WO2021201574A1 - Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물 - Google Patents

Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물 Download PDF

Info

Publication number
WO2021201574A1
WO2021201574A1 PCT/KR2021/003950 KR2021003950W WO2021201574A1 WO 2021201574 A1 WO2021201574 A1 WO 2021201574A1 KR 2021003950 W KR2021003950 W KR 2021003950W WO 2021201574 A1 WO2021201574 A1 WO 2021201574A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
preparing
group
pi3k inhibitor
Prior art date
Application number
PCT/KR2021/003950
Other languages
English (en)
French (fr)
Inventor
선용호
최옥경
이준광
김지한
Original Assignee
보령제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 보령제약 주식회사 filed Critical 보령제약 주식회사
Publication of WO2021201574A1 publication Critical patent/WO2021201574A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a process for the preparation of compounds as PI3K inhibitors and to intermediate compounds for their preparation.
  • Phosphatidylinositol 3-kinase (PI3 kinase; PI3K) is a lipid kinase that phosphorylates lipid molecules instead of proteins, cell survival, signal transduction, control of membrane trafficking plays an important role, etc. Problems with these regulation lead to cancer, inflammatory diseases, and autoimmune diseases.
  • PI3K inhibitors can be usefully used in the treatment of cancer, autoimmune diseases, respiratory diseases, and the like. Therefore, simplifying the process in the preparation of compounds as PI3K inhibitors has emerged as an important problem.
  • An object of the present invention is to provide a method for preparing a compound as a PI3K inhibitor that can simplify the process.
  • An object of the present invention is to provide an intermediate compound for the preparation of a compound as a PI3K inhibitor that can simplify the process.
  • the present invention provides a method for preparing a compound of Formula 7 comprising the following steps.
  • X 1 to X 4 may each independently be a halogen atom.
  • Y may be an amine protecting group.
  • the X 1 to X 4 may be the same as or different from each other.
  • the halogen atom may be F, Cl, Br or I. More specifically, X 1 to X 4 may each independently be Br or Cl. For example, all of X 1 to X 4 may be Cl.
  • the X 1 and the X 4 may be Cl.
  • the "protecting group” is used to prevent a specific functional group from reacting with a reactant of a subsequent chemical reaction, or to react with the intended reaction in order to cause a chemical selective reaction to occur in a subsequent chemical reaction.
  • protecting group means herein.
  • the amine protecting group means a case in which the specific functional group is an amine in the definition of the protecting group.
  • amine protecting group Y examples include t-butyl group, 2,4-dimethoxybenzyl group, 2,4-dinitrophenyl group, 2-hydroxybenzyl group, triphenylmethyl group, ferrocenylmethyl group, 9-phenylfluor It may be a nyl group, a p-methoxybenzyl group, a benzylcarbonyl group, a tert-butoxycarbonyl group, a di-tert-butyl dicarbonate or a fluorenylmethoxycarbonyl group.
  • Y may be a p-methoxybenzyl group.
  • the method for preparing the compound as a PI3K inhibitor may include the following steps (S1) to (S5).
  • Steps (S1) and (S3) may be performed in a polar aprotic solvent.
  • the solvent may be acetonitrile.
  • the step (S1) may be performed under basic conditions.
  • a basic compound may participate in the reaction.
  • the basic compound may be, for example, a tertiary amine such as triethylamine.
  • the solvent may be a mixed solvent of dimethyl sulfoxide and acetonitrile.
  • a volume ratio of the dimethyl sulfoxide and the acetonitrile in the mixed solvent may be 2:1.
  • the polar aprotic solvent may include, but is not limited to, dichloromethane, tetrahydrofuran, ethyl acetate, dimethyl sulfoxide, dimethylformamide, acetonitrile, and the like.
  • step (S1) the equivalent ratio of the compound of Formula 1, the compound of Formula 2, and the triethylamine may be 1:1.1:1.5.
  • the X 1 and X 2 may be Cl.
  • the step (S2) may be a step of reacting the compound of Formula 3 with N-chlorosuccinimide to perform the chlorination reaction.
  • the equivalent ratio of the compound of Formula 3 to the N-chlorosuccinimide may be 1:1.13.
  • step (S2) may be performed in a polar aprotic solvent. More specifically, step (S2) may be performed in at least one solvent selected from dichloromethane and acetonitrile.
  • step (S3) the equivalent ratio of the compound of Formula 4 to the amine substituted with the protecting group and the basic compound may be 1:1.1:1.1.
  • the cyclization reaction in step (S4) may be a cyclization condensation reaction.
  • the cyclization condensation reaction may be a step of reacting the compound of Formula 5 with the dimethylformamide-dimethylacetal.
  • the compound of Formula 5 and the dimethylformamide-dimethylacetal may be added in an equivalent of 1:5.
  • the step (S4) may be performed in an organic solvent.
  • the step (S4) is dimethyl formamide (Dimethyl formamide, DMF), toluene, tetrahydrofuran (tetrahydrofuran THF), methanol, trichloromethane (CHCl 3 ), acetonitrile and dioxane (for example 1 , 4-dioxane) may be carried out in any one or more organic solvents selected from the group consisting of. More specifically, step (S4) may be performed in the ethanol solvent.
  • the deprotection reaction may be performed by adding methanesulfonic acid to a mixed solvent of trifluoroacetic acid and dichloromethane.
  • the compound of Formula 6 and methanesulfonic acid may be added in an equivalent of 1:1.5.
  • the (S1) step, the (S2) step, and the (S3) step may include the step of stirring.
  • the stirring step may be performed simultaneously with the refluxing step.
  • the refluxing and stirring may be performed at the reflux temperature of the reaction solvent.
  • the stirring may be carried out at room temperature (about 20 °C or more and about 30 °C or less, for example, about 25 °C) or at a heating condition of about 60 °C or more and about 100 °C or less (e.g., about 80 °C). have.
  • the refluxing and stirring step may be performed for 1 hour or more and 4 hours or less. More specifically, the refluxing and stirring may be performed for about 2 hours or about 3 hours. For example, in step (S1) and step (S2), reflux and stirring may be performed for about 3 hours, and in step (S3), reflux and stirring may be performed for about 2 hours.
  • the refluxing and stirring in step (S3) may be performed in the above-described warming state.
  • the refluxing step among the refluxing and stirring steps in step (S3) and step (5) may be omitted.
  • the step (S4) may also include the above-described refluxing and stirring steps.
  • the reflux and stirring in step (S4) may be carried out for a time of about 6 hours or more and about 8 hours or less.
  • a compound represented by the following Chemical Formula 3 or Chemical Formula 4 may be provided.
  • X 1 , X 2 , and X 4 may each independently be a halogen atom.
  • the compound represented by Formula 3 and the compound represented by Formula 4 may participate as an intermediate compound in the manufacturing process of the compound as a PI3K inhibitor of an embodiment, thereby reducing process steps and process costs.
  • X 1 to X 3 may each independently be a halogen atom.
  • the step of reacting the compound of Formula 1 with the compound of Formula 2 may be performed in a polar aprotic solvent under basic conditions.
  • the compound of Formula 3 which can reduce process steps and process time by participating as an intermediate compound in the manufacturing process of the compound as a PI3K inhibitor of an embodiment, is low-cost and in high yield.
  • a method for preparing a compound of Formula 4 which includes the step of halogenating the compound of Formula 3.
  • X 1 , X 2 , and X 4 may each independently be a halogen atom.
  • step (S2) may be applied in the same manner.
  • the compound of Formula 4 which can reduce process steps and process time by participating as an intermediate compound in the manufacturing process of the compound as a PI3K inhibitor of an embodiment, is low-cost and in high yield.
  • the process steps required for the preparation of a compound as a PI3K inhibitor can be reduced, and the PI3K inhibitor can be used without a long reflux and stirring reaction that takes several days or more. It is possible to synthesize the compound as Accordingly, process simplification is achieved, so that the time required for the process can be shortened and the process cost can be reduced. Accordingly, the method for preparing the compound as a PI3K inhibitor according to an embodiment may be suitable for industrial production of the compound as a PI3K inhibitor.
  • the method for producing a compound as a PI3K inhibitor of the present invention it is possible to simplify the manufacturing process of the compound as a PI3K inhibitor, thereby reducing the manufacturing step and manufacturing cost.
  • the intermediate compound for the preparation of the compound as a PI3K inhibitor according to the present invention can be used in the manufacturing process of the compound as a PI3K inhibitor, thereby reducing manufacturing steps and manufacturing costs. Accordingly, the productivity of the compound as a PI3K inhibitor can be improved.
  • reaction solution was added dropwise to purified water (480ml) to form a solid, filtered, washed with purified water (200ml), and dried with hot air to dry intermediate compound IQAK ((S)-3-(1-((5-acetyl-) 6-((4-methoxybenzyl)amino)pyrimidin-4-yl)amino)ethyl)-4,8-dichloro-2-phenylisoquinolin-1(2H)-one) was obtained. (24.6 g, yield: 100%)
  • ethanol was used as a solvent in step (4), it is of course not limited thereto and various organic solvents may be used.
  • organic solvents for example, in dimethyl formamide (DMF), toluene, tetrahydrofuran (THF), methanol, trichloromethane (CHCl 3 ), acetonitrile and dioxane (eg 1,4-dioxane) Any one or more organic solvents selected may be used.
  • an ethanol solvent may be used.
  • a compound as a PI3K inhibitor in the method for preparing a compound as a PI3K inhibitor according to an embodiment, can be synthesized in only five steps from steps (1) to (5).
  • steps (1) to (5) do not have severe reaction conditions requiring reflux and stirring for several days or more.
  • refluxing and stirring steps are included for about 1 to about 4 hours, more specifically, about 3 hours or so, and refluxing and stirring steps that take more time are not included.
  • the refluxing and stirring steps in step (4) are also relatively short, about 7 hours or so. That is, according to the method for preparing the compound as a PI3K inhibitor of one embodiment, the total working days can be shortened by several days or more.
  • the process is simplified by preparing the PI3K inhibitor by a method including steps (S1) to (S5), thereby reducing the manufacturing steps and manufacturing costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 PI3K 저해제로서의 화합물의 제조 과정에서 단축된 반응 시간을 갖는 공정을 포함하며 공정 단계가 감축된 PI3K 저해제로서의 화합물의 제조방법을 제공한다. 따라서, 본 발명은 기존에 공지된 제조방법에 비해 공정 단순화가 달성되면서도 산업적으로 대량 생산이 용이한 PI3K 저해제로서의 화합물의 제조방법을 제공한다.

Description

PI3K 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물
본 발명은 PI3K 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물에 관한 것이다.
포스파티딜이노시톨 3-키나아제(PI3 kinase; PI3K)는 단백질 대신 지질 분자를 인산화하는 지질 키나아제(lipid kinase)이며, 세포생존(cell survival), 신호전달(signal transduction), 세포막 투과조절(control of membrane trafficking)등에서 중요한 역할을 한다. 이들 조절에 문제가 생기면, 암, 염증성 질환, 자가면역 질환 등이 발생한다.
최근 PI3 키나아제에 대하여 선택적으로 억제하는 효과를 나타낼 수 있는 구조의 화합물을 개발하는 연구결과가 보고되고 있다. 이러한 PI3K 저해제로서의 화합물은 암, 자가면역 질환 및 호흡기 질환 등의 치료에 유용하게 사용될 수 있다. 따라서, PI3K 저해제로서의 화합물의 제조에 있어서 공정을 단순화 시키는 것이 중요한 문제로 대두되고 있다.
본 발명은 공정 단순화가 가능한 PI3K 저해제로서의 화합물의 제조방법을 제공하는 것을 일 목적으로 한다.
본 발명은 공정 단순화가 가능한 PI3K 저해제로서의 화합물의 제조를 위한 중간체 화합물을 제공하는 것을 일 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 하기의 단계들을 포함하는 화학식 7의 화합물의 제조방법을 제공한다.
(S1) 화학식 1의 화합물과 화학식 2의 화합물을 반응시켜 화학식 3의 화합물을 제조하는 단계
(S2) 화학식 3의 화합물을 할로겐화 반응시켜 화학식 4의 화합물을 제조하는 단계
(S3) 화학식 4의 화합물을 보호기로 치환된 아민과 반응시켜 화학식 5의 화합물을 제조하는 단계
(S4) 화학식 5의 화합물을 고리화 반응시켜 화학식 6의 화합물을 제조하는 단계 및
(S5) 화학식 6의 화합물을 탈보호 반응시켜 화학식 7의 화합물을 제조하는 단계를 포함하는 단계.
[화학식 1]
Figure PCTKR2021003950-appb-img-000001
[화학식 2]
Figure PCTKR2021003950-appb-img-000002
[화학식 3]
Figure PCTKR2021003950-appb-img-000003
[화학식 4]
Figure PCTKR2021003950-appb-img-000004
[화학식 5]
Figure PCTKR2021003950-appb-img-000005
[화학식 6]
Figure PCTKR2021003950-appb-img-000006
[화학식 7]
Figure PCTKR2021003950-appb-img-000007
상기 화학식 1 내지 화학식 7에서, X 1 내지 X 4는 각각 독립적으로 할로겐 원자일 수 있다. 상기 화학식 5 및 화학식 6에서 Y는 아민 보호기일 수 있다.
상기 X 1 내지 X 4는 서로 동일하거나 상이할 수 있다. 상기 할로겐 원자는 F, Cl, Br 또는 I일 수 있다. 보다 구체적으로 상기 X 1 내지 X 4는 각각 독립적으로 Br 또는 Cl일 수 있다. 예를 들어, X 1 내지 X 4는 모두 Cl일 수 있다. 상기 X 1 및 상기 X 4는 Cl일 수 있다.
상기 (S3) 단계에서 "보호기"는 후속 화학 반응에서 화학 선택적 반응이 일어나도록 하기 위해, 특정 작용기가 후속 화학 반응의 반응물과 반응하지 않도록 하거나 또는 의도하는 반응으로 반응시키기 위하여 상기 특정 작용기를 보호하는 목적으로 치환되는 기를 의미한다. 유기 합성 분야의 통상의 기술자라면 본 명세서에 기재된 "보호기"가 의미하는 바를 명확하게 이해할 수 있을 것이다. 상기 아민 보호기는 상기 보호기의 정의에서 상기 특정 작용기가 아민인 경우를 의미하는 것이다.
아민 보호기 Y의 예시로는 t-부틸기, 2,4-디메톡시벤질기, 2,4-디나이트로페닐기, 2-하이드록시벤질기, 트리페닐메틸기, 페로세닐메틸기, 9-페닐플루오레닐기, p-메톡시벤질기, 벤질카보닐기, tert-부톡시카보닐기, di-tert-부틸 디카보네이트 또는 플루오레닐메톡시카보닐기일 수 있다. 예를 들어, 상기 Y는 p-메톡시벤질기일 수 있다.
상기 PI3K 저해제로서의 화합물의 제조방법은 하기 (S1) 단계 내지 (S5) 단계를 포함할 수 있다.
(S1) 상기 화학식 1의 화합물과 상기 화학식 2의 화합물을 반응시켜 상기 화학식 3의 화합물을 제조하는 단계;
(S2) 상기 화학식 3의 화합물을 염소화 반응시켜 상기 화학식 4의 화합물을 제조하는 단계;
(S3) 상기 화학식 4의 화합물을 상기 보호기로 치환된 아민과 반응시켜 상기 화학식 5의 화합물을 제조하는 단계;
(S4) 상기 화학식 5의 화합물을 상기 고리화 반응시켜 상기 화학식 6의 화합물을 제조하는 단계; 및
(S5) 상기 화학식 6의 화합물을 탈보호 반응시켜 상기 화학식 7의 화합물을 제조하는 단계.
상기 (S1) 단계 및 상기 (S3) 단계는 극성 비양성자성 용매에서 진행될 수 있다. 예를 들어, 상기 (S1) 단계에서 상기 용매는 아세토나이트릴일 수 있다. 상기 (S1) 단계는 염기 조건에서 진행될 수 있다. 예를 들어, 상기 (S1) 단계에서는 염기성 화합물이 반응에 참여할 수 있다. 상기 염기성 화합물은 예를 들어 트리에틸아민과 같은 3차 아민일 수 있다.
상기 (S3)단계에서 상기 용매는 디메틸설폭사이드 및 아세토나이트릴의 혼합 용매일 수 있다. 상기 혼합 용매에서 상기 디메틸설폭사이드 및 상기 아세토나이트릴의 부피비는 2:1일 수 있다.
본 명세서에서 극성 비양성자성 용매로는 디클로로메탄, 테트라하이드로퓨란, 에틸아세테이트, 디메틸설폭사이드, 디메필포름아미드, 아세토나이트릴 등을 들 수 있으나 이에 한정되는 것은 아니다.
상기 (S1) 단계에서 상기 화학식 1의 화합물과 상기 화학식 2의 화합물과 상기 트리에틸아민의 당량비는 1:1.1:1.5일 수 있다.
상기 X 1 및 X 2는 Cl일 수 있다.
상기 (S2) 단계는 상기 화학식 3의 화합물을 N-클로로숙신이미드와 반응시켜 상기 염소화 반응시키는 단계일 수 있다. (S2) 단계에서 상기 화학식 3의 화합물과 상기 N-클로로숙신이미드의 당량비는 1:1.13일 수 있다.
상기 (S2) 단계는 극성 비양성자성 용매에서 진행될 수 있다. 보다 구체적으로, 상기 (S2) 단계는 디클로로메탄 및 아세토나이트릴 중 선택되는 적어도 하나의 용매에서 진행될 수 있다.
상기 (S3) 단계에서 상기 화학식 4의 화합물과 상기 보호기로 치환된 아민과 상기 염기성 화합물의 당량비는 1:1.1:1.1일 수 있다.
상기 (S4) 단계에서 상기 고리화 반응은 고리화 축합 반응일 수 있다. 상기 고리화 축합 반응은 상기 화학식 5의 화합물을 상기 디메틸포름아미드-디메틸아세탈과 반응시키는 단계일 수 있다. 이 때, 상기 화학식 5의 화합물과 상기 디메틸포름아미드-디메틸아세탈은 1:5의 당량으로 첨가될 수 있다.
상기 (S4) 단계는 유기 용매에서 진행될 수 있다. 예를 들어, 상기 (S4) 단계는 디메틸포름아미드(Dimethyl formamide, DMF), 톨루엔, 테트라하이드로퓨란(tetrahydrofuran THF), 메탄올, 트리클로로메탄(CHCl 3), 아세토나이트릴 및 다이옥산(예를 들어 1,4-dioxane) 중 선택되는 어느 하나 이상의 유기 용매에서 진행될 수 있다. 보다 구체적으로, 상기 (S4) 단계는 상기 에탄올 용매에서 진행될 수 있다.
상기 (S5) 단계에서 상기 보호기가 p-메톡시벤질인 경우 상기 탈보호 반응은 트리플루오로아세트산과 디클로로메탄 혼합 용매에 메탄술폰산을 첨가하여 진행시킬 수 있다. 이때, 화학식 6의 화합물과 메탄술폰산은 1:1.5의 당량으로 첨가될 수 있다.
상기 (S1) 단계, 상기 (S2) 단계 및 상기 (S3)단계는 교반하는 단계를 포함할 수 있다. 교반하는 단계는 환류하는 단계와 동시에 진행될 수 있다.
상기 환류 및 교반하는 단계는 반응 용매의 환류 온도에서 진행될 수 있다. 상기 교반하는 단계는 상온(약 20 ℃ 이상 약 30 ℃ 이하, 예를 들어 약 25℃)에서 진행되거나 또는 약 60 ℃ 이상 약 100 ℃ 이하(예를 들어, 약 80 ℃)의 가온 조건에서 진행될 수 있다.
상기 (S1) 단계, 상기 (S2) 단계, 상기 (S3) 단계, 및 상기 (S5) 단계에서, 상기 환류 및 교반하는 단계는 1시간 이상 4시간 이하로 진행될 수 있다. 보다 구체적으로 상기 환류 및 교반하는 단계는 약 2 시간 또는 약 3 시간 동안 진행될 수 있다. 예를 들어, 상기 (S1) 단계, 상기 (S2) 단계에서는 환류 및 교반하는 단계가 약 3 시간 동안 진행될 수 있고, 상기 (S3) 단계에서는 환류 및 교반하는 단계가 약 2 시간 동안 진행될 수 있다. 상기 (S3) 단계에서 상기 환류 및 교반하는 단계는 전술한 가온 상태에서 진행될 수 있다. 상기 (S3) 단계 및 상기 (5) 단계에서 상기 환류 및 교반하는 단계 중 상기 환류 단계는 생략될 수 있다.
상기 (S4) 단계도 전술한 환류 및 교반하는 단계를 포함할 수 있다. 상기 (S4) 단계에서 환류 및 교반은 약 6 시간 이상 약 8 시간 이하의 시간 동안 진행될 수 있다.
본 발명의 일 실시예에 따르면, 하기 화학식 3 또는 화학식 4로 표시되는 화합물이 제공될 수 있다.
[화학식 3]
Figure PCTKR2021003950-appb-img-000008
[화학식 4]
Figure PCTKR2021003950-appb-img-000009
상기 화학식 3 및 화학식 4에서, X 1, X 2 및 X 4는 각각 독립적으로 할로겐 원자일 수 있다.
상기 화학식 3으로 표시되는 화합물 및 상기 화학식 4로 표시되는 화합물은, 일 실시예의 PI3K 저해제로서의 화합물의 제조 공정에 중간체 화합물로 참여하여, 공정 단계 및 공정 비용을 감소시킬 수 있다.
본 발명의 일 실시예에 따르면, 화학식 1의 화합물과 화학식 2의 화합물을 반응시키는 단계를 포함하는 화학식 3의 화합물의 제조 방법이 제공될 수 있다.
[화학식 1]
Figure PCTKR2021003950-appb-img-000010
[화학식 2]
Figure PCTKR2021003950-appb-img-000011
[화학식 3]
Figure PCTKR2021003950-appb-img-000012
상기 화학식 1 내지 화학식 3에서 X 1 내지 X 3은 각각 독립적으로 할로겐 원자일 수 있다. 상기 화학식 1의 화합물과 화학식 2의 화합물을 반응시키는 단계는 염기 조건 하에서 극성 비양성자성 용매에서 진행될 수 있다.
여기서 화학식 1 내지 화학식 3에 대해서는 전술한 화학식 1 및 화학식 3에 대한 설명과 동일한 설명이 적용될 수 있다. 또한, 화학식 1의 화합물과 화학식 2의 화합물을 반응시키는 단계를 포함하는 화학식 3의 화합물의 제조 방법은 전술한 (S1) 단계에서 설명한 내용이 동일하게 적용될 수 있다.
상기 화학식 3의 화합물의 제조 방법에 따라 화학식 3의 화합물을 제조함으로써, 일 실시예의 PI3K 저해제로서의 화합물의 제조 공정에 중간체 화합물로 참여하여 공정 단계 및 공정 시간을 절감할 수 있는 화학식 3의 화합물을 저비용 및 고수율로 제공할 수 있다.
본 발명의 일 실시예에 따르면, 화학식 3의 화합물을 할로겐화 반응시키는 단계를 포함하는 화학식 4의 화합물의 제조 방법이 제공될 수 있다.
[화학식 3]
Figure PCTKR2021003950-appb-img-000013
[화학식 4]
Figure PCTKR2021003950-appb-img-000014
상기 화학식 3 및 화학식 4에서, X 1, X 2 및 X 4는 각각 독립적으로 할로겐원자일 수 있다.
여기서 화학식 3 및 화학식 4에 대해서는 전술한 화학식 3 및 화학식 4에 대한 설명과 동일한 설명이 적용될 수 있다. 또한, 화학식 3의 화합물을 할로겐화 반응시키는 단계를 포함하는 화학식 4의 화합물의 제조 방법은 전술한 (S2) 단계에서 설명한 내용이 동일하게 적용될 수 있다. 상기 화학식 4의 화합물의 제조 방법에 따라 화학식 4의 화합물을 제조함으로써, 일 실시예의 PI3K 저해제로서의 화합물의 제조 공정에 중간체 화합물로 참여하여 공정 단계 및 공정 시간을 절감할 수 있는 화학식 4의 화합물을 저비용 및 고수율로 제공할 수 있다.
본 발명에 따르면, 종래 알려진 PI3K 저해제로서의 화합물의 제조방법과 달리, PI3K 저해제로서의 화합물의 제조에 필요한 공정 단계를 감축시킬 수 있으며, 수일 이상의 시간이 소요되는 장 시간의 환류 및 교반 반응이 없이도 PI3K 저해제로서의 화합물의 합성이 가능하다. 따라서, 공정 단순화가 달성되어 공정에 소요되는 시간이 단축되고 공정 비용이 절감될 수 있다. 따라서, 일 실시예에 따른 PI3K 저해제로서의 화합물의 제조방법은 PI3K 저해제로서의 화합물의 산업적 생산에 적합할 수 있다.
본 발명의 PI3K 저해제로서의 화합물의 제조방법에 따르면, PI3K 저해제로서의 화합물의 제조 공정을 단순화하여, 제조 단계 및 제조 비용의 절감이 가능하다. 또한, 본 발명에 따른 PI3K 저해제로서의 화합물의 제조를 위한 중간체 화합물은 PI3K 저해제로서의 화합물의 제조 공정에서 사용됨으로써 제조 단계 및 제조 비용을 절감시킬 수 있다. 이에 따라, PI3K 저해제로서의 화합물의 생산성을 향상시킬 수 있다.
이하부터는 하기의 실시예들을 참조하여 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법을 자세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것은 아니며, 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항에 의해 정의될 뿐이다.
실시예 1: (S)-4-((1-(4,8-dichloro-1-oxo-2-phenyl-1,2-dihydroisoquinolin-3-yl)ethyl)amino)pyrido[2,3-d]pyrimidin-5(8H)-one의 합성
1. 반응식
Figure PCTKR2021003950-appb-img-000015
2. 단계 (1) - 중간체 화합물 QHK의 합성
상기 반응식에 따라 중간체 화합물 IQA ((S)-3-(1-aminoethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one) (10g, 33.5mmol)에 아세토나이트릴(acetonitrile, AN) (80ml), DCK (1-(4,6-dichloropyrimidin-5-yl)ethanone) (7.0g, 36.8mmol) 및 트리에틸아민(trimethylamine, Et 3-N) (7.0ml, 50.2mmol)을 가하고 3 시간 동안 환류 및 교반 한 후 상온(25 ℃)으로 냉각하였다. 이후 정제수 (20ml)를 가하고 상온(25 ℃)에서 교반하였다. 고체를 여과하고 정제수 (25ml)로 세척하고 열풍 건조하여 중간체 화합물 QHK((S)-3-(1-((5-acetyl-6-chloropyrimidin-4-yl)amino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one)를 수득하였다. (13.8g, 수득률: 91%)
1H-NMR (400MHz, CDCl 3): δ 1.43 (d, 3H), δ 2.78 (s, 3H), δ 4.92 (t, 1H) δ 6.48 (s, 1H), δ 7.26-7.46 (m, 8H), δ 8.18 (s, 1H), δ 8.97 (d, 1H).
3. 단계 (2) - 중간체 화합물 IQCK의 합성
상기 단계 (1)에서 얻은 중간체 화합물 QHK (6.0g, 13mmol)에 디클로로메탄 (dichloro methan, MC) (35ml) 및 N-클로로숙신이미드 (N- chlorosuccinimide, NCS) (2.0g, 1Smmol)을 가하고 3 시간 동안 환류 및 교반한 후, 반응 혼합물을 감압 농축하고, 아세토나이트릴 (12ml)을 가하여 한번 더 감압 농축하였다. 이후, 아세토나이트릴 (18ml)을 가하고 1 시간 동안 0~5 ℃ 로 냉각시킨 후 고체를 여과하고, 아세토나이트릴 (6ml)로 세척하고, 열풍 건조하여 중간체 화합물 IQCK((S)-3-(1-((5-acetyl-6-chloropyrimidin-4-yl)amino)ethyl)-4,8-dichloro-2-phenylisoquinolin-1(2H)-one)를 수득하였다. (5.7g, 수득률: 89%)
1H-NMR (400MHz, CDCl 3): δ 1.62 (d, 3H), δ 2.74 (s, 3H), δ 4.98 (t, 1H), δ 7.17-7.95 (m, 8H), δ 8.26 (s, 1H), δ 9.37 (broad, 1H)
4. 단계 (3) - 중간체 화합물 IQAK의 합성
상기 단계 (2)에서 얻은 중간체 화합물 IQCK (20g, 41.8mmol)에 디메틸설폭사이드(dimethyl sulfoxide, DMSO) (50ml), 아세토나이트릴 (25ml), 트리에틸아민 (6.4ml, 46.0mmol) 및 파라-메톡시벤질아민 (para-methoxybenzyl amine, PMBNH 2) (6.0ml, 46.0mmol)을 가하고 2 시간 동안 80 ℃로 가온 및 교반한 후 상온(25 ℃)으로 냉각하였다. 이후, 정제수 (480ml)에 반응액을 적가하여 고체를 생성시킨 후 여과하고, 정제수 (200ml)로 세척하고, 열풍 건조하여 중간체 화합물 IQAK((S)-3-(1-((5-acetyl-6-((4-methoxybenzyl)amino)pyrimidin-4-yl)amino)ethyl)-4,8-dichloro-2-phenylisoquinolin-1(2H)-one)를 수득하였다. (24.6g, 수득률: 100%)
1H-NMR (400MHz, CDCl 3): δ 1.60 (d, 3H), δ 2.49 (s, 3H), δ 3.78 (s, 3H), δ 4.63 (d, 2H), δ 5.08 (t, 1H), δ 6.83-7.95 (m, 12H), δ 8.06 (s, 1H)
5. 단계 (4) - 중간체 화합물 IQH의 합성
상기 단계 (3)에서 얻은 중간체 화합물 IQAK (10g, 17.0mmol)에 에탄올 (100ml) 및 디메틸포름아미드-디메틸아세탈(dimethylformamid-dimethylacetal, DMF-DMA) (11.3ml, 85.0mmol)를 가하고 밤새(6 내지 8 시간) 환류 및 교반한 후, 상온(25 ℃)으로 냉각하고, 감압 농축하였다. 디메틸설폭사이드 (30ml)에 반응물을 녹이고, 정제수 (180ml)에 디메틸설폭사이드 용액을 적가하여 고체를 생성시킨 후 여과하였다. 이후, 정제수 (150m l)로 세척하고, 열풍 건조하여 중간체 화합물 IQH((S)-4-((1-(4,8-dichloro-1-oxo-2-phenyl-1,2-dihydroisoquinolin-3-yl)ethyl)amino)-8-(4-methoxybenzyl)pyrido[2,3-d]pyrimidin-5(8H)-one)를 수득하였다. (9.8g, 수득률: 96%)
1H-NMR (400MHz, CDCl 3): δ 1.65 (d, 3H), δ 3.77 (s, 3H), δ 5.03 (t, 1H), δ 5.32 (s, 2H), δ 6.28 (d, 1H), δ 6.27-7.96 (m, 13H), δ 8.34 (s, 1H)
단계 (4)에서 에탄올을 용매를 사용하였으나, 이에 한정되는 것은 아니며 다양한 유기 용매가 사용될 수 있음은 물론이다. 예를들어, 디메틸포름아미드(Dimethyl formamide, DMF), 톨루엔, 테트라하이드로퓨란(tetrahydrofuran THF), 메탄올, 트리클로로메탄(CHCl 3), 아세토나이트릴 및 다이옥산(예를 들어 1,4-dioxane) 중 선택되는 어느 하나 이상의 유기 용매를 사용할 수 있다. 바람직하게는, 에탄올 용매를 사용할 수 있다.
6. 단계 (5) - 최종 생성물의 합성
상기 단계 (4)에서 얻은 중간체 화합물 IQH (9.8g, 16.4mmol)에 디클로로메탄 (20ml)을 가하고 0~5 ℃로 냉각한 후 트리플루오로아세트산(Trifluoroacetic acid, TFA) (24.5ml), 메탄술폰산((Methanesulfonic acid, MsOH) (1.6ml, 24.6mmol)을 가하고 상온(25 ℃)에서 3 시간 동안 교반하였다. 이후, 반응물에 에틸아세테이트 (98ml), 정제수 (98ml)를 가하고, 0~5 ℃로 냉각한 후 암모니아수(49ml)를 적가하고, 상온(25 ℃)에서 교반하였다. 생성된 고체를 여과하고 에틸아세테이트 (40ml), 정제수 (40ml)로 세척하고 열풍 건조하여 최종 생성물((S)-4-((1-(4,8-dichloro-1-oxo-2-phenyl-1,2-dihydroisoquinolin-3-yl)ethyl)amino)pyrido[2,3-d]pyrimidin-5(8H)-one)을 수득(3.85g)하였다.
1H-NMR (400MHz, CDCl 3): δ 1.67 (d, 3H), δ 5.03 (t, 1H), δ 6.31(d, 1H), δ 7.20-7.95 (m, 9H), δ 8.25 (s, 1H)
실시예 1을 참조하면, 일 실시예에 따른 PI3K 저해제로서의 화합물의 제조방법은 단계 (1) 내지 단계 (5)까지 5 공정만으로 PI3K 저해제로서의 화합물을 합성할 수 있다. 또한, 각 단계 별 반응 시간이 짧으므로 공정 시간을 절감할 수 있다. 보다 구체적으로, 단계 (1) 내지 단계 (5)는 수 일 이상의 환류 및 교반이 필요한 가혹한 반응 조건이 없다. 특히 단계 (1) 내지 단계 (3)에서는 약 1 내지 약 4시간, 보다 구체적으로는 약 3 시간 전후의 환류 및 교반 단계를 포함하며, 그 이상의 시간이 소요되는 환류 및 교반 단계를 포함하지 않는다. 또한, 단계 (4)에서의 환류 및 교반 단계도 약 7 시간 전후로 비교적 짧다. 즉, 일 실시예의 PI3K 저해제로서의 화합물의 제조방법에 따를 때 전체 작업 일수가 수일 이상 단축될 수 있다.
일 실시예에 따른 PI3K 억제제의 제조방법은 단계 (S1) 내지 단계 (S5)를 포함하는 제조방법으로 PI3K 억제제를 제조함으로써 공정을 단순화하여, 제조 단계 및 제조 비용을 절감할 수 있다.

Claims (11)

  1. (S1) 화학식 1의 화합물과 화학식 2의 화합물을 반응시켜 화학식 3의 화합물을 제조하는 단계;
    (S2) 화학식 3의 화합물을 할로겐화 반응시켜 화학식 4의 화합물을 제조하는 단계;
    (S3) 화학식 4의 화합물을 보호기로 치환된 아민과 반응시켜 화학식 5의 화합물을 제조하는 단계;
    (S4) 화학식 5의 화합물을 고리화 반응시켜 화학식 6의 화합물을 제조하는 단계; 및
    (S5) 화학식 6의 화합물을 탈보호 반응시켜 화학식 7의 화합물을 제조하는 단계를 포함하는 화학식 7의 화합물의 제조방법:
    [화학식 1]
    Figure PCTKR2021003950-appb-img-000016
    [화학식 2]
    Figure PCTKR2021003950-appb-img-000017
    [화학식 3]
    Figure PCTKR2021003950-appb-img-000018
    [화학식 4]
    Figure PCTKR2021003950-appb-img-000019
    [화학식 5]
    Figure PCTKR2021003950-appb-img-000020
    [화학식 6]
    Figure PCTKR2021003950-appb-img-000021
    [화학식 7]
    Figure PCTKR2021003950-appb-img-000022
    X 1 내지 X 4는 각각 독립적으로 할로겐 원자이고,
    Y는 아민 보호기이다.
  2. 제1 항에 있어서,
    상기 (S1) 단계 및 상기 (S3) 단계는 염기 조건에서 진행되는 화학식 7의 화합물의 제조방법.
  3. 제1 항에 있어서,
    상기 (S1) 단계 및 상기 (S3) 단계는 극성 비양성자성 용매에서 진행되는 화학식 7의 화합물의 제조방법.
  4. 제1 항에 있어서,
    상기 (S2) 단계는 상기 화학식 3의 화합물을 N-클로로숙신이미드와 반응시켜 염소화 반응시키는 단계인 화학식 7의 화합물의 제조방법.
  5. 제4 항에 있어서,
    상기 (S2) 단계는 극성 비양성자성 용매에서 진행되는 화학식 7의 화합물의 제조방법.
  6. 제1 항에 있어서,
    상기 보호기는 t-부틸기, 2,4-디메톡시벤질기, 2,4-디나이트로페닐기, 2-하이드록시벤질기, 트리페닐메틸기, 페로세닐메틸기, 9-페닐플루오레닐기, p-메톡시벤질기, 벤질카보닐기, tert-부톡시카보닐기, 디-tert-부틸 디카보네이트 또는 플루오레닐메톡시카보닐기인 화학식 7의 화합물의 제조방법.
  7. 제1 항에 있어서,
    상기 (S4) 단계에서 상기 고리화 반응은 상기 화학식 5의 화합물을 디메틸포름아미드-디메틸아세탈과 반응시키는 단계인 화학식 7의 화합물의 제조방법.
  8. 제7 항에 있어서,
    상기 (S4) 단계는 에탄올 용매에서 진행되는 화학식 7의 화합물의 제조방법.
  9. 하기 화학식 3 또는 화학식 4로 표시되는 화합물:
    [화학식 3]
    Figure PCTKR2021003950-appb-img-000023
    [화학식 4]
    Figure PCTKR2021003950-appb-img-000024
    X 1, X 2 및 X 4는 각각 독립적으로 할로겐 원자이다.
  10. 화학식 1의 화합물과 화학식 2의 화합물을 반응시키는 단계를 포함하는 화학식 3의 화합물의 제조 방법:
    [화학식 1]
    Figure PCTKR2021003950-appb-img-000025
    [화학식 2]
    Figure PCTKR2021003950-appb-img-000026
    [화학식 3]
    Figure PCTKR2021003950-appb-img-000027
    X 1 내지 X 3은 각각 독립적으로 할로겐 원자이고,
    상기 화학식 1의 화합물과 화학식 2의 화합물을 반응시키는 단계는 염기 조건 하에서 극성 비양성자성 용매에서 진행된다.
  11. 화학식 3의 화합물을 할로겐화 반응시키는 단계를 포함하는 화학식 4의 화합물의 제조 방법:
    [화학식 3]
    Figure PCTKR2021003950-appb-img-000028
    [화학식 4]
    Figure PCTKR2021003950-appb-img-000029
    X 1, X 2 및 X 4는 각각 독립적으로 할로겐원자이다.
PCT/KR2021/003950 2020-03-31 2021-03-30 Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물 WO2021201574A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200039447 2020-03-31
KR10-2020-0039447 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201574A1 true WO2021201574A1 (ko) 2021-10-07

Family

ID=77929242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003950 WO2021201574A1 (ko) 2020-03-31 2021-03-30 Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물

Country Status (1)

Country Link
WO (1) WO2021201574A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099801A1 (en) * 2008-02-01 2009-08-13 Irm Llc Pyrido [4, 3-d] pyrimidinone derivatives as kinase inhibitors
WO2011053861A1 (en) * 2009-10-29 2011-05-05 Genosco Kinase inhibitors
US8193182B2 (en) * 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
WO2014015675A1 (en) * 2012-07-27 2014-01-30 Hutchison Medipharma Limited Novel heteroaryl and heterocycle compounds, compositions and methods
KR101845931B1 (ko) * 2015-06-18 2018-04-05 한국화학연구원 헤테로아릴 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 포함하는 pi3 키나아제 관련 질환의 예방 또는 치료용 약학적 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193182B2 (en) * 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
WO2009099801A1 (en) * 2008-02-01 2009-08-13 Irm Llc Pyrido [4, 3-d] pyrimidinone derivatives as kinase inhibitors
WO2011053861A1 (en) * 2009-10-29 2011-05-05 Genosco Kinase inhibitors
WO2014015675A1 (en) * 2012-07-27 2014-01-30 Hutchison Medipharma Limited Novel heteroaryl and heterocycle compounds, compositions and methods
KR101845931B1 (ko) * 2015-06-18 2018-04-05 한국화학연구원 헤테로아릴 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 포함하는 pi3 키나아제 관련 질환의 예방 또는 치료용 약학적 조성물

Similar Documents

Publication Publication Date Title
US10336753B2 (en) Process for the preparation of apixaban and intermediates thereof
AU2018308038B2 (en) Improved process for preparing aminopyrimidine derivatives
AU2018308164B2 (en) Intermediates useful for the synthesis of a selective inhibitor against protein kinase and processes for preparing the same
WO2020040467A1 (ko) 8-브로모-2-(1-메틸피페리딘-4-일아미노)-4-(4-페녹시페닐아미노)피리도[4,3-d]피리미딘-5(6h)-온 염산염의 결정다형체 및 그 제조방법
WO2017023123A1 (ko) 크로마논 유도체의 신규한 제조방법
WO2015034293A1 (ko) 고순도 페메트렉세드 제조를 위한 향상된 중간체 제조 방법 및 이를 사용하여 고순도 페메트렉세드를 제조하는 방법
WO2021201574A1 (ko) Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물
JP2018507858A (ja) トピロキソスタット及びその中間体の調製のための方法
AU2018308039B2 (en) Novel intermediates useful for the synthesis of aminopyrimidine derivatives, process for preparing the same, and process for preparing aminopyrimidine derivatives using the same
WO2022005175A1 (ko) Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물
EP3535237A1 (en) Method for preparation of (s)-n1-(2-aminoethyl)-3-(4-alkoxyphenyl)propane-1,2-diamine trihydrochloride
US20060069270A1 (en) Process for the preparation of 1,3,5-trisubstituted pyrazoles via [3+2] cycloaddition
EP0347851B1 (en) Quinolonecarboxylic acids
EP2531499A2 (en) Process for preparing voriconazole by using new intermediates
WO2011111971A2 (ko) (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
WO2017074147A1 (en) Novel process for preparing thienopyrimidine compound and intermediates used therein
AU2019268945B2 (en) Novel processes for preparing a diaminopyrimidine derivative or acid addition salt thereof
WO2024090917A1 (en) Novel salt of dimethyl-2,3-dihydro-1h-indene derivative and processes for preparing the same
WO2023167475A1 (ko) 루카파립의 개선된 제조방법
WO2020085616A1 (ko) 아픽사반의 제조방법
WO2017052122A1 (ko) 광학활성을 가진 티에닐알라닌의 제조 방법
TW202400166A (zh) 製備用於cftr活化劑之化合物的方法及其中所使用的中間體
WO2020213911A1 (ko) 날데메딘의 제조방법
WO2022231262A1 (ko) 잔틴 옥시다아제 저해제의 제조 방법
CN116406365A (zh) 用于制备1-甲基-6-[6-R2-5-甲基-8-(甲基氨基)-4-[(3aS,6aS)-5-甲基-2,3,3a,4,6,6a-六氢吡咯并[2,3-c]吡咯-1-基]-9H-吡啶并[2,3-b]吲哚-3-基]-4-氧代-1,8-萘啶-3-甲酸盐酸盐的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780050

Country of ref document: EP

Kind code of ref document: A1