WO2021201198A1 - 標的rnaを編集する方法 - Google Patents
標的rnaを編集する方法 Download PDFInfo
- Publication number
- WO2021201198A1 WO2021201198A1 PCT/JP2021/014096 JP2021014096W WO2021201198A1 WO 2021201198 A1 WO2021201198 A1 WO 2021201198A1 JP 2021014096 W JP2021014096 W JP 2021014096W WO 2021201198 A1 WO2021201198 A1 WO 2021201198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dyw
- sequence
- rna
- editing
- amino acids
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 150000001413 amino acids Chemical class 0.000 claims abstract description 241
- 230000000694 effects Effects 0.000 claims abstract description 168
- 229920001184 polypeptide Polymers 0.000 claims abstract description 89
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 89
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 89
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims abstract description 26
- 239000012634 fragment Substances 0.000 claims abstract description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 72
- 210000004027 cell Anatomy 0.000 claims description 42
- 230000004570 RNA-binding Effects 0.000 claims description 24
- 239000013598 vector Substances 0.000 claims description 18
- 150000007523 nucleic acids Chemical class 0.000 claims description 12
- 108020004707 nucleic acids Proteins 0.000 claims description 11
- 102000039446 nucleic acids Human genes 0.000 claims description 11
- 230000009870 specific binding Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 6
- 210000003527 eukaryotic cell Anatomy 0.000 claims description 3
- 235000001014 amino acid Nutrition 0.000 description 248
- 229940024606 amino acid Drugs 0.000 description 244
- 108090000623 proteins and genes Proteins 0.000 description 80
- 102000004169 proteins and genes Human genes 0.000 description 72
- 238000010357 RNA editing Methods 0.000 description 70
- 235000018102 proteins Nutrition 0.000 description 70
- 230000026279 RNA modification Effects 0.000 description 69
- 125000003275 alpha amino acid group Chemical group 0.000 description 37
- 230000027455 binding Effects 0.000 description 30
- 230000035772 mutation Effects 0.000 description 23
- 241000588724 Escherichia coli Species 0.000 description 17
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 16
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 16
- 235000003704 aspartic acid Nutrition 0.000 description 16
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 16
- 235000009582 asparagine Nutrition 0.000 description 15
- 229960001230 asparagine Drugs 0.000 description 15
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 14
- 241000196324 Embryophyta Species 0.000 description 13
- 210000004899 c-terminal region Anatomy 0.000 description 13
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 12
- 238000013461 design Methods 0.000 description 11
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 10
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 10
- 239000004473 Threonine Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 8
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000004474 valine Substances 0.000 description 8
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 7
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 7
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 7
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical group O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 7
- 210000003470 mitochondria Anatomy 0.000 description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- 101000632748 Homo sapiens NADH-ubiquinone oxidoreductase chain 2 Proteins 0.000 description 6
- 101000598279 Homo sapiens NADH-ubiquinone oxidoreductase chain 5 Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 102100028488 NADH-ubiquinone oxidoreductase chain 2 Human genes 0.000 description 6
- 102100036971 NADH-ubiquinone oxidoreductase chain 5 Human genes 0.000 description 6
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 6
- 210000004102 animal cell Anatomy 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 6
- 230000002438 mitochondrial effect Effects 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 6
- 229940045145 uridine Drugs 0.000 description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 235000013922 glutamic acid Nutrition 0.000 description 5
- 239000004220 glutamic acid Substances 0.000 description 5
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 5
- 235000004554 glutamine Nutrition 0.000 description 5
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 5
- 229960000310 isoleucine Drugs 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- 101710159080 Aconitate hydratase A Proteins 0.000 description 4
- 101710159078 Aconitate hydratase B Proteins 0.000 description 4
- 241000195940 Bryophyta Species 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 108020005004 Guide RNA Proteins 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 4
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 4
- 101710105008 RNA-binding protein Proteins 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 238000009395 breeding Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- 102100036407 Thioredoxin Human genes 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 108091064355 mitochondrial RNA Proteins 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 108060008226 thioredoxin Proteins 0.000 description 3
- 230000002407 ATP formation Effects 0.000 description 2
- -1 Aromatic ring amino acids Chemical class 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101100038183 Dictyostelium discoideum polr2a gene Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000195887 Physcomitrella patens Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000026326 mitochondrial transport Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 101150047139 rpo1N gene Proteins 0.000 description 2
- 101150037064 rpoA gene Proteins 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229940094937 thioredoxin Drugs 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000004572 zinc-binding Effects 0.000 description 2
- 239000001707 (E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-ol Substances 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 102100026846 Cytidine deaminase Human genes 0.000 description 1
- 108010031325 Cytidine deaminase Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000899111 Homo sapiens Hemoglobin subunit beta Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- XUYPXLNMDZIRQH-LURJTMIESA-N N-acetyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC(C)=O XUYPXLNMDZIRQH-LURJTMIESA-N 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 102000002488 Nucleoplasmin Human genes 0.000 description 1
- 239000012124 Opti-MEM Substances 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- BLUHKGOSFDHHGX-UHFFFAOYSA-N Phytol Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C=CO BLUHKGOSFDHHGX-UHFFFAOYSA-N 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 230000021839 RNA stabilization Effects 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HNZBNQYXWOLKBA-UHFFFAOYSA-N Tetrahydrofarnesol Natural products CC(C)CCCC(C)CCCC(C)=CCO HNZBNQYXWOLKBA-UHFFFAOYSA-N 0.000 description 1
- 102100031740 Thioredoxin domain-containing protein 8 Human genes 0.000 description 1
- 101710154465 Thioredoxin domain-containing protein 8 Proteins 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- BOTWFXYSPFMFNR-OALUTQOASA-N all-rac-phytol Natural products CC(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)=CCO BOTWFXYSPFMFNR-OALUTQOASA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 101150074451 clpP gene Proteins 0.000 description 1
- 101150043719 clpP1 gene Proteins 0.000 description 1
- 101150102296 clpP2 gene Proteins 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002681 effect on RNA Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000002169 hydrotherapy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000031574 mitochondrial mRNA modification Effects 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 108060005597 nucleoplasmin Proteins 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- BOTWFXYSPFMFNR-PYDDKJGSSA-N phytol Chemical compound CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\CO BOTWFXYSPFMFNR-PYDDKJGSSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000016314 protein import into mitochondrial matrix Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- the present invention relates to RNA editing technology using a protein capable of binding to a target RNA.
- the present invention is useful in a wide range of fields such as medical treatment (drug discovery support, treatment), agriculture (agriculture, fishery and livestock product production, breeding), and chemistry (biological substance production).
- RNA editing in which specific bases in the genome are replaced at the RNA level, frequently occurs in plant mitochondria and chloroplasts, and this phenomenon is mediated by the RNA-binding protein pentatricopeptide repeat (PPR) protein. It has been known.
- PPR pentatricopeptide repeat
- PPR proteins are classified into two families, P and PLS, according to the structure of the PPR motif that constitutes this protein (Non-Patent Document 1). While P-class PPR proteins consist of simple repetitions of the standard 35 amino acid PPR motif (P), PLS proteins contain two similar motifs, called L and S, in addition to P. I'm out.
- the PPR array of PLS proteins (arrangement of PPR motifs) consists of three PPR motifs, P1 (about 35 amino acids), L1 (about 35 amino acids), and S1 (about 31 amino acids), which are composed of repeating units of PLS, and P1L1S1.
- PLS On the C-terminal side of, PLS with a slightly different sequence, namely P2 (35 amino acids), L2 (36 amino acids), and S2 (32 amino acids) motifs follow.
- SS 31 amino acids
- SS 31 amino acids
- the C-terminal side of this last P2L2S2 motif may be followed by two PPR-like motifs called E1 and E2, and a DYW domain having a cytidine deaminase domain-like sequence of 136 amino acids (Non-Patent Document 2).
- Patent Document 1 Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, Non-Patent Document 6, Non-Patent Document 7, Non-Patent Document 8).
- Non-Patent Document 9 Two different bioinformatics studies have found unique DYW domains with different sequences from standard DYW domains in plants with U-to-C RNA editing (Non-Patent Documents 10 and 11).
- DYW domain PG proteins derived from Physcomitrella patens show RNA editing activity from C to U in Escherichia coli.
- DYW domain is roughly divided into two groups. The first is called the DYW: PG / WW group, which includes the standard DYW domain DYW: PG type and the DYW: WW type with one tryptophan (W) added to the PG box.
- the second group is called DYW: KP, and this DYW domain has a sequence different from that of the PG / WW group in the PG box and the three amino acid sequences at the C-terminal, and only plants with U-to-C RNA editing.
- the technique of converting one base in an arbitrary RNA sequence into a specific base is useful in gene therapy and gene mutation introduction technique in industrial use.
- Various RNA-binding molecules have been developed so far, but by using the DYW domain and artificial RNA-binding protein, cytidine (C) of any target RNA can be converted to uridine (U), or vice versa.
- a method for designing a molecule that converts uridine (U) to cytidine (C) has not been established.
- DYW: PG and DYW: WW domains were C-to-U
- DYW: KP was U-to-C RNA. Showed editing activity.
- the present invention provides: [1] A method for editing a target RNA, which applies an artificial DYW protein to the target RNA, which comprises a DYW domain consisting of one of the following polypeptides a, b, c, and bc.
- x a1 PGx a2 SWIEx a3 -x a16 HP... Hx aa E... Cx a17 x a18 CH... DYW has at least 40% sequence identity with the sequence of SEQ ID NO: 1 and C-to -Peptide with U / U-to-C editing activity b.
- a method of editing target RNA comprising the step of applying the DYW domain consisting of the following c or bc polypeptide to the target RNA to convert the edit target U to C. c.
- a method for editing a target RNA in which an artificial DYW protein containing a DYW domain consisting of any one of the following polypeptides a to c is applied to the target RNA.
- x a1 PGx a2 SWIEx a3 -x a16 HP... HSE... Cx a17 x a18 CH... DYW at least 40% sequence identity with the sequence of SEQ ID NO: 1 and C-to-U / U-to-C Editing Active Polypeptide b.
- a DYW domain consisting of any one of the following polypeptides a to c. x a1 PGx a2 SWIEx a3 -x a16 HP... HSE... Cx a17 x a18 CH... DYW, at least 40% sequence identity with the sequence of SEQ ID NO: 1 and C-to-U / U-to-C Editing Active Polypeptide b.
- a method of editing target RNA comprising the step of applying the DYW domain consisting of the polypeptide of c below to the target RNA to convert the edit target U to C. c. KPAx c1 Ax c2 IEx c3 ... HAE... Cx c4 x c5 CH... Dx c6 x c7 , with at least 40% sequence identity with the sequence of SEQ ID NO: 3 and C-to-U / Polypeptide with U-to-C editing activity [6] The method according to 5, wherein the DYW domain contains at least one PPR motif and is fused to an RNA binding domain capable of sequence-specific binding to the target RNA according to the rules of PPR-code.
- a composition comprising the DYW domain according to 2 for editing RNA in eukaryotic cells.
- a nucleic acid encoding the DYW domain according to 2 or the DYW protein according to 3 or 4.
- Cells containing the vector according to 9 (excluding individual humans).
- the editing target C contained in the target RNA can be converted to U, or the editing target U can be converted to C.
- Phylogenetic trees of (a) DYW: PG type, (b) DYW: WW type and (c) DYW: KP type domains were created using FastTree.
- the DYW: PG domain was designed based on the DYW: PG protein from lycophytes.
- the black lines show the protein lineages (clades) selected to design the DYW: WW and DYW: KP domains.
- the phylogenetic tree is visualized using iTOL (Letunic, I. and Bork, P. (2016) Nucleic Acids Res. 44 W242-245).
- the PPR protein is a PPR array consisting of a thioredoxin, His-tag and TEV site on the N-terminal side, followed by a P or PLS motif, and finally a DYW domain (DYW: PG, DYW: WW or DYW: KP). )including.
- the target sequence of the PPR protein was inserted downstream of the stop codon.
- B The fourth and ii amino acids involved in RNA recognition within the P, P1, L1, S1 and P2 motifs.
- RNA editing assay using E. coli (A) Target base (C or T) on the DNA of each PPR-DYW. (B) C-to-U RNA editing activity of PPR-DYW: PG and WW and (c) U-to-C RNA editing activity of PPR-DYW: KP are shown.
- A Target base (C or T) on the DNA of each PPR-DYW.
- B C-to-U RNA editing activity of PPR-DYW: PG and WW and
- (c) U-to-C RNA editing activity of PPR-DYW: KP are shown.
- One of the results of three independent experiments is shown as an example.
- the bar graph shows the average, and each point shows the RNA editing activity in the three experiments.
- the bar graph on the left shows the C to U editing activity, and the bar graph on the right shows the U to C editing activity.
- Improved KP domain performance with domain swapping The RNA editing activity of Chimeric KP1a swapped with the WW1 domain was investigated for the preceding and following domains, leaving the central part containing the active site (HxEx n CxxCH) of KP1. Schematic diagram of domain swapping (a), actual RNA editing activity (b, c). Measurement of RNA editing activity of KP domain mutants.
- RNA editing activity of HEK293T RNA editing activity of HEK293T
- RNA editing activity of KP5 to KP23 in HEK293T c.
- Measurement of RNA editing activity of PG domain mutants RNA editing activity of PG1, PG2, in Escherichia coli (a) and RNA editing activity of HEK293T (b).
- RNA editing activity of PG3 to PG13 in HEK293T Measurement of RNA editing activity of WW domain mutants.
- RNA editing activity of WW1 and WW2 in E. coli (a) and RNA editing activity of HEK293T b).
- Target sequence information a).
- the present invention relates to a method for editing a target RNA, which applies a DYW protein containing a DYW domain consisting of any one of the following polypeptides a, b, c, and bc to the target RNA.
- a DYW protein containing a DYW domain consisting of any one of the following polypeptides a, b, c, and bc to the target RNA.
- x a1 PGx a2 SWIEx a3 -x a16 HP... Hx aa E... Cx a17 x a18 CH... DYW at least 40% sequence identity with the sequence of SEQ ID NO: 1 and C-to -U / U-to-C Editing activity-active polypeptide b.
- C-to-U / U-to-C editing activity refers to an editing assay in which a target polypeptide is linked to the C-terminal side of an RNA-binding domain capable of binding to a target RNA in a sequence-specific manner.
- the conversion may be such that at least about 3%, preferably about 5%, of the edit target base is replaced with the base of interest under appropriate conditions.
- the DYW domain can be represented by any one of these three amino acid sequences.
- the DYW domain consisting of x b18 CH... DYW can be expressed as DYW: WW
- the DYW domain consisting of KPA x c1 Ax c2 IEx c3 ... Hx cc E... Cx c4 x c5 CH... x c6 x c7 x c8 can be expressed as DYW: KP. be.
- the DYW domain is the region containing the PG box consisting of about 15 amino acids at the N-terminus, the central zinc binding domain (HxEx n CxxCH, x n is any number n sequences of any amino acid), and C. It has three regions of DYW at the terminal.
- the zinc binding domain can be further divided into an HxE region and a CxxCH region. These regions of each DYW domain can be represented as shown in the table below.
- PG is a polypeptide consisting of x a1 PGx a2 SWIEx a3 -x a16 HP... Hx aa E... Cx a17 x a18 CH... DYW.
- PG has x a1 PGx a2 SWIEx a3 -x a16 HP... Hx aa E... Cx a17 x a18 CH... DYW and has sequence identity of SEQ ID NO: 1 (detailed in the [Terms] section). It is a polypeptide having C-to-U / U-to-C editing activity.
- DYW: PG has the activity of converting the editing target C into U (C-to-U editing activity).
- SEQ ID NO: 1 shows the sequence of DYW: PG with a total length of 136 amino acids used in the experiments shown in the Examples section of the present specification. This sequence is the first to be disclosed in the present application and is novel.
- the total length of DYW: PG is not particularly limited as long as it can exert C-to-U editing activity, but is, for example, 110 to 160 amino acids in length, preferably 124 to 148 amino acids in length, and more preferably 128 to 144 amino acids in length. It is more preferably 132 to 140 amino acids in length.
- x a1 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: PG, but is preferably E (glutamic acid) or an amino acid having similar properties, and more preferably G.
- x a2 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: PG, but is preferably C (cysteine) or an amino acid having similar properties, and more preferably C.
- Each amino acid of x a3 -x a16 is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is preferably the same as the corresponding amino acid at positions 9 to 22 of the sequence of SEQ ID NO: 1. Or an amino acid similar in nature to the corresponding amino acid, more preferably the same amino acid as the corresponding amino acid at positions 9-22 of the SEQ ID NO: 1 sequence.
- the HxE region of DYW: PG is HSE regardless of the other region.
- DYW In the CxxCH region of PG, i.e. Cx a17 x a18 CH: x a17 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: PG, but is preferably G (glycine) or an amino acid having similar properties, and more preferably G.
- x a18 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: PG, but is preferably D (aspartic acid) or an amino acid having similar properties, and more preferably D.
- DYW PG
- the region containing the PG box and the Hx aa E ... part, the Hx aa E region and the CxxCH region are combined ... the part, and the CxxCH region and the DYW are connected ... It is called a connecting part, a second connecting part, and a third connecting part (the same applies to other DYW domains).
- the total length of the first connecting portion of DYW: PG is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is, for example, 39 to 47 amino acids in length, preferably 40 to 46 amino acids in length. Yes, more preferably 41-45 amino acids in length, and even more preferably 42-44 amino acids in length.
- the amino acid sequence of the first linking portion is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is preferably the same as or the same as the portion of the sequence of SEQ ID NO: 1 at positions 25 to 67. It is a sequence in which 1 to 22 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- One of the preferred embodiments of the first link of DYW: PG is a polypeptide represented by the following formula with a length of 43 amino acids, regardless of the sequence of the other part of the DYW domain.
- polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 1 at positions 25 to 67, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has C-to-U editing activity as DYW: PG. Can be demonstrated. Replacement of this time amino acids, bits value is greater amino acid at the corresponding position in FIG.
- N a29, N a30, N a32, N a33, N a35, N a36, N a40, N a44, N a45, N a47 , N a48 , N a52 , N a53 , N a54 , N a55 , N a58 , N a61 , N a65 , N a67 ) are the same as in Fig. 4, and the other amino acids are substituted. It is preferable to have.
- the total length of the second connecting portion of DYW: PG is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is, for example, 21 to 29 amino acids in length, preferably 22 to 28 amino acids in length. Yes, more preferably 23-27 amino acids in length, and even more preferably 24-26 amino acids in length.
- the amino acid sequence of the second linking portion is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is preferably the same as or the same as the portion of the sequence of SEQ ID NO: 1 at positions 71 to 95. It is a sequence in which 1 to 13 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- One of the preferred embodiments of the second link of DYW: PG is a polypeptide represented by the following formula with a length of 25 amino acids, regardless of the sequence of the other part of the DYW domain.
- the above-mentioned polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 1 at positions 71 to 95, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has C-to-U editing activity as DYW: PG. Can be demonstrated.
- the amino acid substitution is performed on amino acids having a large bits value at the corresponding positions in FIG. 4 (for example, N a71 , N a72 , N a73 , N a76 , N a77 , N a78 , N a79 , N a81 , N a82 , N. a86 , N a88 , N a89 , N a91 , N a92 , N a93 , N a94 ) are the same as in FIG. 4, and it is preferable that the other amino acids are substituted.
- the total length of the third connecting portion of DYW: PG is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is, for example, 29 to 37 amino acids in length, preferably 30 to 36 amino acids in length. Yes, more preferably 31-35 amino acids in length, and even more preferably 32-34 amino acids in length.
- the amino acid sequence of the third linking portion is not particularly limited as long as it can exert C-to-U editing activity as DYW: PG, but is preferably the same as or the same as the portion 101 to 133 of the sequence of SEQ ID NO: 1. It is a sequence in which 1 to 17 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- One of the preferred embodiments of the third link of DYW: PG is a polypeptide represented by the following formula with a length of 33 amino acids, regardless of the sequence of the other part of the DYW domain.
- the above-mentioned polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 1 at positions 101 to 133, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has C-to-U editing activity as DYW: PG. Can be demonstrated.
- the amino acid substitution is performed on amino acids having a large bits value at the corresponding positions in FIG. 4 (for example, N a102 , N a104 , N a107 , N a112 , N a114 , N a117 , N a118 , N a121 , N a122 , N.
- RNA editing activity can be improved by introducing a mutation into the PG domain consisting of the sequence of SEQ ID NO: 1.
- a preferred example of a domain into which such a mutation has been introduced is PG11 (a polypeptide consisting of the amino acid sequence of SEQ ID NO: 50) shown in the Examples section herein.
- DYW WW is a polypeptide consisting of x b1 PGx b2 SWWTDx b3 -x b16 HP... Hx bb E... Cx b17 x b18 CH... DYW.
- it has x b1 PGx b2 SWWTDx b3 -x b16 HP... Hx bb E... Cx b17 x b18 CH... DYW
- has sequence identity with the sequence of SEQ ID NO: 2 and has C-to-U / It is a polypeptide having U-to-C editing activity.
- DYW: WW has the activity of converting the editing target C into U (C-to-U editing activity).
- SEQ ID NO: 2 shows the sequence of DYW: WW having a total length of 137 amino acids used in the experiment shown in the Example section of the present specification. This sequence is the first to be disclosed in the present application and is novel.
- the total length of DYW: WW is not particularly limited as long as it can exert C-to-U editing activity, but is, for example, 110 to 160 amino acids in length, preferably 125 to 149 amino acids in length, and more preferably 129 to 145 amino acids in length. It is more preferably 133 to 141 amino acids in length.
- the part consisting of WTD may be WSD.
- x b1 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: WW, but is preferably K (lysine) or an amino acid having similar properties, and more preferably K.
- x b2 is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is preferably Q (glutamine) or an amino acid having similar properties, and more preferably Q.
- Each amino acid of x b3 -x b16 is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is preferably the same as the corresponding amino acid at positions 10 to 23 of the sequence of SEQ ID NO: 2. Or an amino acid similar in nature to the corresponding amino acid, more preferably the same amino acid as the corresponding amino acid at positions 10-23 of the sequence of SEQ ID NO: 2.
- the HxE region of DYW: WW is HSE regardless of the sequence of the other part.
- DYW In the CxxCH region of WW, that is, Cx b17 x b18 CH: x b17 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: WW, but is preferably D (aspartic acid) or an amino acid having similar properties, and more preferably D.
- x b18 is not particularly limited as long as it can exhibit C-to-U editing activity as DYW: WW, but is preferably D or an amino acid having similar properties, and more preferably D.
- the total length of the first connecting portion of DYW: WW is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is, for example, 39 to 47 amino acids in length, preferably 40 to 46 amino acids in length. Yes, more preferably 41-45 amino acids in length, and even more preferably 42-44 amino acids in length.
- the amino acid sequence of the first linking portion is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is preferably the same as or the same as the portion of the sequence of SEQ ID NO: 2 at positions 25 to 67. It is a sequence in which 1 to 22 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- One of the preferred embodiments of the first link of DYW is a polypeptide represented by the following formula with a length of 43 amino acids, regardless of the sequence of the other part of the DYW domain.
- polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 2 at positions 26 to 68, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has C-to-U editing activity as DYW: PG. Can be demonstrated. Replacement of this time amino acids, bits value is greater amino acid at the corresponding position in FIG.
- the total length of the second connecting portion of DYW: WW is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is, for example, 21 to 29 amino acids in length, preferably 22 to 28 amino acids in length. Yes, more preferably 23-27 amino acids in length, and even more preferably 24-26 amino acids in length.
- the amino acid sequence of the second linking portion is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is preferably the same as or the same as the portion of the sequence of SEQ ID NO: 2 at positions 71 to 95. It is a sequence in which 1 to 13 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- WW is a polypeptide represented by the following formula with a length of 25 amino acids, regardless of the sequence of the other part of the DYW domain.
- the above-mentioned polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 2 at positions 72 to 96, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has C-to-U editing activity as DYW: WW. Can be demonstrated.
- the amino acid substitution is performed on amino acids having a large bits value at the corresponding positions in FIG. 4 (for example, N b72 , N b73 , N b74 , N b75 , N b77 , N b78 , N b79 , N b81 , N b82 , N.
- N b84 , N b88 , N b89 , N b90 , N b91 , N b92 , N b93 , N b94 , N b95 , N b96 ) are the same as in Fig. 4, and the other amino acids are substituted. It is preferable to have.
- the total length of the third connecting portion of DYW: WW is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is, for example, 29 to 37 amino acids in length, preferably 30 to 36 amino acids in length. Yes, more preferably 31-35 amino acids in length, and even more preferably 32-34 amino acids in length.
- the amino acid sequence of the third linking portion is not particularly limited as long as it can exert C-to-U editing activity as DYW: WW, but is preferably the same as or the same as the portion 101 to 133 of the sequence of SEQ ID NO: 2. It is a sequence in which 1 to 17 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- WW is a polypeptide represented by the following formula with a length of 33 amino acids, regardless of the sequence of the other part of the DYW domain.
- the above-mentioned polypeptide is preferably the same as the portion 102 to 134 of the sequence of SEQ ID NO: 2, or is a sequence in which a plurality of amino acids are substituted in the partial sequence, and has C-to-U editing activity as DYW: WW. Can be demonstrated.
- the amino acid substitution is performed on amino acids having a large bits value at the corresponding positions in FIG. 4 (for example, N b104 , N b105 , N b107 , N b108 , N b109 , N b110 , N b111 , N b113 , N b115 , N.
- RNA editing activity can be improved by introducing a mutation into the WW domain consisting of the sequence of SEQ ID NO: 2.
- Preferred examples of domains into which such mutations have been introduced are WW2-11 and WW13 shown in the Examples section of the present specification, and the one having particularly high editing activity consists of the amino acid sequence of WW11 (SEQ ID NO: 63). Polypeptide).
- DYW: KP is a polypeptide consisting of KPAx c1 Ax c2 IEx c3 ... Hx cc E... Cx c4 x c5 CH... x c6 x c7 x c8 .
- it has KPAx c1 Ax c2 IEx c3 ... Hx cc E... Cx c4 x c5 CH... x c6 x c7 x c8 , has sequence identity with the sequence of SEQ ID NO: 3, and is C-to-U. / U-to-C A polypeptide having editing activity.
- DYW: KP has the activity of converting the editing target U to C (U-to-C editing activity).
- SEQ ID NO: 3 shows the sequence of DYW: KP with a total length of 133 amino acids used in the experiment shown in the Example section of the present specification. This sequence is the first to be disclosed in the present application and is novel.
- the total length of DYW: KP is not particularly limited as long as it can exert U-to-C editing activity, but is, for example, 110 to 160 amino acids in length, preferably 121 to 145 amino acids in length, and more preferably 125 to 141 amino acids in length. It is more preferably 129 to 137 amino acids in length.
- x c1 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably S (serine) or an amino acid having similar properties, and more preferably S.
- x c2 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably L (leucine) or an amino acid having similar properties, and more preferably L.
- x c3 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably V (valine) or an amino acid having similar properties, and more preferably V.
- the HxE region of DYW: KP is HAE regardless of the sequence of the other part.
- DYW In the CxxCH region of KP, i.e. Cx c4 x c5 CH: x c4 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably N (asparagine) or an amino acid having similar properties, and more preferably N.
- x b5 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably D (aspartic acid) or an amino acid having similar properties, and more preferably D.
- DYW In the part of KP corresponding to DYW, that is, x c6 x c7 x c8 : x c6 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably D (aspartic acid) or an amino acid having similar properties, and more preferably D. x c7 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably M (methionine) or an amino acid having similar properties, and more preferably M.
- x b8 is not particularly limited as long as it can exhibit U-to-C editing activity as DYW: KP, but is preferably F (phenylalanine) or an amino acid having similar properties, and more preferably F.
- x c6 x c7 x c8 is D x c7 x c8 , whatever the arrangement of the other parts.
- x c6 x c7 x c8 is GRP, whatever the other part of the sequence.
- the total length of the first connecting portion of DYW: KP is not particularly limited as long as it can exert U-to-C editing activity as DYW: KP, but is, for example, 51 to 59 amino acids in length, preferably 52 to 58 amino acids in length. Yes, more preferably 53-57 amino acids in length, still more preferably 54-56 amino acids in length.
- the amino acid sequence of the first linking portion is not particularly limited as long as it can exert U-to-C editing activity as DYW: KP, but is preferably the same as or the same as the portion of the sequence of SEQ ID NO: 3 at positions 10 to 64. It is a sequence in which 1 to 28 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- KP is a polypeptide represented by the following formula with a length of 55 amino acids, regardless of the sequence of the other part of the DYW domain.
- the above-mentioned polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 3 at positions 10 to 64, or is a sequence in which a plurality of amino acids are substituted in the partial sequence, and is edited by U-to-C as DYW :: KP. It can exert its activity.
- the substitution of amino acids is the amino acids having a large bits value at the corresponding positions in FIG. 4 (for example, N c10 , N c13 , N c14 , N c15 , N c16 , N c17 , N c18 , N c19 , N c25 , N.
- the total length of the second connecting portion of DYW: KP is not particularly limited as long as it can exert U-to-C editing activity as DYW: KP, but is, for example, 21 to 29 amino acids in length, preferably 22 to 28 amino acids in length. Yes, more preferably 23-27 amino acids in length, still more preferably 24-26 amino acids in length.
- the amino acid sequence of the second linking portion is not particularly limited as long as it can exert U-to-C editing activity as DYW: KP, but is preferably the same as or the same as the portion 68 to 92 of the sequence of SEQ ID NO: 3. It is a sequence in which 1 to 13 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- KP is a polypeptide represented by the following formula with a length of 25 amino acids, regardless of the sequence of the other part of the DYW domain.
- polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 3 at positions 68 to 92, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has U-to-C editing activity as DYW: KP. Can be demonstrated. Replacement of this time amino acids, bits value is greater amino acid at the corresponding position in FIG.
- N c68, N c70, N c71, N c72, N c73, N c74, N c75, N c76, N c77, N c78, N c79, N c80, N c81, N c83, N c84, N c85, N c86, N c87, N c88, N c89, N c90, N c91, N c92) are the same as FIG. 4, it is preferable that the amino acids other than the above are substituted.
- the total length of the third connecting portion of DYW: KP is not particularly limited as long as it can exert U-to-C editing activity as DYW: KP, but is, for example, 29 to 37 amino acids in length, preferably 30 to 36 amino acids in length. Yes, more preferably 31-35 amino acids in length, and even more preferably 32-34 amino acids in length.
- the amino acid sequence of the third linking portion is not particularly limited as long as it can exert U-to-C editing activity as DYW: KP, but is preferably the same as or the same as the portion of the sequence of SEQ ID NO: 3 at positions 98 to 130. It is a sequence in which 1 to 17 amino acids are substituted, deleted, or added in a partial sequence, or a sequence having sequence identity with the partial sequence, and more preferably the same sequence as the partial sequence.
- KP is a polypeptide represented by the following formula with a length of 33 amino acids, regardless of the sequence of the other part of the DYW domain.
- polypeptide is preferably the same as the portion of the sequence of SEQ ID NO: 3 at positions 98 to 130, or is a sequence in which a plurality of amino acids are substituted in the partial sequence and has U-to-C editing activity as DYW: KP. Can be demonstrated. Replacement of this time amino acids, bits value is greater amino acid at the corresponding position in FIG.
- Editing activity can be improved by introducing a mutation into the KP domain consisting of the sequence of SEQ ID NO: 3.
- Preferred examples of domains into which such mutations have been introduced are KP2-23 (SEQ ID NOs: 68-89) shown in the Examples section herein.
- KP22 (SEQ ID NO: 88) has the highest editing activity for U to C and the lowest editing activity for C to U, and RNA editing activity is improved compared to the KP domain consisting of the sequence of SEQ ID NO: 3. ing.
- the DYW domain can be divided into several regions due to the conservation of the amino acid sequence. Chimeric DYW with each of these regions exchanged can improve C-to-U editing activity or U-to-C editing activity.
- One preferred embodiment is the area containing the PG box of DYW: WW, i.e. x b1 PGx b2 SWWTDx b3 -x b16 HP and DYW, the other areas of DYW: KP (... Hx cc E... Cx c4 x c5 CH). ). 7) Is fused.
- x b1 , x b2 , and x b3 -x b16 are as described above for DYW: WW.
- the first connecting portion, the second connecting portion, and the third connecting portion are as described above for DYW: KP.
- the DYW part may be D x bc1 x bc2.
- the total length is not particularly limited as long as it can exhibit U-to-C editing activity, but is, for example, 110 to 160 amino acids in length, preferably 125 to 149 amino acids in length, and more preferably 129 to 145 amino acids in length. More preferably, it has a length of 133 to 141 amino acids.
- One of the preferred Chimeric domains has x b1 PGx b2 SWWTDx b3 -x b16 HP... Hx cc E... Cx c4 x c5 CH... Dx bc1 x bc2, with 90 sequences of SEQ ID NO: 2 and at least 40%. It consists of a polypeptide having sequence identity and C-to-U / U-to-C editing activity.
- One of the particularly preferable Chimeric domains is a polypeptide having sequence identity with the sequence of SEQ ID NO: 90 and having U-to-C editing activity.
- SEQ ID NO: 90 shows the sequence of the Chimeric domain used in the experiments shown in the Examples section of this specification. This domain has higher U to C editing activity than DYW: KP consisting of the sequence of SEQ ID NO: 3, and has almost no C to U editing activity.
- the present invention also provides a polypeptide of any one of the following d to i: d. It has more than 78% sequence identity with the sequence of SEQ ID NO: 1, preferably 80% or more, more preferably 85% or more, even more preferably 90% sequence identity, even more preferably 95.
- sequence of SEQ ID NO: 3 It has more than 86% sequence identity with the sequence of SEQ ID NO: 3, preferably 87% or more, more preferably 90% or more, even more preferably 95% sequence identity, even more preferably 97.
- a polypeptide having% sequence identity and U-to-C editing activity In the sequence of SEQ ID NO: 1, 1 to 29, preferably 1 to 25, more preferably 1 to 21, still more preferably 1 to 17, still more preferably 1 to 13, still more preferably 1.
- sequence of SEQ ID NO: 3 1 to 18, preferably 1 to 16, more preferably 1 to 14, still more preferably 1 to 12, still more preferably 1 to 10, still more preferably 1.
- RNA binding domain In the present invention, when converting an editing target using the DYW domain, an RNA-binding protein is used as the RNA-binding domain in order to target the RNA containing the editing target.
- RNA-binding protein used as an RNA-binding domain is a PPR protein composed of a PPR motif.
- the PPR motif has an E value of PF01535 in Pfam and PS51375 in Prosite when the amino acid sequence is analyzed by a protein domain search program on the Web, which is less than or equal to a predetermined value (preferably E-03).
- a polypeptide composed of 30 to 38 amino acids having the amino acid sequence of.
- the position numbers of the amino acids that make up the PPR motif defined in the present invention are almost synonymous with PF01535, but are subtracted by 2 from the amino acid location of PS51375 (eg, No. 1 of the present invention ⁇ No. 3 of PS51375). Equivalent to.
- the terminal side that is, the -2nd amino acid.
- the amino acid two before the first amino acid in the next helix structure is designated as "ii”. You can refer to http://pfam.sanger.ac.uk/ for Pfam and http://www.expasy.org/prosite/ for Prosite.
- the conserved amino acid sequence of the PPR motif has low conservativeness at the amino acid level, but the two ⁇ -helices are well conserved on the secondary structure.
- a typical PPR motif is composed of 35 amino acids, but its length is variable from 30 to 38 amino acids.
- the PPR motif consists of a polypeptide having a length of 30 to 38 amino acids represented by the formula 1.
- Helix A is a 12 amino acid long part capable of forming an ⁇ -helix structure and is represented by the formula 2.
- a 1 to A 12 independently represent amino acids;
- X is a portion that is absent or consists of 1-9 amino acids in length;
- Helix B is an ⁇ -helix structure capable of forming an ⁇ -helix structure consisting of 11 to 13 amino acids in length;
- L is the portion of formula 3 with a length of 2-7 amino acids;
- Equation 3 each amino acid is numbered from the C-terminal side as “i” (-1), “ii” (-2), and However, L iii to L vi i may not exist.
- PPR-code In the PPR motif, the combination of the three amino acids 1, 4, and ii is important for specific binding to a base, and these combinations can determine which base is bound.
- the relationship between the combination of the three amino acids 1, 4, and ii and the base that can be bound is known as PPR-code (Patent Document 2 above), and is as follows.
- a 1, A 4 , and a combination of three amino acids L ii is, in turn, valine, in the case of asparagine and aspartic acid, the PPR motif binds strongly to U, then the C, and the next It has a selective RNA base binding ability of binding to A or G.
- a 1, A 4, and a combination of three amino acids L ii is in turn, valine, asparagine, for asparagine, the PPR motifs bind strongly and C, then binding to A or U However, it has a selective RNA-base binding ability that it does not bind to G.
- a combination of three amino acids of A 1, A 4, and L ii is in turn, glutamic acid, glycine, in the case of aspartic acid, the PPR motif binds strongly to G, A, the U and C It has a selective RNA base binding ability that does not bind.
- a combination of three amino acids of A 1, A 4, and L ii is in turn, isoleucine, asparagine, for asparagine, the PPR motif bind strongly and C, then the U, A the next It has a selective RNA-base binding ability that binds to G but does not bind to G.
- a 1, A 4 , and a combination of three amino acids L ii is in turn valine, threonine, when the aspartic acid, the PPR motif bind strongly to G, then bind to U However, it has a selective RNA-base binding ability that it does not bind to A and C.
- a 1, A 4, and combinations of the three amino acids L ii, in turn, lysine, threonine, aspartic acid, in the case of, the PPR motif binds strongly to G, then binding to A However, it has a selective RNA-base binding ability that it does not bind to U and C.
- a 1, A 4 , and a combination of three amino acids L ii is in turn, phenylalanine, serine, when asparagine, the PPR motif bind strongly to A, then to C, G the next It has a selective RNA base binding ability of binding to and U.
- a 1, A 4 , and a combination of three amino acids L ii is in turn, valine, asparagine, in the case of serine, the PPR motif bind strongly and C, then bind to U but It has a selective RNA-base binding ability that it does not bind to A and G.
- a 1, the combination of A 4, and three amino acids L ii is in turn phenylalanine, threonine, when the asparagine, the PPR motif binds strongly to A, G, binding to U and C It has a selective RNA base binding ability that it does not.
- a 1, A 4, and a combination of three amino acids L ii is in turn, isoleucine, asparagine, when the aspartic acid, the PPR motif binds strongly to U, then binding to A However, it has a selective RNA base binding ability that it does not bind to G and C.
- a combination of three amino acids of A 1, A 4, and L ii is in turn threonine, threonine, when the asparagine, the PPR motif binds strongly to A, G, binding to U and C It has a selective RNA base binding ability that it does not.
- a 1, A 4 , and a combination of three amino acids L ii is in turn isoleucine, methionine, if the aspartic acid, the PPR motif binds strongly to U, then bind to C However, it has a selective RNA base binding ability that it does not bind to A and G.
- a combination of three amino acids of A 1, A 4, and L ii is in turn, phenylalanine, proline, in the case of aspartic acid PPR, the motif bind strongly to U, then bind to C However, it has a selective RNA-base binding ability that it does not bind to A and G.
- a 1, the combination of A 4, and three amino acids L ii is in turn, tyrosine, proline, in the case of aspartic acid, the PPR motif binds strongly to U, A, G, and C is It has a selective RNA base binding ability that does not bind.
- a combination of three amino acids of A 1, A 4, and L ii is in turn leucine, threonine, when the aspartic acid, the PPR motif binds strongly to G, A, the U and C It has a selective RNA base binding ability that does not bind.
- PPR proteins are classified into two families, P and PLS, according to the structure of the constituent PPR motifs.
- the P-type PPR protein consists of a simple repeat (P array) of standard 35 amino acid PPR motifs (P).
- the DYW domain of the present invention can be used in conjunction with a P-type PPR protein.
- PLS array The sequence of PPR motifs of PLS-type PPR protein is composed of repeating units of three PPR motifs P1, L1, and S1, and the C-terminal side of the repetition is followed by P2, L2, and S2 motifs.
- P2, L2, and S2 motifs the C-terminal side of this last P2L2S2 motif may be followed by two PPR-like motifs called E1 and E2, and a DYW domain.
- the total length of P1 is not particularly limited as long as it can bind to the target base, but is, for example, 33 to 37 amino acids in length, preferably 34 to 36 amino acids in length, and more preferably 35 amino acids in length.
- the total length of L1 is not particularly limited as long as it can bind to the target base, but is, for example, 33 to 37 amino acids in length, preferably 34 to 36 amino acids in length, and more preferably 35 amino acids in length.
- the total length of S1 is not particularly limited as long as it can bind to the target base, but is, for example, 30 to 33 amino acids in length, preferably 30 to 32 amino acids in length, and more preferably 31 amino acids in length.
- the total length of P2 is not particularly limited as long as it can bind to the target base, but is, for example, 33 to 37 amino acids in length, preferably 34 to 36 amino acids in length, and more preferably 35 amino acids in length.
- the total length of L2 is not particularly limited as long as it can bind to the target base, but is, for example, 34 to 38 amino acids in length, preferably 35 to 37 amino acids in length, and more preferably 36 amino acids in length.
- the total length of S2 is not particularly limited as long as it can bind to the target base, but is, for example, 30 to 34 amino acids in length, preferably 31 to 33 amino acids in length, and more preferably 32 amino acids in length.
- SEQ ID Nos: 17, 22, and 27 show the sequence of P2 used in the Examples section of this specification.
- SEQ ID Nos: 18, 23, and 28 show the sequence of L2 used in the Examples section of this specification.
- SEQ ID Nos: 19, 24, and 29 show the sequence of S2 used in the Examples section of this specification.
- the total length of E1 is not particularly limited as long as it can bind to the target base, but is, for example, 32 to 36 amino acids in length, preferably 33 to 35 amino acids in length, and more preferably 34 amino acids in length.
- SEQ ID NOs: 20, 25, and 30 show the sequence of E1 used in the Examples section of this specification.
- the total length of E2 is not particularly limited as long as it can bind to the target base, but is, for example, 30 to 34 amino acids in length, preferably 31 to 33 amino acids in length, and more preferably 33 amino acids in length.
- SEQ ID NOs: 21, 26, 31 show the sequence of E2 used in the Examples section of this specification.
- the repeating part of P1L1S1 and the part up to P2 can be designed according to the sequence of the target RNA according to the above-mentioned PPR-code rule.
- the S2 motif correlates with the corresponding nucleotide of the ii amino acid (31st N of SEQ ID NO: 19) (Non-Patent Document 8 above).
- C or U to the right of the target base of the S2 motif can be incorporated into the PLS-type PPR protein, noting that it is an editing target base by the DYW domain.
- the fourth (4th V of SEQ ID NO: 21) and last (33rd K of SEQ ID NO: 21) amino acids in the E2 motif are highly conserved and are involved in specific PPR-RNA recognition. Not (Non-Patent Document 2 mentioned above).
- the number of repetitions of P1L1S1 is not particularly limited as long as it can bind to the target base sequence, but is, for example, 1 to 5, preferably 2 to 4, and more preferably 3. In principle, even 1 unit (3 pieces) can be used.
- MEF8 L1-S1-P2-L2-S2-E-DYW
- MEF8 which consists of five PPR motifs, is known to be involved in editing about 60 locations.
- P1L1S1 located at the beginning and the end is different from the internal P1L1S1 in that there is a clear difference in the amino acid residue at a specific position.
- SS 31 amino acids
- the present invention contains at least one PPR motif, an RNA binding domain capable of sequence-specific binding to a target RNA according to PPR-code rules, and the above-mentioned DYW: PG, DYW: WW, or DYW: KP.
- a DYW protein for editing a target RNA which comprises any one of the DYW domains.
- Such DYW protein can be artificial. Artificial means that it is not a natural product but an artificially synthesized product. Being artificial means, for example, if you have a DYW domain with a non-natural sequence, if you have a PPR binding domain with a non-natural sequence, or if you have a non-natural combination of an RNA binding domain with a DYW domain. This is the case when the protein for RNA editing in animal cells is further added with a portion that is not present in the natural plant-derived DYW protein, for example, a nuclear translocation signal or a human mitochondrial translocation signal.
- nuclear localization signal sequence examples include PKKKRKV (SEQ ID NO: 32) derived from the SV40 large T antigen and KRPAATKKAGQAKKKK (SEQ ID NO: 33), which is the NLS of nucleoplasmin.
- the number of PPR motifs can be appropriately adjusted according to the sequence of the target RNA.
- the number of PPR motifs may be at least one and may be two or more. It is known that two PPR motifs can bind to RNA (Nucleic Acids Research, 2012, Vol. 40, No. 6, 2712-2723).
- One of the preferred embodiments of the DYW protein is: An RNA containing at least 1, preferably 2 to 25, more preferably 5 to 20, and even more preferably 10 to 18 PPR motifs and capable of sequence-specific binding to a target RNA according to PPR-code rules.
- An artificial DYW protein for editing a target RNA which comprises a binding domain and a DYW domain which is any one of DYW: PG, DYW: WW, or DYW: KP described above.
- One of the preferred embodiments of the other DYW protein is: It contains at least 1, preferably 2 to 25, more preferably 5 to 20, and even more preferably 10 to 18 PPR motifs and is capable of sequence-specific binding to animal target RNA according to PPR-code rules. Edit the target RNA, including the RNA-binding domain (preferably the RNA-binding domain that is a PLS-type PPR protein) and the DYW domain that is one of the above-mentioned DYW: PG, DYW: WW, or DYW: KP. DYW protein for.
- the DYW domain, RNA-binding domain PPR protein, and DYW protein of the present invention can be prepared in a relatively large amount by a method well known to those skilled in the art. Such a method may include determining the nucleic acid sequence encoding the amino acid sequence possessed by the domain or protein of interest, cloning it, and producing a transformant producing the domain or protein of interest.
- the present invention also provides the above-mentioned PPR motif, DYW protein, or nucleic acid encoding DYW protein, a vector containing the nucleic acid (for example, a vector for amplification, an expression vector).
- Vectors also include viral vectors.
- the vector for amplification can use Escherichia coli or yeast as a host.
- the expression vector means, for example, a vector containing a DNA having a promoter sequence, a DNA encoding a desired protein, and a DNA having a terminator sequence from the upstream, as long as it exhibits a desired function. It does not necessarily have to be arranged in this order.
- various vectors that can be usually used by those skilled in the art can be recombined and used.
- the present invention contains at least one PPR motif and is sequence-specifically capable of binding to a target RNA (preferably an animal target RNA) according to PPR-code rules (preferably PLS).
- a target RNA preferably an animal target RNA
- PPR-code rules preferably PLS.
- An RNA-binding domain which is a type of PPR protein
- a nucleotide sequence encoding a DYW protein which comprises the DYW domain which is any one of DYW: PG, DYW: WW, or DYW: KP described above.
- the present invention contains an RNA-binding domain (preferably) that contains at least one PPR motif and is sequence-specifically capable of binding to a target RNA (preferably an animal target RNA) according to PPR-code rules.
- a target RNA preferably an animal target RNA
- a target RNA containing a nucleotide sequence encoding a DYW protein, which comprises a PLS-type PPR protein RNA-binding domain) and a DYW domain which is one of DYW: PG, DYW: WW, or DYW: KP described above. Provides a vector for editing.
- the DYW protein of the present invention can function in cells of eukaryotes (eg, animals, plants, microorganisms (yeast, etc.), prokaryotes).
- the DYW protein of the present invention may function particularly in animal cells (in vitro or in vivo). Examples of animal cells into which the DYW protein of the present invention or a vector expressing the DYW protein can be introduced include cells derived from humans, monkeys, pigs, cows, horses, dogs, cats, mice, and rats.
- examples of cultured cells into which the DYW protein of the present invention or a vector expressing the DYW protein can be introduced include Chinese hamster ovary (CHO) cells, COS-1 cells, COS-7 cells, and VERO (ATCC CCL-81). ) Cells, BHK cells, canine kidney-derived MDCK cells, hamster AV-12-664 cells, HeLa cells, WI38 cells, HEK293 cells, HEK293T cells, PER. C6 cells can be mentioned, but are not limited to these.
- the DYW protein of the present invention can convert the editing target C contained in the target RNA to U or the editing target U to C.
- RNA-binding PPR proteins are involved in all RNA processing steps, cleavage, RNA editing, translation, splicing, and RNA stabilization found in organellas.
- the DYW protein of the present invention enables mitochondrial RNA 1-base editing. Mitochondria have their own genome and encode important complex constituent proteins involved in respiration and ATP production. It is known that these mutations cause various diseases. Mutation repair using the present invention can be expected to treat various diseases.
- the CRISPR-Cas system has been developed as a C-to-U RNA editing tool in the cytoplasm by fusing the Cas protein with a modified ADAR domain (Abudayyeh et al., 2019).
- the CRISPR-Cas system is composed of proteins and guide RNAs, making efficient mitochondrial transport of guide RNAs difficult.
- PPR protein can be RNA-edited with one molecule, and in general, protein can be delivered to mitochondria by fusing a mitochondrial localized signal sequence on the N-terminal side. Therefore, in order to confirm whether this technology can be used for RNA editing of mitochondria, we designed a PPR targeting MT-ND2 and MT-ND5 and created a gene fused with PG or WW domain (Fig. 10a). ..
- These proteins consisting of mitochondrial targeting sequences (MTS) and PPR-P sequences, target the 3rd position of the 178th and 301st codons of MT-ND2 and MT-ND5 so as not to adversely affect HEK293T cells.
- Fig. 10a After introducing the plasmid into HEK293T cells, editing was confirmed in the mRNA of MT-ND2 and MT-ND5 (Fig. 10b, c). Up to 70% of the editing activity was detected for these four proteins against the target, and no off-target mutation was detected for the same mRNA molecule (Fig. 10bc).
- RNA base editing method provided by the present invention can be expected to be used in various fields as follows.
- RNA related to medical treatment and specific diseases Recognize and edit specific RNA related to medical treatment and specific diseases.
- the direction of many mutations in genetic diseases is the C to U mutation. Therefore, the method of the present invention capable of converting U to C may be particularly useful.
- stem cells for example, iPS cells
- model cells for evaluation of cosmetics for evaluation of cosmetics
- expression of functional RNA are turned on for the purpose of elucidating the mechanism of drug discovery and pharmacological tests. Contains cells that can be turned off.
- RNA editing with DYW protein enables breeding and breeding (genetic improvement of organisms) of organisms more accurately and quickly than conventional techniques.
- RNA editing by DYW protein does not change traits by foreign genes unlike genetic recombination, so it can be said that it is close to the conventional breeding method of selection of mutants and backcrossing. Therefore, it is possible to respond reliably and promptly to global food problems and environmental problems.
- amino acid residues are sometimes simply referred to as amino acids.
- a search / analysis regarding the identity of a base sequence or an amino acid sequence can be performed by an algorithm or program well known to those skilled in the art (for example, BLASTN, BLASTP, BLASTX, ClustalW).
- the parameters when using the program can be appropriately set by those skilled in the art, and the default parameters of each program may be used. Specific methods of these analysis methods are also well known to those skilled in the art.
- the sequence identity is preferably high unless otherwise specified. Specifically, it is preferably 40% or more, more preferably 45% or more, further preferably 50% or more, further preferably 55% or more, and further preferably 60% or more. Is more preferable, and 65% or more is further preferable. Further, it is preferably 70% or more, more preferably 80% or more, further preferably 85% or more, further preferably 90% or more, still more preferably 95% or more. , 97.5% or more is more preferable.
- the number of amino acids to be substituted when referred to as "substitution, deletion, or addition sequence” shall consist of the amino acid sequence of any motif or protein, unless otherwise specified.
- the motif or protein is not particularly limited as long as it has a desired function, but if the number is about 1 to 9 or 1 to 4, or if it is replaced with an amino acid having similar properties, a larger number of substitutions may be made. sell. Means for preparing polynucleotides or proteins relating to such amino acid sequences are well known to those of skill in the art.
- Amino acids with similar properties refer to amino acids with similar physical characteristics such as hydropathy, charge, pKa, and solubility, and refer to, for example, the following.
- Hydrophobic (non-polar) amino acids alanine, valine, glycine, isoleucine, leucine, phenylalanine, proline, tryptophan, tyrosine non-hydrophobic amino acids; arginine, asparagine, aspartic acid, glutamic acid, glutamine, lysine, serine, threonine, cysteine, histidine , Methionin; Hydrophilic amino acids; arginine, asparagine, aspartic acid, glutamic acid, glutamine, lysine, serine, threonine; Acidic amino acids: aspartic acid, glutamic acid; Basic amino acids: lysine, arginine, histidine; Neutral amino acids: alanine, asparagine, cysteine, glut
- DYW For the design of the WW domain, we selected a lineage of short-branched proteins found only in hornworts (Fig. 1b, WW1). Since this lineage group has short branches, it is presumed that gene mutations between proteins are small.
- DYW For the design of the WW domain, we selected a lineage of short-branched proteins found only in hornworts (Fig. 1b, WW1). Since this lineage group has short branches, it is presumed that gene mutations between proteins are small.
- KP domain we focused on the DYW domain strains specific to pterophyta plants. The protein sequences included in this lineage have large amino acid mutations, but their length is conserved (Fig. 1c, KP1).
- RNA binding domain design of RNA binding domain
- P1 and L1 standard length 35 amino acid motif
- S1 31 amino acid motif
- P1L1S1 located at the first (N-terminal side), P1L1S1 located inside, and P1L1S1 at the last (C-terminal side) located immediately before P2L2S2.
- P1L1S1 located at the first (N-terminal side), P1L1S1 located inside, and P1L1S1 at the last (C-terminal side) located immediately before P2L2S2.
- P1L1S1 located at the first (N-terminal side), P1L1S1 located inside, and P1L1S1 at the last (C-terminal side) located immediately before P2L2S2.
- P1L1S1 located at the first (N-terminal side)
- P1L1S1 located inside
- P1L1S1 located at the last (C-terminal side) located immediately before P2L2S2.
- P1L1S1 located at the
- the gene region encoding the recombinant artificial DYW protein was cloned into an expression vector, and the target sequence was added downstream of the stop codon.
- PPR56, PPR65 Physcomitrella patens
- Non-Patent Document 12 we have developed a method for testing the RNA editing activity of the designed PPR protein in Escherichia coli.
- the designed PLS-DYW: PG1 and PLS-DYW: WW1 showed no editing activity on DNA, while cytidine was replaced with uridine with an editing efficiency of more than 90% on RNA (Fig. 3a, b, d).
- Trx-PPR-DYW protein and target sequence A common sequence for each DYW domain (including P2, L2, S2, E1, E2) was designed using EMBOSS: cons (v.6.6.0.0).
- pET21b + PA was modified to remove the original Esp3I and BpiI restriction enzyme sites, and two Esp3I sites were added as cloning sites.
- the gene was constructed in four sections (Trx, PPR array, DYW domain and RNA editing site) using a two-step Golden Gate method.
- RNA editing activity in E. coli To analyze the RNA editing activity of recombinant proteins in E. coli, we modified the protocol developed by Oldenkott et al. (Non-Patent Document 12 above).
- the plasmid DNA prepared above was introduced into Escherichia coli Rosetta 2 strain and cultured overnight at 37 ° C. in 1 mL of LB medium (containing 50 ⁇ g / mL of carbenicillin and 17 ⁇ g / mL of chloramphenicol).
- LB medium containing 5 mL of suitable antibiotic was prepared in a deep bottom 24-well plate and 100 ⁇ L of preculture was inoculated here. The culture was grown at 37 ° C.
- RNA editing efficiency is measured by using the ratio of the heights of the waveform peaks of C and U at the editing site, and C-to-U RNA editing efficiency is U / (C + U) ⁇ 100, U-to-C editing. The efficiency was calculated by C / (C + U) ⁇ 100. The independent experiment was repeated 3 times.
- HEK293T cells were transfected with a gene in which PLS-type PPR was fused with each DYW domain (PG1 (SEQ ID NO: 1), WW1 (SEQ ID NO: 2), KP1 (SEQ ID NO: 3)) and a plasmid containing the target sequence. After culturing, RNA was collected. The conversion efficiency of cytidine (C) to uridine (U) or uridine (U) to cytidine (C) at the target site was analyzed by sanger sequencing (Fig. 5). When fused with the PG1 or WW1 domain, there was 90% or more C to U activity, while no U to C activity was detected (Fig.
- HEK293T cell culture HEK293T cells are in Dulbecco's Modified Eagle Medium (DMEM) medium containing high glucose, glutamine, phenol-RED, sodium pyruvate (Fujifilm Wako Pure Chemical Industries, Ltd.) with 10% fetal bovine serum (Capricom) and 1% penicillin-streptomycin. (Fuji Film Wako Pure Chemical Industries, Ltd.) was added and cultured at 37 ° C and 5% CO2. Cells were passaged every 2-3 days when they reached 80-90% confluence.
- DMEM Dulbecco's Modified Eagle Medium
- DMEM Dulbecco's Modified Eagle Medium
- Capricom fetal bovine serum
- penicillin-streptomycin penicillin-streptomycin
- RNA editing assay In the RNA editing assay, about 8.0 x 10 4 HEK293T cells were placed in each well of a 24-well flat-bottomed cell culture plate and cultured at 37 ° C. at 5% CO 2 for 24 hours. Add 18.5 ⁇ l Opti-MEM® I Reduced Serum Medium (Thermo Fisher) and 1.5 ⁇ l FuGENE® HD Transfection Reagent (Promega) to each well to a final 25 ⁇ l volume. And said. The mixture was incubated for 10 minutes at room temperature before being added to the cells. Cells were harvested 24 hours after transfection.
- Opti-MEM® I Reduced Serum Medium Thermo Fisher
- FuGENE® HD Transfection Reagent Promega
- RNA extraction, reverse transcription, sequencing The assay was performed in the same manner as in the E. coli assay described above. In the following examples, unless otherwise specified, the assay in Escherichia coli and the same method as in this example were carried out.
- the DYW domain can be divided into several regions due to the conservation of the amino acid sequence, but the relationship with these RNA editing activities is unknown.
- KP1 and a part of the WW1 domain were swapped, and the effect on RNA editing activity was investigated in HEK239T cells (Fig. 6).
- Fig. 6 In the fusion of PG box and DYW of WW1 domain to the central site including the active site of KP1 domain (chimKP1a SEQ ID NO: 90), U to C activity higher than that of KP1 domain was observed, and C to U activity was observed. It turned out that there was almost no activity. Domain swapping has succeeded in improving the performance of U to C editing of KP domains.
- KP2-KP23 SEQ ID NOs: 68-89
- KP22 SEQ ID NO: 88
- Fig. 7a E. coli
- HEK293T cells Fig. 7b, c
- KP22 SEQ ID NO: 88
- PG2-PG13 SEQ ID NOs: 41-53 were designed and C to U RNA editing activity was examined in E. coli (Fig. 8a) and HEK293T cells (Fig. 8b, c).
- PG11 SEQ ID NO: 50 has the highest C to U editing activity and succeeded in improving RNA editing activity.
- Mitochondria have their own genome and encode important complex constituent proteins involved in respiration and ATP production. It is known that various diseases are caused by these mutations, and a mutation repair method is required.
- the CRISPR-Cas system has been developed as a C-to-U RNA editing tool in the cytoplasm by fusing it in the ADAR domain modified to the Cas protein (Abudayyeh et al. 2019 Science Vol.365, Issue 6451, pp. 382-386).
- the CRISPR-Cas system is composed of proteins and guide RNAs, making efficient mitochondrial transport of guide RNAs difficult.
- PPR protein can be RNA-edited with one molecule, and in general, protein can be delivered to mitochondria by fusing a mitochondrial localized signal sequence on the N-terminal side. Therefore, in order to confirm whether this technology can be used for RNA editing of mitochondria, we designed a PPR targeting MT-ND2 and MT-ND5 and created a gene fused with the PG1 or WW1 domain (Fig. 10a). ..
- These proteins consisting of mitochondrial targeting sequences (MTS) and P-DYW sequences, target the 3rd position of the 178th and 301st codons of MT-ND2 and MT-ND5 so as not to adversely affect HEK293T cells.
- Fig. 10a After introducing the plasmid into HEK293T cells, editing was confirmed in MT-ND2 and MT-ND5 mRNA (Fig. 10b, c). Up to 70% of the editing activity was detected for these four proteins against the target, and no off-target mutation was detected for the same mRNA molecule (Fig. 10bc).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
[1] 下記a、b、c、及びbcのいずれか一のポリペプチドからなるDYWドメインを含む、人工DYWタンパク質を標的RNAに適用する、標的RNAを編集する方法。
a. xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
(配列中、xは任意のアミノ酸を表し、…は任意のポリペプチド断片を表す。)
[2] 下記a、b、c、及びbcのいずれか一のポリペプチドからなるDYWドメイン。
a. xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
[3] 少なくとも1個のPPRモチーフを含み、標的RNAに配列特異的に結合可能なRNA結合ドメイン、及び2に記載のDYWドメインを含む、DYWタンパク質。
[4] RNA結合ドメインが、PLS型である、2に記載のDYWタンパク質。
[5] 標的RNAを編集する方法であって、
下記c又はbcのポリペプチドからなるDYWドメインを標的RNAに適用して編集標的UをCに変換する工程を含む、方法。
c. KPAxc1Axc2IExc3… HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
[6] DYWドメインが、少なくとも1個のPPRモチーフを含み、PPR-codeのルールにしたがって標的RNAに配列特異的に結合可能なRNA結合ドメインに融合されている、5に記載の方法。
[7] 真核細胞においてRNAを編集するための、2に記載のDYWドメインを含む、組成物。
[8] 2に記載のDYWドメイン、又は3又は4に記載のDYWタンパク質をコードする核酸。
[9] 8に記載の核酸を含む、ベクター。
[10] 9に記載のベクターを含む、細胞(ヒト個体は除く。)。
a. xa1PGxa2SWIExa3-xa16HP … HSE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HSE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HAE … Cxc4xc5CH … Dxc6xc7を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
(配列中、xは任意のアミノ酸を表し、…は任意のポリペプチド断片を表す。)
[2] 下記a~cのいずれか一のポリペプチドからなるDYWドメイン。
a. xa1PGxa2SWIExa3-xa16HP … HSE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HSE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HAE … Cxc4xc5CH … Dxc6xc7を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
[3] 少なくとも1個のPPRモチーフを含み、標的RNAに配列特異的に結合可能なRNA結合ドメイン、及び2に記載のDYWドメインを含む、DYWタンパク質。
[4] RNA結合ドメインが、PLS型である、2に記載のDYWタンパク質。
[5] 標的RNAを編集する方法であって、
下記cのポリペプチドからなるDYWドメインを標的RNAに適用して編集標的UをCに変換する工程を含む、方法。
c. KPAxc1Axc2IExc3… HAE … Cxc4xc5CH … Dxc6xc7を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
[6] DYWドメインが、少なくとも1個のPPRモチーフを含み、PPR-codeのルールにしたがって標的RNAに配列特異的に結合可能なRNA結合ドメインに融合されている、5に記載の方法。
[7] 真核細胞においてRNAを編集するための、2に記載のDYWドメインを含む、組成物。
[8] 2に記載のDYWドメイン、又は3又は4に記載のDYWタンパク質をコードする核酸。
[9] 8に記載の核酸を含む、ベクター。
[10] 9に記載のベクターを含む、細胞(ヒト個体は除く。)。
a. xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYW、xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYW、及びKPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8は、いずれもアミノ酸配列を表す。配列中、xは、それぞれ独立に、任意のアミノ酸を表し、…は、それぞれ独立に、任意の長さの任意のアミノ酸配列からなるポリペプチド断片を表す。本発明に関し、DYWドメインは、これらの3つのアミノ酸配列のいずれか一つで表すことができる。特に、xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWからなるDYWドメインをDYW:PG、xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWからなるDYWドメインをDYW:WW、及びKPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8からなるDYWドメインをDYW:KPと表すことがある。
DYW:PGは、xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWからなるポリペプチドである。好ましくは、xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と配列同一性([用語]の項で詳述する)を有し、かつC-to-U/U-to-C編集活性を有するポリペプチドである。DYW:PGは、編集標的CをUに変換する活性(C-to-U編集活性)を有する。配列番号:1には、本明細書の実施例の項に示した実験で使用した、全長136アミノ酸長からなるDYW:PGの配列を示した。この配列は、本願が初めて開示するものであり、新規である。
xa1は、DYW:PGとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはE(グルタミン酸)又はそれに性質の似たアミノ酸であり、より好ましくはGである。
xa2は、DYW:PGとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはC(システイン)又はそれに性質の似たアミノ酸であり、より好ましくはCである。
xa3-xa16の各々のアミノ酸は、DYW:PGとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくは配列番号:1の配列の位置9~22の対応するアミノ酸と同じか、又は対応するアミノ酸と性質の似たアミノ酸であり、より好ましくは配列番号:1の配列の位置9~22の対応するアミノ酸と同じアミノ酸である。
xa17は、DYW:PGとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはG(グリシン)又はそれに性質の似たアミノ酸であり、より好ましくはGである。
xa18は、DYW:PGとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはD(アスパラギン酸)又はそれに性質の似たアミノ酸であり、より好ましくはDである。
DYW:WWは、xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWからなるポリペプチドである。好ましくは、xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチドである。DYW:WWは、編集標的CをUに変換する活性(C-to-U編集活性)を有する。配列番号:2には、本明細書の実施例の項に示した実験で使用した、全長137アミノ酸長からなるDYW:WWの配列を示した。この配列は、本願が初めて開示するものであり、新規である。
xb1は、DYW:WWとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはK(リシン)又はそれに性質の似たアミノ酸であり、より好ましくはKである。
xb2は、DYW:WWとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはQ(グルタミン)又はそれに性質の似たアミノ酸であり、より好ましくはQである。
xb3-xb16の各々のアミノ酸は、DYW:WWとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくは配列番号:2の配列の位置10~23の対応するアミノ酸と同じか、又は対応するアミノ酸と性質の似たアミノ酸であり、より好ましくは配列番号:2の配列の位置10~23の対応するアミノ酸と同じアミノ酸である。
xb17は、DYW:WWとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはD(アスパラギン酸)又はそれに性質の似たアミノ酸であり、より好ましくはDである。
xb18は、DYW:WWとしてC-to-U編集活性を発揮できる限り特に限定されないが、好ましくはD又はそれに性質の似たアミノ酸であり、より好ましくはDである。
DYW:KPは、KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8からなるポリペプチドである。好ましくは、KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチドである。DYW:KPは、編集標的UをCに変換する活性(U-to-C編集活性)を有する。配列番号:3には、本明細書の実施例の項に示した実験で使用した、全長133アミノ酸長からなるDYW:KPの配列を示した。この配列は、本願が初めて開示するものであり、新規である。
xc1は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはS(セリン)又はそれに性質の似たアミノ酸であり、より好ましくはSである。
xc2は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはL(ロイシン)又はそれに性質の似たアミノ酸であり、より好ましくはLである。
xc3は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはV(バリン)又はそれに性質の似たアミノ酸であり、より好ましくはVである。
xc4は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはN(アスパラギン)又はそれに性質の似たアミノ酸であり、より好ましくはNである。
xb5は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはD(アスパラギン酸)又はそれに性質の似たアミノ酸であり、より好ましくはDである。
xc6は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはD(アスパラギン酸)又はそれに性質の似たアミノ酸であり、より好ましくはDである。
xc7は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはM(メチオニン)又はそれに性質の似たアミノ酸であり、より好ましくはMである。
xb8は、DYW:KPとしてU-to-C編集活性を発揮できる限り特に限定されないが、好ましくはF(フェニルアラニン)又はそれに性質の似たアミノ酸であり、より好ましくはFである。
好ましい態様の一つにおいて、xc6xc7xc8は、他の部分の配列がどのような場合であっても、Dxc7xc8である。
別の好ましい態様の一つにおいて、xc6xc7xc8は、他の部分の配列がどのような場合であっても、GRPである。
DYWドメインは、アミノ酸配列の保存性からいくつかの領域に区分けすることができる。これらの各領域を交換したChimeric DYWにより、C-to-U編集活性又はU-to-C編集活性を向上しうる。好ましい態様の一つは、DYW:WWのPGボックスを含む領域、すなわちxb1PGxb2SWWTDxb3-xb16HPとDYWを、DYW:KPのその他の領域(… HxccE … Cxc4xc5CH …)に融合したものである。このときのxb1、xb2、xb3-xb16は、DYW:WWについての上記の説明のとおりである。また第一の連結部、第二の連結部、第三の連結部は、DYW:KPについての上記の説明のとおりである。DYW部分は、Dxbc1xbc2であってもよい。全長は、U-to-C編集活性を発揮できる限り特に限定されないが、例えば例えば110~160アミノ酸長であり、好ましくは125~149アミノ酸長であり、より好ましくは129~145アミノ酸長であり、さらに好ましくは133~141アミノ酸長である。
前述のとおり、配列番号:1、2、3の配列からなるDYWドメインは新規なものである。以下に、PPRデータベース(https://ppr.plantenergy.uwa.edu.au/onekp/;前掲非特許文献11)を用いて調査した結果を示す。
d. 配列番号:1の配列と78%を超える配列同一性を有し、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%の配列同一性を有し、さらに好ましくは95%の配列同一性を有し、さらに好ましくは97%の配列同一性を有し、かつC-to-U編集活性を有するポリペプチド;
e. 配列番号:2の配列と84%を超える配列同一性を有し、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%の配列同一性を有し、さらに好ましくは97%の配列同一性を有し、かつC-to-U編集活性を有するポリペプチド;
f. 配列番号:3の配列と86%を超える配列同一性を有し、好ましくは87%以上、より好ましくは90%以上、さらに好ましくは95%の配列同一性を有し、さらに好ましくは97%の配列同一性を有し、かつU-to-C編集活性を有するポリペプチド。
g. 配列番号:1の配列において、1~29個、好ましくは1~25個、より好ましくは1~21個、さらに好ましくは1~17個、さらに好ましくは1~13個、さらに好ましくは1~9個、さらに好ましくは1~5個のアミノ酸を、のアミノ酸を、置換、欠失、又は付加した配列を有し、かつC-to-U編集活性を有するポリペプチド;
h. 配列番号:2の配列において、1~21個、好ましくは1~18個、より好ましくは1~15個、さらに好ましくは1~12個、さらに好ましくは1~9個、さらに好ましくは1~6個のアミノ酸を、置換、欠失、又は付加した配列を有し、かつC-to-U編集活性を有するポリペプチド;
i. 配列番号:3の配列において、1~18個、好ましくは1~16個、より好ましくは1~14個、さらに好ましくは1~12個、さらに好ましくは1~10個、さらに好ましくは1~8個のアミノ酸を、さらに好ましくは1~6個のアミノ酸を、置換、欠失、又は付加した配列を有し、かつU-to-C編集活性を有するポリペプチド。
本発明においては、DYWドメインを用いて編集標的を変換する際に、編集標的が含まれるRNAを標的化するために、RNA結合タンパク質が、RNA結合ドメインとして使用される。
PPRモチーフは、特に記載した場合を除き、Web上のタンパク質ドメイン検索プログラムでアミノ酸配列を解析した際に、PfamにおいてPF01535、PrositeにおいてPS51375で得られるE値が所定値以下(望ましくはE-03)のアミノ酸配列をもつ30~38アミノ酸で構成されるポリペプチドをいう。本発明で定義するPPRモチーフを構成するアミノ酸の位置番号は、PF01535とほぼ同義である一方で、PS51375のアミノ酸の場所から2引いた数(例;本発明の1番→PS51375の3番)に相当する。ただし、“ii”(-2)番のアミノ酸というときは、PPRモチーフを構成するアミノ酸の後ろ(C末端側)から2番目のアミノ酸、又は次のPPRモチーフの1番アミノ酸に対して2個N末端側、すなわち-2番目のアミノ酸とする。次のPPRモチーフが明確に同定されない場合、次のヘリックス構造の1番目のアミノ酸に対して、2個前のアミノ酸を“ii”とする。Pfamについてはhttp://pfam.sanger.ac.uk/、Prositeについては、http://www.expasy.org/prosite/を参照することができる。
Helix Aは、12アミノ酸長の、αヘリックス構造を形成可能な部分であって、式2で表され、
Xは、存在しないか又は1~9アミノ酸長からなる部分であり;
Helix Bは、11~13アミノ酸長からなる、αヘリックス構造を形成可能な部分であり;
Lは、2~7アミノ酸長の、式3で表される部分であり;
ただし、Liii~Lviiは存在しない場合がある。
PPRモチーフは、1、4、ii番の3つのアミノ酸の組み合わせが、塩基との特異的な結合のために重要であり、これらの組み合わせにより、結合する塩基がいずれであるかを決定できる。1、4、ii番の3つのアミノ酸の組み合わせと結合可能な塩基との関係は、PPR-codeとして知られており(前掲特許文献2)、下記のとおりである。
(2) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、バリン、トレオニン、アスパラギンの場合、そのPPRモチーフは、Aに強く結合し、次にGに、その次にCに対して結合するが、Uには結合しないという、選択的なRNA塩基結合能を有する。
(3) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、バリン、アスパラギン、アスパラギンの場合、そのPPRモチーフは、Cに強く結合し、次にA又はUに対して結合するが、Gには結合しないという、選択的なRNA塩基結合能を有する。
(4) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、グルタミン酸、グリシン、アスパラギン酸の場合、そのPPRモチーフは、Gに強く結合するが、A、U及びCには結合しないという、選択的なRNA塩基結合能を有する。
(5) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、イソロイシン、アスパラギン、アスパラギンの場合、そのPPRモチーフは、Cに強く結合し、次にUに、その次にAに対して結合するが、Gには結合しないという、選択的なRNA塩基結合能を有する。
(6) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、バリン、トレオニン、アスパラギン酸の場合、そのPPRモチーフは、Gに強く結合し、次にUに対して結合するが、AとCには結合しないという、選択的なRNA塩基結合能を有する。
(7) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、リジン、トレオニン、アスパラギン酸、の場合、そのPPRモチーフは、Gに強く結合し、次にAに対して結合するが、U及びCには結合しないという、選択的なRNA塩基結合能を有する。
(8) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、フェニルアラニン、セリン、アスパラギンの場合、そのPPRモチーフは、Aに強く結合し、次にCに、その次にG及びUに対して結合するという、選択的なRNA塩基結合能を有する。
(9) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、バリン、アスパラギン、セリンの場合、そのPPRモチーフは、Cに強く結合し、次にUに対して結合するが、A及びGには結合しないという、選択的なRNA塩基結合能を有する。
(10) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、フェニルアラニン、トレオニン、アスパラギンの場合、そのPPRモチーフは、Aに強く結合するが、G、U及びCには結合しないという、選択的なRNA塩基結合能を有する。
(11) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、イソロイシン、アスパラギン、アスパラギン酸の場合、そのPPRモチーフは、Uに強く結合し、次にAに対して結合するが、G及びCには結合しないという、選択的なRNA塩基結合能を有する。
(12) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、トレオニン、トレオニン、アスパラギンの場合、そのPPRモチーフは、Aに強く結合するが、G、U及びCには結合しないという、選択的なRNA塩基結合能を有する。
(13) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、イソロイシン、メチオニン、アスパラギン酸の場合、そのPPRモチーフは、Uに強く結合し、次にCに対して結合するが、A及びGには結合しないという、選択的なRNA塩基結合能を有する。
(14) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、フェニルアラニン、プロリン、アスパラギン酸の場合PPR、そのモチーフは、Uに強く結合し、次にCに対して結合するが、A及びGには結合しないという、選択的なRNA塩基結合能を有する。
(15) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、チロシン、プロリン、アスパラギン酸の場合、そのPPRモチーフは、Uに強く結合するが、A、G及びCには結合しないという、選択的なRNA塩基結合能を有する。
(16) A1、A4、及びLiiの3つのアミノ酸の組み合わせが、順に、ロイシン、トレオニン、アスパラギン酸の場合、そのPPRモチーフは、Gに強く結合するが、A、U及びCには結合しないという、選択的なRNA塩基結合能を有する。
PPRタンパク質は、構成するPPRモチーフの構造によって、PとPLSの2つのファミリーに分類される。
P型のPPRタンパク質は、標準的な35アミノ酸のPPRモチーフ(P)の単純な繰り返し(Pアレイ)から構成されている。本発明のDYWドメインは、P型のPPRタンパク質に連結して用いることができる。
PLS型のPPRタンパク質のPPRモチーフの並びは、P1、L1、そしてS1の3つのPPRモチーフの繰り返し単位として構成され、その繰り返しのC末端側に、P2、L2、そしてS2モチーフが続く。さらにこの最後のP2L2S2モチーフのC末端側にE1及びE2と呼ばれる2つのPPR様モチーフ、そしてDYWドメインが続く場合がある。
本発明は、少なくとも1個のPPRモチーフを含み、PPR-codeのルールにしたがって標的RNAに配列特異的に結合可能なRNA結合ドメイン、及び前述したDYW:PG、DYW:WW、又はDYW:KPのいずれか一であるDYWドメインを含む、標的RNAを編集するためのDYWタンパク質を提供する。
少なくとも1個、好ましくは2~25個、より好ましくは5~20個、さらに好ましくは10~18個のPPRモチーフを含み、PPR-codeのルールにしたがって標的RNAに配列特異的に結合可能なRNA結合ドメイン、及び前述したDYW:PG、DYW:WW、又はDYW:KPのいずれか一であるDYWドメインを含む、標的RNAを編集するための人工DYWタンパク質。
少なくとも1個、好ましくは2~25個、より好ましくは5~20個、さらに好ましくは10~18個のPPRモチーフを含み、PPR-codeのルールにしたがって動物の標的RNAに配列特異的に結合可能なRNA結合ドメイン(好ましくはPLS型のPPRタンパク質であるRNA結合ドメイン)、及び前述したDYW:PG、DYW:WW、又はDYW:KPのいずれか一であるDYWドメインを含む、標的RNAを編集するためのDYWタンパク質。
(DYWタンパク質等をコードする核酸、ベクター、細胞)
本発明は、上述の、PPRモチーフ、DYWタンパク質、又はDYWタンパク質をコードする核酸、核酸を含むベクター(例えば増幅のためのベクター、発現ベクター)も提供する。ベクターには、ウイルスベクターも含まれる。増幅のためのベクターは、大腸菌や酵母を宿主として用いうる。本明細書において、発現ベクターとは、例えば上流から、プロモーター配列を有するDNA、所望のタンパク質をコードするDNA、及びターミネーター配列を有するDNAを含むベクターを意味するが、所望の機能を発揮する限り、必ずしもこの順に配列されている必要はない。本発明においては、当業者が通常使用し得る様々なベクターを組み換えて使用することができる。
本発明のDYWタンパク質により、標的RNAに含まれる編集標的CをUに、又は編集標的UをCに変換できる。RNA結合性のPPRタンパク質は、オルガネラで見られるすべてのRNA加工のステップ、切断、RNA編集、翻訳、スプライシング、RNA安定化に関与している。
・特定の疾患に関連した特定のRNAを認識し、編集する。本発明の利用により、1塩基変異による遺伝病を処置しうる。遺伝病における多くの変異の方向はCからUへの変異である。そのため、特にUをCに変換できる本発明の方法は有用でありうる。
・農作物、林産物、水産物などにおいて、収量や品質を改善する。
・耐病性の向上、環境耐性の向上、向上された又は新たな機能性を有した生物を育種する。
・微生物、培養細胞、植物体、動物体(例えば昆虫体)を利用した有用物質生産において、RNAの操作により、タンパク発現量を制御する。これにより、有用物質の生産性を向上することができる。有用物質の例は、抗体、ワクチン、酵素等のタンパク質性の物質のほか、医薬品の中間体、香料、色素等の比較的低分子の化合物である。
数値範囲x~yは、特に記載した場合を除き、両端の値x及びyを含む。
疎水性(非極性)アミノ酸;アラニン、バリン、グリシン、イソロイシン、ロイシン、フェニルアラニン、プロリン、トリプトファン、チロシン
非疎水性アミノ酸;アルギニン、アスパラギン、アスパラギン酸、グルタミン酸、グルタミン、リジン、セリン、トレオニン、システイン、ヒスチジン、メチオニン;
親水性アミノ酸;アルギニン、アスパラギン、アスパラギン酸、グルタミン酸、グルタミン、リジン、セリン、トレオニン;
酸性アミノ酸:アスパラギン酸、グルタミン酸;
塩基性アミノ酸:リジン、アルギニン、ヒスチジン;
中性アミノ酸:アラニン、アスパラギン、システイン、グルタミン、グリシン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン;
含硫アミノ酸:メチオニン、システイン;
含芳香環アミノ酸:チロシン、トリプトファン、フェニルアラニン。
[結果]
(DYWドメインの設計)
現在利用可能な植物のゲノム情報のほとんどが被子植物のものであるため、人工DYWタンパク質の開発はDYW:PG型に限定される。一方、トランスクリプトームデータは部分配列であるものの、C-to-U及びU-to-C RNA編集の両方を持つ初期の陸上植物種の情報も含まれる。そこで我々は、1000 Plants(1KP)国際コンソーシアムによって作成されたトランスクリプトームデータセットに基づいて構築されたPPRタンパク質のデータベース(前掲非特許文献11)を用い、完全な人工DYWドメインを設計した。
我々は、各DYWドメインを、植物のゲノム情報から同定されたPPRモチーフ配列(前掲非特許文献2)に基づいて設計した人工P又はPLSアレイと融合させた(図2a)。PアレイのPPRモチーフは、35アミノ酸のPモチーフのアライメントから得られた共通配列に基づいて構築し、RNA認識を高めるためにいくつかのアミノ酸を置き換えたものである。PLSアレイの設計には、標準的な長さの35アミノ酸のモチーフ(P1及びL1)と31アミノ酸のモチーフ(S1)を選んだ。天然のPPRタンパク質では、最初と最後に位置するP1L1S1は、特定の位置にあるアミノ酸残基に明確な違いが見られ、内部のP1L1S1とは異なる。天然に存在するものになるべく近い人工PLSアレイを設計するために、一番目(N末端側)に位置するP1L1S1、内部に位置するP1L1S1、そしてP2L2S2の直前に位置する最後(C末端側)のP1L1S1に分け、PPRモチーフの位置に応じた3種類のP1L1S1を設計した。今後、これらのタンパク質をその構造に基づいて命名する。例えば、PアレイにDYW:WWドメインを融合させたものは、P-DYW:WWとする。
シロイヌナズナにおいて、PPRタンパク質CLB19は葉緑体rpoA及びclpP RNA上にあるRNA編集部位を認識する。我々は、rpoA編集部位を標的とするPPRタンパク質を設計することにした。P1、L1、S1及びP2モチーフにおける4番目とii番目のアミノ酸はPPRコードに従った。一方、C末端PPR様モチーフ(L2、S2、E1、E2)に関するPPRコードは分かっていないため、L2、S2、E1及びE2モチーフに関しては、CLB19の4番目とii番目のアミノ酸を使用した(図2b)。
(系統樹)
DYWドメイン(最短132アミノ酸)を含むP2-L2-S2-E1-E2-DYW領域を、PPRデータベース(https://ppr.plantenergy.uwa.edu.au/onekp/;前掲非特許文献11)から抽出した。得られた配列のアライメントをMAFFT L-INS-i(v7.407 automatic mode)(K. Katoh, D. M. Standley (2013). Mol Biol Evol. 30(4): 772-780.)を使って作成し、その後、trimAl(v.1.4.rev15)(Salvador Capella-Gutierrez, et al. (2009). Bioinformatics. 25(15): 1972-1973.)を用いてトリミングした。トリミングではパラメーターをgt 0.2 cons 20とした。活性部位(HxExnCxxCH)に変異を持つ配列はアライメントから除いた(図4)。
各DYWドメイン(P2、L2、S2、E1、E2を含む)の共通配列をEMBOSS:cons(v.6.6.0.0)を使って設計した。タンパク質発現用ベクターはpET21b+PAを改変して、元のEsp3IとBpiI制限酵素部位を除去し、クローニングサイトとして2つのEsp3I部位を付加した。遺伝子は4つのセクション(Trx、PPRアレイ、DYWドメイン及びRNA編集部位)に分けて、2段階のGolden Gate法を使って構築した。初めに、改変pET21bベクターのEsp3I部位に、1)チオレドキシン-6×His-TEV遺伝子領域(3’にBpiI制限酵素部位を含む)、2)P2-L2-S2-E1-E2-DYW遺伝子領域(5’にBpiI制限酵素部位を含む)、及び3)RNA編集部位のコード配列領域、の3部分をクローニングした。次いで、BpiI部位に完全長PLSドメイン又はPドメインをクローニングし、PLS:DYW(配列番号:35~37)又はP:DYW(配列番号:38~40)タンパク質を作製した。
組換えタンパク質のRNA編集活性を大腸菌内で分析するために、我々は、Oldenkottらによって開発されたプロトコール(前掲非特許文献12)を改変した。上記で作成したプラスミドDNAを大腸菌Rosetta 2株に導入し、1mLのLB培地(カルベニシリン50μg/mL及びクロラムフェニコール17μg/mL含有)で37℃、一晩培養した。5mLの適切な抗生物質を含むLB培地を深底24ウェルプレートに準備し、前培養液100μLをここに播種した。この培養液を、吸光度(OD600)が0.4~0.6に達するまで、37℃、200rpmで生育させた後、プレートを4℃で10~15分間冷却した。次いで、0.4mMのZnSO4と0.4mMのIPTGを加え、さらに16℃、180rpmで18時間培養した。培養液750μLを採取して遠心分離した後、菌体ペレットを液体窒素中で凍結させ、-80℃で保存した。
[結果]
PLS型PPRと各DYWドメイン(PG1(配列番号:1), WW1(配列番号:2), KP1(配列番号:3))を融合した遺伝子と、標的配列を含むプラスミドをHEK293T細胞にトランスフェクションし、培養後RNAを回収した。標的部位のシチジン(C)からウリジン(U)、またはウリジン(U)からシチジン(C)への変換効率をサンガーシーケンシングにより解析した(図5)。PG1またはWW1ドメインを融合した場合、90%以上のC to U活性があり、一方でU to C活性は検出されなかった(図5a, c)。KP1ドメインを融合した場合、U to C活性が25%検出されたが、C to U活性も10%程度検出された(図5b, c)。これらのことから、動物培養細胞においても編集酵素が機能することが分かった。
(動物培養細胞試験用PPR発現プラスミドの作成)
図3で使用したプラスミドから、6xHis-PPR-DYWタンパク質(大腸菌での実験に用いたものと同じタンパク質(配列番号:35~37))遺伝子配列と編集サイトを含む領域( 配列番号:34)をPCRで増幅し、Golden Gate Assembly法により動物細胞発現ベクターへクローニングした。ベクターは、CMVプロモーターとヒトβ-グロビンキメライントロンを含むプロモーター制御化でPPRが発現し、SV40 polyadenylation signal によってpoly Aシグナルが付与される。
HEK293T細胞は、高グルコース、グルタミン、フェノール-RED、ピルビン酸ナトリウム(富士フイルム和光純薬株式会社)を含むDulbecco's Modified Eagle Medium (DMEM)培地に10%牛胎児血清(カプリコム)と1% ペニシリン-ストレプトマイシン(富士フイルム和光純薬株式会社)を加えたものを用い、37℃、5% CO2で培養した。細胞は80-90%コンフルエントになった時点で2-3日ごとに継代した。
RNA編集アッセイでは,24ウェル平底細胞培養プレートの各ウェルにHEK293T細胞を約8.0 x104個入れ,37℃,5% CO2で24時間培養した。各ウェルに500 ngのプラスミドを18.5 μlのOpti-MEM(登録商標) I Reduced Serum Medium (ThermoFisher)と1.5 μlのFuGENE(登録商標) HD Transfection Reagent (Promega)を加え、最終的に25 μlの容量とした。混合液は、細胞に添加する前に、室温で10分間インキュベートした。トランスフェクションの24時間後に細胞を回収した。
上述の大腸菌でのアッセイと同様に行った。なお、以下の実施例では、特に記載した場合を除き、大腸菌でのアッセイおよび本実施例と同様の方法で実験を行った。
DYWドメインは、アミノ酸配列の保存性からいくつかの領域に区分けすることができるが、これらのRNA編集活性との関連性は分かっていない。ここでは、KP1 とWW1ドメインの一部をスワップし、HEK239T細胞中で、RNA編集活性への影響を調べた(図6)。WW1ドメインのPG boxとDYWをKP1ドメインのActive siteを含む中央部位に融合したもの(chimKP1a 配列番号:90)において、KP1ドメインよりも高い50% 近いU to C活性が認められ、さらにC to U活性がほとんどなくなることが分かった。ドメインスワッピングにより、KPドメインの U to C編集の性能を改善することに成功した。
KPドメインに様々な変異を導入し、KPドメインのRNA編集活性の向上を目指した。KP2~KP23(配列番号:68~89)をデザインし、C to U または U to CのRNA編集活性を、大腸菌(図7a)及びHEK293T細胞(図7b、c)で調べた。KP22(配列番号:88)が最もU to Cへの編集活性が高く、C to Uへの編集活性が低く、KP1と比較してRNA編集活性を改善することに成功した。
PGドメインに様々な変異を導入し、PGドメインのRNA編集活性の向上を目指した。PG2~PG13(配列番号:41~53)をデザインし、C to U のRNA編集活性を大腸菌(図8a)及びHEK293T細胞(図8b、c)で調べた。PG11(配列番号:50)が最もC to Uへの編集活性が高く、RNA編集活性を改善することに成功した。
WWドメインに様々な変異を導入し、WWドメインのRNA編集活性の向上を目指した。WW2~WW14をデザインし、C to U のRNA編集活性を大腸菌(図9a)及びHEK293T細胞(図9b、c)で調べた。WW11(配列番号:63)が最もC to Uへの編集活性が高く、WW1と比較してRNA編集活性を改善することに成功した。
[結果]
ミトコンドリアは、独自のゲノムを有しており、呼吸やATP生産に関わる重要な複合体の構成タンパク質がコードされている。それらの変異により様々な病気が発症することが知られており、変異修復方法が求められている。
(ミトコンドリア編集のためのクローニング)
Zea maysのLOC100282174タンパク質からのミトコンドリア標的配列(Chin et al. 2018)、10個のPPR-P及びPPR様モチーフ、及びDYWドメイン部分(DYWドメインはPG1とWW1を使用)を、Golden Gate AssemblyによりCMVプロモーターの制御下の発現プラスミドにクローニングした(配列番号:91~94)。
Claims (10)
- 下記a、b、c、及びbcのいずれか一のポリペプチドからなるDYWドメインを含む、人工DYWタンパク質を標的RNAに適用する、標的RNAを編集する方法。
a. xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
(配列中、xは任意のアミノ酸を表し、…は任意のポリペプチド断片を表す。) - 下記a、b、c、及びbcのいずれか一のポリペプチドからなるDYWドメイン。
a. xa1PGxa2SWIExa3-xa16HP … HxaaE … Cxa17xa18CH … DYWを有し、配列番号:1の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
b. xb1PGxb2SWWTDxb3-xb16HP … HxbbE … Cxb17xb18CH … DYWを有し、配列番号:2の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
c. KPAxc1Axc2IExc3 … HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド - 少なくとも1個のPPRモチーフを含み、標的RNAに配列特異的に結合可能なRNA結合ドメイン、及び請求項2に記載のDYWドメインを含む、DYWタンパク質。
- RNA結合ドメインが、PLS型である、請求項2に記載のDYWタンパク質。
- 標的RNAを編集する方法であって、
下記c又はbcのポリペプチドからなるDYWドメインを標的RNAに適用して編集標的UをCに変換する工程を含む、方法。
c. KPAxc1Axc2IExc3… HxccE … Cxc4xc5CH … xc6xc7xc8を有し、配列番号:3の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド
bc. xb1PGxb2SWWTDxb3-xb16HP … HxccE … Cxc4xc5CH … Dxbc1xbc2を有し、配列番号:2の90の配列と少なくとも40%の配列同一性を有し、かつC-to-U/U-to-C編集活性を有するポリペプチド - DYWドメインが、少なくとも1個のPPRモチーフを含み、PPR-codeのルールにしたがって標的RNAに配列特異的に結合可能なRNA結合ドメインに融合されている、請求項5に記載の方法。
- 真核細胞においてRNAを編集するための、請求項2に記載のDYWドメインを含む、組成物。
- 請求項2に記載のDYWドメイン、又は請求項3又は4に記載のDYWタンパク質をコードする核酸。
- 請求項8に記載の核酸を含む、ベクター。
- 請求項9に記載のベクターを含む、細胞(ヒト個体は除く。)。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021248204A AU2021248204A1 (en) | 2020-03-31 | 2021-03-31 | Method for editing target RNA |
US17/915,232 US20230125942A1 (en) | 2020-03-31 | 2021-03-31 | Method for editing target rna |
EP21781411.0A EP4130274A4 (en) | 2020-03-31 | 2021-03-31 | METHODS OF PROCESSING TARGET RNA |
CA3179365A CA3179365A1 (en) | 2020-03-31 | 2021-03-31 | Method for editing target rna |
JP2022512682A JPWO2021201198A1 (ja) | 2020-03-31 | 2021-03-31 | |
KR1020227037296A KR20220165747A (ko) | 2020-03-31 | 2021-03-31 | 표적 rna의 편집방법 |
IL296955A IL296955A (en) | 2020-03-31 | 2021-03-31 | A method for editing a target RNA |
CN202180037500.0A CN115698296A (zh) | 2020-03-31 | 2021-03-31 | 编辑靶标rna的方法 |
BR112022019571A BR112022019571A2 (pt) | 2020-03-31 | 2021-03-31 | Método para editar um ácido ribonucleico alvo, domínio dyw, proteína dyw, composição para editar ácido ribonucleico em uma célula eucariótica, ácido nucleico, vetor, e, célula |
JP2024065910A JP2024096897A (ja) | 2020-03-31 | 2024-04-16 | 標的rnaを編集する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-065065 | 2020-03-31 | ||
JP2020065065 | 2020-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021201198A1 true WO2021201198A1 (ja) | 2021-10-07 |
Family
ID=77930108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/014096 WO2021201198A1 (ja) | 2020-03-31 | 2021-03-31 | 標的rnaを編集する方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US20230125942A1 (ja) |
EP (1) | EP4130274A4 (ja) |
JP (2) | JPWO2021201198A1 (ja) |
KR (1) | KR20220165747A (ja) |
CN (1) | CN115698296A (ja) |
AU (1) | AU2021248204A1 (ja) |
BR (1) | BR112022019571A2 (ja) |
CA (1) | CA3179365A1 (ja) |
IL (1) | IL296955A (ja) |
TW (1) | TW202204382A (ja) |
WO (1) | WO2021201198A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022230924A1 (ja) * | 2021-04-30 | 2022-11-03 | ||
WO2023120658A1 (ja) * | 2021-12-24 | 2023-06-29 | 国立大学法人北陸先端科学技術大学院大学 | 酵素、複合体、組換えベクター、遺伝性疾患治療薬及びポリヌクレオチド |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117384884B (zh) * | 2023-11-30 | 2024-03-08 | 辉大(上海)生物科技有限公司 | IscB多肽及其用途 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058404A1 (ja) | 2011-10-21 | 2013-04-25 | 国立大学法人九州大学 | Pprモチーフを利用したrna結合性蛋白質の設計方法及びその利用 |
WO2014175284A1 (ja) | 2013-04-22 | 2014-10-30 | 国立大学法人九州大学 | Pprモチーフを利用したdna結合性タンパク質およびその利用 |
-
2021
- 2021-03-31 WO PCT/JP2021/014096 patent/WO2021201198A1/ja unknown
- 2021-03-31 IL IL296955A patent/IL296955A/en unknown
- 2021-03-31 EP EP21781411.0A patent/EP4130274A4/en active Pending
- 2021-03-31 AU AU2021248204A patent/AU2021248204A1/en active Pending
- 2021-03-31 CA CA3179365A patent/CA3179365A1/en active Pending
- 2021-03-31 JP JP2022512682A patent/JPWO2021201198A1/ja active Pending
- 2021-03-31 TW TW110112005A patent/TW202204382A/zh unknown
- 2021-03-31 BR BR112022019571A patent/BR112022019571A2/pt unknown
- 2021-03-31 US US17/915,232 patent/US20230125942A1/en active Pending
- 2021-03-31 CN CN202180037500.0A patent/CN115698296A/zh active Pending
- 2021-03-31 KR KR1020227037296A patent/KR20220165747A/ko unknown
-
2024
- 2024-04-16 JP JP2024065910A patent/JP2024096897A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058404A1 (ja) | 2011-10-21 | 2013-04-25 | 国立大学法人九州大学 | Pprモチーフを利用したrna結合性蛋白質の設計方法及びその利用 |
WO2014175284A1 (ja) | 2013-04-22 | 2014-10-30 | 国立大学法人九州大学 | Pprモチーフを利用したdna結合性タンパク質およびその利用 |
Non-Patent Citations (26)
Title |
---|
ABUDAYYEH ET AL., SCIENCE, vol. 365, 2019, pages 382 - 386 |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410 |
BARKAN, A.ROJAS, M.FUJII, S.YAP, ACHONG, Y. SBOND, C. S.SMALL, I.: "A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins", PLOS GENET, vol. 8, 2012, pages el 002910 |
CHATEIGNER-BOUTIN, A.L. ET AL., PLANT J., vol. 56, 2008, pages 590 - 602 |
CHENG, S.GUTMANN, B.ZHONG, X.YE, Y.FISHER, M. F.BAI, F.CASTLEDEN, ISONG, Y.SONG, B.HUANG, J. ET AL.: "Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants", PLANT J., vol. 85, 2016, pages 532 - 547 |
DATABASE Nucleotide 26 July 2016 (2016-07-26), ANONYMOUS : "Megaceros tosanus clone 1 pentatricopeptide repeat protein (PPR) gene, partial cds", XP055915666, retrieved from NCBI Database accession no. EU495537 * |
DATABASE Protein 25 July 2016 (2016-07-25), ANONYMOUS : "hypothetical protein SELMODRAFT_107192 [Selaginella moellendorffii]", XP055915656, retrieved from NCBI Database accession no. EFJ21522 * |
GERKE, P.SZOVENYI, PNEUBAUER, ALENZ, HGUTMANN, B.MCDOWELL, R.SMALL, I.SCHALLENBERG-RUDINGER, M.KNOOP, V.: "Towards a plant model for enigmatic U-to-C RNA editing: the organelle genomes, transcriptomes, editomes and candidate RNA editing factors in the homwort Anthoceros agrestis", NEW PHYTOLOGIST, vol. 225, 2020, pages 1974 - 1992 |
GUTMANN B.ROYAN S.SCHALLENBERG-RUDINGER M.LENZ H.CASTLEDEN I.R.MCDOWELL R.VACHER M.A.TONTI-FILIPPINI JBOND C.SKNOOP V: "The Expansion and Diversification of Pentatricopeptide Repeat RNA-Editing Factors in Plants", MOLECULAR PLANT, vol. 13, 2020, pages 215 - 230 |
K. KATOHD.M. STANDLEY, MOL. BIOL. EVOL., vol. 30, no. 4, 2013, pages 772 - 780 |
KNIE, N.GREWE, F.FISCHER, S.KNOOP, V.: "Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns - a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles", BMC EVOL. BIOL., vol. 16, 2016, pages 134 |
KOBAYASHI, T.YAGI, Y.NAKAMURA, T.: "Comprehensive Prediction of Target RNA Editing Sites for PLS-Class PPR Proteins in Arabidopsis thaliana", PLANT CELL PHYSIOL., vol. 60, 2019, pages 862 - 874 |
LARSSON, A.: "AliView: a fast and lightweight alignment viewer and editor for large data sets", BIOINFONNATICS, vol. 30, no. 22, 2014, pages 3276 - 3278, Retrieved from the Internet <URL:http://dx.doi.org/10.1093/bioinfonnatics/btu531> |
LETUNIC, 1BORK, P, NUCLEIC ACIDS RES., vol. 44, 2016, pages W242 - 245 |
LURIN, C.ANDRES, C.AUBOURG, S.BELLAOUI, M.BITTON, F.BRUYERE, C.CABOCHE, M.DEBAST, C.GUALBERTO, J.HOFFMANN, B. ET AL.: "Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis", PLANT CELL, vol. 16, 2004, pages 2089 - 2103, XP055219280, DOI: 10.1105/tpc.104.022236 |
NUCLEIC ACIDS RESEARCH, vol. 40, no. 6, 2012, pages 2712 - 2723 |
OLDENKOTT BASTIAN, YANG YINGYING, LESCH ELENA, KNOOP VOLKER, SCHALLENBERG-RÜDINGER MAREIKE: "Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli", COMMUNICATIONS BIOLOGY, vol. 2, no. 1, 1 December 2019 (2019-12-01), pages 1 - 8, XP055915676, DOI: 10.1038/s42003-019-0328-3 * |
OLDENKOTT, BYANG, YLESCH, EKNOOP, V.SCHALLENBERG-RUDINGER, M: "Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli", COMMUNICATIONS BIOLOGY, vol. 2, 2019, pages 85, XP055915676, DOI: 10.1038/s42003-019-0328-3 |
PRICE, M. N. ET AL., PLOS ONE, vol. 5, 2010, pages e9490 |
RUWE ET AL., NEW PHYTOL., vol. 222, 2019, pages 218 - 229 |
SALVADOR CAPELLA-GUTIERREZ, BIOINFORMATICS, vol. 25, no. 15, 2009, pages 1972 - 1973 |
See also references of EP4130274A4 |
SHEN, C.ZHANG, DGUAN, ZLIU, YYANG, ZYANG, Y.WANG, X.WANG, QZHANG, Q.FAN, S. ET AL., NAT. COMMUN., vol. 7, 2016, pages 11285 |
TAKENAKA, M., ZEHRMANN, A., BRENNICKE, A., AND GRAICHEN, K.: "Improved computational target site prediction for pentatricopeptide repeat RNA editing factors", PLOS ONE, vol. 8, 2013, pages e65343 |
YAGI, Y.HAYASHI, S.KOBAYASHI, KHIRAYAMA, T.NAKAMURA, T.: "Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants", PLOS ONE, vol. 8, 2013, pages e57286 |
YAN, J.YAO, YHONG, SYANG, Y.SHEN, C.ZHANG, QZHANG, D.ZOU, T.YIN, P.: "Delineation of pentatricopeptide repeat codes for target RNA prediction", NUCLEIC ACIDS RES., vol. 47, 2019, pages 3728 - 3738, XP055769935, DOI: 10.1093/nar/gkz075 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022230924A1 (ja) * | 2021-04-30 | 2022-11-03 | ||
WO2022230924A1 (ja) * | 2021-04-30 | 2022-11-03 | 国立大学法人大阪大学 | 筋強直性ジストロフィー1型治療薬 |
JP7461687B2 (ja) | 2021-04-30 | 2024-04-04 | エディットフォース株式会社 | 筋強直性ジストロフィー1型治療薬 |
WO2023120658A1 (ja) * | 2021-12-24 | 2023-06-29 | 国立大学法人北陸先端科学技術大学院大学 | 酵素、複合体、組換えベクター、遺伝性疾患治療薬及びポリヌクレオチド |
Also Published As
Publication number | Publication date |
---|---|
EP4130274A1 (en) | 2023-02-08 |
IL296955A (en) | 2022-12-01 |
JPWO2021201198A1 (ja) | 2021-10-07 |
TW202204382A (zh) | 2022-02-01 |
AU2021248204A1 (en) | 2022-11-10 |
CA3179365A1 (en) | 2021-10-07 |
KR20220165747A (ko) | 2022-12-15 |
BR112022019571A2 (pt) | 2022-12-06 |
EP4130274A4 (en) | 2024-05-22 |
CN115698296A (zh) | 2023-02-03 |
US20230125942A1 (en) | 2023-04-27 |
JP2024096897A (ja) | 2024-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021201198A1 (ja) | 標的rnaを編集する方法 | |
JP6180002B2 (ja) | 変異型逆転写酵素 | |
JP6994560B2 (ja) | 標的化されたゲノム修飾を増強するためのヌクレオソーム相互作用タンパク質ドメインの使用 | |
JP7246100B2 (ja) | 新規融合タンパク質の調製およびそのタンパク質合成の向上における使用 | |
CN110551700B (zh) | Adh蛋白家族突变体及其应用 | |
CN106795521A (zh) | 用于修饰所靶向基因座的方法和组合物 | |
CN114438055B (zh) | 新型的crispr酶和系统以及应用 | |
CN110408636B (zh) | 多重标签串联的dna序列及其在蛋白质表达纯化系统的应用 | |
CN111778169B (zh) | 一种提高体外蛋白合成效率的方法 | |
CN109423496A (zh) | 一种细胞中内源性表达rna聚合酶的核酸构建物 | |
WO2019185751A1 (en) | Inhibitors of crispr-cas associated activity | |
CN110408635A (zh) | 一种含有链霉亲和素元件的核酸构建物在蛋白质表达、纯化中的应用 | |
JP2023156365A (ja) | Crispr/cas融合タンパク質およびシステム | |
KR20210060541A (ko) | 개선된 고처리량 조합 유전적 변형 시스템 및 최적화된 Cas9 효소 변이체 | |
WO2023169410A1 (zh) | 胞嘧啶脱氨酶及其在碱基编辑中的用途 | |
CN109152808A (zh) | 用于核酸序列的特异性靶向的二聚蛋白质 | |
CN106589134A (zh) | 嵌合蛋白pAgoE及构建方法、应用以及使用向导的嵌合蛋白pAgoE及构建方法、应用 | |
CN109384833A (zh) | 特异性识别甲基化修饰dna碱基的tale rvd及其应用 | |
KR20160079865A (ko) | 프테로스틸벤의 생합성 제조를 위한 o-메틸트랜스퍼라제의 사용 방법 | |
Ke et al. | A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes | |
JP2023145672A (ja) | 効率的なpprタンパク質の作製方法及びその利用 | |
CN114163506B (zh) | 施氏假单胞杆菌来源的PsPIWI-RE蛋白在介导同源重组上的应用 | |
CN115703842A (zh) | 高效率高精度的胞嘧啶c到鸟嘌呤g转变的碱基编辑器 | |
CA3142303A1 (en) | Ppr protein causing less aggregation and use of the same | |
JP2013165669A (ja) | 変異型逆転写酵素 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21781411 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022512682 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3179365 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022019571 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20227037296 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021248204 Country of ref document: AU Date of ref document: 20210331 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021781411 Country of ref document: EP Effective date: 20221031 |
|
ENP | Entry into the national phase |
Ref document number: 112022019571 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220928 |