insulating layer 125 to cover the gate electrode 130 .
  • the second insulating layer 135 may be formed to contact the top and side surfaces of the gate electrode 130 and the top surface of the first insulating layer 125 . That is, the second insulating layer 135 may be formed to surround the gate electrode 130 so that the gate electrode 130 is not exposed to the outside.
  • an insulating material such as SiNx or SiOx is applied to a second insulating layer (plasma enhanced chemical vapor deosition), such as plasma enhanced chemical vapor deposition (PECVD), atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), and atomic layer deposition (ALD). 135) can be formed.
  • plasma enhanced chemical vapor deosition such as plasma enhanced chemical vapor deposition (PECVD), atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), and atomic layer deposition (ALD). 135) can be formed.
  • PECVD plasma enhanced chemical vapor deposition
  • APCVD atmospheric pressure CVD
  • LPCVD low pressure CVD
  • ALD atomic layer deposition
  • a first hole 800A passing through the first insulating layer 125 and the second insulating layer 135 is formed so that the drain region D of the semiconductor pattern 120 is exposed, and the semiconductor pattern 120 is formed.
  • a second hole 800B penetrating through the first insulating layer 125 and the second insulating layer 135 may be formed to expose the source region S of S250 ( S250 ). This will be described with reference to FIG. 8 .
  • FIG. 8 is a view for explaining a method of forming a hole according to an embodiment of the present disclosure.
  • a first hole 800A passing through the first insulating layer 125 and the second insulating layer 135 is formed to expose the drain region D of the semiconductor pattern 120
  • the semiconductor pattern A second hole 800B passing through the first insulating layer 125 and the second insulating layer 135 may be formed to expose the source region S of 120 .
  • the first hole 800A is a contact hole (or via hole) for exposing the drain region D of the semiconductor pattern 120
  • the second hole 800B is the source region S of the semiconductor pattern 120 . It may be a contact hole (or a via hole) for exposing the . That is, the first hole 800A and the second hole 800B are regions removed from the first insulating layer 125 and the second insulating layer 135 to expose the drain region D and the source region S. can represent Thereafter, the first hole 800A and the second hole 800B may be filled with a conductive material to serve as an electrode and a wiring.
  • the first hole 800A and the second hole 800B may be formed through a method such as laser processing, drill processing, extreme ultraviolet (EUV), or etching.
  • a method such as laser processing, drill processing, extreme ultraviolet (EUV), or etching.
  • barrier patterns 140A and 140B are formed on the drain region D and the source region S in the first hole 800A and the second hole 800B, and are formed on the barrier patterns 140A and 140B.
  • a drain electrode 150A and a source electrode 150B may be respectively formed ( S260 ).
  • the forming of the barrier patterns 140A and 140B, the drain electrode 150A, and the source electrode 150B includes the second insulating layer having the first hole 800A and the second hole 800B formed therein.
  • each barrier pattern The method may include forming a drain electrode 150A and a source electrode 150B on each barrier pattern together with 140A and 140B, respectively.
  • the drain electrode 150A and the source electrode 150B may be formed together with each of the barrier patterns 140A and 140B through a photolithography process. This will be described with reference to FIGS. 9 to 12 together.
  • FIG. 9 is a view for explaining a method of forming a barrier layer and an electrode layer according to an embodiment of the present disclosure.
  • the barrier layer 140 may be formed on the second insulating layer 135 in which the first hole 800A and the second hole 800B are formed.
  • the barrier layer 140 is formed in a structure that exists continuously within the same level (number of layers or steps), and the barrier layer 140 may be formed as barrier patterns 140A and 140B separated from each other through patterning. have.
  • the barrier layer 140 may form the barrier layer 140 on the second insulating layer 135 in which the first hole 800A and the second hole 800B are formed.
  • the barrier layer 140 may be formed on the drain region D and the source region S of the semiconductor pattern 120 in the first hole 800A and the second hole 800B.
  • the barrier layer 140 surrounds sidewalls of the first insulating layer 125 and the second insulating layer 135 in the first hole 800A and the second hole 800B. ) can also be formed.
  • the electrode layer 150 may be formed on the barrier layer 140 .
  • the electrode layer 150 may be formed on the barrier layer 140 formed inside the first hole 800A and the second hole 800B.
  • the electrode layer 150 may be formed of the drain electrode 150A and the source electrode 150B separated from each other through patterning.
  • Electrolytic Plating EP
  • sputtering evaporation, e-beam evaporation
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • PVD Physical Vapor
  • the barrier layer 140 and the electrode layer 150 may be formed through various methods such as deposition, pulsed laser deposition, and the like.
  • the electrode layer ( 150 ) may be formed on the barrier layer 140 . This is to prevent oxidation of the barrier layer 140 by continuously depositing and forming the barrier layer 140 and the electrode layer 150 in the same chamber.
  • the barrier layer 140 and the barrier patterns 140A and 140B may include substantially the same material, and the electrode layer 150 and the drain electrode 150A and the source electrode 150B may include substantially the same material.
  • the barrier layer 140 may include a Zn-based alloy as described above in the barrier patterns 140A and 140B, and the electrode layer 150 is the same as described above for the drain electrode 150A and the source electrode 150B. It may also contain Cu. However, this is only one embodiment and may be modified in various embodiments.
  • regions other than the regions corresponding to the first hole 800A and the second hole 800B in the barrier layer 140 and the electrode layer 150 may be removed.
  • wet etching to remove specific regions of the barrier layer 140 and the electrode layer 150 through a chemical reaction using a corrosion solution, or using a reactive gas (eg, plasma, etc.), ions, etc., the barrier layer 140 and the electrode layer A dry etch to remove specific areas of 150 may be used.
  • a specific region may be removed using wet etching.
  • wet etching there are excellent advantages over dry etching in terms of selectivity (the degree to which only the target material can be etched), productivity (the processing speed is fast and can process a large amount), and economic efficiency (simple equipment and low cost). .
  • FIG. 10 is a view for explaining a method of forming a photoresist pattern according to an embodiment of the present disclosure.
  • photoresist patterns 1010A and 1010B may be formed on regions corresponding to the first and second holes 800A and 800B in the electrode layer 150 .
  • a photoresist layer is formed on the electrode layer 150, light is partially exposed to the photoresist layer, and then a portion having a weak intermolecular bonding force is removed from the photoresist layer through development, thereby forming the photoresist patterns 1010A and 1010B. ) can be formed.
  • the photoresist patterns 1010A and 1010B or the photoresist layer may include a photosensitive material, a photoactivator, a polymer resin, a solvent, or the like.
  • the photosensitive material may include a material in which intermolecular bonding strength is strengthened (positive type) or intermolecular bonding strength is weakened (negative type) by causing a photoreaction to light of a specific wavelength (UV, EUV, etc.).
  • the photoresist patterns 1010A and 1010B or the photoresist layer may have corrosion resistance to an etching solution used in etching.
  • the corrosion solution may include non-peroxide (non-hydrogen peroxide), but this is only an example, and the corrosion solution may include peroxide (hydrogen peroxide).
  • the photoresist patterns 1010A and 1010B may be formed on regions corresponding to the first hole 800A and the second hole 800B.
  • the region corresponding to the first hole 800A and the second hole 800B is an upper region of the electrode layer 150 formed in the first hole 800A and the second hole 800B, and the first hole 800A and an area corresponding to the second hole 800B may be an area spaced apart from each other.
  • FIG. 11 is a view for explaining a method of forming a barrier pattern, a drain electrode, and a source electrode according to an embodiment of the present disclosure.
  • regions corresponding to the first holes 800A and the second holes 800B in the barrier layer 140 and the electrode layer 150 are etched based on the photoresist patterns 1010A and 1010B. The remaining areas can be removed together.
  • barrier patterns 140A and 140B are formed on the drain region D and the source region S in the first hole 800A and the second hole 800B, and are formed on the barrier patterns 140A and 140B.
  • a drain electrode 150A and a source electrode 150B may be formed, respectively.
  • drain electrode 150A and the source electrode 150B may include Cu. However, this is only an embodiment and may be modified in various embodiments.
  • the barrier patterns 140A and 140B may include a Zn-based alloy.
  • the Zn-based alloy includes at least one of Ti, Mo, Au, Al, Mg, Sn, and Sb, and may include Zn having a content of 90 wt% or more.
  • this is only an embodiment and may be modified in various embodiments.
  • the Zn-based alloy may be formed to a thickness of 50 ⁇ or more and 500 ⁇ or less.
  • this is only an embodiment and may be modified in various embodiments.
  • the barrier patterns 140A and 140B formed according to an embodiment of the present disclosure may have a side angle ⁇ of 30 degrees or more and less than 60 degrees.
  • the side angle ⁇ may represent the angle (inclination) of the side surface of the material with respect to the bottom surface of the material.
  • the lateral angle ⁇ may be an indicator for representing etching characteristics due to the isotropy of wet etching (the etching rate is the same in all directions, such as vertical or horizontal).
  • the side angle ⁇ may also be referred to as a taper angle T/A.
  • the side angle ⁇ is higher, the etching activity is lower than that of the electrode layer 150 (ie, the barrier layer 140 formed under the electrode layer 150 is not etched), and a desired wiring pattern is formed. it may not be Accordingly, the barrier patterns 140A and 140B may be preferably made of a material having a side angle ⁇ of 30 degrees or more and less than 60 degrees.
  • barrier patterns 140A and 140B have a lateral angle ⁇ of 30 degrees or more and less than 60 degrees, it is possible to pattern without residue in the area to be removed from the barrier layer 140 through etching, ideally A fine pattern shape can be obtained. In this way, excellent etching properties can be obtained.
  • the barrier patterns 140A and 140B formed according to an embodiment of the present disclosure may have a skew (Xs) in a range of 0.2 to 1.0 ⁇ m.
  • the skew Xs is the distance between the bottom edge of the etched pattern (eg, the barrier patterns 140A, 140B, or the drain/source electrodes 150A, 150B) and the bottom edge of the photoresist pattern 1010A, 1010B.
  • Skew can also be an indicator for indicating etching characteristics.
  • 17A and 17B are diagrams for explaining etching characteristics according to an embodiment of the present disclosure.
  • first characteristics 1710A and 1710B indicate etching characteristics for a case in which a photoresist pattern is formed on a single layer made of Zn (hereinafter referred to as a Zn layer).
  • the second characteristics 1720A and 1720B represent etching characteristics for a case in which a Zn layer, a Cu layer, and a photoresist pattern are sequentially formed.
  • the third characteristics 1730A and 1730B indicate etching characteristics for a case in which a Zn-based alloy (Zn-Ti alloy) layer and a photoresist pattern are sequentially formed.
  • the fourth characteristics 1740A and 1740B indicate etching characteristics when a Zn-based alloy (Zn-Ti alloy) layer, a Cu layer, and a photoresist pattern are sequentially formed.
  • Undercut occurs in the first characteristics 1710A and 1710B to the third characteristics 1730A and 1730B.
  • Undercut may refer to a groove or concave formed on the side of the pattern due to excessive etching. can decrease.
  • the adhesiveness of the pattern may be reduced so that the pattern may be separated from the substrate or the like.
  • the Zn-Ti alloy than the third characteristic (1730A, 1730B) in which the Cu layer is not formed on the Zn-Ti alloy layer
  • the etching characteristics of the fourth characteristics 1740A and 1740B in which the Cu layer is continuously formed on the layer are superior.
  • the Zn-Ti alloy it can be seen that if the Cu layer is not continuously formed thereon, oxidation occurs and the etching properties are deteriorated.
  • the etching characteristics are excellent.
  • the barrier patterns 140A and 140B are Zn-based alloys and the drain electrode 150A and the source electrode 150B formed on the barrier patterns 140A and 140B are Cu, the barrier patterns 140A and 140B and When the drain electrode 150A and the source electrode 150B are continuously formed in the same chamber, it can be seen that the etching characteristic is excellent.
  • FIG. 12 is a view for explaining a method of removing a photoresist pattern according to an embodiment of the present disclosure.
  • a photoresist pattern present on the drain electrode 150A and the source electrode 150B (1010A, 1010B) can be removed.
  • the photoresist patterns 1010A and 1010B may be removed through a remover.
  • the remover may include at least one of a composition obtained by mixing an organic amine compound and various organic solvents, monoethanolamine, and hydroxylamine. However, this is only an example, and it is also possible that the remover is implemented with various materials.
  • the drain electrode 150A and the source electrode 150B are formed together with the respective barrier patterns 140A and 140B through a photo lithography process, but this is an example. It is also possible to form the drain electrode 150A and the source electrode 150B on the barrier patterns 140A and 140B after first forming the barrier patterns 140A and 140B through deposition, inkjet process, etc. .
  • the manufacturing method according to an embodiment of the present disclosure may include forming the protective layer 155 . This will be described together with reference to FIG. 13 .
  • FIG. 13 is a view for explaining a method of forming a protective layer according to an embodiment of the present disclosure.
  • a protective layer 155 may be formed on the second insulating layer 135 to cover the drain electrode 150A and the source electrode 150B.
  • the protective layer 155 may be an insulating layer for protecting the drain electrode 150A and the source electrode 150B formed thereunder.
  • the protective layer 155 may function to planarize the top surface.
  • the protective layer 155 may be formed of one or more organic insulating materials selected from the group consisting of polyimide, polyamide, acrylic resin, benzocyclobutene, and phenol resin by spin coating or the like. Meanwhile, the protective layer 155 may be formed of an inorganic insulating material selected from SiO2, SiNx, Al2O3, CuOx, Tb4O7, Y2O3, Nb2O5, Pr2O3, etc. as well as the organic insulating material as described above. In addition, the protective layer 155 may be formed in a multilayer structure in which an organic insulating material and/or an inorganic insulating material alternate.
  • the micro LED 200 is bonded to the pixel electrode 160 so as to be connected to the pixel electrode 160 and the common electrode 170 separated from the pixel electrode 160 .
  • the protective layer 155 is formed.
  • FIG. 14 is a view for explaining a method of forming a hole according to an embodiment of the present disclosure.
  • a hole 1200 for exposing one surface (eg, an upper surface) of the drain electrode 150A may be formed in the passivation layer 155 .
  • the hole 1200 may represent a region removed from the protective layer 155 to electrically connect the drain electrode 150A to the pixel electrode 160 .
  • the hole 1200 may be formed through a method such as laser processing, drilling, EUV (Extreme Ultraviolet), or etching.
  • 15 is a view for explaining a method of forming a pixel electrode according to an embodiment of the present disclosure.
  • 16 is a view for explaining a method of forming a light emitting device according to an embodiment of the present disclosure.
  • the pixel electrode 160 may be formed on the drain electrode 150A inside the hole 1200 .
  • the common electrode 170 may be formed on the passivation layer 155 to be separated from (or insulated from) the pixel electrode 160 .
  • the position of the common electrode 170 may vary depending on the structure of the micro LED 200 , such as a flip-chip type or a vertical type. That is, depending on the structure of the common electrode 170 , the pixel electrode 160 and the common electrode 170 may be formed simultaneously or sequentially.
  • the pixel electrode 160 and the common electrode 170 may include a conductive material.
  • the pixel electrode 160 and the common electrode 170 may include at least one of Cu, Ag, Au, Al, and the like. can However, this is only an example, and the pixel electrode 160 and the common electrode 170 may be modified to include various conductive materials.
  • Electrolytic Plating EP
  • sputtering evaporation, e-beam evaporation
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • PVD Physical Vapor
  • the pixel electrode 160 and the common electrode 170 may be formed through various methods such as deposition, pulsed laser deposition, and the like.
  • the micro LED 200 may be bonded on the pixel electrode 160 to be electrically connected to the pixel electrode 160 and the common electrode 170 .
  • the pixel electrode 160 and the common electrode 170 may be formed on the same layer, and both electrodes formed under the micro LED 200 are pixels.
  • the micro LED 200 may be bonded on the pixel electrode 160 and the common electrode 170 so as to be connected to the electrode 160 and the common electrode 170 .
  • Various embodiments of the present disclosure may be implemented as software including instructions stored in a machine-readable storage medium readable by a machine (eg, a computer).
  • the device calls the stored instructions from the storage medium.
  • an electronic device eg, the electronic device 100
  • the processor directly or the The function described in the instruction may be performed using other components under the control of the processor.
  • the instruction may include code generated or executed by a compiler or an interpreter.
  • a machine-readable storage medium is a non-transitory It may be provided in the form of a (non-transitory) storage medium, where 'non-transitory' means that the storage medium does not include a signal and is tangible, but data is semi-permanent or temporary in the storage medium It does not distinguish that it is stored as
  • the method according to various embodiments may be provided by being included in a computer program product.
  • Computer program products may be traded between sellers and buyers as commodities.
  • the computer program product may be distributed in the form of a machine-readable storage medium (eg, compact disc read only memory (CD-ROM)) or online through an application store (eg, Play StoreTM).
  • an application store eg, Play StoreTM
  • at least a part of the computer program product may be temporarily stored or temporarily generated in a storage medium such as a memory of a server of a manufacturer, a server of an application store, or a relay server.
  • Each of the components may be composed of a singular or a plurality of entities, and some sub-components of the above-described sub-components may be omitted, or other sub-components may be various. It may be further included in the embodiment. Alternatively or additionally, some components (eg, a module or a program) may be integrated into a single entity to perform the same or similar functions performed by each of the components before being integrated. According to various embodiments, operations performed by a module, program, or other component may be sequentially, parallel, repetitively or heuristically executed, or at least some operations may be executed in a different order, omitted, or other operations may be added. can

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 개시에서는 디스플레이 모듈 및 그의 제조 방법이 제공된다. 본 개시의 디스플레이 모듈의 제조 방법은, 기판 상에 반도체 패턴을 형성하는 단계, 반도체 패턴을 덮는 제1 절연층을 기판 상에 형성하는 단계, 제1 절연층에서 반도체 패턴의 게이트 영역에 대응되는 영역 상에 게이트 전극을 형성하는 단계, 게이트 전극을 덮는 제2 절연층을 제1 절연층 상에 형성하는 단계, 반도체 패턴의 드레인 영역이 노출되도록 제1 및 제2 절연층을 관통하는 제1 홀을 형성하고, 반도체 패턴의 소스 영역이 노출되도록 제1 및 제2 절연층을 관통하는 제2 홀을 형성하는 단계 및 제1 및 제2 홀에서 드레인 영역 및 소스 영역 상에 배리어 패턴을 형성하고, 배리어 패턴 상에 드레인 전극 및 소스 전극을 각각 형성하는 단계를 포함한다.

Description

디스플레이 모듈 및 그의 제조 방법
본 개시는 디스플레이 모듈 및 그의 제조 방법에 관한 것으로, 보다 상세하게는 픽셀을 구동하는 디스플레이 모듈 및 그의 제조 방법에 관한 것이다.
TFT(Thin Film Transistor)는 디스플레이 장치에서 픽셀의 구동을 제어한다. 여기서, 픽셀은 서브 픽셀로 구성되며, 픽셀은 서브 픽셀에서 표현되는 빛의 색상 및 밝기의 조합을 통해 다양한 색상을 표현할 수 있다.
디스플레이 장치의 빠른 화면 전환을 위해서는 각 픽셀을 제어하는 TFT가 빠르게 반응하여 동작할 것이 요구될 수 있다. 특히, 유기 또는 무기 발광 소자와 같이 자발광 소자를 픽셀로 이용하는 디스플레이 장치의 경우, 우수한 픽셀의 휘도 특성(예: 고휘도, 균일한 휘도 등)을 위해서는 TFT의 고전류 구동이 요구될 수 있다.
여기서, TFT의 배선(또는 전극)에 사용되는 소재의 전기 저항이 높은 경우, 전압 강하가 발생되는 문제가 있다. 이 경우, 픽셀의 휘도가 일정하지 않고 변화하여 떨리는 플리커 현상, 또는 디스플레이 장치의 전체 전체 또는 부분 화면 영역에서 측정된 휘도의 평균값과 특정한 영역에서 측정된 휘도의 차이를 나타내는 휘도 편차가 발생하며, 특히, 디스플레이의 사이즈가 대형화 될수록 이러한 현상이 심화되어 발생하는 문제가 있다.
한편, TFT의 배선에 전기 저항이 낮은 Cu를 사용할 경우, Cu의 오염으로 인한 TFT의 특성이 저하되는 문제가 있다.
본 개시는 상술한 필요성에 의해 안출된 것으로, 본 개시의 목적은 픽셀을 구동하는 디스플레이 모듈 및 그의 제조 방법을 제공함에 있다.
상기 목적을 달성하기 위한, 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제조 방법은, 기판 상에 반도체 패턴을 형성하는 단계, 반도체 패턴을 덮는 제1 절연층을 기판 상에 형성하는 단계, 제1 절연층에서 반도체 패턴의 게이트 영역에 대응되는 영역 상에 게이트 전극을 형성하는 단계, 게이트 전극을 덮는 제2 절연층을 제1 절연층 상에 형성하는 단계, 반도체 패턴의 드레인 영역이 노출되도록 제1 및 제2 절연층을 관통하는 제1 홀을 형성하고, 반도체 패턴의 소스 영역이 노출되도록 제1 및 제2 절연층을 관통하는 제2 홀을 형성하는 단계, 및 제1 및 제2 홀에서 드레인 영역 및 소스 영역 상에 배리어 패턴을 형성하고, 배리어 패턴 상에 드레인 전극 및 소스 전극을 각각 형성하는 단계를 포함한다.
여기에서, 드레인 전극 및 소스 전극은 Cu를 포함하고, 배리어 패턴은 Zn계합금을 포함할 수 있다.
여기에서, Zn계 합금은 Ti, Mo, Au, Al, Mg, Sn 및 Sb 중 적어도 하나를 포함하고, 90wt% 이상의 함량을 갖는 Zn을 포함할 수 있다.
한편, Zn계 합금은, 50Å 이상 및 500Å이하의 두께로 형성될 수 있다.
한편, 배리어 패턴, 드레인 전극 및 소스 전극을 형성하는 단계는, 제1 및 제2 홀이 형성된 제2 절연층 상에 배리어층을 형성하는 단계, 배리어층 상에 전극층을 형성하는 단계 및 배리어층 및 전극층을 동시에 패터닝함으로써, 각각의 배리어 패턴과 함께, 각각의 배리어 패턴 상에 드레인 전극 및 소스 전극을 각각 형성하는 단계를 포함할 수 있다.
여기에서, 각각의 배리어 패턴과 함께 드레인 전극 및 소스 전극을 형성하는 단계는, 사진 식각(Photo Lithography) 공정을 통해, 각각의 배리어 패턴과 함께 드레인 전극 및 소스 전극을 형성할 수 있다.
한편, 전극층을 형성하는 단계는 배리어층을 형성한 후, 배리어 패턴의 산화를 방지하기 위해 배리어층을 형성한 챔버 내에서 연속적으로 전극층을 배리어층 상에 형성할 수 있다.
한편, 반도체 패턴은 LTPS(Low Temperature Poly Silicon)를 포함하며, 반도체 패턴을 형성하는 단계는 기판에 포함된 물질이 반도체 패턴으로 확산되는 것을 차단하기 위한 버퍼층을 기판 상에 형성하는 단계, 버퍼층 상에 a-Si(Amorphous Silicon)를 증착하는 단계 a-Si에 레이저를 조사하여, a-Si의 결정 배열이 변화된 LTPS를 형성하는 단계를 포함할 수 있다.
한편, 드레인 전극 상에 화소 전극을 형성하는 단계 및 화소 전극 상에 마이크로 LED를 형성하는 단계를 포함할 수 있다.
본 개시의 일 실시 예에 따른 디스플레이 모듈은, 기판, 기판 상에 형성되며, 게이트 영역, 드레인 영역 및 소스 영역을 포함하는 반도체 패턴, 기판 상에 형성되며 반도체 패턴에서 상기 드레인 영역 및 상기 소스 영역을 제외한 영역을 덮는 제1 절연층, 제1 절연층에서 게이트 영역에 대응되는 영역 상에 형성된 게이트 전극, 제1 절연층 상에 형성되며, 게이트 전극을 덮는 제2 절연층, 드레인 영역 및 소스 영역 상에 형성된 배리어 패턴 및 배리어 패턴 상에 각각 형성된 드레인 전극 및 소스 전극을 포함한다.
여기에서, 드레인 전극 및 소스 전극은 Cu를 포함하고, 배리어 패턴은 Zn계 합금을 포함할 수 있다.
여기에서, Zn계 합금은, Ti, Mo, Au, Al, Mg, Sn 및 Sb 중 적어도 하나를 포함하고, 90wt% 이상의 함량을 갖는 Zn을 포함할 수 있다.
한편, Zn계 합금은 50Å 이상 및 500Å이하의 두께로 형성될 수 있다.
한편, 배리어 패턴은 드레인 영역 및 소스 영역 상에서 제1 및 제2 절연층의 측벽을 감싸도록 형성될 수 있다.
한편, 반도체 패턴은 LTPS(Low Temperature Poly Silicon)를 포함할 수 있다.
한편, 디스플레이 모듈은 기판 및 반도체 패턴 사이에 형성되며, 기판에 포함된 물질이 반도체 패턴으로 확산되는 것을 차단하기 위한 버퍼층을 더 포함할 수 있다.
한편, 디스플레이 모듈은 드레인 전극 상에 형성된 화소 전극 및 화소 전극상에 형성된 마이크로 LED를 더 포함할 수 있다.
한편, 디스플레이 모듈은 제2 절연층 상에서 드레인 전극 및 소스 전극을 덮도록 형성되는 보호층을 더 포함할 수 있다.
이상과 같은 본 개시의 다양한 실시 예에 따르면, 픽셀을 구동하는 디스플레이 모듈 및 그의 제조 방법을 제공할 수 있다.
본 개시의 일 실시 예에 따르면, 휘도 편차 및 플리커 현상의 발생을 방지하는 디스플레이 모듈 및 그의 제조 방법을 제공할 수 있다. 또한, 고속의 응답 속도를 갖는 디스플레이 모듈 및 그의 제조 방법을 제공할 수 있다.
도 1a는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 구성을 설명하기 위한 도면이다.
도 1b는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 부가적인 구성을 설명하기 위한 도면이다.
도 2는 본 개시의 일 실시 예에 따른 디스플레이 모듈을 제조하는 방법을 설명하기 위한 흐름도이다.
도 3은 본 개시의 일 실시 예에 따른 버퍼층을 형성하는 방법을 설명하기 위한 도면이다.
도 4는 본 개시의 일 실시 예에 따른 반도체 패턴을 형성하는 방법을 설명하기 위한 도면이다.
도 5는 본 개시의 일 실시 예에 따른 제1 절연층을 형성하는 방법을 설명하기 위한 도면이다.
도 6은 본 개시의 일 실시 예에 따른 게이트 전극을 형성하는 방법을 설명하기 위한 도면이다.
도 7은 본 개시의 일 실시 예에 따른 제2 절연층을 형성하는 방법을 설명하기 위한 도면이다.
도 8은 본 개시의 일 실시 예에 따른 홀을 형성하는 방법을 설명하기 위한 도면이다.
도 9는 본 개시의 일 실시 예에 따른 배리어층 및 전극층을 형성하는 방법을 설명하기 위한 도면이다.
도 10은 본 개시의 일 실시 예에 따른 포토 레지스트 패턴을 형성하는 방법을 설명하기 위한 도면이다.
도 11은 본 개시의 일 실시 예에 따른 배리어 패턴, 드레인 전극 및 소스 전극을 형성하는 방법을 설명하기 위한 도면이다.
도 12는 본 개시의 일 실시 예에 따른 포토 레지스트 패턴을 제거하는 방법을 설명하기 위한 도면이다.
도 13은 본 개시의 일 실시 예에 따른 보호층을 형성하는 방법을 설명하기 위한 도면이다.
도 14는 본 개시의 일 실시 예에 따른 홀을 형성하는 방법을 설명하기 위한 도면이다.
도 15는 본 개시의 일 실시 예에 따른 화소 전극을 형성하는 방법을 설명하기 위한 도면이다.
도 16은 본 개시의 일 실시 예에 따른 발광 소자를 형성하는 방법을 설명하기 위한 도면이다.
도 17a는 본 개시의 일 실시 예에 따른 에칭 특성을 설명하기 위한 도면이다.
도 17b는 본 개시의 일 실시 예에 따른 에칭 특성을 설명하기 위한 도면이다.
도 18은 본 개시의 일 실시 예에 따른 TFT 특성을 설명하기 위한 도면이다.
본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 덧붙여, 하기 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 개시의 기술적 사상의 범위가 하기 실시 예에 한정되는 것은 아니다. 오히려, 이들 실시 예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 개시의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다.
본 개시에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 개시의 실시 예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
본 개시에서 사용된 "제1," "제2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 상기 구성요소들을 한정하지 않는다.
본 개시에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.
본 개시에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구성되다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
어떤 구성요소(예: 제1 구성요소)가 다른 구성요소(예: 제2 구성요소)에 "(기능적으로 또는 통신적으로) 연결되어 ((operatively or communicatively) coupled with/to)" 있다거나 "접속되어(connected to)" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제3 구성요소)를 통하여 연결될 수 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소(예: 제1 구성요소)가 다른 구성요소(예: 제2 구성요소)에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 다른 구성요소(예: 제 3 구성요소)가 존재하지 않는 것으로 이해될 수 있다.
본 개시에서 사용된 표현 "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, "~에 적합한(suitable for)," "~하는 능력을 가지는(having the capacity to)," "~하도록 설계된(designed to)," "~하도록 변경된 (adapted to)," "~하도록 만들어진(made to)," 또는 "~를 할 수 있는(capable of)"과 바꾸어 사용될 수 있다. 용어 "~하도록 구성된(또는 설정된)"은 하드웨어적으로 "특별히 설계된(specifically designed to)" 것만을 반드시 의미하지 않을 수 있다. 대신, 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 상기 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 상기 동작들을 수행할 수 있는 범용 프로세서(generic-purpose processor)(예: CPU 또는 application processor)를 의미할 수 있다.
도 1a는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 구성을 설명하기 위한 도면이다.
도 1a를 참조하면, 디스플레이 모듈(100)은, 기판(110), 반도체 패턴(120), 제1 절연층(125), 게이트 전극(130), 제2 절연층(135), 배리어 패턴(140A, 140B), 드레인 전극(150A) 및 소스 전극(150B)을 포함할 수 있다.
기판(110)은 회로를 구성하는 다양한 전자 소자들을 지지하고 보호할 수 있다. 여기서, 다양한 전자 소자(또는 금속, 반도체, 절연체 등)는 기판(110) 상에서 단층 또는 다층 구조로 형성되어 회로를 구성할 수 있다. 이를 위해, 기판(110)은 디스플레이 모듈(100)의 설계 특성에 따라 투명한 성질을 갖거나, 단단한 성질(rigid) 또는 유연한 성질(flexible)을 갖는 소재로 구현될 수 있다. 예를 들어, 기판(110)은 glass, PI(polyimide), PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PVC(polyvinyl chloride), PMMA(poly methyl methacrylate) 등의 다양한 소재로 구현될 수 있다.
반도체 패턴(120)은, 기판(110) 상에 형성될 수 있다. 여기서, 반도체 패턴(120)은 활성층이라 지칭할 수도 있다.
반도체 패턴(120)은 게이트 전극(130)의 전압(예: 문턱 전압 이상의 전압)에 따라 전류가 흐를 수 있는 통로인 채널(Channel)이 형성될 수 있다. 이를 위해, 반도체 패턴(120) 및 게이트 전극(130)의 사이에는 제1 절연막(125)이 형성될 수 있다.
이 경우, 반도체 패턴(120)은 게이트 영역(G), 드레인 영역(D) 및 소스 영역(S)을 포함할 수 있다. 구체적으로, 게이트 영역(G)은 반도체 패턴(120)에서 게이트 전극(130)과 인접하는 영역을 나타낼 수 있다. 드레인 영역(D)은 반도체 패턴(120)에서 드레인 전극(150A)과 인접하며, 게이트 영역(G)의 일측에 위치한 영역을 나타낼 수 있다.
소스 영역(S)은 반도체 패턴(120)에서 소스 전극(150B)과 인접하며, 게이트 영역(G)의 타측에 위치한 영역을 나타낼 수 있다. 게이트 영역(G) 등의 각 영역은 게이트 전극(130) 등의 각 전극이 형성되는 영역에 대한 기준이 될 수 있다.
여기서, 반도체 패턴(120)은 LTPS(Low Temperature Poly Silicon)를 포함할 수 있다. LTPS는 레이저 공정을 통해 기판(110)이 변형되지 않는 온도에서 형성될 수 있다. 예를 들어, LTPS는 a-Si(amorphous silicon)에 레이저를 조사하면 a-Si의 결정 배열이 변화됨으로써 형성될 수 있다. 여기서, a-Si의 결정 배열은 Si 원자가 무질서하게 배열되는 구조를 가지며, LTPS의 결정 배열은 Si 원자가 질서정연하게 배열되는 구조를 가질 수 있다. 구체적으로, LTPS의 결정 배열은 결정립(grain) 내에서 특정한 방위(orient)에 따라 원자가 주기적으로 배열되며, 결정립 경계(grain boundary)에서 그 방위가 달라질 수 있다,
이 경우, LTPS는 동일한 결정입계 내에서 전자의 이동 속도가 단결정 실리콘과 유사하게 빠른 이동 성능을 가질 수 있다. 즉, LTPS의 경우 a-Si보다 전자의 이동 속도가 약 100배 빠르다는 점에서 보다 빠른 응답 속도로 전류를 전달하여 픽셀을 구동할 수 있다. 특히, LTPS의 경우 단시간에 원하는 양의 전류를 충분히 전달할 수 있어, 픽셀(또는 회로 구성)이 밀집되는 고해상도 디스플레이 장치 또는 배선이 길어지는 대형 디스플레이 장치에 효과적일 수 있다.
한편, 본 개시의 일 실시 예에 따른, 반도체 패턴(120)은 산화물 반도체로 구현될 수도 있다. 산화물 반도체는 인듐(In), 갈륨(Ga), 아연(Zn), 주석(Sn) 중에서 적어도 하나의 원소를 포함하는 산화물로 이루질 수 있으며, 예를 들어, 산화물 반도체는 아연 산화물(Zinc Oxide), 주석 산화물(TinOxide), 인듐 산화물(Indume oxide), 인듐-아연 산화물(In-Zn Oxide), 인듐-주석 산화물(In-Sn Oxide), 인듐-갈륨-아연 산화물(In-Ga-Zn Oxide; IGZO), 인듐-아연-주석 산화물(In-Zn-Sn Oxide), 인듐-갈륨-아연-주석 산화물(In-Ga-Zn-Sn Oxide) 등으로 구현될 수 있다. 한편, 반도체 패턴(120)은 상술한 예들에 한정되지 아니하고, 단결정 실리콘, a-Si, 그래핀 등 다양한 소재로 구현될 수도 있다.
제1 절연층(125)은 반도체 패턴(120)을 덮도록 기판(110) 상에 형성될 수 있다. 구체적으로, 제1 절연층(125)은 반도체 패턴(120)에서 드레인 영역(D) 및 소스 영역(S)을 제외한 영역을 덮도록 형성될 수 있다. 여기서, 제1 절연층(125)은 절연성 물질을 포함할 수 있으며, 예를 들어, 제1 절연층(125)은 질화 실리콘(SiNx) 또는 산화 실리콘(SiO2, SiOx) 등의 무기물 또는 유기물을 포함할 수 있다.
이 경우, 제1 절연층(125)이 형성되는 층의 일 영역은 배리어 패턴(140A, 140B)이 형성될 수 있다. 여기서, 일 영역은 반도체 패턴(120)의 일측면과 접촉되는 영역일 수 있다. 예를 들어, 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S)의 상부 영역에는 배리어 패턴(140A, 140B)이 형성될 수 있다. 이 경우, 제1 절연층(125)은 반도체 패턴(120)의 일측면을 제외한 타측면을 덮도록 형성될 수 있다. 이와 같이 제1 절연층(125)은 반도체 패턴(120)이 외부로부터 노출되는 것을 차단할 수 있다.
이와 같이 제1 절연층(125)은 반도체 패턴(120)을 외부의 이물질, 수분 등으로부터 보호하고, 반도체 패턴(120) 및 게이트 전극(130)를 전기적으로 절연시키는 역할을 수행할 수 있다.
게이트 전극(130)은 제1 절연층(125)에서 게이트 영역(G)에 대응되는 영역 상에 형성될 수 있다. 제1 절연층(125)에서 게이트 영역(G)에 대응되는 영역은 게이트 영역(G) 위에 존재하는 제1 절연층(125)의 일 영역을 나타낼 수 있다. 여기서, 게이트 전극(130)은 저저항의 전도성 물질을 포함할 수 있으며, 예를 들어 게이트 전극(130)은 Cu를 포함할 수 있다. 여기서, Cu는 전기 전도도가 Au 또는 Mo 보다 높을 수 있다(즉, 비저항이 낮을 수 있다). 다만, 이는 일 실시 예일 뿐 게이트 전극(130)은 Au, Ag, Mo, Al 등 다양한 금속 물질을 포함하는 소재로 구현될 수 있다.
이와 같이, 게이트 전극(130) 및 반도체 패턴(120)은 절연성을 갖는 제1 절연층(125)을 사이에 두고 이격되어 배치될 수 있다. 이 경우, 게이트 전극(130)은 게이트 전극(130)의 전압에 따라 반도체 패턴(120)에 전류가 흐르거나 또는 전류가 흐르지 않도록 전류의 흐름을 제어할 수 있다.
제2 절연층(135)은 게이트 전극(130)을 덮도록 제1 절연층(125) 상에 형성될 수 있다. 즉, 제2 절연층(135)은 게이트 전극(130)이 외부로 노출되는 것을 차단할 수 있다. 여기서, 제2 절연층(135)은 절연성 물질을 포함할 수 있으며, 예를 들어, 제2 절연층(135)은 질화 실리콘(SiNx) 또는 산화 실리콘(SiO2, SiOx)등의 무기물 또는 유기물을 포함할 수 있다. 또한, 제2 절연층(135)은 제1 절연층(125)과 동일한 물질로 구현될 수 있으며, 또는 다른 물질로 구현될 수도 있다.
이 경우, 제2 절연층(135)이 형성되는 층의 일 영역에는 배리어 패턴(140A, 140B) 또는 드레인 전극(150A) 및 소스 전극(150B)이 형성될 수 있다. 예를 들어, 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S)의 상부 영역에는 배리어 패턴(140A, 140B), 드레인 전극(150A) 및 소스 전극(150B)이 형성될 수 있다.
드레인 전극(150A)은 반도체 패턴(120)의 드레인 영역(D)과 전기적으로 연결되도록 형성될 수 있다. 소스 전극(150B)은 반도체 패턴(120)의 소스 영역(S)과 전기적으로 연결되도록 형성될 수 있다. 여기서, 드레인 전극(150A) 및 소스 전극(150B)은 전극 겸 배선의 역할을 수행할 수 있다.
여기서, 드레인 전극(150A) 및 소스 전극(150B)은 절연성을 갖는 제1 절연층(125) 및 제2 절연층(135)을 사이에 두고 이격되어 배치될 수 있다. 또한, 드레인 전극(150A) 및 소스 전극(150B)은 절연성을 갖는 제1 절연층(125) 및 제2 절연층(135)을 통해 게이트 전극(130)과도 이격되어 배치될 수 있다.
이에 따라, 게이트 전극(130)에 전압이 인가된 경우(즉, 반도체 패턴(120)에 전류가 흐를 수 있는 채널이 형성된 경우), 드레인 전극(150A) 및 소스 전극(150B)는 배리어 패턴(140A, 140B)과 반도체 패턴(120)에 형성된 채널을 따라 전류가 흐를 수 있다.
이를 위해, 드레인 전극(150A) 및 소스 전극(150B)은 전도성 물질을 포함할 수 있다.
여기에서, 드레인 전극(150A) 및 소스 전극(150B)은 Cu를 포함할 수 있다. 구체적으로, 디스플레이 장치에서 발생되는 전압 강하에 따른 플리커 현상 또는 휘도 편차를 해결하기 위해, 높은 전기 전도도(또는 낮은 비저항)를 갖는 Cu를 전극으로 사용할 수 있다. 예를 들어, 드레인 전극(150A) 및 소스 전극(150B)은 Au 또는 Mo 보다 높은 전기 전도도를 갖는 Cu를 포함할 수 있다.
한편, 본 개시의 일 실시 예에 따른 드레인 전극(150A) 및 소스 전극(150B)이 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S)과 직접적으로 접촉될 수 있다. 다만, 이 경우 드레인 전극(150A) 및 소스 전극(150B)에 포함된 물질이 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S) 내부로 확산될 수 있다. 여기서, 드레인 전극(150A) 및 소스 전극(150B)에 포함된 물질의 종류에 따라 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S) 내부로 확산되는 것이 달라질 수 있다.
특히, 드레인 전극(150A) 및 소스 전극(150B)이 Cu를 포함하는 경우, 드레인 전극(150A) 및 소스 전극(150B)의 Cu 원자 또는 Cu 이온이 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S) 내부로 확산되는 문제가 심화될 수 있다.
도 18을 참조하면, 드레인 전극(150A) 및 소스 전극(150B)이 Cu로 구성된 경우 게이트 전극(130)의 게이트 전압(Vgs)에 따른 드레인 전극(150A) 및 소스 전극(150B) 드레인 전류(Ids) 특성은 제1 커브(1810)와 같이 나타나며, 제1 커브(1810)는 제2 커브(1820)에 비해 비정상적인 구동 특성을 나타낼 수 있다.
이와 같은 문제를 해결하기 위해, 본 개시의 일 실시 예에 따른 디스플레이 모듈(100)은 배리어 패턴(140A, 140B)를 포함할 수 있다.
배리어 패턴(140A, 140B)은 드레인 영역(D) 및 소스 영역(S) 상에 형성될 수 있다. 여기서, 배리어 패턴(140A, 140B)은 제1 배리어 패턴(140A) 및 제2 배리어 패턴(140B)를 포함할 수 있다. 구체적으로, 배리어 패턴(140A, 140B)은 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S)과 접촉되도록 형성될 수 있다. 이 경우, 드레인 전극(150A) 및 소스 전극(150B)은 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S)과 직접적으로 접촉되지 않도록 배리어 패턴(140A, 140B) 상에 형성할 수 있다.
여기에서, 배리어 패턴(140A, 140B)은 Zn계 합금을 포함할 수 있다.
구체적으로, Zn계 합금은, Ti, Mo, Au, Al, Mg, Sn 및 Sb 중 적어도 하나를 포함할 수 있으며, Zn계 합금은 90wt% 이상의 함량을 갖는 Zn을 포함할 수 있다.
한편, 본 개시의 일 실시 예에 따른 Zn계 합금은 50Å 이상 및 500Å이하의 두께(H1, 도 12 참조)로 형성될 수 있다. 한편, 본 개시의 일 실시 예에 따른 배리어 패턴(140A, 140B)은 30도 이상 및 60도 미만의 측면 각을 갖도록 형성될 수 있다.
한편, 도 12를 참조하여, 본 개시의 일 실시 예에 따른 배리어 패턴(140A, 140B)은 드레인 영역(D) 및 소스 영역(S) 상에서 제1 절연층(125) 및 제2 절연층(135)의 측벽을 감싸도록 형성될 수 있다. 이 경우, 제2 배리어 패턴(140B)과 중복되는 내용을 생략하기 위해 제1 배리어 패턴(140A)를 기준으로 설명하도록 한다. 제1 배리어 패턴(140A)은 제1 절연층(125) 및 제2 절연층(135)의 측벽을 기준으로 수평 방향으로 W값의 폭을 갖도록 형성될 수 있다. 이때, W는 0 이상이며, H1 이하의 값을 가질 수 있다. 다만, 이는 일 실시 예일 뿐, 다양한 변형된 실시 예가 가능할 수 있다.
전술한 배리어 패턴(140A, 140B)에 포함된 소재의 종류 및 함량, 두께, 각도 등은 드레인 전극(150A) 및 소스 전극(150B)의 물질(예: Cu)이 반도체 패턴(120)의 내부로 확산되는 것을 차단하는 특성을 향상시킬 수 있다. 또한, 전술한 배리어 패턴(140A, 140B)에 포함된 소재의 종류 및 함량, 두께, 각도 등은 전기 전도도(또는 비저항)를 향상시킬 수 있다.
이 경우, 드레인 전극(150A) 및 소스 전극(150B)은 배리어 패턴(140A, 140B) 상에 형성될 수 있다. 구체적으로, 드레인 전극(150A)은 제1 배리어 패턴(140A) 상에 형성되며, 소스 전극(150B)은 제2 배리어 패턴(140B) 상에 형성될 수 있다.
이에 따라, 본 개시의 디스플레이 모듈(100)은 드레인 전극(150A) 및 소스 전극(150B)을 Cu 등의 전기전도성이 우수한 물질을 사용하는 경우에, 배리어 패턴(140A, 140B)은 드레인 전극(150A) 및 소스 전극(150B)에 포함된 물질(예: Cu 등)이 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S)으로 확산되는 것을 차단할 수 있다.
이 경우, 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S) 내로 드레인 전극(150A) 및 소스 전극(150B)에 포함된 물질이 확산(또는 유입)됨으로써 전기적 특성(예: 전기전도도, 게이트 전압에 따라 TFT 로 구동될 수 있는 특성 등)이 저하되는 것을 방지할 수 있다.
따라서, 본 개시의 디스플레이 모듈(100)은 드레인 전극(150A) 및 소스 전극(150B)을 Cu 등의 전기전도성이 우수한 물질을 사용하면서 반도체 패턴(120)의 전기적 특성을 유지할 수 있다는 점에서, 디스플레이 모듈(100)의 전반적인 전기적 특성이 향상될 수 있다.
이 경우, 디스플레이 모듈(100)의 배선에서의 저항으로 인한 전압 손실을 감소시킨다는 점에서, 배선에서 발생되는 발열을 감소시키며, 각 픽셀로 균일한 전압을 인가할 수 있고, 이에 따라 플리커 현상 등을 방지할 수 있다.
또한, 디스플레이 모듈(100)은 배리어 패턴(140A, 140B)을 이용하여 반도체 패턴의 전기 전도도를 향상시킬 수 있다는 점에서, 디스플레이의 응답 속도를 향상시킬 수 있다.
다시 도 18을 참조하면, 본 개시의 일 실시 예에 따른 드레인 전극(150A) 및 소스 전극(150B)이 배리어(140A, 140B) 상에 형성된 경우의 게이트 전압(Vgs)에 따른 드레인 전류(Ids) 특성은 제2 커브(1820)와 같이 나타날 수 있다. 여기서, 제2 커브(1820)는 게이트 전극(130)의 전압이 증가할수록 전류가 증가하고, 특정한 전압 구간에서 전류는 선형적인 관계를 갖는 정상적인 구동 특성을 나타낼 수 있다.
이상과 같은 본 개시의 일 실시 예에 따르면, 픽셀을 구동하는 디스플레이 모듈 및 그의 제조 방법을 제공할 수 있다. 또한, 휘도 편차 및 플리커 현상의 발생을 방지하는 디스플레이 모듈 및 그의 제조 방법을 제공할 수 있다. 또한, 고속의 응답 속도를 갖는 디스플레이 모듈 및 그의 제조 방법을 제공할 수 있다.
도 1b는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 부가적인 구성을 설명하기 위한 도면이다.
도 1b를 참조하면, 디스플레이 모듈(100)은 기판(110), 반도체 패턴(120), 제1 절연층(125), 게이트 전극(130), 제2 절연층(135), 배리어 패턴(140A, 140B), 드레인 전극(150A) 및 소스 전극(150B) 외에도, 버퍼층(115), 보호층(155), 화소 전극(160), 공통 전극(170) 및 마이크로 LED(200) 중에서 적어도 하나를 더 포함할 수 있다.
버퍼층(115)은 기판(110) 및 반도체 패턴(120) 사이에 형성될 수 있다. 즉, 버퍼층(115)은 기판(110) 상에 형성될 수 있다. 이 경우, 버퍼층(115)은 버퍼층(115) 상에 형성되는 층들과 기판(110) 간의 접착력을 향상시킬 수 있다. 또한, 버퍼층(115)은 기판(110)에 포함된 물질이 반도체 패턴(120)으로 확산되는 것을 차단할 수 있다.
이를 위해, 버퍼층(115)은 질화 실리콘(SiNx) 또는 산화 실리콘(SiOx)의 단일층 또는 질화 실리콘(SiNx)과 산화 실리콘(SiOx)의 다중층으로 이루어질 수 있다. 이와 같은 버퍼층(211)은 기판(110) 및 반도체 패턴(120)의 구조 및 종류에 따라 다양하게 변형되거나 생략될 수 있다.
도 1b 및 도 13을 함께 참조하여, 보호층(155)은 제2 절연층(135) 상에서 드레인 전극(150A) 및 소스 전극(150B)을 덮도록 형성될 수 있다. 또한, 보호층(155)은 패시베이션층이라 지칭할 수도 있다.
여기서, 보호층(155)은 하부에 형성된 드레인 전극(150A), 소스 전극(150B) 등을 보호하기 위한 절연층일 수 있다. 구체적으로, 보호층(155)은 외부의 이물질, 수소, 수분 등이 내부로 침투하거나 드레인 전극(150A) 및 소스 전극(150B) 등에 대한 물리적인 손상이 발생하는 것을 방지할 수 있으며, 보호층(155)은 드레인 전극(150A) 및 소스 전극(150B)이 단락(short)되는 것을 방지할 수 있다.
이를 위해, 보호층(155)은 질화 실리콘(SiNx), 옥시 질화 실리콘(SiONx) 또는 옥시 실리콘(SiOx)과 같은 무기물로 이루어질 수 있다.
한편, 도 1b 및 도 14를 참조하면, 보호층(155)은 드레인 전극(150A)을 노출시키기 위한 홀(1200)이 형성될 수 있다. 또한, 홀(1200) 내부의 드레인 전극(150A) 상에는 화소 전극(160)이 형성될 수도 있다.
도 1b 및 도 16을 참조하여, 화소 전극(160)은 드레인 전극(150A) 상에 형성될 수 있다. 공통 전극(170)은 보호층(155) 상의 일 영역에 형성될 수 있다. 공통 전극(170)은 마이크로 LED(200)의 플립칩 타입, 수직 타입 등의 구조에 따라 형성되는 위치가 달라질 수 있다. 화소 전극(160) 및 공통 전극(170)은 도전성 소재를 포함할 수 있으며, 예를 들어, 화소 전극(160) 및 공통 전극(170)은 Cu, Ag, Au, Al 등 중에서 적어도 하나를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐이며, 화소 전극(160) 및 공통 전극(170)은 다양한 도전성 소재를 포함하도록 변형될 수 있다.
마이크로 LED(Micro Light Emitting Diode; u-LED)(200)는 화소 전극(160) 및 공통 전극(170)과 전기적으로 연결되도록, 화소 전극(160) 상에 본딩될 수 있다.
여기서, 마이크로 LED(200)는 가로, 세로 및 높이가 각각 1~100 마이크로미터(㎛) 크기의 LED를 지칭할 수 있다. 구체적으로, 마이크로 LED(200)(또는 μ LED) 디스플레이 패널은 평판 디스플레이 패널 중 하나로 각각 100 마이크로미터 이하인 복 수의 무기 발광 다이오드(inorganic LED)로 구성되어 있다. 백라이트가 필요한 액정 디스플레이(LCD) 패널에 비해 마이크로 LED 디스플레이 패널은 더 나은 대비, 응답 시간 및 에너지 효율을 제공한다. 유기발광다이오드(organic LED)와 무기 발광 소자인 마이크로 LED는 모두 에너지 효율이 좋지만 마이크로 LED는 0LED보다 밝기, 발광효율, 수명이 길다.
또한, LED는 n형 반도체층에 인가된 전압 및 p형 반도체층에 인가된 전압의 차이에 따라, n형 반도체에서 제공된 전자(electron)와 p형 반도체에서 제공된 정공(hole)이 발광층에서 재결합되면서, 밴드 갭(Band Gap) 에너지에 해당하는 특정한 파장(또는 특정한 색상)의 광(광자의 다발(photon packet))을 발광하는 소자를 지칭할 수 있다. 여기서 LED는 600~750nm의 파장의 적색 광을 발광하기 위해 AlInGaP계 반도체 기반의 하나 이상의 반도체층을 포함할 수 있다. 그리고, LED는 청색 및 녹색의 반도체셀(110)은 450~490nm 및 500~570nm의 파장의 청색 및 녹색 광을 각각 발광하기 위해, AlInGaN계 반도체 기반의 하나 이상의 반도체층을 포함할 수 있다. 한편, 마이크로 LED(200)는 무기물을 이용한다는 점에서 화면의 번인(burn-in) 현상이 적고 수명이 길며, 전력 효율이 높고 응답시간이 짧다는 등의 장점이 있다.
마이크로 LED(200)는 마이크로 LED(200)의 하부에 형성된 양 전극(예: cathode 및 anode)이 화소 전극 및 공통 전극(160, 170)과 연결되는 플립칩(Flip chip) 타입의 구조 또는 마이크로 LED(200)의 하부 및 상부에 각각 형성된 전극이 화소 전극 및 공통 전극(160, 170)과 연결되는 수직(vertical) 타입의 구조를 가질 수 있다.
구체적인 예를 들어, 마이크로 LED(200)는 도 16과 같이 화소 전극(160) 및 공통 전극(170) 상에 플립칩 타입으로 본딩될 수 있다. 이를 위해, 공통 전극(170)은 화소 전극(160)과 이격(분리 또는 절연)되도록 배치되며, 보호층(155)의 상부 영역에 형성될 수 있다. 다른 예를 들어, 수직형 타입과 같이, 마이크로 LED(200)은 마이크로 LED(200)의 하부 전극이 화소 전극(160)과 연결되도록 화소 전극(160) 상에 본딩되고, 이후 마이크로 LED(200)의 상부 전극에 공통 전극(170)이 형성될 수도 있다.
이 경우, 게이트 전극(130)의 전압에 따라 반도체 패턴(120)에 채널이 형성되면, 소스 전극(150B), 제2 배리어 패턴(140B), 반도체 패턴(120), 제1 배리어 패턴(140A) 및 드레인 전극(150A)을 따라 흐르는 전류가 마이크로 LED(200)로 공급되며, 마이크로 LED(200)는 공급된 전류에 따라 특정한 양(밝기) 및 색상을 갖는 빛을 발광할 수 있다. 이와 같이, 마이크로 LED(200)는 픽셀(pixel) 단위(또는 서브 픽셀(sub pixel) 단위)로서 개별적으로 구동될 수 있다. 한편, 마이크로 LED(200)를 구동하기 위한 구동 회로는 픽셀 영역에 배치되어 적어도 2n개의 픽셀 구동을 제어하는 마이크로 IC 에 의해 구현될 수 있으며, 마이크로 IC 적용 시에 TFT 층(또는, 백플레인(backplane))에는 TFT 소자 대신에 마이크로 IC와 각각의 마이크로 LED을 연결하는 채널층만 형성될 수도 있다. 한편, TFT 층을 구성하는 TFT 는 특정 구조나 타입으로 한정되지 않는다. 즉, 본 개시의 TFT는 LTPS TFT(Low-temperature polycrystalline silicon TFT) 외 oxide TFT 및 Si TFT(poly silicon, a-silicon), 유기 TFT, 그래핀 TFT 등으로도 구현될 수 있으며, Si wafer CMOS공정에서 P type(or N-type) MOSFET만 만들어 적용할 수도 있다.
한편, 본 개시의 일 실시 예에 따른 디스플레이 모듈(100)은 마이크로 LED(200)를 포함하는 것으로 설명하였으나, 이는 일 실시 예일 뿐이며, 디스플레이 모듈(100)은 마이크로 LED(200)를 대신하여 다양한 발광 소자를 포함하도록 변형될 수 있다. 여기서, 발광 소자는 미니 LED(가로, 세로 및 높이가 각각 100~200 마이크로미터(㎛) 크기를 갖는 LED), 유기물을 이용하는 OLED(Organic Light Emitting Diode), 양자점을 이용하는 QLED(Quantum dot Light Emitting Diode) 중 적어도 하나를 포함할 수 있다. 나아가, 본 개시의 일 실시 예에 따른 디스플레이 모듈(100)은 백라이트 유닛 및 액정을 이용하여 픽셀을 제어하는 것 또한 가능하다.
한편, 전술한 도 1a 및 도 1b는 디스플레이 모듈(100)의 하나의 픽셀(또는 서브 픽셀)에서의 일부 영역에 대한 단면도를 나타낸 것이다. 디스플레이 모듈(100)은 적어도 하나의 픽셀(또는 서브 픽셀)을 포함할 수 있으며, 각 픽셀(또는 각 서브 픽셀)에 대해서는 전술한 설명이 동일하게 적용될 수 있다.
이상과 같이, 본 개시의 일 실시 예에 따른 디스플레이 모듈(100)은 픽셀(또는 서브 픽셀) 단위로 게이트 전극(130)에 인가되는 전압 및 드레인 전극(150A)/소스 전극(150B)의 전압 차에 따라 복수의 픽셀로 구성된 영상을 시각적으로 표시할 수 있다.
본 개시의 일 실시 예에 따른, 디스플레이 모듈(100)은 그 자체로 디스플레이 장치로 구현될 수 있을 뿐만 아니라, 복수의 디스플레이 모듈이 결합되어 하나의 디스플레이 장치로 구현될 수도 있다. 예를 들어, 복수의 디스플레이 모듈은 매트릭스 타입(예: Q × W, Q 및 W 각각은 자연수)으로 타일링되어 하나의 디스플레이 장치를 구성할 수 있다.
구체적으로, 디스플레이 모듈(100)은 단일한 단위로 웨어러블 장치, 포터블 장치, 핸즈헬드 장치 및 각종 디스플레이가 필요한 전자 제품(주로 소형 디스플레이 장치)이나 전장에 설치되어 적용될 수 있으며, 디스플레이 모듈(100)은 복수의 단위로 매트릭스 타입의 조립 배치를 통해 모니터, 고해상도 TV 및 사이니지(또는, 디지털 사이니지(digital signage)), 전광판 등과 같은 전자 제품(주로 대형 디스플레이 장치)이나 전장에 적용될 수 있다. 예를 들어, 디스플레이 모듈(100)은 TV, 모니터, 휴대용 멀티미디어 장치, 휴대용 통신장치, 스마트 폰, 스마트 글래스, 스마트 윈도우, 스마트 워치, HMD(Head Mount Display), 웨어러블 장치(Wearable device), 포터블 장치(Portable device), 핸즈헬드 장치(Handheld device), 사이니 지(Signage), 전광판, 광고판, 시네마 스크린, 비디오 월 등 다양한 형태로 구현될 수 있으며, 그 형태가 한정되지 않는다. 나아가, 본 개시의 일 실시 예에 따른 디스플레이 모듈(100)은 스마트 윈도우, 스마트 글래스 등과 같은 투명 디스플레이 장치로 구현될 수도 있다.
이하에서는 첨부된 도면을 참조하여, 본 개시의 일 실시 예에 따른 디스플레이 모듈(100)을 제조하는 방법에 대해 설명하기로 한다.
도 2는 본 개시의 일 실시 예에 따른 디스플레이 모듈을 제조하는 방법을 설명하기 위한 흐름도이다.
도 2를 참조하면, 디스플레이 모듈(100)의 제조 방법은, 기판(110) 상에 반도체 패턴(120)을 형성하는 단계(S210), 반도체 패턴(120)을 덮는 제1 절연층(125)을 기판(110) 상에 형성하는 단계(S220), 제1 절연층(125)에서 반도체 패턴(120)의 게이트 영역(G)에 대응되는 영역 상에 게이트 전극(130)을 형성하는 단계(S230), 게이트 전극(130)을 덮는 제2 절연층(135)을 제1 절연층(125) 상에 형성하는 단계(S240), 반도체 패턴(120)의 소스 영역(S)이 노출되도록 제1 절연층(125) 및 제2 절연층(135)을 관통하는 제1 홀(800B)을 형성하고, 반도체 패턴(120)의 드레인 영역(D)이 노출되도록 제1 절연층(125) 및 제2 절연층(135)을 관통하는 제2 홀(800A)을 형성하는 단계(S250), 및 제1 홀(800A) 및 제2 홀(800B)에서 소스 영역(S) 및 드레인 영역(D) 상에 배리어 패턴(140A, 140B)을 형성하고, 배리어 패턴(140A, 140B) 상에 소스 전극(150B) 및 드레인 전극(150A)을 각각 형성하는 단계(S260)를 포함한다.
이하에서는, 본 개시의 디스플레이 모듈(100)의 제조 방법의 각 단계에 대해 첨부된 도면을 참조하여 함께 설명하도록 한다.
구체적으로, 도 2를 참조하면, 디스플레이 모듈(100)의 제조 방법은, 기판(110) 상에 반도체 패턴(120)을 형성할 수 있다(S210).
여기서, 반도체 패턴(120)은 LTPS(Low Temperature Poly Silicon)를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐이며, 반도체 패턴(120)은 산화물 반도체, a-Si 등을 포함하는 것으로 구현될 수도 있다.
구체적으로, 스퍼터링(sputtering), 증발증착(Evaporation), 전자빔증착(e-beam evaporation), 화학기상증착(Chemical Vapor Deposition; CVD), 레이저증착(Pulsed Laser Deposition), 물리적증착(Physical Vapor Deposition; PVD), 플라즈마 증착(Plasma Enhanced CVD), ALD(Atomic layer deposition) 등의 다양한 증착 방식을 통해 반도체층을 기판 상(110)에 형성할 수 있다. 이후, 반도체층의 일부분은 포토 레지스트(Photoresist; PR), 노광, 현상, 에칭을 통해 제거될 수 있으며(패터닝), 반도체층에서 일부가 제거되고 기판 상(110)에 남아 있는 반도체층을 반도체 패턴(120)이라 지칭할 수 있다.
한편, LTPS의 경우, 먼저 a-Si을 증착한 후 레이저를 통해 이를 결정화함으로써 LTPS를 형성할 수도 있다. 구체적인 내용은 후술하도록 한다.
한편, 본 개시의 일 실시 예에 따른 제조 방법은 버퍼층(115)을 형성하는 단계를 포함할 수 있다. 이는 도 3 및 도 4를 함께 참조하여 설명하도록 한다.
도 3은 본 개시의 일 실시 예에 따른 버퍼층을 형성하는 방법을 설명하기 위한 도면이다. 도 4는 본 개시의 일 실시 예에 따른 반도체 패턴을 형성하는 방법을 설명하기 위한 도면이다.
도 3을 참조하여, 본 개시의 제조 방법은, 기판(110)에 포함된 물질이 반도체 패턴(120)으로 확산되는 것을 차단하기 위한 버퍼층(115)을 기판(110) 상에 형성하는 단계를 포함할 수 있다. 이 경우, 버퍼층(115)을 형성하는 단계는 반도체 패턴(120)을 형성하기 전에 수행될 수 있다. 이를 위해, 스퍼터링(sputtering), 증발증착(Evaporation), 전자빔증착(e-beam evaporation), CVD(Chemical Vapor Deposition), ALD(Atomic Layer Deposition), PVD(Physical Vapor Deposition), 레이저증착(Pulsed Laser Deposition) 등의 방식을 통해 기판(110) 상에 버퍼층(115)을 형성할 수 있다.
다만, 이는 일 실시 예일 뿐, 버퍼층(115)을 형성하지 않고 기판(110) 상에 반도체 패턴(120)을 형성하는 것 또한 가능할 수 있다. 이하에서는 설명의 편의를 위해, 본 개시의 제조 방법은 버퍼층(115)을 형성하는 단계를 포함하는 것으로 가정하여 설명하도록 한다.
이 경우 도 4를 참조하여, 반도체 패턴(120)을 형성하는 단계(S210)는 버퍼층(115)이 기판(110) 상에 형성된 이후, 반도체 패턴(120)을 버퍼층(115) 상에 형성하는 단계를 포함할 수 있다. 이는 전술한 다양한 증착 방식을 통해 반도체층을 형성하고, 에칭을 통해 반도체층의 일부를 제거함으로써 기판(110) 상부 영역 중 특정한 영역에 존재하는 반도체 패턴(120)이 형성될 수 있다.
여기에서, 본 개시의 일 실시 예에 따르면, 반도체 패턴(120)은 LTPS(Low Temperature Poly Silicon)를 포함할 수 있다.
구체적으로, 반도체 패턴(120)을 형성하는 단계는, 버퍼층(115) 상에 a-Si(Amorphous Silicon)를 증착하고, a-Si에 레이저를 조사하여, a-Si의 결정 배열이 변화된 LTPS를 형성하는 단계를 포함할 수 있다.
여기서, a-Si는 전술한 다양한 증착 방식에 따라 버퍼층(115) 상에 형성되며, 박막(예: 500㎛ 의 두께 등)의 형태로 형성될 수 있다. 또한, 레이저는 엑시머 레이저(excimer laser)가 이용될 수 있으며, 엑시머 레이저는 펄스화된 자외선(UV)을 지칭할 수 있다. a-Si에 레이저를 조사하여 어닐링(또는 열처리)함으로써 결정 배열의 변화를 통한 LTPS를 형성할 수 있다. 레이저의 경우 특정한 영역에 대해서만 일시적으로 짧은 시간 동안 어닐링할 수 있다는 점에서, 기판(110)에 손상을 주지 않는 장점이 있다.
다만, 이는 일 실시 예일 뿐이며, RTA(rapid thermal annealing)법, SPC(solid phase crystallzation)법, MIC(metal induced crystallzation)법, MILC(metal induced lateral crystallzation)법, SLS(sequential lateral solidification)법 등 다양한 방법을 통해 a-Si의 결정 배열의 변화를 통해 LTPS를 형성할 수도 있다.
다음으로, 반도체 패턴(120)을 덮는 제1 절연층(125)을 기판(110) 상에 형성할 수 있다(S220). 이는 도 5를 함께 참조하여 설명하도록 한다.
도 5는 본 개시의 일 실시 예에 따른 제1 절연층을 형성하는 방법을 설명하기 위한 도면이다.
도 5를 참조하면, 반도체 패턴(120)을 덮도록 제1 절연층(125)을 기판(110) 상에 형성할 수 있다. 구체적으로, 제1 절연층(125)은 반도체 패턴(120)의 상면 및 측면, 기판(110)의 상면과 접촉되도록 형성될 수 있다. 즉, 제1 절연층(125)은 반도체 패턴(120)이 외부로 노출되지 않도록 반도체 패턴(120)을 감싸는 구조로 형성될 수 있다.
이를 위해, SiNx 또는 SiOx 등과 같은 절연성 물질을 PECVD(plasma enhanced chemical vapor deosition), APCVD(atmospheric pressure CVD), LPCVD(low pressure CVD), ALD(Atomic Layer Deposition) 등의 방식에 의해 제1 절연층(125)을 형성할 수 있다.
다음으로, 제1 절연층(125)에서 반도체 패턴(120)의 게이트 영역(G)에 대응되는 영역 상에 게이트 전극(130)을 형성할 수 있다(S230). 이는 도 6을 함께 참조하여 설명하도록 한다.
도 6은 본 개시의 일 실시 예에 따른 게이트 전극을 형성하는 방법을 설명하기 위한 도면이다.
도 6을 참조하여, 게이트 전극(130)은 제1 절연층(125)에서 게이트 영역(G)에 대응되는 영역 상에 형성될 수 있다. 제1 절연층(125)에서 게이트 영역(G)에 대응되는 영역은 게이트 영역(G) 위에 존재하는 제1 절연층(125)의 일 영역을 나타낼 수 있다. 이와 같이, 게이트 전극(130) 및 반도체 패턴(120)은 절연성을 갖는 제1 절연층(125)을 사이에 두고 이격되어 배치될 수 있으며, 이에 따라 게이트 전극(130) 및 반도체 패턴(120)은 전기적으로 절연될 수 있다.
여기서, 게이트 전극(130)은 저저항의 전도성 물질을 포함할 수 있으며, 예를 들어 게이트 전극(130)은 Cu를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐 게이트 전극(130)은 Au, Ag, Mo, Al 등 다양한 금속 물질을 포함하는 소재로 구현될 수 있다.
이를 위해, 전해도금(Electrical Plating; EP), 스퍼터링(sputtering), 증발증착(Evaporation), 전자빔증착(e-beam evaporation), CVD(Chemical Vapor Deposition), ALD(Atomic Layer Deposition), PVD(Physical Vapor Deposition), 레이저증착(Pulsed Laser Deposition) 등의 다양한 방식을 통해 게이트 전극(130)이 형성될 수 있다.
다음으로, 게이트 전극(130)을 덮는 제2 절연층(135)을 제1 절연층(125) 상에 형성할 수 있다(S240). 이는 도 7을 함께 참조하여 설명하도록 한다.
도 7은 본 개시의 일 실시 예에 따른 제2 절연층을 형성하는 방법을 설명하기 위한 도면이다.
도 7을 참조하여, 게이트 전극(130)을 덮도록 제2 절연층(135)을 제1 절연층(125) 상에 형성할 수 있다. 구체적으로, 제2 절연층(135)은 게이트 전극(130)의 상면 및 측면, 제1 절연층(125)의 상면과 접촉되도록 형성될 수 있다. 즉, 제2 절연층(135)은 게이트 전극(130)이 외부로 노출되지 않도록 게이트 전극(130)을 감싸는 구조로 형성될 수 있다.
이를 위해, SiNx 또는 SiOx 등과 같은 절연성 물질을 PECVD(plasma enhanced chemical vapor deosition), APCVD(atmospheric pressure CVD), LPCVD(low pressure CVD), ALD(Atomic Layer Deposition) 등의 방식에 의해 제2 절연층(135)을 형성할 수 있다.
다음으로, 반도체 패턴(120)의 드레인 영역(D)이 노출되도록 제1 절연층(125) 및 제2 절연층(135)을 관통하는 제1 홀(800A)을 형성하고, 반도체 패턴(120)의 소스 영역(S)이 노출되도록 제1 절연층(125) 및 제2 절연층(135)을 관통하는 제2 홀(800B)을 형성할 수 있다(S250). 이는 도 8을 함께 참조하여 설명하도록 한다.
도 8은 본 개시의 일 실시 예에 따른 홀을 형성하는 방법을 설명하기 위한 도면이다.
도 8을 참조하여, 반도체 패턴(120)의 드레인 영역(D)이 노출되도록 제1 절연층(125) 및 제2 절연층(135)을 관통하는 제1 홀(800A)을 형성하고, 반도체 패턴(120)의 소스 영역(S)이 노출되도록 제1 절연층(125) 및 제2 절연층(135)을 관통하는 제2 홀(800B)을 형성할 수 있다
여기서, 제1 홀(800A)은 반도체 패턴(120)의 드레인 영역(D)을 노출시키기 위한 콘택홀(또는 비아홀)이며, 제2 홀(800B)은 반도체 패턴(120)의 소스 영역(S)을 노출시키기 위한 콘택홀(또는 비아홀)일 수 있다. 즉, 제1 홀(800A) 및 제2 홀(800B)은 드레인 영역(D) 및 소스 영역(S)을 노출시키기 위해 제1 절연층(125) 및 제2 절연층(135)에서 제거되는 영역을 나타낼 수 있다. 이후, 제1 홀(800A) 및 제2 홀(800B)에는 전극 및 배선의 역할을 수행하기 위한 도전성 물질이 채워질 수 있다.
이를 위해, 레이저 가공, 드릴 가공, EUV(Extreme Ultraviolet), 에칭 등의 방식을 통해 제1 홀(800A) 및 제2 홀(800B)을 형성할 수 있다.
다음으로, 제1 홀(800A) 및 제2 홀(800B)에서 드레인 영역(D) 및 소스 영역(S)상에 배리어 패턴(140A, 140B)을 형성하고, 배리어 패턴(140A, 140B) 상에 드레인 전극(150A) 및 소스 전극(150B)을 각각 형성할 수 있다(S260).
구체적인 일 실시 예로서, 배리어 패턴(140A, 140B), 드레인 전극(150A) 및 소스 전극(150B)을 형성하는 단계는, 제1 홀(800A) 및 제2 홀(800B)이 형성된 제2 절연층(135) 상에 배리어층(140)을 형성하는 단계, 배리어층(140) 상에 전극층(150)을 형성하는 단계 및 배리어층(140) 및 전극층(150)을 동시에 패터닝함으로써, 각각의 배리어 패턴(140A, 140B)과 함께, 각각의 배리어 패턴 상에 드레인 전극(150A) 및 소스 전극(150B)을 각각 형성하는 단계를 포함할 수 있다. 여기서, 사진 식각(Photo Lithography) 공정을 통해, 각각의 배리어 패턴(140A, 140B)과 함께 드레인 전극(150A) 및 소스 전극(150B)을 형성할 수 있다. 이는 도 9 내지 12를 함께 참조하여 설명하도록 한다.
도 9는 본 개시의 일 실시 예에 따른 배리어층 및 전극층을 형성하는 방법을 설명하기 위한 도면이다.
도 9를 참조하면, 제1 홀(800A) 및 제2 홀(800B)이 형성된 제2 절연층(135) 상에 배리어층(140)을 형성할 수 있다. 여기서 배리어층(140)은 동일한 레벨(층의 수 또는 단계) 내에서 연속되도록 존재하는 구조로 형성된 것이며, 배리어층(140)은 패터닝을 통해 상호 분리된 배리어 패턴(140A, 140B)으로 형성될 수 있다.
구체적으로, 배리어층(140)은 제1 홀(800A) 및 제2 홀(800B)이 형성된 제2 절연층(135) 상에 배리어층(140)을 형성할 수 있다. 이 경우, 배리어층(140)은 제1 홀(800A) 및 제2 홀(800B) 내부에서 반도체 패턴(120)의 드레인 영역(D) 및 소스 영역(S) 상에 형성될 수 있다.
또한, 본 개시의 일 실시 예에 따르면, 제1 홀(800A) 및 제2 홀(800B) 내부에서 제1 절연층(125) 및 제2 절연층(135)의 측벽을 감싸도록 배리어층(140)을 형성할 수도 있다.
그리고, 배리어층(140) 상에 전극층(150)을 형성할 수 있다. 이 경우, 제1 홀(800A) 및 제2 홀(800B) 내부에서 형성된 배리어층(140) 상에 전극층(150)을 형성할 수 있다. 전극층(150)은 패터닝을 통해 상호 분리된 드레인 전극(150A) 및 소스 전극(150B)으로 형성될 수 있다.
이를 위해, 전해도금(Electrical Plating; EP), 스퍼터링(sputtering), 증발증착(Evaporation), 전자빔증착(e-beam evaporation), CVD(Chemical Vapor Deposition), ALD(Atomic Layer Deposition), PVD(Physical Vapor Deposition), 레이저증착(Pulsed Laser Deposition) 등의 다양한 방식을 통해 배리어층(140) 및 전극층(150)을 형성할 수 있다.
여기에서, 전극층(150)을 형성하는 단계는 배리어층(140)을 형성한 후, 배리어 패턴(140A, 140B)의 산화를 방지하기 위해 배리어층(140)을 형성한 챔버 내에서 연속적으로 전극층(150)을 배리어층(140) 상에 형성할 수 있다. 이는 동일한 챔버 내에서 배리어층(140) 및 전극층(150)을 연속적으로 증착하여 형성함으로써 배리어층(140)의 산화를 방지하기 위함이다.
한편, 배리어층(140) 및 배리어 패턴(140A, 140B)은 실질적으로 동일한 소재를 포함할 수 있으며, 전극층(150) 및 드레인 전극(150A) 및 소스 전극(150B)은 실질적으로 동일한 소재를 포함할 수 있다. 즉, 배리어층(140)은 배리어 패턴(140A, 140B)에서 전술한 바와 같이 Zn계 합금을 포함할 수 있으며, 전극층(150)은 드레인 전극(150A) 및 소스 전극(150B)에 대해 전술한 바와 같이 Cu를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐 다양한 실시 예로 변형될 수 있다.
그리고, 배리어층(140) 및 전극층(150)에서 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역을 제외한 나머지 영역을 제거할 수 있다. 이 경우, 부식 용액을 이용한 화학적 반응을 통해 배리어층(140) 및 전극층(150)의 특정한 영역을 제거하는 습식 에칭 또는 반응성 기체(예: 플라즈마 등), 이온 등을 이용해 배리어층(140) 및 전극층(150)의 특정한 영역을 제거하는 건식 에칭이 이용될 수 있다.
여기에서, 본 개시의 일 실시 예에 따르면, 습식 에칭을 이용하여 특정한 영역을 제거할 수 있다. 습식 에칭의 경우, 건식 에칭에 비해 선택비(타겟 물질만을 에칭할 수 있는 정도), 생산성(처리 속도가 빠르며, 다량을 처리할 수 있음), 경제성(간단한 장비 및 저비용) 측면에서 우수한 장점이 있다.
도 10은 본 개시의 일 실시 예에 따른 포토 레지스트 패턴을 형성하는 방법을 설명하기 위한 도면이다.
도 10을 참조하여, 전극층(150)에서 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역 상에 포토 레지스트 패턴(1010A, 1010B)을 형성할 수 있다.
구체적으로, 전극층(150) 상에 포토 레지스트 층을 형성하고, 빛을 포토 레지스트 층에 부분적으로 노출시킨 후, 현상을 통해 포토 레지스트 층에서 분자간 결합력이 약한 부분을 제거함으로써 포토 레지스트 패턴(1010A, 1010B)을 형성할 수 있다.
이를 위해, 포토 레지스트 패턴(1010A, 1010B) 또는 포토 레지스트 층은 감광물질, 광 활성제, 고분자 수지, 솔벤트 등을 포함할 수 있다. 여기서, 감광물질은 특정한 파장의 빛(UV, EUV 등)에 광반응을 일으켜 분자간 결합력이 강해지는 물질(positive 타입) 또는 분자간 결합력이 약해지는 물질(negative 타입)을 포함할 수 있다. 또한, 포토 레지스트 패턴(1010A, 1010B) 또는 포토 레지스트 층은 에칭에서 사용되는 부식 용액에 대한 내식성을 가질 수 있다. 한편, 부식 용액은 비과수(비-과산화수소)를 포함할 수 있으나, 이는 일 실시 예일 뿐이며, 부식 용액은 과수(과산화수소)를 포함할 수도 있다.
이 경우, 포토 레지스트 패턴(1010A, 1010B)은 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역 상에 형성될 수 있다. 여기서, 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역은 제1 홀(800A) 및 제2 홀(800B)에 형성된 전극층(150)의 상부 영역이며, 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역은 서로 이격된 영역일 수 있다. 다만, 이는 일 실시 예일 뿐 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역은 제1 홀(800A) 및 제2 홀(800B)이 위치에서 수평방향으로 떨어진 영역일 수도 있다.
도 11은 본 개시의 일 실시 예에 따른 배리어 패턴, 드레인 전극 및 소스 전극을 형성하는 방법을 설명하기 위한 도면이다.
도 11을 참조하여, 포토 레지스트 패턴(1010A, 1010B)에 기초하여, 에칭을 통해 배리어층(140) 및 전극층(150)에서 제1 홀(800A) 및 제2 홀(800B)에 대응되는 영역을 제외한 나머지 영역을 함께 제거할 수 있다.
이와 동시에, 제1 홀(800A) 및 제2 홀(800B)에서 드레인 영역(D) 및 소스 영역(S) 상에 배리어 패턴(140A, 140B)이 형성되고, 배리어 패턴(140A, 140B) 상에 드레인 전극(150A) 및 소스 전극(150B)을 각각 형성할 수 있다.
여기서, 드레인 전극(150A) 및 소스 전극(150B)은 Cu를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐이며, 다양한 실시 예로 변형될 수 있다.
이 경우, 배리어 패턴(140A, 140B)은 Zn계 합금을 포함할 수 있다. 여기에서, Zn계 합금은 Ti, Mo, Au, Al, Mg, Sn 및 Sb 중 적어도 하나를 포함하고, 90wt% 이상의 함량을 갖는 Zn을 포함할 수 있다. 다만, 이는 일 실시 예일 뿐이며, 다양한 실시 예로 변형될 수 있다.
한편, Zn계 합금은, 50Å 이상 및 500Å이하의 두께로 형성될 수 있다. 다만, 이는 일 실시 예일 뿐이며, 다양한 실시 예로 변형될 수 있다.
본 개시의 일 실시 예에 따라 형성된 배리어 패턴(140A, 140B)은 30도 이상 및 60도 미만의 측면 각(θ)을 가질 수 있다.
여기서, 측면 각(θ)은 물질의 바닥면에 대한 물질의 측면의 각도(경사)를 나타낼 수 있다. 측면 각(θ)은 습식 에칭이 갖는 등방성(수직 또는 수평 등의 모든 방향으로 에칭 속도가 동일)으로 인해 에칭 특성을 나타내기 위한 지표가 될 수 있다. 한편, 측면 각(θ)은 테이퍼 각(T/A)이라 지칭할 수도 있다.
여기서 측면 각(θ)이 낮을수록 전극층(150)보다 에칭에 대한 활성도가 높아(즉, 전극층(150)의 하부에 형성된 배리어층(140)의 에칭이 활발하게 이루어짐) 언더 컷이 발생할 수 있다. 또한, 측면 각(θ)이 높을수록 전극층(150)보다 에칭에 대한 활성도가 낮아(즉, 전극층(150)의 하부에 형성된 배리어층(140)의 에칭이 이루어지지 않음) 원하는 배선의 패턴이 형성되지 않을 수 있다. 이에 따라, 배리어 패턴(140A, 140B)은 30도 이상 및 60도 미만의 측면 각(θ)을 갖는 물질로 구성되는 것이 바람직할 수 있다.
즉, 배리어 패턴(140A, 140B)은 30도 이상 및 60도 미만의 측면 각(θ)을 갖는 경우, 에칭을 통한 배리어 층(140)에서 제거할 영역에 대해 잔사 없이 패터닝하는 것이 가능하며, 이상적인 미세 패턴 형상을 얻을 수 있다. 이와 같이 우수한 에칭 특성을 얻을 수 있다.
본 개시의 일 실시 예에 따라 형성된 배리어 패턴(140A, 140B)은 0.2 내지 1.0um 범위의 스큐(Skew)(Xs)를 가질 수 있다. 여기서, 스큐(Xs)는 에칭된 패턴(예: 배리어 패턴(140A, 140B), 또는 드레인/소스 전극(150A, 150B))의 하단 모서리와 포토 레지스트 패턴(1010A, 1010B)의 하단 모서리 사이의 거리를 나타낼 수 있다. 스큐 또한 또한, 에칭 특성을 나타내기 위한 지표가 될 수 있다.
한편, 이하에서는 도 17a 및 도 17b를 참조하여, 에칭 특성에 대해 설명하기로 한다. 도 17a 및 도 17b는 본 개시의 일 실시 예에 따른 에칭 특성을 설명하기 위한 도면이다.
도 17a 및 도 17b를 참조하여, 제1 특성(1710A, 1710B)은 Zn으로 구성된 단일한 층(이하 Zn 층) 상에 포토 레지스트 패턴을 형성한 경우에 대한 에칭 특성을 나타낸다. 제2 특성(1720A, 1720B)은 Zn 층, Cu 층, 포토 레지스트 패턴을 순차적으로 형성한 경우에 대한 에칭 특성을 나타낸다. 제3 특성(1730A, 1730B)은 Zn계 합금(Zn-Ti 합금) 층, 포토 레지스트 패턴을 순차적으로 형성한 경우에 대한 에칭 특성을 나타낸다. 제4 특성(1740A, 1740B)은 Zn계 합금(Zn-Ti 합금) 층, Cu 층, 포토 레지스트 패턴을 순차적으로 형성한 경우에 대한 에칭 특성을 나타낸다.
제1 특성(1710A, 1710B) 내지 제3 특성(1730A, 1730B)의 경우 언더컷(undercut)이 발생함을 알 수 있다. 언더컷은 과도한 에칭에 의하여 패턴 측면에 생기는 홈 또는 오목함을 지칭할 수 있으며, 언더컷이 발생한 경우 언더컷이 발생한 측면으로 이물질, 수분 등이 침투할 수 있어 전기적인 결함이 발생하거나 내구성(또는 신뢰성)이 감소할 수 있다. 또한, 패턴의 접착도가 감소하여 패턴이 기판 등으로부터 분리될 수도 있다.
제4 특성(1740A, 1740B)의 경우, 언더컷이 발생하지 않으며 또한 타 특성 대비 Skew 가 낮아 에칭 특성이 우수한 것을 알 수 있다.
한편, 제2 특성(1720A, 1720B) 및 제4 특성(1740A, 1740B)을 비교하면, Cu층의 하부층으로서 제2 특성(1720A, 1720B)과 같이 배리어 패턴(140A, 140B)에 Zn 단일 금속을 사용하는 것보다는 제4 특성(1740A, 1740B)과 같이 Zn계 합금을 사용하는 것이 에칭 특성이 더 우수한 것을 알 수 있다.
한편, 제3 특성(1730A, 1730B) 및 제4 특성(1740A, 1740B)을 비교하면, Zn-Ti 합금 층의 상부에 Cu층이 형성되지 않은 제3 특성(1730A, 1730B)보다 Zn-Ti 합금 층의 상부에 연속적으로 Cu층이 형성된 제4 특성(1740A, 1740B)의 에칭 특성이 더 우수한 것을 알 수 있다. Zn-Ti 합금의 경우 상부에 Cu층이 연속적으로 형성되지 않으면 산화가 발생하여 에칭 특성이 저하되기 때문이라는 것을 알 수 있다.
이와 같이 배리어 패턴(140A, 140B)에 Zn계 합금을 사용하는 경우, 에칭 특성이 우수하다는 것을 알 수 있다. 또한, 배리어 패턴(140A, 140B)이 Zn계 합금이고, 배리어 패턴(140A, 140B) 상에 형성되는 드레인 전극(150A) 및 소스 전극(150B)이 Cu인 경우에 배리어 패턴(140A, 140B) 및 드레인 전극(150A) 및 소스 전극(150B)이 연속적으로 동일한 챔버 내에서 형성되는 경우 에칭 특성이 우수하다는 것을 알 수 있다.
도 12는 본 개시의 일 실시 예에 따른 포토 레지스트 패턴을 제거하는 방법을 설명하기 위한 도면이다.
도 12를 참조하여, 에칭을 통해 배리어 패턴(140A, 140B) 및 드레인 전극(150A) 및 소스 전극(150B)이 형성된 후, 드레인 전극(150A) 및 소스 전극(150B) 상에 존재하는 포토 레지스트 패턴(1010A, 1010B)을 제거할 수 있다. 이를 위해, 리무버(remover)를 통해 포토 레지스트 패턴(1010A, 1010B)을 제거할 수 있다. 리무버는 유기아민류 화합물과 각종 유기 용제를 혼합하여 이루어지는 조성물, 모노에탄올아민, 하이드록실아민류 중 적어도 하나를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐이며 리무버는 다양한 물질로서 구현되는 것 또한 가능하다.
한편, 상술한 실시 예에서는 사진 식각(Photo Lithography) 공정을 통해, 각각의 배리어 패턴(140A, 140B)과 함께 드레인 전극(150A) 및 소스 전극(150B)을 형성하는 것으로 설명하였으나, 이는 일 실시 예일 뿐이며, 증착, 잉크젯 공정 등을 통해 배리어 패턴(140A, 140B)을 먼저 형성한 후에 드레인 전극(150A) 및 소스 전극(150B)을 배리어 패턴(140A, 140B) 상에 형성하는 것 또한 가능하다 할 것이다.
한편, 본 개시의 일 실시 예에 따른 제조 방법은 보호층(155)을 형성하는 단계를 포함할 수 있다. 이는 도 13을 참조하여 함께 설명하도록 한다.
도 13은 본 개시의 일 실시 예에 따른 보호층을 형성하는 방법을 설명하기 위한 도면이다.
도 13을 참조하면, 제2 절연층(135) 상에서 드레인 전극(150A) 및 소스 전극(150B)을 덮도록 보호층(155)을 형성할 수 있다.
여기서, 보호층(155)은 하부에 형성된 드레인 전극(150A), 소스 전극(150B) 등을 보호하기 위한 절연층일 수 있다. 또한, 보호층(155)은 상면을 평탄화하는 기능을 할 수 있다.
이를 위해, 보호층(155)은 폴리이미드, 폴리아마이드, 아크릴 수지, 벤조사이클로부텐 및 페놀 수지로 이루어진 군에서 선택되는 하나 이상의 유기 절연 물질로 스핀 코팅 등의 방법으로 형성될 수 있다. 한편, 보호층(155)은 상기와 같은 유기 절연 물질뿐만 아니라, SiO2, SiNx, Al2O3, CuOx, Tb4O7, Y2O3, Nb2O5, Pr2O3 등에서 선택된 무기 절연 물질로 형성될 수 있음은 물론이다. 또한 상기 보호층(155)은 유기 절연 물질 및/또는 무기 절연 물질이 교번하는 다층 구조로 형성될 수도 있다.
한편, 본 개시의 일 실시 예에 따른 제조 방법은 화소 전극(160)과 분리된 공통 전극(170) 및 화소 전극(160)에 연결되도록, 마이크로 LED(200)를 화소 전극(160) 상에 본딩하는 단계를 포함할 수 있다. 이는 도 14 내지 도 16을 참조하여 함께 설명하도록 한다. 여기에서는 설명의 편의를 위해 보호층(155)이 형성된 상태를 가정하여 설명하도록 한다.
도 14는 본 개시의 일 실시 예에 따른 홀을 형성하는 방법을 설명하기 위한 도면이다.
도 14를 참조하면, 보호층(155)에서 드레인 전극(150A)의 일면(예: 상부 표면)을 노출시키기 위한 홀(1200)을 형성할 수 있다. 여기서 홀(1200)은 드레인 전극(150A)을 화소 전극(160)과 전기적으로 연결시키기 위해 보호층(155)에서 제거되는 영역을 나타낼 수 있다.
이를 위해, 레이저 가공, 드릴 가공, EUV(Extreme Ultraviolet), 에칭 등의 방식을 통해 홀(1200)을 형성할 수 있다.
도 15는 본 개시의 일 실시 예에 따른 화소 전극을 형성하는 방법을 설명하기 위한 도면이다. 도 16은 본 개시의 일 실시 예에 따른 발광 소자를 형성하는 방법을 설명하기 위한 도면이다.
도 15 및 도 16을 참조하면, 홀(1200)의 내부에서 드레인 전극(150A) 상에는 화소 전극(160)이 형성될 수 있다. 이 경우, 화소 전극(160)과 분리(또는 절연)되도록 보호층(155) 상에 공통 전극(170)이 형성될 수도 있다. 여기서, 공통 전극(170)은 마이크로 LED(200)의 플립칩 타입, 수직 타입 등의 구조에 따라 형성되는 위치가 달라질 수 있다. 즉, 공통 전극(170)의 구조에 따라 화소 전극(160) 및 공통 전극(170)은 동시에 형성되거나 순차적으로 형성될 수 있다.
화소 전극(160) 및 공통 전극(170)은 도전성 소재를 포함할 수 있으며, 예를 들어, 화소 전극(160) 및 공통 전극(170)은 Cu, Ag, Au, Al 등 중에서 적어도 하나를 포함할 수 있다. 다만, 이는 일 실시 예일 뿐이며, 화소 전극(160) 및 공통 전극(170)은 다양한 도전성 소재를 포함하도록 변형될 수 있다.
이를 위해, 전해도금(Electrical Plating; EP), 스퍼터링(sputtering), 증발증착(Evaporation), 전자빔증착(e-beam evaporation), CVD(Chemical Vapor Deposition), ALD(Atomic Layer Deposition), PVD(Physical Vapor Deposition), 레이저증착(Pulsed Laser Deposition) 등의 다양한 방식을 통해 화소 전극(160) 및 공통 전극(170)이 형성될 수 있다.
마이크로 LED(200)는 화소 전극(160) 및 공통 전극(170)과 전기적으로 연결되도록, 화소 전극(160) 상에 본딩될 수 있다. 예를 들어, 도 16과 같이, 플립칩 타입을 가정하면, 화소 전극(160) 및 공통 전극(170)은 서로 동일한 층에 형성될 수 있으며, 마이크로 LED(200)의 하부에 형성된 양 전극이 화소 전극(160) 및 공통 전극(170)에 서로 연결되도록, 마이크로 LED(200)를 화소 전극(160) 및 공통 전극(170) 상에 본딩할 수 있다.
본 개시의 다양한 실시 예들은 기기(machine)(예: 컴퓨터)로 읽을 수 있는 저장 매체(machine-readable storage media에 저장된 명령어를 포함하는 소프트웨어로 구현될 수 있다. 기기는 저장 매체로부터 저장된 명령어를 호출하고, 호출된 명령어에 따라 동작이 가능한 장치로서, 개시된 실시 예들에 따른 전자 장치(예: 전자 장치(100))를 포함할 수 있다. 상기 명령이 프로세서에 의해 실행될 경우, 프로세서가 직접, 또는 상기 프로세서의 제어 하에 다른 구성요소들을 이용하여 상기 명령에 상기하는 기능을 수행할 수 있다. 명령은 컴파일러 또는 인터프리터에 의해 생성 또는 실행되는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장매체는 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, '비일시적'은 저장매체가 신호(signal)를 포함하지 않으며 실재(tangible)한다는 것을 의미할 뿐 데이터가 저장매체에 반영구적 또는 임시적으로 저장됨을 구분하지 않는다.
다양한 실시 예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory (CD-ROM))의 형태로, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 온라인으로 배포될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.
다양한 실시 예들에 따른 구성 요소(예: 모듈 또는 프로그램) 각각은 단수 또는 복수의 개체로 구성될 수 있으며, 전술한 상기 서브 구성 요소들 중 일부 서브 구성 요소가 생략되거나, 또는 다른 서브 구성 요소가 다양한 실시 예에 더 포함될 수 있다. 대체적으로 또는 추가적으로, 일부 구성 요소들(예: 모듈 또는 프로그램)은 하나의 개체로 통합되어, 통합되기 이전의 각각의 상기 구성 요소에 의해 수행되는 기능을 동일 또는 유사하게 수행할 수 있다. 다양한 실시 예들에 따른, 모듈, 프로그램 또는 다른 구성 요소에 의해 수행되는 동작들은 순차적, 병렬적, 반복적 또는 휴리스틱하게 실행되거나, 적어도 일부 동작이 다른 순서로 실행되거나, 생략되거나, 또는 다른 동작이 추가될 수 있다.

Claims (15)

  1. 디스플레이 모듈의 제조 방법에 있어서,
    기판 상에 반도체 패턴을 형성하는 단계;
    상기 반도체 패턴을 덮는 제1 절연층을 상기 기판 상에 형성하는 단계;
    상기 제1 절연층에서 상기 반도체 패턴의 게이트 영역에 대응되는 영역 상에 게이트 전극을 형성하는 단계;
    상기 게이트 전극을 덮는 제2 절연층을 상기 제1 절연층 상에 형성하는 단계;
    상기 반도체 패턴의 드레인 영역이 노출되도록 상기 제1 및 제2 절연층을 관통하는 제1 홀을 형성하고, 상기 반도체 패턴의 소스 영역이 노출되도록 상기 제1 및 제2 절연층을 관통하는 제2 홀을 형성하는 단계; 및
    상기 제1 및 제2 홀에서 상기 드레인 영역 및 상기 소스 영역 상에 배리어 패턴을 형성하고, 상기 배리어 패턴 상에 드레인 전극 및 소스 전극을 각각 형성하는 단계;를 포함하는 제조 방법.
  2. 제1항에 있어서,
    상기 드레인 전극 및 상기 소스 전극은, Cu를 포함하고,
    상기 배리어 패턴은, Zn계 합금을 포함하는 제조 방법.
  3. 제2항에 있어서,
    상기 Zn계 합금은,
    Ti, Mo, Au, Al, Mg, Sn 및 Sb 중 적어도 하나를 포함하고, 90wt% 이상의 함량을 갖는 Zn을 포함하는, 제조 방법.
  4. 제2항에 있어서,
    상기 Zn계 합금은, 50Å 이상 및 500Å이하의 두께로 형성되는, 제조 방법.
  5. 제1항에 있어서,
    상기 배리어 패턴, 상기 드레인 전극 및 상기 소스 전극을 형성하는 단계는,
    상기 제1 및 제2 홀이 형성된 상기 제2 절연층 상에 배리어층을 형성하는 단계;
    상기 배리어층 상에 전극층을 형성하는 단계; 및
    상기 배리어층 및 상기 전극층을 동시에 패터닝함으로써, 각각의 배리어 패턴과 함께,
    상기 각각의 배리어 패턴 상에 상기 드레인 전극 및 상기 소스 전극을 각각 형성하는 단계;를 포함하는 제조 방법.
  6. 제5항에 있어서,
    상기 각각의 배리어 패턴과 함께 상기 드레인 전극 및 상기 소스 전극을 형성하는 단계는,
    사진 식각(Photo Lithography) 공정을 통해, 상기 각각의 배리어 패턴과 함께 상기 드레인 전극 및 상기 소스 전극을 형성하는, 제조 방법.
  7. 제5항에 있어서,
    상기 전극층을 형성하는 단계는,
    상기 배리어층을 형성한 후, 상기 배리어 패턴의 산화를 방지하기 위해 상기 배리어층을 형성한 챔버 내에서 연속적으로 상기 전극층을 상기 배리어층 상에 형성하는, 제조 방법.
  8. 제1항에 있어서,
    상기 반도체 패턴은, LTPS(Low Temperature Poly Silicon)를 포함하며,
    상기 반도체 패턴을 형성하는 단계는,
    상기 기판에 포함된 물질이 상기 반도체 패턴으로 확산되는 것을 차단하기 위한 버퍼층을 상기 기판 상에 형성하는 단계;
    상기 버퍼층 상에 a-Si(Amorphous Silicon)를 증착하는 단계; 및
    상기 a-Si에 레이저를 조사하여, 상기 a-Si의 결정 배열이 변화된 상기 LTPS를 형성하는 단계;를 포함하는, 제조 방법.
  9. 제1항에 있어서,
    상기 드레인 전극 상에 화소 전극을 형성하는 단계; 및
    상기 화소 전극과 분리된 공통 전극 및 상기 화소 전극에 연결되도록, 상기 화소 전극 상에 마이크로 LED를 본딩하는 단계;를 포함하는, 제조 방법.
  10. 디스플레이 모듈에 있어서,
    기판;
    상기 기판 상에 형성되며, 게이트 영역, 드레인 영역 및 소스 영역을 포함하는 반도체 패턴;
    상기 기판 상에 형성되며, 상기 반도체 패턴에서 상기 드레인 영역 및 상기 소스 영역을 제외한 영역을 덮는 제1 절연층;
    상기 제1 절연층에서 상기 게이트 영역에 대응되는 영역 상에 형성된 게이트 전극;
    상기 제1 절연층 상에 형성되며, 상기 게이트 전극을 덮는 제2 절연층;
    상기 드레인 영역 및 상기 소스 영역 상에 형성된 배리어 패턴; 및
    상기 배리어 패턴 상에 각각 형성된 드레인 전극 및 소스 전극;을 포함하는 디스플레이 모듈.
  11. 제10항에 있어서,
    상기 드레인 전극 및 상기 소스 전극은, Cu를 포함하고,
    상기 배리어 패턴은, Zn계 합금을 포함하는 디스플레이 모듈.
  12. 제11항에 있어서,
    상기 Zn계 합금은,
    Ti, Mo, Au, Al, Mg, Sn 및 Sb 중 적어도 하나를 포함하고, 90wt% 이상의 함량을 갖는 Zn을 포함하는, 디스플레이 모듈.
  13. 제11항에 있어서,
    상기 Zn계 합금은, 50Å 이상 및 500Å이하의 두께로 형성되는, 디스플레이 모듈.
  14. 제10항에 있어서,
    상기 배리어 패턴은,
    상기 드레인 영역 및 상기 소스 영역 상에서 상기 제1 및 제2 절연층의 측벽을 감싸도록 형성되는, 디스플레이 모듈.
  15. 제10항에 있어서,
    상기 반도체 패턴은, LTPS(Low Temperature Poly Silicon)를 포함하는, 디스플레이 모듈.
PCT/KR2021/004124 2020-04-03 2021-04-02 디스플레이 모듈 및 그의 제조 방법 WO2021201646A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/945,770 US20230016687A1 (en) 2020-04-03 2022-09-15 Display module and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200041216A KR20210123719A (ko) 2020-04-03 2020-04-03 디스플레이 모듈 및 그의 제조 방법
KR10-2020-0041216 2020-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/945,770 Continuation US20230016687A1 (en) 2020-04-03 2022-09-15 Display module and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2021201646A1 true WO2021201646A1 (ko) 2021-10-07

Family

ID=77929503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004124 WO2021201646A1 (ko) 2020-04-03 2021-04-02 디스플레이 모듈 및 그의 제조 방법

Country Status (3)

Country Link
US (1) US20230016687A1 (ko)
KR (1) KR20210123719A (ko)
WO (1) WO2021201646A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076471A (ko) * 2012-12-12 2014-06-20 엘지디스플레이 주식회사 박막 트랜지스터, 박막 트랜지스터 제조 방법 및 박막 트랜지스터를 포함하는 표시 장치
KR20150141452A (ko) * 2014-06-10 2015-12-18 송학성 산화물 박막트랜지스터를 포함하는 표시장치용 어레이 기판 및 그 제조방법
KR20170002529A (ko) * 2014-12-03 2017-01-06 보에 테크놀로지 그룹 컴퍼니 리미티드 박막 트랜지스터 디바이스, 이것의 제조 방법, 및 디스플레이 장치
KR20200023573A (ko) * 2018-08-23 2020-03-05 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20200034083A (ko) * 2018-09-20 2020-03-31 삼성디스플레이 주식회사 트랜지스터 기판, 이의 제조 방법, 및 이를 포함하는 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076471A (ko) * 2012-12-12 2014-06-20 엘지디스플레이 주식회사 박막 트랜지스터, 박막 트랜지스터 제조 방법 및 박막 트랜지스터를 포함하는 표시 장치
KR20150141452A (ko) * 2014-06-10 2015-12-18 송학성 산화물 박막트랜지스터를 포함하는 표시장치용 어레이 기판 및 그 제조방법
KR20170002529A (ko) * 2014-12-03 2017-01-06 보에 테크놀로지 그룹 컴퍼니 리미티드 박막 트랜지스터 디바이스, 이것의 제조 방법, 및 디스플레이 장치
KR20200023573A (ko) * 2018-08-23 2020-03-05 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20200034083A (ko) * 2018-09-20 2020-03-31 삼성디스플레이 주식회사 트랜지스터 기판, 이의 제조 방법, 및 이를 포함하는 표시 장치

Also Published As

Publication number Publication date
KR20210123719A (ko) 2021-10-14
US20230016687A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021167149A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021029615A1 (en) Display apparatus and manufacturing method thereof
WO2020075936A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2021241937A1 (ko) 표시 장치 및 이의 제조 방법
WO2020242116A1 (ko) 표시 장치
WO2020117032A2 (ko) 반도체 발광소자의 자가조립용 기판 척
WO2020145450A1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
WO2021066287A1 (ko) 표시 장치 및 이의 제조 방법
WO2021132816A1 (ko) 표시 장치의 제조 방법
WO2022030763A1 (ko) 표시 장치
WO2020145449A1 (ko) 유기 발광 표시 장치
WO2021091062A1 (ko) 표시 장치
WO2020235803A1 (ko) 표시 장치 및 이의 제조 방법
WO2021125423A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021025236A1 (ko) 표시 장치
WO2021201646A1 (ko) 디스플레이 모듈 및 그의 제조 방법
WO2021206217A1 (ko) 표시 장치 및 이의 제조 방법
WO2021246760A1 (ko) 표시 장치
WO2021230426A1 (ko) 표시 장치
WO2022039309A1 (ko) 디스플레이 장치 제조용 기판 및 이를 포함하는 디스플레이 장치
WO2021091061A1 (ko) 표시 장치
WO2021177510A1 (ko) 발광 소자 및 이를 포함하는 표시 장치
WO2023106714A1 (ko) 반도체 발광 소자를 포함하는 디스플레이 장치
WO2023096053A1 (ko) 반도체 발광소자를 포함하는 디스플레이 장치 및 이의 제조 방법
WO2023106537A1 (ko) 반도체 발광소자를 포함하는 디스플레이 장치 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778820

Country of ref document: EP

Kind code of ref document: A1