WO2021201013A1 - 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法 - Google Patents

封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法 Download PDF

Info

Publication number
WO2021201013A1
WO2021201013A1 PCT/JP2021/013656 JP2021013656W WO2021201013A1 WO 2021201013 A1 WO2021201013 A1 WO 2021201013A1 JP 2021013656 W JP2021013656 W JP 2021013656W WO 2021201013 A1 WO2021201013 A1 WO 2021201013A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polymerizable compound
compound
group
encapsulant
Prior art date
Application number
PCT/JP2021/013656
Other languages
English (en)
French (fr)
Inventor
泰則 石田
啓之 栗村
山下 幸彦
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022512576A priority Critical patent/JPWO2021201013A1/ja
Priority to CN202180024196.6A priority patent/CN115336389A/zh
Priority to KR1020227035097A priority patent/KR20220164509A/ko
Publication of WO2021201013A1 publication Critical patent/WO2021201013A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a sealant, a cured product, an organic electroluminescence display device, and a method for manufacturing an organic electroluminescence display device.
  • organic electroluminescence (organic EL) display elements and organic thin film solar cell elements have been promoted. Since the organic thin film device can be easily manufactured by vacuum deposition, solution coating, or the like, it is excellent in productivity.
  • the organic EL display element is a thin film structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other. Electrons are injected into the organic light emitting material layer from one electrode and holes are injected from the other electrode, so that the electrons and holes are combined in the organic light emitting material layer to perform self-emission. Compared with a liquid crystal display element or the like that requires a backlight, it has the advantages of better visibility, thinner size, and low DC voltage drive.
  • an organic EL display element has a problem that when the organic light emitting material layer or the electrode is exposed to the outside air, its light emitting characteristics are rapidly deteriorated and its life is shortened. Therefore, in order to improve the stability and durability of the organic EL display element, a sealing technology that shields the organic light emitting material layer and the electrode from the moisture and oxygen in the atmosphere is indispensable in the organic EL display element. There is.
  • Patent Document 1 discloses a method of filling an organic EL display element substrate with a photocurable sealant and irradiating it with light to seal it in a top-emitting organic EL display element or the like.
  • Patent Documents 2 to 4 disclose techniques for sealing an organic EL display element to prevent deterioration due to moisture.
  • Patent Document 5 contains (A) an epoxy compound, (B) an epoxy resin, and (C) a photocationic polymerization initiator, and has a water content of 1000 ppm or less and a chlorine content of 1000 ppm or less. The composition is disclosed. However, Patent Document 5 does not describe the specific gravity of the polymerizable compound.
  • Patent Document 6 discloses a photocurable resin composition containing a cationically polymerizable compound, a photocationic polymerization initiator, and a plate-shaped fine particle inorganic filler having a specific shape.
  • the composition described in Patent Document 6 cannot obtain sufficient moisture permeability, and it is difficult to apply it to an organic electroluminescence display element. Further, Patent Document 6 does not describe the specific gravity of the polymerizable compound.
  • Patent Document 7 contains a polyfunctional cationically polymerizable compound, an organic layered silicate, and a curing agent.
  • the organic layered silicate is dispersed in the polyfunctional cationically polymerizable compound, and the organic layered silicate is dispersed in the polyfunctional cationically polymerizable compound.
  • Curable resin compositions are disclosed. However, with the resin composition described in Patent Document 7, sufficient moisture permeability may not be obtained in some cases. Further, Patent Document 7 does not describe the specific gravity of the polymerizable compound.
  • Patent Document 8 contains (a) an epoxy compound and (b) a compound having two or more crosslinkable groups reactive with the epoxy compound in a specific ratio, and has a refractive index of 1.6 or more. Moreover, a low moisture permeability epoxy resin composition is disclosed. However, the resin composition described in Patent Document 8 may not have sufficient moisture permeability. Further, Patent Document 8 does not describe the specific gravity of the polymerizable compound.
  • Patent Document 9 describes a curable composition containing an organic polymer (A) having a specific reactive silicon group and a polyoxyalkylene polymer (B) having a specific reactive silicon group.
  • a curable composition characterized in that the specific gravity of the sex composition is 0.9 or more and 1.3 or less is disclosed.
  • Patent Document 9 does not describe reducing the moisture permeability by adjusting the specific gravity of the polymerizable compound.
  • Patent Document 10 describes a copolymer obtained by photopolymerizing a composition containing 10 to 70% by weight of a bromine-added bisphenol A type epoxy (meth) acrylate having a specific structure, and has a refractive index of 1.58 or more. , A photocurable resin lens having a specific gravity of 1.5 or less and an Abbe number of 30 or more is disclosed. However, Patent Document 10 does not describe lowering the moisture permeability by adjusting the specific gravity of the polymerizable compound, nor does it describe sealing the organic EL display element.
  • Patent Document 11 describes a specific polysiloxane copolymer that is photopolymerized and has a functional acrylic group, and is suitable for restoring a specific gravity greater than about 1.0 and the refractive index of a natural crystalline lens. A polysiloxane copolymer having a refractive index is disclosed. However, Patent Document 11 does not describe lowering the moisture permeability by adjusting the specific gravity of the polymerizable compound, nor does it describe sealing the organic EL display element.
  • Patent Document 12 describes an active energy ray-curable compound (A), a photoradical polymerization initiator (C), and / or a photocationic polymerization initiator having one or more ethylenically unsaturated double bonds in one molecule.
  • An active energy ray-curable resin composition for balancing motor rotors which comprises (D) and has a specific gravity of 1.4 (25 ° C.) or more and a viscosity of 1,000 poise (25 ° C.) or less. It is disclosed.
  • Patent Document 12 does not describe lowering the moisture permeability by adjusting the specific gravity of the polymerizable compound, nor does it describe sealing the organic EL display element.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sealing agent capable of forming a sealing material having excellent moisture resistance and adhesiveness to a glass substrate or the like.
  • the present invention also relates to a cured product of the encapsulant, a method for producing an organic electroluminescence display device using the encapsulant, and an organic electroluminescence display device having a sealing material formed from the encapsulant. The purpose is to provide.
  • the present invention is as follows.
  • the specific gravity of the cured product is 1.35 to 19.0, set to ⁇ 1>.
  • the glass transition temperature of the polymer is 85 ° C.
  • the encapsulant When the encapsulant is cured to obtain a cured product containing a polymer of the polymerizable compound and the inorganic filler, the cross-linking density of the cured product is 1.5 ⁇ 10 -3 mol / cm 3 or more.
  • ⁇ 6> The encapsulant according to ⁇ 5>, wherein the polymerizable compound (X) has a halogen group element.
  • ⁇ 7> The encapsulant according to ⁇ 6>, wherein the polymerizable compound (X) has at least one halogen group element selected from the group consisting of a fluorine element and a bromine element.
  • ⁇ 8> The encapsulant according to ⁇ 6> or ⁇ 7>, wherein the content of the halogen group element in the polymerizable compound (X) is 10 to 50% by mass with respect to the total element amount of the polymerizable compound. ..
  • ⁇ 9> The encapsulant according to any one of ⁇ 1> to ⁇ 8>, wherein the polymerizable compound contains a crosslinkable compound (Y) having two or more polymerizable functional groups.
  • Y crosslinkable compound
  • the polymerizable compound contains at least one selected from the group consisting of a glycidyl ether compound, an alicyclic epoxy compound, a vinyl ether compound and an oxetane compound. .. ⁇ 11> The encapsulant according to any one of ⁇ 1> to ⁇ 10>, wherein the polymerizable compound has a radically polymerizable functional group.
  • ⁇ 12> The encapsulant according to any one of ⁇ 1> to ⁇ 11>, wherein the polymerization initiator is a photopolymerization initiator.
  • the polymerization initiator contains an onium salt.
  • the polymerization initiator is a radical polymerization initiator.
  • ⁇ 15> The sealant according to any one of ⁇ 1> to ⁇ 14>, wherein the true specific gravity of the inorganic filler is 1.5 to 5.0.
  • ⁇ 16> The encapsulant according to any one of ⁇ 1> to ⁇ 15>, wherein the inorganic filler contains at least one selected from the group consisting of silica, mica, kaolin, talc and aluminum oxide.
  • the inorganic filler contains talc.
  • the inorganic filler contains inorganic particles having an average particle diameter of 0.01 to 30 ⁇ m.
  • the resin particles contain at least one selected from the group consisting of crosslinked poly (meth) methyl acrylate particles, crosslinked polystyrene particles, and crosslinked poly (meth) methyl acrylate copolymer particles.
  • the encapsulant according to. ⁇ 21> The encapsulant according to ⁇ 19> or ⁇ 20>, wherein the average particle size of the resin particles is 1 ⁇ m to 100 ⁇ m.
  • ⁇ 22> The encapsulant according to any one of ⁇ 19> to ⁇ 21>, wherein the standard deviation of the particle volume distribution with respect to the particle size when the particle size ( ⁇ m) of the resin particles is displayed logarithmically is 0.25 or less. ..
  • ⁇ 23> The sealant according to any one of ⁇ 19> to ⁇ 22>, wherein the content of the resin particles is 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • ⁇ 24> The encapsulant according to any one of ⁇ 1> to ⁇ 23>, wherein the content of the polymerization initiator is 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • ⁇ 25> The sealant according to any one of ⁇ 1> to ⁇ 24>, wherein the content of the inorganic filler is 5 to 500 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • ⁇ 26> The sealant according to any one of ⁇ 1> to ⁇ 25>, wherein the total amount mixture of the polymerizable compound has a viscosity at 80 ° C. of 500 to 30,000 mPa ⁇ s. ⁇ 27>
  • the ratio ( ⁇ 2 / ⁇ 1 ) of the viscosity ⁇ 2 at 25 ° C. and 0.1 rpm to the viscosity ⁇ 1 at 25 ° C. and 1 rpm is 1.1 to 10.0, any of ⁇ 1> to ⁇ 27>.
  • the sealant described in Crab. ⁇ 29> When the encapsulant is cured to obtain a cured product containing a polymer of the polymerizable compound and the inorganic filler, the mean free volume of the cured product is 1 nm 3 or less, ⁇ 1> to ⁇ 28. > The encapsulant according to any one of. ⁇ 30> When the encapsulant is cured to obtain a cured product containing a polymer of the polymerizable compound and the inorganic filler, the porosity of the cured product is less than 20%, ⁇ 1> to ⁇ 29. > The encapsulant according to any one of.
  • the encapsulant When the encapsulant is cured to obtain a cured product containing a polymer of the polymerizable compound and the inorganic filler, the cured product has a temperature of 85 ° C. and a relative humidity of 85% in accordance with JIS Z0208. moisture permeability being measured under the conditions of, and 50 (g / m 2 ⁇ 24h / 100 ⁇ m) or less, ⁇ 1> to sealant according to any one of ⁇ 30>.
  • ⁇ 33> The sealant according to any one of ⁇ 1> to ⁇ 32>, which is a sealant for forming a dam.
  • ⁇ 34> A cured product obtained by curing the sealant according to any one of ⁇ 1> to ⁇ 33>.
  • ⁇ 35> A method for manufacturing an organic electroluminescence display device having a dam-fill sealing structure, which comprises a step of applying and curing the sealing agent according to any one of ⁇ 1> to ⁇ 33> to form a dam.
  • ⁇ 36> An organic electroluminescence display device having a dam-fill sealing structure including a dam and a filling agent, wherein the dam contains a cured product of the sealing agent according to any one of ⁇ 1> to ⁇ 33>.
  • a sealing agent capable of forming a sealing material having excellent moisture resistance and adhesiveness to a glass substrate or the like. Further, according to the present invention, an organic electroluminescence having a cured product of the encapsulant, a method for producing an organic electroluminescence display device using the encapsulant, and a encapsulant formed from the encapsulant. A display device is provided.
  • the composition of the present embodiment contains a polymerizable compound, a polymerization initiator and an inorganic filler.
  • the polymerizable compound contains a high specific density compound having a specific density of 1.3 to 4.0.
  • the composition of the present embodiment it is possible to form a sealing material having excellent moisture resistance and adhesiveness to a glass substrate or the like. Therefore, the composition of the present embodiment can be suitably used as a sealing agent (preferably a sealing agent for an organic electroluminescence display element). Further, the composition of the present embodiment can be particularly preferably used as a dam-forming sealing agent for forming a dam-fill sealing structure.
  • the polymerizable compound can be said to be a compound having a polymerizable functional group.
  • the polymerizable compound one type may be used alone, or two or more types may be used in combination.
  • the polymerizable compound preferably has at least one selected from the group consisting of cationically polymerizable functional groups and radically polymerizable functional groups.
  • the polymerizable compound having a cationically polymerizable functional group is selected from the group consisting of epoxy compounds (for example, glycidyl ether compounds, alicyclic epoxy compounds, etc.), cationically polymerizable vinyl compounds (for example, vinyl ether compounds, etc.) and oxetane compounds. At least one compound is preferred.
  • the polymerizable compound having a radically polymerizable functional group a compound having at least one radically polymerizable functional group selected from the group consisting of a vinyl group, a (meth) acryloyl group, an allyl group, a vinyl ether group and a vinyl ester group is used. Examples thereof include compounds having a (meth) acryloyl group, which are preferred. As the compound having a (meth) acryloyl group, at least one selected from the group consisting of (meth) acrylate and (meth) acrylamide is preferable.
  • the high specific density compound has a polymerizable functional group and can be said to be a compound having a specific gravity of 1.3 to 4.0.
  • the specific gravity of the high specific density compound is preferably 1.4 or more, more preferably 1.5 or more.
  • the specific gravity of the high specific density compound is preferably 3.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less. That is, the specific gravity of the high specific gravity compound is, for example, 1.3 to 4.0, 1.3 to 3.0, 1.3 to 2.5, 1.3 to 2.0, 1.4 to 4.0, 1.4 to 3.0, 1.4 to 2.5, 1.4 to 2.0, 1.5 to 4.0, 1.5 to 3.0, 1.5 to 2.5 or 1. It may be 5 to 2.0.
  • the specific gravity of the high specific density compound indicates a value measured according to JIS K0061 using a Herbert type specific gravity bottle.
  • the polymerizable compound may further contain a low specific density compound having a specific density of less than 1.3.
  • a low specific density compound can be said to be a compound having a polymerizable functional group and having a specific gravity of less than 1.3.
  • the specific gravity of the low specific density compound is preferably 0.7 or more, more preferably 0.8 or more, and may be 0.9 or more, 1.0 or more, or 1.1 or more. That is, the specific densities of the low-density compounds are, for example, 0.7 or more and less than 1.3, 0.8 or more and less than 1.3, 0.9 or more and less than 1.3, 1.0 or more and less than 1.3, or 1.1. It may be more than 1.3 and less than 1.3.
  • the specific gravity of the low specific density compound indicates a value measured according to JIS K0061 using a Herbert type specific gravity bottle.
  • the ratio of the high specific density compound to the polymerizable compound may be, for example, 30% by mass or more, preferably 40% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more, still more preferably 55% by mass. % Or more. As a result, the above-mentioned effect is more prominently exhibited.
  • the ratio of the high specific gravity compound to the polymerizable compound may be, for example, 100% by mass, preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, still more preferably 75. It is mass% or less, more preferably 70 mass% or less, and particularly preferably 65 mass% or less.
  • the ratio of the high specific gravity compound to the polymerizable compound is, for example, 30 to 100% by mass, 30 to 90% by mass, 30 to 85% by mass, 30 to 80% by mass, 30 to 75% by mass, and 30 to 70% by mass.
  • the ratio of the low specific gravity compound to the polymerizable compound may be, for example, 0% by mass, preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 25% by mass. As mentioned above, it is even more preferably 30% by mass or more, and particularly preferably 35% by mass or more.
  • the ratio of the low specific density compound to the polymerizable compound may be, for example, 70% by mass or less, preferably 60% by mass or less, more preferably 55% by mass or less, still more preferably 50% by mass or less, still more preferably. It is 45% by mass or less. As a result, the above-mentioned effect is more prominently exhibited.
  • the ratio of the low specific gravity compound to the polymerizable compound is, for example, 0 to 70% by mass, 0 to 60% by mass, 0 to 55% by mass, 0 to 50% by mass, 0 to 45% by mass, 10 to 70% by mass.
  • the polymerizable compound preferably contains a polymerizable compound (X) having an element having an atomic number of 9 or more.
  • the polymerizable compound (X) may be a high-density compound or a low-density compound, and is preferably a high-density compound.
  • the polymerizable compound (X) preferably has a halogen group element, and more preferably has at least one selected from the group consisting of a fluorine element and a bromine element.
  • the number of halogen group elements contained in one molecule of the polymerizable compound (X) is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more.
  • the number of halogen group elements contained in one molecule of the polymerizable compound (X) is not particularly limited, and may be, for example, 40 or less, preferably 30 or less. That is, the number of halogen group elements contained in one molecule of the polymerizable compound (X) may be, for example, 1 to 40, 1 to 30, 2 to 40, or 2 to 30.
  • the polymerizable compound (X) preferably has at least one selected from the group consisting of a cationically polymerizable functional group and a radically polymerizable functional group.
  • the polymerizable compound (X) having a cationically polymerizable functional group includes an epoxy compound (for example, a glycidyl ether compound, an alicyclic epoxy compound, etc.), a cationically polymerizable vinyl compound (for example, a vinyl ether compound, etc.) and an oxetane compound. At least one selected from the group is preferred.
  • the polymerizable compound (X) having a radically polymerizable functional group at least one radically polymerizable functional group selected from the group consisting of a vinyl group, a (meth) acryloyl group, an allyl group, a vinyl ether group and a vinyl ester group is used. Examples thereof include compounds having a (meth) acryloyl group, and compounds having a (meth) acryloyl group are preferable.
  • the compound having a (meth) acryloyl group at least one selected from the group consisting of (meth) acrylate and (meth) acrylamide is preferable.
  • Examples of the polymerizable compound (X) having a cationically polymerizable functional group which is one of the specific examples of the polymerizable compound (X), include halophenyl glycidyl ethers such as bromophenyl glycidyl ether and dibromophenyl glycidyl ether, and brominated bisphenol. Examples thereof include A-type epoxy resin, brominated bisphenol F-type novolak type epoxy resin, and brominated phenol novolac type epoxy resin.
  • Examples of the polymerizable compound (X) having a radically polymerizable compound which is one of specific examples of the polymerizable compound (X), include fluorophenyl (meth) acrylate, trifluorophenyl (meth) acrylate, and pentafluorophenyl (meth).
  • the content of the halogen group element in the polymerizable compound (X) is preferably 10 to 50% by mass with respect to the total element amount of the polymerizable compound. When it is 10% by mass or more, the moisture-proof property of the cured product tends to be further improved, and when it is 50% by mass or less, the curability of the composition tends to be further improved.
  • the ratio of the polymerizable compound (X) to the polymerizable compound may be, for example, 30% by mass or more, preferably 40% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more, still more preferably. Is 55% by mass or more. As a result, the moisture resistance of the cured product tends to be further improved.
  • the ratio of the polymerizable compound (X) to the polymerizable compound may be, for example, 100% by mass, preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, and further. It is preferably 75% by mass or less, even more preferably 70% by mass or less, and particularly preferably 65% by mass or less.
  • the ratio of the polymerizable compound (X) to the polymerizable compound is, for example, 30 to 100% by mass, 30 to 90% by mass, 30 to 85% by mass, 30 to 80% by mass, 30 to 75% by mass, 30 to 30 to 70% by mass, 30-65% by mass, 40-100% by mass, 40-90% by mass, 40-85% by mass, 40-80% by mass, 40-75% by mass, 40-70% by mass, 40-65% by mass.
  • the polymerizable compound is also referred to as a polymerizable compound other than the polymerizable compound (X) (that is, a polymerizable compound having no element having an atomic number of 9 or more) (hereinafter, also referred to as a polymerizable compound (X'). ) May be further contained.
  • the polymerizable compound (X') may be, for example, a compound having a polymerizable functional group copolymerizable with the polymerizable functional group of the polymerizable compound (X).
  • the polymerizable compound (X') may be a high-density compound or a low-density compound.
  • the polymerizable compound (X') preferably has at least one selected from the group consisting of cationically polymerizable functional groups and radically polymerizable functional groups.
  • the polymerizable compound (X') having a cationically polymerizable functional group includes an epoxy compound (for example, a glycidyl ether compound, an alicyclic epoxy compound, etc.), a cationically polymerizable vinyl compound (for example, a vinyl ether compound, etc.) and an oxetane compound. At least one selected from the group is preferred.
  • the polymerizable compound (X') having a radically polymerizable functional group is at least one radically polymerizable functional group selected from the group consisting of a vinyl group, a (meth) acryloyl group, an allyl group, a vinyl ether group and a vinyl ester group. Examples thereof include a compound having a (meth) acryloyl group, and a compound having a (meth) acryloyl group is preferable.
  • the compound having a (meth) acryloyl group at least one selected from the group consisting of (meth) acrylate and (meth) acrylamide is preferable.
  • the polymerizable compound (X) When the polymerizable compound (X) has a cationically polymerizable functional group, the polymerizable compound (X') preferably has a cationically polymerizable functional group.
  • the polymerizable compound (X') having a cationically polymerizable functional group at least one selected from the group consisting of an epoxy compound, an oxetane compound, and a cationically polymerizable vinyl compound is preferable.
  • Examples of the epoxy compound include an alicyclic compound having an epoxy group (alicyclic epoxy compound), an aromatic compound having an epoxy group (aromatic epoxy compound), and a glycidyl ether compound.
  • alicyclic epoxy compound for example, a compound having at least one cycloalkene ring (for example, cyclohexene ring, cyclopentene ring, pinen ring, etc.) is used with an appropriate oxidizing agent such as hydrogen peroxide and peracid. Examples thereof include compounds obtained by epoxidation or derivatives thereof. Further, examples of the alicyclic epoxy compound include hydrogenated epoxy compounds obtained by hydrogenating an aromatic epoxy compound (for example, bisphenol A type epoxy compound, bisphenol F type epoxy compound, etc.).
  • Examples of the alicyclic epoxy compound include 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate and 3,4-epoxycyclohexylalkyl (meth) acrylate (for example, 3,4-epoxycyclohexylmethyl (meth). ) Acrylic and the like), (3,3', 4,4'-diepoxy) bicyclohexyl, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin and the like.
  • an alicyclic epoxy compound having a 1,2-epoxycyclohexane structure is preferable.
  • a compound represented by the following formula (A1-1) is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group is preferably a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide bond, or a group in which a plurality of these are linked.
  • X is preferably a linking group.
  • a group having an ester bond is preferable.
  • Examples of the compound having a group having an ester bond as a linking group include 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate.
  • the molecular weight of the alicyclic epoxy compound is preferably 450 or less, more preferably 400 or less, still more preferably 300 or less, in terms of further improving the moisture resistance of the cured product and further improving the storage stability of the composition. 100 to 280 is more preferable. That is, the molecular weight of the alicyclic epoxy compound may be, for example, 100 to 450, 100 to 400, 100 to 300, or 100 to 280.
  • the number average molecular weight of the alicyclic epoxy compound is preferably in the above range.
  • the number average molecular weight indicates a polystyrene-equivalent value measured by gel permeation chromatography (GPC) under the following measurement conditions.
  • any monomer, oligomer or polymer can be used, and a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, and a fluorene type
  • a bisphenol A type epoxy resin a bisphenol F type epoxy resin
  • a bisphenol S type epoxy resin a bisphenol S type epoxy resin
  • a biphenyl type epoxy resin a naphthalene type epoxy resin
  • fluorene type examples thereof include epoxy resins, novolak phenol-type epoxy resins, cresol novolak-type epoxy resins, and modified products thereof.
  • aromatic epoxy compound an aromatic epoxy compound having a bisphenol structure is preferable.
  • aromatic epoxy compounds having a bisphenol structure a compound represented by the following formula (A2-1) is preferable.
  • n 0 to 30, and R 21 , R 22 , R 23 and R 24 each independently contain a hydrogen atom or an substituted or unsubstituted alkyl group having 1 to 5 carbon atoms. show. n may be 0.1 or more.
  • R 21 , R 22 , R 23 and R 24 are preferably hydrogen atoms or methyl groups.
  • R 21 , R 22 , R 23 and R 24 may be the same or different, but are preferably the same.
  • the aromatic epoxy compound having a bisphenol structure is preferably at least one selected from the group consisting of a bisphenol A type epoxy resin and a bisphenol F type epoxy resin.
  • the molecular weight of the aromatic epoxy compound is preferably 100 to 5000, more preferably 150 to 1000, and even more preferably 200 to 450 in that the moisture resistance of the cured product is further improved. That is, the molecular weight of the aromatic epoxy compound may be, for example, 100 to 5000, 100 to 1000, 100 to 450, 150 to 5000, 150 to 1000, 150 to 450, 200 to 5000, 200 to 1000 or 200 to 450. ..
  • the number average molecular weight of the aromatic epoxy compound is in the above range.
  • the number average molecular weight indicates a polystyrene-equivalent value measured by gel permeation chromatography (GPC) under the above-mentioned measurement conditions.
  • the glycidyl ether compound a polyglycidyl ether compound is preferable.
  • the polyglycidyl ether compound is not particularly limited, but is a multivalent alkylene glycol diglycidyl ether (for example, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, etc.).
  • Polyglycidyl ether of alcohol eg di or triglycidyl ether of glycerin or its alkylene oxide adduct
  • diglycidyl ether of polyalkylene glycol eg diglycidyl ether of polyethylene glycol or its alkylene oxide adduct, polypropylene glycol or Diglycidyl ether of the alkylene oxide adduct, etc.
  • alkylene oxide include ethylene oxide and propylene oxide.
  • the cationically polymerizable vinyl compound can be any monomer, oligomer or polymer.
  • Examples of the cationically polymerizable vinyl compound include vinyl ether compounds, vinyl amine compounds, and styrene.
  • the vinyl ether compound is not particularly limited, but is limited to ethylene glycol divinyl ether, ethylene glycol monovinyl ether, diethylene glycol divinyl ether, triethylene glycol monovinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol di.
  • Di or trivinyl ether compounds such as vinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, hydroxyethyl monovinyl ether, hydroxynonyl monovinyl ether, trimethylpropantrivinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, Monovinyl ether compounds such as cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl ether o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether, etc.
  • the oxetane compound is not particularly limited, but is 3-ethyl-3-hydroxymethyloxetane (trade name: Aron Oxetane OXT-101 manufactured by Toa Synthetic Co., Ltd.), 1,4-bis [(3-ethyl-3-oxetanyl).
  • the oxetane compound refers to a compound having one or more oxetane rings in the molecule.
  • the polymerizable compound (X') preferably has a radically polymerizable functional group.
  • the polymerizable compound (X') having a radically polymerizable functional group is at least one radically polymerizable functional group selected from the group consisting of a vinyl group, a (meth) acryloyl group, an allyl group, a vinyl ether group and a vinyl ester group.
  • a compound having (meth) acryloyl group is preferable, and a compound having a (meth) acryloyl group is preferable.
  • As the compound having a (meth) acryloyl group at least one selected from the group consisting of (meth) acrylate and (meth) acrylamide is more preferable.
  • Examples of the (meth) acrylate include monofunctional (meth) acrylates such as ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and ethoxylated-o-phenylphenol acrylate, and 1,6-hexanediol.
  • Examples thereof include polyfunctional (meth) acrylates such as di (meth) acrylates and 1,12-dodecanediol di (meth) acrylates.
  • the polymerizable compound preferably contains a crosslinkable compound (Y) having two or more polymerizable functional groups.
  • the crosslinkable compound (Y) may be a high-density compound or a low-density compound. Further, the crosslinkable compound (Y) may be a polymerizable compound (X) or a polymerizable compound (X').
  • crosslinkable compound (Y) examples include those having two or more polymerizable functional groups among the above-mentioned polymerizable compounds.
  • the ratio of the crosslinkable compound (Y) to the polymerizable compound is preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 40% by mass or more. As a result, the curability of the composition is further improved, and a cured product having higher strength tends to be easily obtained.
  • the ratio of the crosslinkable compound (Y) to the polymerizable compound is preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less. As a result, the adhesiveness to the glass substrate or the like is further improved, and a more reliable sealing material can be formed.
  • the ratio of the crosslinkable compound (Y) to the polymerizable compound is, for example, 30 to 90% by mass, 30 to 85% by mass, 30 to 80% by mass, 35 to 90% by mass, 35 to 85% by mass, 35 to 35 to It may be 80% by mass, 40 to 90% by mass, 40 to 85% by mass, or 40 to 80% by mass.
  • the viscosity of the total amount mixture of the polymerizable compounds at 80 ° C. is preferably 500 mPa ⁇ s or more, and 700 mPa ⁇ s or more. More preferably, 1000 mPa ⁇ s or more is further preferable. Further, from the viewpoint of improving the ejection property of the composition of the present embodiment at the time of coating and expanding the range of choices of molding methods, the viscosity of the total amount mixture of the polymerizable compounds at 80 ° C. is preferably 30,000 mPa ⁇ s or less.
  • the viscosities of the total amount mixture of the polymerizable compound at 80 ° C. are, for example, 500 to 30000 mPa ⁇ s, 500 to 25000 mPa ⁇ s, 500 to 20000 mPa ⁇ s, 700 to 30000 mPa ⁇ s, 700 to 25000 mPa ⁇ s, 700 to 20000 mPa. It may be s, 1000 to 30000 mPa ⁇ s, 1000 to 25000 mPa ⁇ s or 1000 to 20000 mPa ⁇ s.
  • a plurality of the above-mentioned polymerizable compounds may be combined so that the viscosity of the total amount mixture of the polymerizable compounds is within the above range.
  • the viscosity of the total amount mixture of the polymerizable compound at 80 ° C. indicates the value measured by a cone rotor viscometer.
  • the polymerization initiator a photopolymerization initiator is preferable.
  • the composition of the present embodiment can be cured by irradiation with energy rays such as ultraviolet rays.
  • the polymerization initiator may be at least one selected from the group consisting of a cationic polymerization initiator and a radical polymerization initiator, and may be at least one selected from the group consisting of a photocationic polymerization initiator and a photoradical polymerization initiator. Is preferable.
  • a cationic polymerization initiator it is possible to polymerize a polymerizable compound having a cationically polymerizable functional group, and by using a radical polymerization initiator, it is possible to polymerize a polymerizable compound having a radically polymerizable functional group. ..
  • the photocationic polymerization initiator is not particularly limited, and for example, an aryl sulfonium salt derivative (for example, Cyracure UVI-6990 manufactured by Dow Chemical Co., Ltd., Cyracure UVI-6974, Adecocaoptomer SP-150 manufactured by Asahi Denka Kogyo Co., Ltd., Adecacaopt).
  • an aryl sulfonium salt derivative for example, Cyracure UVI-6990 manufactured by Dow Chemical Co., Ltd., Cyracure UVI-6974, Adecocaoptomer SP-150 manufactured by Asahi Denka Kogyo Co., Ltd., Adecacaopt.
  • Examples of the photocationic polymerization initiator include an onium salt represented by the formula (B-1).
  • A represents an element having a valence m of Group VIA to Group VIIA.
  • m indicates 1 to 2 and p indicates 0 to 3
  • R indicates an organic group attached to A
  • D is the following formula (B-1-1):
  • E represents a divalent group
  • G is -O-, -S-, -SO-, -SO 2-, -NH-.
  • X - is the counterion of onium.
  • the onium ion of the formula (B-1) is not particularly limited, and is, for example, 4- (phenylthio) phenyldiphenylsulfonium, bis [4- (diphenylsulfonio) phenyl] sulfide, bis [4- ⁇ bis [4- (2).
  • R is an organic group bonded to A.
  • R is, for example, an aryl group having 6 to 30 carbon atoms, a heterocyclic group having 4 to 30 carbon atoms, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, or an alkynyl group having 2 to 30 carbon atoms. , And these may have substituents.
  • substituents examples include an alkyl group, a hydroxy group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an arylthiocarbonyl group, an acyloxy group, an arylthio group, an alkylthio group and an aryl group.
  • At least one selected from the group consisting of a heterocyclic group, an aryloxy group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, an alkyleneoxy group, an amino group, a cyano group, a nitro group, and a halogen is mentioned. Be done.
  • R is m + p (m-1) + 1, and they may be the same or different from each other. Also, two or more R, directly or -O one another -, - S -, - SO -, - SO 2 -, - NH -, - NR '-, - CO -, - COO -, - CONH-,
  • a ring structure containing the element A may be formed by bonding via an alkylene or phenylene group having 1 to 3 carbon atoms.
  • R' is an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • aryl group having 6 to 30 carbon atoms examples include a monocyclic aryl group such as a phenyl group, a naphthyl group, an anthrasenyl group, a phenanthrenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a benzanthrasenyl group and an anthraquinolyl group.
  • a fused polycyclic aryl group such as a fluorenyl group, a naphthoquinone group and an anthraquinone group.
  • At least one aryl group having 6 to 30 carbon atoms, a heterocyclic group having 4 to 30 carbon atoms, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms or an alkynyl group having 2 to 30 carbon atoms is at least one kind. It may have a substituent.
  • An example of a substituent is Linear alkyl groups with 1 to 18 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecy; Branched alkyl groups having 1 to 18 carbon atoms such as isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl and isohexyl; Cycloalkyl groups having 3 to 18 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl; Hydroxy group; Linear or branched alkoxy groups having 1 to 18 carbon atoms such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso
  • Arylcarbonyl groups having 7 to 11 carbon atoms such as benzoyl and naphthoyl; 2 to 19 carbon atoms such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, octyloxycarbonyl, tetradecyloxycarbonyl, octadecyloxycarbonyl, etc.
  • Phenylthio 2-methylphenylthio, 3-methylphenylthio, 4-methylphenylthio, 2-chlorophenylthio, 3-chlorophenylthio, 4-chlorophenylthio, 2-bromophenylthio, 3-bromophenylthio, 4-bromo Phenylthio, 2-fluorophenylthio, 3-fluorophenylthio, 4-fluorophenylthio, 2-hydroxyphenylthio, 4-hydroxyphenylthio, 2-methoxyphenylthio, 4-methoxyphenylthio, 1-naphthylthio, 2 -Naftilthio, 4- [4- (phenylthio) benzoyl] phenylthio, 4- [4- (phenylthio) phenoxy] phenylthio, 4- [4- (phenylthio) phenyl]
  • Aryl groups with 6 to 10 carbon atoms such as phenyl, trill, dimethylphenyl, naphthyl; Thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, indrill, benzofuranyl, benzothienyl, quinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, carbazolyl, acridinyl, phenothiazine, phenazinyl, xanthenyl, thianthenyl, phenoxalinyl Heterocyclic groups having 4 to 20 carbon atoms such as inyl, chromanyl, isochromanyl, dibenzothienyl, xanthonyl, thioxanthonyl, and dibenzo
  • P in the formula (B-1) represents the number of repeating units of the [DA + R m-1 ] bond, and is preferably an integer of 0 to 3.
  • Preferable onium ions [A + ] in the formula (B-1) are sulfonium, iodonium, and selenium, and typical examples include the following.
  • sulfonium ions include triphenylsulfonium, tri-p-tolylsulfonium, tri-o-tolylsulfonium, tris (4-methoxyphenyl) sulfonium, 1-naphthyldiphenylsulfonium, 2-naphthyldiphenylsulfonium, and tris (4-fluorophenyl).
  • sulfonium ions include triphenylsulfonium, tri-p-tolylsulfonium, 4- (phenylthio) phenyldiphenylsulfonium, bis [4- (diphenylsulfonio) phenyl] sulfide, and bis [4- ⁇ bis [4- (2- (2-) Hydroxyethoxy) phenyl] sulfonio ⁇ phenyl] sulfide, bis ⁇ 4- [bis (4-fluorophenyl) sulfonio] phenyl ⁇ sulfide, 4- (4-benzoyl-2-chlorophenylthio) phenylbis (4-fluorophenyl) sulfonium , 4- (4-benzoyl-2-chlorophenylthio) phenylbis (4-fluorophenyl) sulfonium , 4- (4-benzoyl-2-chloroph
  • X - is a counterion.
  • the number is p + 1 per molecule.
  • the counterion is not particularly limited, and examples thereof include halides such as boron compounds, phosphorus compounds, antimony compounds, arsenic compounds, and alkylsulfonic acid compounds, and methide compounds.
  • X - include, for example, F -, Cl -, Br -, I - halogen, such as ion; OH -; ClO 4 -; FSO 3 -, ClSO 3 -, CH 3 SO 3 -, C 6 H 5 SO 3 -, CF 3 SO 3 - sulfonate ion such as; HSO 4 -, sulfate ions of SO 4 2- and the like; HCO 3 -, CO 3 carbonate ions of 2-like; H 2 PO 4 -, HPO 4 2, phosphate ions of PO 4 3- and the like; PF 6 -, PF 5 OH -, fluorophosphate ions such as fluorinated alkyl fluorophosphate ion; BF 4 -, B (C 6 F 5) 4 -, B (C 6 H 4 CF 3) 4 - borate ions such as; AlCl 4 -; BiF 6 -, and the like.
  • fluoroantimonate
  • fluorinated alkylfluorophosphate ion examples include a fluorinated alkylfluorophosphate ion represented by the formula (B-1-3) and the like. [(Rf) b PF 6-b ] - (B-1--3)
  • Rf represents an alkyl group substituted with a fluorine atom.
  • the number b of Rf is 1 to 5, and is preferably an integer.
  • the b Rfs may be the same or different.
  • the number b of Rf is more preferably 2 to 4, and most preferably 2 to 3. That is, the number b of Rf may be, for example, 1 to 5, 1 to 4, 1 to 3, 2 to 4 or 2 to 3.
  • Rf represents an alkyl group substituted with a fluorine atom, and the preferable carbon number is 1 to 8, and the more preferable carbon number is 1 to 4.
  • the alkyl group include linear alkyl groups such as methyl, ethyl, propyl, butyl, pentyl and octyl; branched alkyl groups such as isopropyl, isobutyl, sec-butyl and tert-butyl; and further cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Cycloalkyl group and the like.
  • Rf examples include CF 3 , CF 3 CF 2 , (CF 3 ) 2 CF, CF 3 CF 2 CF 2 , CF 3 CF 2 CF 2 CF 2 , (CF 3 ) 2 CFCF 2 , CF 3 CF 2 Examples thereof include (CF 3 ) CF and (CF 3 ) 3 C.
  • preferred fluorinated alkylfluorophosphate anions include [(CF 3 CF 2 ) 2 PF 4 ] - , [(CF 3 CF 2 ) 3 PF 3 ] - , [((CF 3 ) 2 CF) 2 PF 4 ] - , [((CF 3 ) 2 CF) 3 PF 3 ] - , [(CF 3 CF 2 CF 2 ) 2 PF 4 ] - , [(CF 3 CF 2 CF 2 ) 3 PF 3 ] - , [((CF 3) 2 CFCF 2) 2 PF 4] -, [((CF 3) 2 CFCF 2) 3 PF 3] -, [(CF 3 CF 2 CF 2 CF 2) 2 PF 4] - and [ (CF 3 CF 2 CF 2 CF 2) 3 PF 3] - , and the like.
  • the photocationic polymerization initiator may be previously dissolved in a solvent in order to facilitate mixing with the polymerizable compound.
  • a solvent examples include carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate and diethyl carbonate.
  • Examples of the photocationic polymerization initiator include a triarylsulfonium salt hexafluoroantimonate represented by the formula (B-2) and diphenyl4-thiophenoxyphenylsulfonium tris (pentafluoroethyl) represented by the formula (B-3). At least one selected from the group consisting of trifluorophosphate is preferable, and triarylsulfonium salt hexafluoroantimonate is more preferable.
  • the photoradical polymerization initiator is not particularly limited, but Benzophenone and its derivatives; Benzyl and its derivatives; Anthraquinone and its derivatives; Benzoin-type photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, and benzyl dimethyl ketal; Acetophenone-type photopolymerization initiators such as diethoxyacetophenone and 4-tert-butyltrichloroacetophenone; 2-Dimethylaminoethylbenzoate; p-Dimethylaminoethylbenzoate; Diphenyl disulfide; Thioxanthone and its derivatives; Campharquinone, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxylic acid, 7,7-dimethyl-2,
  • the content of the polymerization initiator is preferably 0.01 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the polymerizable compound. This further improves the curability.
  • the content of the polymerization initiator is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, based on 100 parts by mass of the polymerizable compound.
  • the adhesiveness to the glass substrate or the like is further improved, and a more reliable sealing material can be formed. That is, the content of the polymerization initiator is, for example, 0.01 to 5 parts by mass, 0.01 to 3 parts by mass, 0.1 to 5 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass of the polymerizable compound. It may be a mass part.
  • the inorganic filler examples include oxides such as silica particles, glass filler, spherical alumina, crushed alumina, magnesium oxide, beryllium oxide, titanium oxide, zirconia and zinc oxide, and nitrides such as boron nitride, silicon nitride and aluminum nitride. , Carbides such as silicon carbide, hydroxides such as aluminum hydroxide and magnesium hydroxide, metals and alloys such as copper, silver, gold, iron, aluminum, nickel and titanium, carbon-based materials such as diamond and carbon. Fillers, calcium carbonate, barium sulfate, talc, mica and the like can be mentioned.
  • the inorganic filler may be surface-treated with a fatty acid, a silicone coupling agent, a titanate-based coupling agent, or the like.
  • a fatty acid e.g., a fatty acid, a silicone coupling agent, a titanate-based coupling agent, or the like.
  • the inorganic filler one kind or two or more kinds can be used as needed.
  • the true specific gravity of the inorganic filler may be, for example, 1.3 or more, preferably 1.4 or more, and more preferably 1.5 or more.
  • the true specific gravity of the inorganic filler may be, for example, 20.0 or less, preferably 8.0 or less, and more preferably 5.0 or less.
  • the true specific gravity of the inorganic filler indicates a value measured by ASTM D2840. That is, the true specific gravity of the inorganic filler is, for example, 1.3 to 20.0, 1.3 to 8.0, 1.3 to 5.0, 1.4 to 20.0, 1.4 to 8.0. , 1.4 to 5.0, 1.5 to 20.0, 1.5 to 8.0 or 1.5 to 5.0.
  • the inorganic filler preferably contains at least one selected from the group consisting of silica, mica, kaolin, talc and aluminum oxide, and more preferably contains talc.
  • the inorganic filler may be inorganic particles having an average particle size (hereinafter, may be simply referred to as particle size or particle size).
  • the average particle size of the inorganic particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more.
  • the average particle size of the inorganic particles is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. That is, the average particle size of the inorganic particles may be, for example, 0.005 to 50 ⁇ m, 0.005 to 30 ⁇ m, 0.01 to 50 ⁇ m, or 0.01 to 30 ⁇ m.
  • the average particle size of the inorganic particles indicates a value measured by a laser diffraction / scattering method using a microtrack particle size distribution device.
  • the content of the inorganic filler may be, for example, 5 parts by mass or more, preferably 10 parts by mass or more, and more preferably 15 parts by mass or more with respect to 100 parts by mass of the polymerizable compound.
  • the content of the inorganic filler may be, for example, 500 parts by mass or less, 350 parts by mass or less, preferably 300 parts by mass or less, more preferably 300 parts by mass or less, based on 100 parts by mass of the polymerizable compound. It is 200 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the content of the inorganic filler is, for example, 5 to 500 parts by mass, 5 to 350 parts by mass, 5 to 300 parts by mass, 5 to 200 parts by mass, and 5 to 100 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • the composition of the present embodiment may further contain a photosensitizer.
  • the photosensitizer can absorb energy rays and efficiently generate reactive species (for example, cations generated from a photocationic polymerization initiator and radicals generated from a photoradical polymerization initiator) from a polymerization initiator.
  • reactive species for example, cations generated from a photocationic polymerization initiator and radicals generated from a photoradical polymerization initiator
  • the photosensitizer is not particularly limited, and for example, benzophenone derivative, phenothiazine derivative, phenylketone derivative, naphthalene derivative, anthracene derivative, phenanthrene derivative, naphthacene derivative, chrysene derivative, perylene derivative, pentacene derivative, aclysine derivative, benzothiazole derivative, Benzoin derivative, fluorene derivative, naphthoquinone derivative, anthraquinone derivative, xanthene derivative, xantone derivative, thioxanthene derivative, thioxanthone derivative, coumarin derivative, ketocoumarin derivative, cyanine derivative, azine derivative, thiazine derivative, oxazine derivative, indolin derivative, azulene derivative, tri Examples thereof include allylmethane derivatives, phthalocyanine derivatives, spiropirane derivatives, spiroxazine derivatives, thios
  • a phenylketone derivative such as 2-hydroxy-2-methyl-1-phenyl-propane-1-one and an anthracene derivative such as 9,10-dibutoxyanthracene are preferable, and anthracene derivative is more preferable.
  • anthracene derivative 9,10-dibutoxyanthracene is preferable.
  • the photosensitizer one type may be used alone, or two or more types may be used in combination.
  • the content of the photosensitizer may be, for example, 0.01 part by mass or more with respect to 100 parts by mass of the polymerizable compound, and 0.02 mass by mass. It may be more than one part.
  • the content of the photosensitizer may be, for example, 5 parts by mass or less, preferably 3 parts by mass or less, based on 100 parts by mass of the polymerizable compound from the viewpoint of storage stability. That is, the content of the photosensitizer is, for example, 0.01 to 5 parts by mass, 0.01 to 3 parts by mass, 0.02 to 5 parts by mass, or 0.02 to 0.02 to 100 parts by mass with respect to 100 parts by mass of the polymerizable compound. It may be 3 parts by mass.
  • composition of the present embodiment may further contain a silane coupling agent.
  • the blending of the silane coupling agent tends to further improve the adhesiveness and adhesive durability of the composition of the present embodiment.
  • silane coupling agent examples include ⁇ -chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltricrolsilane, vinyltriethoxysilane, vinyl-tris ( ⁇ -methoxyethoxy) silane, and ⁇ - (meth) acryloxipropyl.
  • Trimethoxysilane ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -amino Propyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -ureidopropyltriethoxysilane and the like.
  • silane coupling agent may be used alone, or two or more types may be used in combination.
  • the content of the silane coupling agent may be, for example, 0.1 part by mass or more, and 0.2 part by mass with respect to 100 parts by mass of the polymerizable compound. More than a part is preferable.
  • the content of the silane coupling agent may be, for example, 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass of the polymerizable compound. That is, the content of the silane coupling agent is, for example, 0.1 to 10 parts by mass, 0.1 to 5 parts by mass, 0.2 to 10 parts by mass, or 0.2 to 0.2 to 100 parts by mass with respect to 100 parts by mass of the polymerizable compound. It may be 5 parts by mass.
  • composition of the present embodiment may further contain an antioxidant.
  • the composition of the present embodiment may further contain resin particles.
  • resin particles By blending the resin particles, it becomes easier to form a thick cured product. Therefore, the composition containing the resin particles is more suitable as a sealing agent for dam formation.
  • the resin particles those that can retain their shape without being dissolved in the composition can be used without particular limitation.
  • the resin particles are preferably at least one selected from the group consisting of crosslinked poly (meth) methyl acrylate particles, crosslinked polystyrene particles and crosslinked poly (meth) methyl polystyrene copolymer particles, and are preferably crosslinked poly (meth).
  • the average particle size of the resin particles may be, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the average particle size of the resin particles may be, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. That is, the average particle size of the resin particles may be, for example, 0.1 to 200 ⁇ m, 0.1 to 100 ⁇ m, 1 to 200 ⁇ m, 1 to 100 ⁇ m, 5 to 200 ⁇ m, or 5 to 100 ⁇ m.
  • the average particle size of the resin particles indicates the volume-based average particle size measured by the "laser diffraction type particle size distribution measuring device SALD-2200" manufactured by Shimadzu Corporation.
  • the standard deviation of the particle volume distribution with respect to the particle size when the particle size ( ⁇ m) is displayed logarithmically is preferably 0.25 or less.
  • the standard deviation is more preferably 0.2 or less, and even more preferably 0.1 or less.
  • the standard deviation may be, for example, 0.001 or more, or 0.005 or more. That is, the standard deviation is, for example, 0.001 to 0.25, 0.001 to 0.2, 0.001 to 0.1, 0.005 to 0.25, 0.005 to 0.2, or 0. It may be 05 to 0.1.
  • the content of the resin particles may be, for example, 0.01 part by mass or more, preferably 0.02 part by mass or more, based on 100 parts by mass of the polymerizable compound. , More preferably 0.1 parts by mass or more.
  • the content of the resin particles may be, for example, 10 parts by mass or less, preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and further preferably 3 parts by mass with respect to 100 parts by mass of the polymerizable compound. It is as follows.
  • the content of the resin particles is, for example, 0 to 10 parts by mass, 0 to 5 parts by mass, 0 to 4 parts by mass, 0 to 3 parts by mass, 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable compound.
  • Parts, 0.01 to 5 parts by mass, 0.01 to 4 parts by mass, 0.01 to 3 parts by mass, 0.02 to 10 parts by mass, 0.02 to 5 parts by mass, 0.02 to 4 parts by mass It may be 0.02 to 3 parts by mass, 0.1 to 10 parts by mass, 0.1 to 5 parts by mass, 0.1 to 4 parts by mass, or 0.1 to 3 parts by mass.
  • composition of the present embodiment may further contain components other than the above.
  • known additives used in the field of encapsulants can be used without particular limitation.
  • examples of other components include metal inactivating agents, fillers, stabilizers, neutralizers, lubricants, antibacterial agents and the like.
  • the viscosity of the composition of the present embodiment at 25 ° C. may be, for example, 50,000 mPa ⁇ s or more, preferably 70,000 mPa ⁇ s or more, from the viewpoint of improving the coatability of the composition and excellent moldability of the cured product. , More preferably 80,000 mPa ⁇ s or more, still more preferably 100,000 mPa ⁇ s or more. Further, the viscosity of the composition of the present embodiment at 25 ° C. may be, for example, 1000000 mPa ⁇ s or less from the viewpoint of improving the ejection property at the time of coating the composition and expanding the selection of the molding method.
  • the viscosity of the composition of the present embodiment at 25 ° C. is, for example, 50,000 to 1000000 mPa ⁇ s, 50,000 to 950000 mPa ⁇ s, 50,000 to 900,000 mPa ⁇ s, 50,000 to 850000 mPa ⁇ s, 70,000 to 1,000,000 mPa ⁇ s, 70,000 to 950000 mPa ⁇ .
  • the viscosity of the composition at 25 ° C. indicates a value measured by a cone rotor viscometer.
  • the type and content of each component may be appropriately adjusted so that the viscosity at 25 ° C. is within the above range.
  • the ratio of the viscosity ⁇ 2 at 25 ° C. and 0.1 rpm ( ⁇ 2 / ⁇ 1 ) to the viscosity ⁇ 1 at 25 ° C. and 1 rpm is preferably 1.1 to 10.0. ..
  • the ratio ( ⁇ 2 / ⁇ 1 ) is 1.1 or more, the coatability of the composition is further improved, and the moldability of the cured product tends to be more excellent. From the viewpoint that this tendency becomes more remarkable, the ratio ( ⁇ 2 / ⁇ 1 ) is preferably 1.15 or more, and more preferably 1.2 or more.
  • the ratio ( ⁇ 2) / ⁇ 1 ) is preferably 9.5 or less, more preferably 9.0 or less. That is, the ratio ( ⁇ 2 / ⁇ 1 ) is, for example, 1.1 to 10.0, 1.1 to 9.5, 1.1 to 9.0, 1.15 to 10.0, 1.15 to 9. It may be .5, 1.15 to 9.0, 1.2 to 10.0, 1.2 to 9.5 or 1.2 to 9.0.
  • the viscosity ⁇ 1 at 25 ° C. and 1 rpm and the viscosity ⁇ 2 at 25 ° C. and 0.1 rpm of the composition indicate values measured by a cone rotor viscometer.
  • the type and content of each component may be appropriately adjusted so that the ratio ( ⁇ 2 / ⁇ 1) is within the above range.
  • the liquid specific gravity of the composition of this embodiment is preferably 1.3 to 4.0.
  • the liquid specific density of the composition is preferably 1.4 or more, more preferably 1.5 or more.
  • the liquid specific gravity of the composition is preferably 3.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less. That is, the liquid specific gravity of the composition is, for example, 1.3 to 4.0, 1.3 to 3.0, 1.3 to 2.5, 1.3 to 2.0, 1.4 to 4.0. , 1.4-3.0, 1.4-2.5, 1.4-2.0, 1.5-4.0, 1.5-3.0, 1.5-2.5 or 1 It may be .5-2.0.
  • the liquid specific density of the composition is a value measured in accordance with JIS-K-0061 8.2.2 using a 5 mL Gay-Lussac type specific gravity bottle.
  • the type and content of each component may be appropriately adjusted so that the liquid specific gravity is within the above range.
  • the method for producing the composition of the present embodiment is not particularly limited, and any method may be used as long as the above-mentioned components are sufficiently mixed.
  • Examples of the mixing method include a stirring method using the stirring force accompanying the rotation of the propeller, a method using a normal disperser such as a planetary stirrer by rotation and revolution, and the like. These mixing methods are preferable in that stable mixing can be performed at low cost.
  • a cured product containing a polymer of a polymerizable compound and an inorganic filler can be obtained.
  • the cured product has low moisture permeability and can be suitably used as a sealing material (particularly, a sealing material for an organic EL display element).
  • the composition of this embodiment can be cured by, for example, irradiation with energy rays.
  • the light source used for curing the composition of the present embodiment is not particularly limited, but is limited to a halogen lamp, a metal halide lamp, a high power metal halide lamp (containing indium and the like), a low pressure mercury lamp, a high pressure mercury lamp, and an ultrahigh pressure mercury lamp. , Xenon lamps, xenon excimer lamps, xenon flash lamps, light-emitting diodes (hereinafter referred to as LEDs) and the like. These light sources are preferable in that they can efficiently irradiate energy rays corresponding to the reaction wavelengths of the respective photopolymerization initiators.
  • the above light sources have different radiation wavelengths and energy distributions. Therefore, the light source is appropriately selected depending on the reaction wavelength of the polymerization initiator and the like. Natural light (sunlight) can also be a reaction initiation light source.
  • Irradiation by the above light source may be direct irradiation, or may be focused irradiation by a reflecting mirror, fiber, or the like. Further, irradiation using a low wavelength cut filter, a heat ray cut filter, a cold mirror or the like may be used.
  • post-heat treatment may be performed to promote curing.
  • the temperature of the post-heating is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, from the viewpoint of avoiding the influence on the organic EL display element.
  • the post-heating temperature is preferably 40 ° C. or higher.
  • composition of this embodiment can also be used as an adhesive.
  • the composition of the present embodiment can be suitably used for adhering, for example, a package such as an organic EL display element.
  • a step of applying the composition to the entire surface or a part of the first member and a composition applied on the first member are used.
  • a method including a step of irradiating the light with light and a step of adhering the first member and the second member via the composition until the composition irradiated with light is cured can be mentioned. ..
  • the second member can be adhered onto the first member without being exposed to light and heat. Therefore, the above method can be suitably used for bonding the back plate and the organic EL display element.
  • Examples of a method for manufacturing an organic EL display device using the composition of the present embodiment include a step of applying the composition on the back plate and a step of irradiating the composition coated on the back plate with light.
  • a manufacturing method including a step of blocking light and adhering a back plate and a substrate on which an organic EL display element is formed via a composition can be mentioned. According to such a method, the organic EL display element can be sealed without being exposed to light and heat.
  • a step of applying the composition to one substrate and one substrate and the other substrate via the composition are used.
  • a production method including a step of adhering and a step of irradiating the composition between the substrates with light to cure the composition can also be mentioned.
  • the specific gravity of the cured product of the composition of the present embodiment (hereinafter, also simply referred to as the cured product of the present embodiment) is, for example, 1.35 or more.
  • the specific gravity of the cured product of the present embodiment is, for example, 19.0 or less.
  • the specific gravity of the cured product conforms to the JIS K7112 B method and indicates a value measured using water at 23 ° C. as the dipping solution.
  • the type and content of each component may be appropriately adjusted so that the specific gravity of the cured product is within the above range.
  • the glass transition temperature of the polymer of the polymerizable compound may be, for example, 60 ° C. or higher, preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 85 ° C. or higher. ..
  • the glass transition temperature (Tg) of the polymer indicates a value obtained from the dynamic viscoelastic spectrum.
  • stress and strain are applied to the polymer at a constant temperature rise rate, and the temperature showing the peak top of the loss tangent (hereinafter abbreviated as tan ⁇ ) can be defined as the glass transition temperature.
  • tan ⁇ the temperature showing the peak top of the loss tangent
  • the glass transition temperature is ⁇ 150 ° C. or lower or a certain temperature (Ta ° C.) or higher.
  • Ta ° C. since a cured product having a glass transition temperature of ⁇ 150 ° C. or lower cannot be considered, it can be determined that the temperature is above a certain temperature (Ta ° C.).
  • the type and content of each component may be appropriately adjusted so that the glass transition temperature of the polymer is within the above range.
  • the crosslinked density of the cured product of the present embodiment is preferably 1.0 ⁇ 10 -3 mol / cm 3 or more, and more preferably 2.0 ⁇ 10 -3 mol / cm 3 or more.
  • the crosslink density of the cured product may be, for example, 1.0 mol / cm 3 or less.
  • the cross-linking density of the cured product may be, for example, 1.0 ⁇ 10 -3 to 1.0 mol / cm 3 or 2.0 ⁇ 10 -3 to 1.0 mol / cm 3 .
  • the crosslink density of the cured product indicates a value obtained from the dynamic viscoelastic spectrum. Specifically, a cured product having a thickness of 100 ⁇ m is cut into a width of 5 mm and a length of 25 mm to obtain a test piece. For this test piece, dynamic viscoelasticity measurement is performed under the conditions of a temperature range of -50 ° C to 200 ° C, a temperature rise rate of 2 ° C / min, and a tensile mode, and the relationship between the temperature and the storage elastic modulus (G') is determined. ..
  • Crosslink density G'T + 40 / ⁇ RT
  • the type and content of each component may be appropriately adjusted so that the crosslink density of the cured product is within the above range.
  • Cured body of the present embodiment preferably has an average free volume of the cured product is 1 nm 3 or less, preferably less than 1 nm 3, more preferably 0.5 nm 3 or less, 0.3 nm 3 or less still more preferably, more preferably at 0.1 nm 3 or less, and still more preferably less than 0.1 nm 3.
  • the positron annihilation method is known as a method for determining the free volume of a polymer (see Polymer Vol. 42, December issue (1993)). Generally, when a positron (e + ) is incident on a polymer, the positron combines with an electron (e ⁇ ) to generate positronium (Ps).
  • the positron annihilation method is when orthopositronium (o-Ps, radius 0.1 nm, hereinafter also referred to as "o-Ps"), which occupies 3/4 of the positronium (Ps), enters the pores of the polymer. This is a method for obtaining the free volume of a polymer by measuring the lifetime of o-Ps ( ⁇ 3).
  • o-Ps lifetime when it collides with the walls of the pores existing in the polymer, o-Ps positron (e +) and electrons in the walls of the pores (e -) is It is determined by the probability of overlapping, and the larger the pores of the polymer, the longer the life of o-Ps ( ⁇ 3 ).
  • the vacancy as a spherical well-shaped potential of infinite height and assuming that there is an electron layer with a thickness of ⁇ R on the wall surface of the vacancy, the overlap between this electron layer and the wave function of o-Ps is calculated.
  • the model for determining the rate of positron (e +) annihilation obtained fits well with the data obtained in the actual experiment.
  • the pore diameter R of the polymer is up to about 0.16 to 0.8 nm, the relationship of the following formula (1) is established between the lifetime ⁇ 3 of o-Ps and the pore diameter R.
  • ⁇ 3 indicates the measured lifetime of orthopositronium (o-Ps)
  • R indicates the pore diameter of the polymer
  • ⁇ R indicates the thickness of the wall surface of the pores.
  • the type and content of each component may be appropriately adjusted so that the mean free volume of the cured product is within the above range.
  • the cured product of the present embodiment preferably has a pore size of less than 20%.
  • the free volume analyzed by the positron annihilation method indicates a region that is not occupied by the molecular chain that forms the porous substrate or electrolyte, and when the molecular chain that forms the substrate or electrolyte changes, the vicinity of the molecular chain. Reflects the volume generated in. Specifically, a method is used in which the time from when a positron is incident on a sample until it disappears is measured, and information on atomic vacancies, the size of free volume, number density, etc. is non-destructively observed from the disappearance lifetime. It is possible to determine the free volume.
  • a positron is an antiparticle of an electron, which is an elementary particle having the same mass as an electron but having a charge of the opposite sign.
  • positrons may form a pair with an electron and are called positronium.
  • positronium disappears, annihilated gamma rays are emitted in two directions. The lifetime of positrons is measured by measuring the time change of the annihilation ⁇ -ray intensity.
  • Positronium includes parapositronium and orthopositronium, and the average life of orthopositronium is about 140 ns, but it is shortened to 1 ns to 5 ns when it undergoes a pick-off process that takes away other electrons in the substance.
  • orthopositronium is present in the free volume space in a solid, the size of the space and the lifetime of orthopositronium are positively correlated, and the pore size is measured by measuring the lifetime due to the pick-off disappearance of orthopositronium. Information can be obtained.
  • the type and content of each component may be appropriately adjusted so that the porosity of the polymer is within the above range.
  • a moisture permeability as measured under conditions of a relative humidity of 85% that is 60 (g / m 2 ⁇ 24h / 100 ⁇ m) or less preferably, more preferably 55 (g / m 2 ⁇ 24h / 100 ⁇ m) or less, more preferably 50 (g / m 2 ⁇ 24h / 100 ⁇ m) or less. Due to the low moisture permeability, when used as a sealing material for an organic EL display element, the generation of dark spots due to the arrival of moisture on the organic light emitting material layer can be remarkably suppressed.
  • the moisture permeability can also be said to be 100 ⁇ m thick moisture permeability (g / m 2 ) measured by exposing for 24 hours in an environment of 85 ° C. and 85% RH in accordance with JIS Z 0208: 1976. ..
  • the moisture permeability for example may be a 0.01 (g / m 2 ⁇ 24h / 100 ⁇ m) or higher, may also be 0.1 (g / m 2 ⁇ 24h / 100 ⁇ m) or higher, 1 (g / m may also be 2 ⁇ 24h / 100 ⁇ m) above, it may be 10 (g / m 2 ⁇ 24h / 100 ⁇ m) above.
  • the moisture permeability for example, 0.01 ⁇ 60 (g / m 2 ⁇ 24h / 100 ⁇ m), 0.01 ⁇ 55 (g / m 2 ⁇ 24h / 100 ⁇ m), 0.01 ⁇ 50 (g / m 2 ⁇ 24h / 100 ⁇ m), 0.1 ⁇ 60 (g / m 2 ⁇ 24h / 100 ⁇ m), 0.1 ⁇ 55 (g / m 2 ⁇ 24h / 100 ⁇ m), 0.1 ⁇ 50 (g / m 2 ⁇ 24h / 100 ⁇ m), 1 ⁇ 60 ( g / m 2 ⁇ 24h / 100 ⁇ m), 1 ⁇ 55 (g / m 2 ⁇ 24h / 100 ⁇ m), 1 ⁇ 50 (g / m 2 ⁇ 24h / 100 ⁇ m), 10 ⁇ 60 ( g / m 2 ⁇ 24h / 100 ⁇ m ), 10 ⁇ 55 (g / m 2 ⁇ 24h / 100 ⁇ m), or 10 to
  • the present invention may relate to a method for manufacturing an organic electroluminescence display device having a dam fill sealing structure, which comprises a step of applying and curing the above composition to form a dam.
  • the present invention may relate to an organic EL display device having a dam-fill sealing structure including a dam and a filling agent, and at this time, the dam may include a cured product of the above-mentioned composition.
  • the dumb-fill sealing structure may be a known dam-fill sealing structure, and the filling agent may be a known filling agent. Further, the configuration of the organic EL display device other than the dumb-fill sealing structure may be the same as that of the known organic EL display device. In the present invention, for example, sufficient moisture permeability can be obtained from Patent Document 5.
  • A Polymerizable compound-high specific density compound (polymerizable compound with specific gravity of 1.3 to 4.0)
  • A-1 Dibromophenylglycidyl ether (“BR-250” manufactured by Nippon Kayaku Co., Ltd., content of bromine element: 51% by mass) (maximum atomic number: 35, specific gravity: 1.8, polymerizable in one molecule Number of functional groups: 1, molecular weight 308, content of bromine element: 50% by mass)
  • A-2 Brominated cresyl glycidyl ether (“BROC” manufactured by Nippon Kayaku Co., Ltd.) (maximum atomic number: 35, specific density: 1.8, number of polymerizable functional groups in one molecule: 1, content of bromine element : 50% by mass)
  • A-3) TBBPA epoxy resin DI "Epiclon 152"
  • C6 Epoxy (Maximum atomic number: 8, specific gravity: 1.5, number of polymerizable functional groups in one molecule: 1, molecular weight 376)
  • A-6 Pentafluorophenyl acrylate (“Pentafluorophenyl acrylate” manufactured by Tokyo Chemical Industry Co., Ltd.) (maximum atomic number: 9, specific gravity: 1.5, number of polymerizable functional groups in one molecule: 1)
  • A-7) Acrylic acid 2,4,6-tribromophenyl ("Tribromophenyl acrylate” manufactured by Tokyo Chemical Industry Co., Ltd.) (maximum atomic number: 35, specific density: 2.1, number of polymerizable functional groups in one molecule 1)
  • B Polymerizable compound-Low specific density compound (polymerizable compound with specific density less than 1.3) (B-1) 3', 4'-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate ("Celoxide 2021P" manufactured by Daicel Chemical Co., Ltd.) (maximum atomic number: 8, specific gravity: 1.2, in one molecule Number of polymerizable functional groups: 2, molecular weight 252) (B-2) Bisphenol A type epoxy resin (“jER828” manufactured by Mitsubishi Chemical Corporation, molecular weight 360 to 390) (maximum atomic number: 8, specific gravity: 1.2, number of polymerizable functional groups in one molecule: 2) (B-3) Phenol-novolac type epoxy resin ("EPICLON N-775" manufactured by DIC) (maximum atomic number: 8, specific gravity: 1.2, number of polymerizable functional groups in one molecule: 2 or more, number average molecular weight 800 ) (B-
  • C The following was used as the polymerization initiator.
  • C-1 Triarylsulfonium salt hexafluoroantimonate ("ADEKA PUTMER SP-170" manufactured by ADEKA, anion species is hexafluoroantimonate)
  • C-2 Triarylsulfonium salt (diphenyl4-thiophenoxyphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, "CPI-200K” manufactured by San-Apro, anion species is a phosphorus compound)
  • C-4) 1-Hydroxycyclohexylphenyl ketone, "I-184" manufactured by BASF Japan Ltd.)
  • GS-210 Spherical crosslinked polystyrene particles (“GS-210” manufactured by Ganz Kasei Co., Ltd.) (average particle size: 20.0 ⁇ m, standard deviation: 0.06 ⁇ m)
  • the raw materials of the types shown in Tables 1 to 3 were mixed at the composition ratios shown in Tables 1 to 3 to prepare the encapsulants of Examples and Comparative Examples.
  • the unit of composition ratio is parts by mass.
  • Tg A sheet-shaped cured product having a thickness of 0.1 mm was prepared under the above photocuring conditions, and the cured product having a thickness of 100 ⁇ m was cut into a width of 5 mm and a length of 25 mm to prepare a test piece.
  • This test piece was subjected to dynamic viscoelasticity measurement under the conditions of a temperature range of ⁇ 50 ° C. to 200 ° C., a heating rate of 2 ° C./min, and a tensile mode.
  • the temperature at the peak top of tan ⁇ (tangent loss) measured by the above dynamic viscoelasticity measurement was defined as the glass transition temperature (Tg) of the cured product.
  • a sheet-shaped cured product having a thickness of 0.1 mm was prepared under the above photocuring conditions, and the cured product having a thickness of 100 ⁇ m was cut into a width of 5 mm and a length of 25 mm to prepare a test piece.
  • This test piece was subjected to dynamic viscoelasticity measurement under the conditions of a temperature range of ⁇ 50 ° C. to 200 ° C., a heating rate of 2 ° C./min, and a tensile mode.
  • Crosslink density G'T + 40 / ⁇ RT
  • Average particle size, standard deviation The standard deviation of the particle volume distribution with respect to the particle size when the inorganic filler, the average particle size of the resin particles (sometimes referred to as the average particle size or the particle size), and the particle size ( ⁇ m) are expressed in logarithm.
  • the standard deviation was measured by a laser diffraction type particle size distribution measuring device ("SALD-2200 "manufactured by Shimadzu Corporation).
  • [Humidity permeability] A sheet-shaped cured product having a thickness of 0.1 mm was prepared under the above photocuring conditions, and calcium chloride (anhydrous) was used as a hygroscopic agent in accordance with JIS Z0208 "Moisture Permeability Test Method for Moisture-Proof Packaging Material (Cup Method)". The measurement was carried out under the conditions of an atmospheric temperature of 85 ° C. and a relative humidity of 85%. Moisture permeability 50g / (m 2 ⁇ 24hr) or less.
  • a sheet-shaped cured product having a thickness of 0.1 mm was prepared under the above photocuring conditions, and a cured product having a thickness of 0.1 mm was cut into a width of 10 mm and a length of 10 mm, and 10 sheets were stacked and fixed as a test sample. ..
  • the radiation source was 22 NaCl, and the positron annihilation lifetime and relative intensity were measured under the following conditions.
  • Positron radiation source 22 NaCl (intensity 0.6MBq)
  • Gamma ray detector barium fluoride scintillator and photomultiplier tube Device resolution: 250 ps Measurement temperature: 25 ° C
  • Count number 1,000,000 Sample: Measured by sandwiching a positron radiation source from both sides The average free volume and porosity were calculated from the positron annihilation lifetime measured according to the above measurement conditions.
  • Anode ITO, anode film thickness 250 nm -Hole injection layer: Copper phthalocyanine thickness 30 nm -Hole transport layer: N, N'-diphenyl-N, N'-dinaphthylbenzidine ( ⁇ -NPD) 20 nm thick -Light emitting layer: Tris (8-hydroxyquinolinato) aluminum (metal complex material), film thickness of light emitting layer 1000 ⁇ -Electron injection layer: Lithium fluoride 1 nm thick ⁇ Cathode: Aluminum, cathode film thickness 250 nm
  • a sealant is applied to a glass substrate in a square shape (side length 20 mm, coating width 0.6 mm, coating height 0.1 mm) in a nitrogen atmosphere with a coating device so that the adhesive thickness is 10 ⁇ m.
  • a glass substrate and an organic EL element substrate were bonded to each other via a sealant, and the sealant was cured under the above photocuring conditions to prepare an organic EL element.
  • the organic EL element is exposed under the conditions of 85 ° C. and 85% by mass relative humidity for 300 hours, then a voltage of 6 V is applied, and the light emitting state of the organic EL element is visually and microscopically observed, and a dark spot is observed. The diameter of the was measured.
  • the diameter of the dark spot is preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less, and most preferably no dark spot.
  • Viscosity and thixotropic properties of the composition The viscosity was measured under the conditions of 25 ° C. and 1 rpm with a cone rotor type viscometer (manufactured by Toki Sangyo Co., Ltd., "TV-22 type"). Further, as an evaluation of thixotropic property, the ratio of the viscosity ⁇ 2 at 25 ° C. and 0.1 rpm to the viscosity ⁇ 1 at 25 ° C. and 1 rpm ( ⁇ 2 / ⁇ 1 ) was measured.
  • [Applying straightness] Fill a 30 mL light-shielding syringe (trade name "UV block syringe", manufactured by Musashi Engineering Co., Ltd.) with the composition, and use a dispenser (trade name "SHOT mini 1000", manufactured by Musashi Engineering Co., Ltd.).
  • the composition was applied to the alkaline glass so that the coating length was 30 mm ⁇ 2 mm, the coating width was 0.6 mm ⁇ 0.2 mm, and the coating height was 0.1 mm ⁇ 0.05 mm.
  • the composition was irradiated with light under the condition of an integrated light amount of 2,000 mJ / cm 2 having a wavelength of 365 nm, and then heat-treated in an oven at 100 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

重合性化合物、重合開始剤及び無機充填材を含み、前記重合性化合物が、比重が1.3~4.0の化合物を含有する、封止剤。

Description

封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法
 本発明は、封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法に関する。
 近年、有機エレクトロルミネッセンス(有機EL)表示素子や有機薄膜太陽電池素子等の有機薄膜素子を用いた有機光デバイスの研究が進められている。有機薄膜素子は真空蒸着や溶液塗布等により簡便に作製できるため、生産性に優れる。
 有機EL表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された薄膜構造体である。この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して自己発光を行う。バックライトを必要とする液晶表示素子等と比較して視認性がよく、より薄型化が可能であり、かつ、直流低電圧駆動が可能であるという利点を有する。
 ところが、このような有機EL表示素子は、有機発光材料層や電極が外気に曝されるとその発光特性が急激に劣化し寿命が短くなるという問題があった。従って、有機EL表示素子の安定性及び耐久性を高めることを目的として、有機EL表示素子においては、有機発光材料層や電極を大気中の水分や酸素から遮断する封止技術が不可欠となっている。
 例えば、特許文献1には、上面発光型有機EL表示素子等において、有機EL表示素子基板の間に光硬化性の封止剤を満たし、光を照射して封止する方法が開示されている。また、特許文献2~4には、有機EL表示素子を封止し、水分による劣化を防止する技術が開示されている。
 一方、特許文献5には、(A)エポキシ化合物と(B)エポキシ樹脂と(C)光カチオン重合開始剤を含有し、かつ、水分量が1000ppm以下であり、塩素量が1000ppm以下である樹脂組成物が開示されている。しかしながら、特許文献5は、重合性化合物の比重に関する記載はない。
 特許文献6には、カチオン重合性化合物、光カチオン重合開始剤、及び、特定形状の板状の微粒子無機フィラーを含有した光硬化型樹脂組成物が開示されている。しかしながら、特許文献6に記載の組成物では、十分な透湿性が得られず、有機エレクトロルミネッセンス表示素子への適用は困難であった。また、特許文献6には、重合性化合物の比重に関する記載はない。
 特許文献7には、多官能カチオン重合性化合物と、有機化層状珪酸塩と、硬化剤とを含有し、前記有機化層状珪酸塩は、前記多官能カチオン重合性化合物中に分散し、前記有機化層状珪酸塩の含有量が、前記多官能カチオン重合性化合物100重量部に対して、20~250重量部であることを特徴とする透明性及びバリア性に優れる有機エレクトロルミネッセンス表示素子封止用硬化性樹脂組成物が開示されている。しかしながら、特許文献7に記載の樹脂組成物では、十分な透湿性が得られない場合があった。また、特許文献7には、重合性化合物の比重に関する記載がない。
 特許文献8には、特定の比率で(a)エポキシ化合物及び(b)前記エポキシ化合物と反応性の架橋性基を2個以上有する化合物を含有し、屈折率が1.6以上である透明性かつ低透湿性のエポキシ樹脂組成物が開示されている。しかしながら、特許文献8に記載の樹脂組成物では、十分な透湿性が得られない場合があった。また、特許文献8には、重合性化合物の比重に関する記載はない。
 特許文献9には、特定の反応性ケイ素基を有する有機重合体(A)と特定の反応性ケイ素基を有するポリオキシアルキレン系重合体(B)を含む硬化性組成物であって、当該硬化性組成物の比重が0.9以上1.3以下であることを特徴とする硬化性組成物が開示されている。しかしながら、特許文献9には、重合性化合物の比重を調整することにより、透湿度を低くすることについて記載はない。
 特許文献10には、特定構造の臭素付加型ビスフェノールA型エポキシ(メタ)アクリレートを10~70重量%を含む組成物を光重合することにより得られる共重合体からなり、屈折率1.58以上、比重1.5以下、アッベ数30以上である光硬化性樹脂製レンズが開示されている。しかしながら、特許文献10には、重合性化合物の比重を調整することにより透湿度を低くすることについて記載はないし、有機EL表示素子の封止に関する記載もない。
 特許文献11には、光重合し、官能性アクリル基を有する特定のポリシロキサン共重合体であって、約1.0より大きい比重と、自然の結晶質レンズの屈折能を復元するに適した屈折率を有するポリシロキサン共重合体が開示されている。しかしながら、特許文献11には、重合性化合物の比重を調整することにより、透湿度を低くすることについて記載はないし、有機EL表示素子の封止に関する記載もない。
 特許文献12には、1分子中に1個以上のエチレン性不飽和二重結合を有する活性エネルギー線硬化性化合物(A)、光ラジカル重合開始剤(C)及び(又は)光カチオン重合開始剤(D)よりなり、樹脂組成物の比重が1.4(25℃)以上、粘度が1,000ポイズ(25℃)以下であるモータ類回転子のバランス用活性エネルギー線硬化性樹脂組成物が開示されている。しかしながら、特許文献12には、重合性化合物の比重を調整することにより、透湿度を低くすることについて記載はないし、有機EL表示素子の封止に関する記載もない。
特開2001-357973号公報 特開平10-74583号公報 特開2001-307873号公報 特開2009-37812号公報 国際公開第2014/017524号 特開2006-291072号公報 国際公開第2015/129783号 特開2010-163566号公報 特開2010-163566号公報 特開2001-124903号公報 特表2002-527171号公報 特開平08-109231号公報
 近年、電子デバイスの要求特性が高まり、例えば、有機EL表示素子に対するより高い信頼性及び耐久性を実現可能な封止材が求められている。
 本発明は、上記事情に鑑みてなされたものであり、防湿性、及び、ガラス基板等との接着性に優れた封止材を形成可能な、封止剤を提供することを目的とする。また、本発明は、当該封止剤の硬化体、当該封止剤を用いた有機エレクトロルミネッセンス表示装置の製造方法、及び、当該封止剤から形成された封止材を有する有機エレクトロルミネッセンス表示装置を提供することを目的とする。
 すなわち、本発明は以下のとおりである。
<1>
 重合性化合物、重合開始剤及び無機充填材を含み、前記重合性化合物が、比重が1.3~4.0の化合物を含有する、封止剤。
<2>
 前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、前記硬化体の比重が1.35~19.0となる、<1>に記載の封止剤。
<3>
 前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、前記重合体のガラス転移温度が85℃以上となる、<1>又は<2>に記載の封止剤。
<4>
 前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、前記硬化体の架橋密度が1.5×10-3mol/cm以上となる、<1>~<3>のいずれかに記載の封止剤。
<5>
 前記重合性化合物が、原子番号9以上の元素を有する重合性化合物(X)を含有する、<1>~<4>のいずれかに記載の封止剤。
<6>
 前記重合性化合物(X)が、ハロゲン族元素を有する、<5>に記載の封止剤。
<7>
 前記重合性化合物(X)が、フッ素元素及び臭素元素からなる群より選択される少なくとも一種のハロゲン族元素を有する、<6>に記載の封止剤。
<8>
 前記重合性化合物(X)中のハロゲン族元素の含有量が、前記重合性化合物の総元素量に対して、10~50質量%である、<6>又は<7>に記載の封止剤。
<9>
 前記重合性化合物が、重合性官能基を2個以上有する架橋性化合物(Y)を含有する、<1>~<8>のいずれかに記載の封止剤。
<10>
 前記重合性化合物が、グリシジルエーテル化合物、脂環式エポキシ化合物、ビニルエーテル化合物及びオキセタン化合物からなる群より選択される少なくとも一種を含有する、<1>~<9>のいずれかに記載の封止剤。
<11>
 前記重合性化合物が、ラジカル重合性官能基を有する、<1>~<10>のいずれかに記載の封止剤。
<12>
 前記重合開始剤が、光重合開始剤である、<1>~<11>のいずれかに記載の封止剤。
<13>
 前記重合開始剤が、オニウム塩を含有する、<1>~<12>のいずれかに記載の封止剤。
<14>
 前記重合開始剤が、ラジカル重合開始剤である、<1>~<12>のいずれか一項に記載の封止剤。
<15>
 前記無機充填材の真比重が、1.5~5.0である、<1>~<14>のいずれかに記載の封止剤。
<16>
 前記無機充填材が、シリカ、マイカ、カオリン、タルク及び酸化アルミニウムからなる群より選択される少なくとも1種を含む、<1>~<15>のいずれかに記載の封止剤。
<17>
 前記無機充填材が、タルクを含む、<1>~<16>のいずれかに記載の封止剤。
<18>
 前記無機充填材が、平均粒子径が0.01~30μmの無機粒子を含む、<1>~<17>のいずれかに記載の封止剤。
<19>
 樹脂粒子を更に含む、<1>~<18>のいずれかに記載の封止剤。
<20>
 前記樹脂粒子が、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリスチレン粒子、及び、架橋ポリ(メタ)アクリル酸メチルポリスチレン共重合体粒子からなる群より選択される少なくとも一種を含有する、<19>に記載の封止剤。
<21>
 前記樹脂粒子の平均粒子径が1μm~100μmである、<19>又は<20>に記載の封止剤。
<22>
 前記樹脂粒子の粒径(μm)を対数で表示したときの粒径に対する粒子体積分布の標準偏差が、0.25以下である、<19>~<21>のいずれかに記載の封止剤。
<23>
 前記樹脂粒子の含有量が、前記重合性化合物100質量部に対して、0.01~5質量部である、<19>~<22>のいずれかに記載の封止剤。
<24>
 前記重合開始剤の含有量が、前記重合性化合物100質量部に対して、0.01~5質量部である、<1>~<23>のいずれかに記載の封止剤。
<25>
 前記無機充填材の含有量が、前記重合性化合物100質量部に対して、5~500質量部である、<1>~<24>のいずれかに記載の封止剤。
<26>
 前記重合性化合物の全量混合物の80℃における粘度が、500~30000mPa・sである、<1>~<25>のいずれかに記載の封止剤。
<27>
 25℃における粘度が、50000~1000000mPa・sである、<1>~<26>のいずれかに記載の封止剤。
<28>
 25℃、1rpmにおける粘度ηに対する、25℃、0.1rpmにおける粘度ηの比(η/η)が、1.1~10.0である、<1>~<27>のいずれかに記載の封止剤。
<29>
 前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、前記硬化体の平均自由体積が1nm以下となる、<1>~<28>のいずれかに記載の封止剤。
<30>
 前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、前記硬化体の空孔率が20%未満となる、<1>~<29>のいずれかに記載の封止剤。
<31>
 前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、前記硬化体の、JIS Z0208に準拠して、温度85℃、相対湿度85%の条件下で測定される透湿度が、50(g/m・24h/100μm)以下となる、<1>~<30>のいずれかに記載の封止剤。
<32>
 有機エレクトロルミネッセンス表示素子用封止剤である、<1>~<31>のいずれかに記載の封止剤。
<33>
 ダム形成用封止剤である、<1>~<32>のいずれかに記載の封止剤。
<34>
 <1>~<33>のいずれかに記載の封止剤を硬化してなる、硬化体。
<35>
 <1>~<33>のいずれかに記載の封止剤を塗布及び硬化して、ダムを形成する工程を含む、ダム・フィル封止構造を有する有機エレクトロルミネッセンス表示装置の製造方法。
<36>
 ダム及びフィル剤を備えるダム・フィル封止構造を有し、前記ダムが、<1>~<33>のいずれかに記載の封止剤の硬化体を含む、有機エレクトロルミネッセンス表示装置。
 本発明によれば、防湿性、及び、ガラス基板等との接着性に優れた封止材を形成可能な、封止剤が提供される。また、本発明によれば、当該封止剤の硬化体、当該封止剤を用いた有機エレクトロルミネッセンス表示装置の製造方法、及び、当該封止剤から形成された封止材を有する有機エレクトロルミネッセンス表示装置が提供される。
 以下、本発明の好適な実施形態について詳細に説明する。
 本実施形態の組成物は、重合性化合物、重合開始剤及び無機充填材を含む。本実施形態において、重合性化合物は、比重が1.3~4.0の高比重化合物を含有する。
 本実施形態の組成物によれば、防湿性、及び、ガラス基板等との接着性に優れた封止材を形成することができる。このため本実施形態の組成物は、封止剤(好ましくは有機エレクトロルミネッセンス表示素子用封止剤)として好適に用いることができる。また、本実施形態の組成物は、ダム・フィル封止構造を形成するための、ダム形成用封止剤として特に好適に用いることができる。
 本実施形態において、重合性化合物は、重合性官能基を有する化合物ということができる。重合性化合物は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。
 重合性化合物は、カチオン重合性官能基及びラジカル重合性官能基からなる群より選択される少なくとも一種を有することが好ましい。カチオン重合性官能基を有する重合性化合物としては、エポキシ化合物(例えば、グリシジルエーテル化合物、脂環式エポキシ化合物等)、カチオン重合性ビニル化合物(例えば、ビニルエーテル化合物等)及びオキセタン化合物からなる群より選択される少なくとも一種が好ましい。ラジカル重合性官能基を有する重合性化合物としては、ビニル基、(メタ)アクリロイル基、アリル基、ビニルエーテル基、ビニルエステル基からなる群より選択される少なくとも一種のラジカル重合性官能基を有する化合物が挙げられ、(メタ)アクリロイル基を有する化合物が好ましい。(メタ)アクリロイル基を有する化合物としては、(メタ)アクリレート及び(メタ)アクリルアミドからなる群より選択される少なくとも一種が好ましい。
 高比重化合物は、重合性官能基を有し、比重が1.3~4.0の化合物ということができる。高比重化合物の比重は、好ましくは1.4以上であり、より好ましくは1.5以上である。また、高比重化合物の比重は、好ましくは3.0以下であり、より好ましくは2.5以下であり、更に好ましくは2.0以下である。すなわち、高比重化合物の比重は、例えば1.3~4.0、1.3~3.0、1.3~2.5、1.3~2.0、1.4~4.0、1.4~3.0、1.4~2.5、1.4~2.0、1.5~4.0、1.5~3.0、1.5~2.5又は1.5~2.0であってよい。なお、高比重化合物の比重は、ハーバート形比重瓶を用い、JIS K0061に準拠して測定される値を示す。
 本実施形態において、重合性化合物は、比重が1.3未満の低比重化合物を更に含有していてもよい。低比重化合物は、重合性官能基を有し、比重が1.3未満の化合物ということができる。低比重化合物の比重は、好ましくは0.7以上であり、より好ましくは0.8以上であり、0.9以上、1.0以上又は1.1以上であってもよい。すなわち、低比重化合物の比重は、例えば0.7以上1.3未満、0.8以上1.3未満、0.9以上1.3未満、1.0以上1.3未満、又は1.1以上1.3未満であってよい。なお、低比重化合物の比重は、ハーバート形比重瓶を用い、JIS K0061に準拠して測定される値を示す。
 重合性化合物に占める高比重化合物の割合は、例えば30質量%以上であってよく、好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上、一層好ましくは55質量%以上である。これにより上述の効果がより顕著に奏される。また、重合性化合物に占める高比重化合物の割合は、例えば100質量%であってよく、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下、一層好ましくは75質量%以下、より一層好ましくは70質量%以下、特に好ましくは65質量%以下である。すなわち、重合性化合物に占める高比重化合物の割合は、例えば30~100質量%、30~90質量%、30~85質量%、30~80質量%、30~75質量%、30~70質量%、30~65質量%、40~100質量%、40~90質量%、40~85質量%、40~80質量%、40~75質量%、40~70質量%、40~65質量%、45~100質量%、45~90質量%、45~85質量%、45~80質量%、45~75質量%、45~70質量%、45~65質量%、50~100質量%、50~90質量%、50~85質量%、50~80質量%、50~75質量%、50~70質量%、50~65質量%、55~100質量%、55~90質量%、55~85質量%、55~80質量%、55~75質量%、55~70質量%又は55~65質量%であってよい。
 重合性化合物に占める低比重化合物の割合は、例えば0質量%であってよく、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、一層好ましくは25質量%以上、より一層好ましくは30質量%以上、特に好ましくは35質量%以上である。また、重合性化合物に占める低比重化合物の割合は、例えば70質量%以下であってよく、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下、一層好ましくは45質量%以下である。これにより、上述の効果がより顕著に奏される。
すなわち、重合性化合物に占める低比重化合物の割合は、例えば0~70質量%、0~60質量%、0~55質量%、0~50質量%、0~45質量%、10~70質量%、10~60質量%、10~55質量%、10~50質量%、10~45質量%、15~70質量%、15~60質量%、15~55質量%、15~50質量%、15~45質量%、20~70質量%、20~60質量%、20~55質量%、20~50質量%、20~45質量%、25~70質量%、25~60質量%、25~55質量%、25~50質量%、25~45質量%、30~70質量%、30~60質量%、30~55質量%、30~50質量%、30~45質量%、35~70質量%、35~60質量%、35~55質量%、35~50質量%又は35~45質量%であってよい。
 本実施形態において、重合性化合物は、原子番号9以上の元素を有する重合性化合物(X)を含有することが好ましい。重合性化合物(X)は、高比重化合物であっても低比重化合物であってもよく、高比重化合物であることが好ましい。
 重合性化合物(X)は、ハロゲン族元素を有することが好ましく、フッ素元素及び臭素元素からなる群より選択される少なくとも一種を有することがより好ましい。
 重合性化合物(X)が1分子中に有するハロゲン族元素の数は、1以上が好ましく、2以上がより好ましく、3以上が更に好ましい。重合性化合物(X)が1分子中に有するハロゲン族元素の数は、上限に特に限定はなく、例えば40以下であってよく、好ましくは30以下である。すなわち、重合性化合物(X)が1分子中に有するハロゲン族元素の数は、例えば1~40、1~30、2~40又は2~30であってよい。
 重合性化合物(X)は、カチオン重合性官能基及びラジカル重合性官能基からなる群より選択される少なくとも一種を有することが好ましい。カチオン重合性官能基を有する重合性化合物(X)としては、エポキシ化合物(例えば、グリシジルエーテル化合物、脂環式エポキシ化合物等)、カチオン重合性ビニル化合物(例えば、ビニルエーテル化合物等)及びオキセタン化合物からなる群より選択される少なくとも一種が好ましい。ラジカル重合性官能基を有する重合性化合物(X)としては、ビニル基、(メタ)アクリロイル基、アリル基、ビニルエーテル基、ビニルエステル基からなる群より選択される少なくとも一種のラジカル重合性官能基を有する化合物が挙げられ、(メタ)アクリロイル基を有する化合物が好ましい。(メタ)アクリロイル基を有する化合物としては、(メタ)アクリレート及び(メタ)アクリルアミドからなる群より選択される少なくとも一種が好ましい。
 重合性化合物(X)の具体例の一つである、カチオン重合性官能基を有する重合性化合物(X)としては、ブロモフェニルグリシジルエーテル、ジブロモフェニルグリシジルエーテル等のハロフェニルグリシジルエーテル、臭素化ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールF型ノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等が挙げられる。
 重合性化合物(X)の具体例の一つである、ラジカル重合性化合物を有する重合性化合物(X)としては、フルオロフェニル(メタ)アクリレート、トリフルオロフェニル(メタ)アクリレート、ペンタフルオロフェニル(メタ)アクリレート、クロロフェニル(メタ)アクリレート、トリクロロフェニル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、ペンタブロモロフェニル(メタ)アクリレート等のハロフェニル(メタ)アクリレート等が挙げられる。
 重合性化合物(X)中のハロゲン族元素の含有量は、重合性化合物の総元素量に対して、10~50質量%が好ましい。10質量%以上であると、硬化体の防湿性がより向上する傾向があり、50質量%以下であると、組成物の硬化性がより向上する傾向がある。
 重合性化合物に占める重合性化合物(X)の割合は、例えば30質量%以上であってよく、好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上、一層好ましくは55質量%以上である。これにより、硬化体の防湿性がより向上する傾向がある。また、重合性化合物に占める重合性化合物(X)の割合は、例えば100質量%であってよく、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下、一層好ましくは75質量%以下、より一層好ましくは70質量%以下、特に好ましくは65質量%以下である。これにより、ガラス基板等に対する接着性がより向上、封止材の信頼性がより向上する傾向がある。すなわち、重合性化合物に占める重合性化合物(X)の割合は、例えば30~100質量%、30~90質量%、30~85質量%、30~80質量%、30~75質量%、30~70質量%、30~65質量%、40~100質量%、40~90質量%、40~85質量%、40~80質量%、40~75質量%、40~70質量%、40~65質量%、45~100質量%、45~90質量%、45~85質量%、45~80質量%、45~75質量%、45~70質量%、45~65質量%、50~100質量%、50~90質量%、50~85質量%、50~80質量%、50~75質量%、50~70質量%、50~65質量%、55~100質量%、55~90質量%、55~85質量%、55~80質量%、55~75質量%、55~70質量%又は55~65質量%であってよい。
 本実施形態において、重合性化合物は、重合性化合物(X)以外の重合性化合物(すなわち、原子番号9以上の元素を有しない重合性化合物)(以下、重合性化合物(X’)ともいう。)を更に含有していてもよい。
 重合性化合物(X’)は、例えば、重合性化合物(X)が有する重合性官能基と共重合可能な重合性官能基を有する化合物であってよい。重合性化合物(X’)は、高比重化合物であっても低比重化合物であってもよい。
 重合性化合物(X’)は、カチオン重合性官能基及びラジカル重合性官能基からなる群より選択される少なくとも一種を有することが好ましい。カチオン重合性官能基を有する重合性化合物(X’)としては、エポキシ化合物(例えば、グリシジルエーテル化合物、脂環式エポキシ化合物等)、カチオン重合性ビニル化合物(例えば、ビニルエーテル化合物等)及びオキセタン化合物からなる群より選択される少なくとも一種が好ましい。ラジカル重合性官能基を有する重合性化合物(X’)としては、ビニル基、(メタ)アクリロイル基、アリル基、ビニルエーテル基、ビニルエステル基からなる群より選択される少なくとも一種のラジカル重合性官能基を有する化合物が挙げられ、(メタ)アクリロイル基を有する化合物が好ましい。(メタ)アクリロイル基を有する化合物としては、(メタ)アクリレート及び(メタ)アクリルアミドからなる群より選択される少なくとも一種が好ましい。
 重合性化合物(X)がカチオン重合性官能基を有するとき、重合性化合物(X’)はカチオン重合性官能基を有することが好ましい。カチオン重合性官能基を有する重合性化合物(X’)としては、エポキシ化合物、オキセタン化合物、及び、カチオン重合性ビニル化合物からなる群より選択される少なくとも一種が好ましい。
 エポキシ化合物としては、エポキシ基を有する脂環式化合物(脂環式エポキシ化合物)、エポキシ基を有する芳香族化合物(芳香族エポキシ化合物)、グリシジルエーテル化合物等が挙げられる。
 脂環式エポキシ化合物としては、例えば、少なくとも1個のシクロアルケン環(例えば、シクロへキセン環、シクロペンテン環、ピネン環等)を有する化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化することによって得られる化合物又はその誘導体が挙げられる。また、脂環式エポキシ化合物としては、例えば、芳香族エポキシ化合物(例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物等)を水素化して得られる水素化エポキシ化合物も挙げられる。
 脂環式エポキシ化合物としては、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルアルキル(メタ)アクリレート(例えば、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等)、(3、3’、4、4’-ジエポキシ)ビシクロヘキシル、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂等が挙げられる。
 脂環式エポキシ化合物の中では、1,2-エポキシシクロヘキサン構造を有する脂環式エポキシ化合物が好ましい。1,2-エポキシシクロヘキサン構造を有する脂環式エポキシ化合物の中では、下記式(A1-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(A1-1)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。
 連結基は、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド結合、又は、これらが複数個連結した基であることが好ましい。
 Xは、連結基が好ましい。連結基としては、エステル結合を有する基が好ましい。連結基としてエステル結合を有する基を有する化合物としては、例えば、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートが挙げられる。
 脂環式エポキシ化合物の分子量は、硬化体の防湿性がより向上する点及び組成物の保存安定性がより向上する点で、450以下が好ましく、400以下がより好ましく、300以下が更に好ましく、100~280が一層好ましい。すなわち、脂環式エポキシ化合物の分子量は、例えば100~450、100~400、100~300又は100~280であってよい。
 脂環式エポキシ化合物が分子量分布を有する場合は、脂環式エポキシ化合物の数平均分子量が上記範囲であることが好ましい。なお、本明細書中、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により下記測定条件で測定される、ポリスチレン換算の値を示す。
・溶媒(移動相):THF
・脱気装置:ERMA社製ERC-3310
・ポンプ:日本分光社製PU-980
・流速:1.0ml/min
・オートサンプラ:東ソー社製AS-8020
・カラムオーブン:日立製作所製L-5030
・設定温度:40℃
・カラム構成:東ソー社製TSKguardcolumnMP(×L)6.0mmID×4.0cm 2本、及び東ソー社製TSK-GELMULTIPORE HXL-M 7.8mmID×30.0cm 2本、計4本
・検出器:RI 日立製作所製L-3350
・データ処理:SIC480データステーション
 芳香族エポキシ化合物としては、モノマー、オリゴマー又はポリマーのいずれも使用可能であり、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、及びこれらの変性物等が挙げられる。
 芳香族エポキシ化合物としては、ビスフェノール構造を有する芳香族エポキシ化合物が好ましい。ビスフェノール構造を有する芳香族エポキシ化合物の中では、下記式(A2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(A2-1)中、nは0~30を示し、R21、R22、R23及びR24は、それぞれ独立に水素原子又は置換もしくは非置換の炭素原子数1~5のアルキル基を表す。nは0.1以上でもよい。
 R21、R22、R23及びR24は、好ましくは水素原子又はメチル基である。R21、R22、R23及びR24は、それぞれ同一でも異なっていてもよいが、同一であることが好ましい。
 ビスフェノール構造を有する芳香族エポキシ化合物は、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂からなる群より選択される少なくとも1種であることが好ましい。
 芳香族エポキシ化合物の分子量は、硬化体の防湿性がより向上する点で、100~5000が好ましく、150~1000がより好ましく、200~450が更に好ましい。すなわち、芳香族エポキシ化合物の分子量は、例えば100~5000、100~1000、100~450、150~5000、150~1000、150~450、200~5000、200~1000又は200~450であってよい。
 芳香族エポキシ化合物が分子量分布を有する場合は、芳香族エポキシ化合物の数平均分子量が上記範囲であることが好ましい。なお、本明細書中、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により上述した測定条件で測定される、ポリスチレン換算の値を示す。
 グリシジルエーテル化合物としては、ポリグリシジルエーテル化合物が好ましい。ポリグリシジルエーテル化合物としては、特に限定されないが、アルキレングリコールのジグリシジルエーテル(例えば、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル等)、多価アルコールのポリグリシジルエーテル(例えば、グリセリン又はそのアルキレンオキサイド付加体のジ又はトリグリシジルエーテル等)、ポリアルキレングリコールのジグリシジルエーテル(例えば、ポリエチレングリコール又はそのアルキレンオキサイド付加体のジグリシジルエーテル、ポリプロピレングリコール又はそのアルキレンオキサイド付加体のジグリシジルエーテル等)が挙げられる。ここで、アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド等が挙げられる。
 カチオン重合性ビニル化合物は、モノマー、オリゴマー又はポリマーのいずれも使用できる。カチオン重合性ビニル化合物としては、ビニルエーテル化合物、ビニルアミン化合物、スチレン等が挙げられる。
 ビニルエーテル化合物としては、特に限定されないが、エチレングリコールジビニルエーテル、エチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシエチルモノビニルエーテル、ヒドロキシノニルモノビニルエーテル、トリメチロールプロパントリビニルエーテル等のジ又はトリビニルエーテル化合物、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテルo-プロピレンカーボネート、ドデシルビニルエーテル、ジエチレングリコールモノビニルエーテル、オクタデシルビニルエーテル等のモノビニルエーテル化合物等が挙げられる。
 オキセタン化合物としては、特に限定されないが、3-エチル-3-ヒドロキシメチルオキセタン(東亜合成(株)製商品名アロンオキセタンOXT-101等)、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン(同OXT-121等)、3-エチル-3-(フェノキシメチル)オキセタン(同OXT-211等)、ジ(1-エチル-(3-オキセタニル))メチルエーテル(同OXT-221等)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(同OXT-212等)等が挙げられる。オキセタン化合物とは、分子内に1個以上のオキセタン環を有する化合物をいう。
 重合性化合物(X)がラジカル重合性官能基を有するとき、重合性化合物(X’)はラジカル重合性官能基を有することが好ましい。ラジカル重合性官能基を有する重合性化合物(X’)としては、ビニル基、(メタ)アクリロイル基、アリル基、ビニルエーテル基、ビニルエステル基からなる群より選択される少なくとも一種のラジカル重合性官能基を有する化合物が好ましく、(メタ)アクリロイル基を有する化合物が好ましい。(メタ)アクリロイル基を有する化合物としては、(メタ)アクリレート及び(メタ)アクリルアミドからなる群より選択される少なくとも一種がより好ましい。
 (メタ)アクリレートとしては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、エトキシ化-o-フェニルフェノールアクリレート等の単官能(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート等が挙げられる。
 重合性化合物は、重合性官能基を2個以上有する架橋性化合物(Y)を含有することが好ましい。架橋性化合物(Y)は、高比重化合物であっても低比重化合物であってもよい。また、架橋性化合物(Y)は、重合性化合物(X)であっても重合性化合物(X’)であってもよい。
 架橋性化合物(Y)としては、上述した重合性化合物の中で、重合性官能基を2個以上有するものが挙げられる。
 重合性化合物に占める架橋性化合物(Y)の割合は、30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上が更に好ましい。これにより、組成物の硬化性がより向上し、より強度の高い硬化体が得られやすくなる傾向がある。また、重合性化合物に占める架橋性化合物(Y)の割合は、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下が更に好ましい。これにより、ガラス基板等への接着性がより向上し、より信頼性に優れた封止材を形成できる。すなわち、重合性化合物に占める架橋性化合物(Y)の割合は、例えば30~90質量%、30~85質量%、30~80質量%、35~90質量%、35~85質量%、35~80質量%、40~90質量%、40~85質量%又は40~80質量%であってよい。
 本実施形態の組成物の塗工性が向上し、硬化体の成形性に優れる観点からは、重合性化合物の全量混合物の80℃における粘度が、500mPa・s以上が好ましく、700mPa・s以上がより好ましく、1000mPa・s以上が更に好ましい。また、本実施形態の組成物の塗工時の吐出性が向上し、成形方法の選択の幅が広がる観点からは、重合性化合物の全量混合物の80℃における粘度が、30000mPa・s以下が好ましく、25000mPa・s以下がより好ましく、20000mPa・s以下が更に好ましい。すなわち、重合性化合物の全量混合物の80℃における粘度は、例えば、500~30000mPa・s、500~25000mPa・s、500~20000mPa・s、700~30000mPa・s、700~25000mPa・s、700~20000mPa・s、1000~30000mPa・s、1000~25000mPa・s又は1000~20000mPa・sであってよい。
 本実施形態では、重合性化合物の全量混合物の粘度が上記範囲となるように、上述の重合性化合物の複数を組み合わせてよい。
 なお、本明細書中、重合性化合物の全量混合物の80℃における粘度は、コーンローター式粘度計により測定される値を示す。
 重合開始剤としては、光重合開始剤が好ましい。光重合開始剤を用いることで、本実施形態の組成物が、紫外線等のエネルギー線の照射により硬化可能となる。
 重合開始剤は、カチオン重合開始剤及びラジカル重合開始剤からなる群より選択される少なくとも一種であってよく、光カチオン重合開始剤及び光ラジカル重合開始剤からなる群より選択される少なくとも一種であることが好ましい。カチオン重合開始剤を用いることで、カチオン重合性官能基を有する重合性化合物の重合が可能となり、ラジカル重合開始剤を用いることで、ラジカル重合性官能基を有する重合性化合物の重合が可能となる。
 光カチオン重合開始剤は特に限定されず、例えば、アリールスルホニウム塩誘導体(例えば、ダウケミカル社製のサイラキュアUVI-6990、サイラキュアUVI-6974、旭電化工業社製のアデカオプトマーSP-150、アデカオプトマーSP-152、アデカオプトマーSP-170、アデカオプトマーSP-172、サンアプロ社製のCPI-100P、CPI-101A、CPI-200K、CPI-210S、LW-S1、ダブルボンド社製のチバキュアー1190等)、アリールヨードニウム塩誘導体(例えば、チバスペシャリティーケミカルズ社製のイルガキュア250、ローディア・ジャパン社製のRP-2074)、アレン-イオン錯体誘導体、ジアゾニウム塩誘導体、トリアジン系開始剤及びその他のハロゲン化物等の酸発生剤等が挙げられる。
 光カチオン重合開始剤としては、例えば、式(B-1)で表されるオニウム塩が挙げられる。
Figure JPOXMLDOC01-appb-C000003
[式(B-1)中、
 AはVIA族~VIIA族の原子価mの元素を示し、
 mは1~2を示し、
 pは0~3を示し、
 RはAに結合している有機基を示し、
 Dは下記式(B-1-1):
Figure JPOXMLDOC01-appb-C000004
で表される2価の基(式(B-1-1)中、Eは2価の基を示し、Gは-O-、-S-、-SO-、-SO-、-NH-、-NR’-、-CO-、-COO-、-CONH-、炭素数1~3のアルキレン又はフェニレン基(R’は炭素数1~5のアルキル基又は炭素数6~10のアリール基)を示し、aは0~5を示す。a+1個のE及びa個のGはそれぞれ同一であっても異なっていてもよい。)を示し、
 Xはオニウムの対イオンである。)
 式(B-1)のオニウムイオンは特に限定されず、例えば、4-(フェニルチオ)フェニルジフェニルスルホニウム、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド、ビス〔4-{ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホニオ}フェニル〕スルフィド、ビス{4-[ビス(4-フルオロフェニル)スルホニオ]フェニル}スルフィド、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジ-p-トリルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジフェニルスルホニウム、2-[(ジ-p-トリル)スルホニオ]チオキサントン、2-[(ジフェニル)スルホニオ]チオキサントン、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジ-p-トリルスルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、5-(4-メトキシフェニル)チアアンスレニウム、5-フェニルチアアンスレニウム、ジフェニルフェナシルスルホニウム、4-ヒドロキシフェニルメチルベンジルスルホニウム、2-ナフチルメチル(1-エトキシカルボニル)エチルスルホニウム、4-ヒドロキシフェニルメチルフェナシルスルホニウム、オクタデシルメチルフェナシルスルホニウム等が挙げられる。
 RはAに結合している有機基である。Rは、例えば、炭素数6~30のアリール基、炭素数4~30の複素環基、炭素数1~30のアルキル基、炭素数2~30のアルケニル基又は炭素数2~30のアルキニル基を表し、これらは置換基を有していてもよい。置換基としては、例えば、アルキル基、ヒドロキシ基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アリールチオカルボニル基、アシロキシ基、アリールチオ基、アルキルチオ基、アリール基、複素環基、アリールオキシ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アルキレンオキシ基、アミノ基、シアノ基、ニトロ基、及びハロゲンからなる群より選ばれる少なくとも1種が挙げられる。
 Rの個数はm+p(m-1)+1であり、それぞれ互いに同一であっても異なっていてもよい。また、2個以上のRは、互いに直接又は-O-、-S-、-SO-、-SO-、-NH-、-NR’-、-CO-、-COO-、-CONH-、炭素数1~3のアルキレン若しくはフェニレン基を介して結合して、元素Aを含む環構造を形成していてもよい。ここで、R’は炭素数1~5のアルキル基又は炭素数6~10のアリール基である。
 炭素数6~30のアリール基としては、フェニル基等の単環式アリール基、並びに、ナフチル基、アントラセニル基、フェナンスレニル基、ピレニル基、クリセニル基、ナフタセニル基、ベンズアントラセニル基、アントラキノリル基、フルオレニル基、ナフトキノン基及びアントラキノン基等の縮合多環式アリール基が挙げられる。
 炭素数6~30のアリール基、炭素数4~30の複素環基、炭素数1~30のアルキル基、炭素数2~30のアルケニル基又は炭素数2~30のアルキニル基は少なくとも1種の置換基を有してもよい。置換基の例としては、
 メチル、エチル、プロピル、ブチル、ペンチル、オクチル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクダデシル等の炭素数1~18の直鎖アルキル基;
 イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル等の炭素数1~18の分岐アルキル基;
 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等の炭素数3~18のシクロアルキル基;
 ヒドロキシ基;
 メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ヘキシルオキシ、デシルオキシ、ドデシルオキシ等の炭素数1~18の直鎖又は分岐のアルコキシ基;
 アセチル、プロピオニル、ブタノイル、2-メチルプロピオニル、ヘプタノイル、2-メチルブタノイル、3-メチルブタノイル、オクタノイル、デカノイル、ドデカノイル、オクタデカノイル等の炭素数2~18の直鎖又は分岐のアルキルカルボニル基;
 ベンゾイル、ナフトイル等の炭素数7~11のアリールカルボニル基;
 メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、オクチロキシカルボニル、テトラデシルオキシカルボニル、オクタデシロキシカルボニル等の炭素数2~19の直鎖又は分岐のアルコキシカルボニル基;
 フェノキシカルボニル、ナフトキシカルボニル等の炭素数7~11のアリールオキシカルボニル基;
 フェニルチオカルボニル、ナフトキシチオカルボニル等の炭素数7~11のアリールチオカルボニル基;
 アセトキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、ブチルカルボニルオキシ、イソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ、tert-ブチルカルボニルオキシ、オクチルカルボニルオキシ、テトラデシルカルボニルオキシ、オクタデシルカルボニルオキシ等の炭素数2~19の直鎖又は分岐のアシロキシ基;
 フェニルチオ、2-メチルフェニルチオ、3-メチルフェニルチオ、4-メチルフェニルチオ、2-クロロフェニルチオ、3-クロロフェニルチオ、4-クロロフェニルチオ、2-ブロモフェニルチオ、3-ブロモフェニルチオ、4-ブロモフェニルチオ、2-フルオロフェニルチオ、3-フルオロフェニルチオ、4-フルオロフェニルチオ、2-ヒドロキシフェニルチオ、4-ヒドロキシフェニルチオ、2-メトキシフェニルチオ、4-メトキシフェニルチオ、1-ナフチルチオ、2-ナフチルチオ、4-[4-(フェニルチオ)ベンゾイル]フェニルチオ、4-[4-(フェニルチオ)フェノキシ]フェニルチオ、4-[4-(フェニルチオ)フェニル]フェニルチオ、4-(フェニルチオ)フェニルチオ、4-ベンゾイルフェニルチオ、4-ベンゾイル-2-クロロフェニルチオ、4-ベンゾイル-3-クロロフェニルチオ、4-ベンゾイル-3-メチルチオフェニルチオ、4-ベンゾイル-2-メチルチオフェニルチオ、4-(4-メチルチオベンゾイル)フェニルチオ、4-(2-メチルチオベンゾイル)フェニルチオ、4-(p-メチルベンゾイル)フェニルチオ、4-(p-エチルベンゾイル)フェニルチオ4-(p-イソプロピルベンゾイル)フェニルチオ、4-(p-tert-ブチルベンゾイル)フェニルチオ等の炭素数6~20のアリールチオ基;
 メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、sec-ブチルチオ、tert-ブチルチオ、ペンチルチオ、イソペンチルチオ、ネオペンチルチオ、tert-ペンチルチオ、オクチルチオ、デシルチオ、ドデシルチオ等の炭素数1~18の直鎖又は分岐のアルキルチオ基;
 フェニル、トリル、ジメチルフェニル、ナフチル等の炭素数6~10のアリール基;
 チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、ジベンゾチエニル、キサントニル、チオキサントニル、ジベンゾフラニル等の炭素数4~20の複素環基;
 フェノキシ、ナフチルオキシ等の炭素数6~10のアリールオキシ基;メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、イソプロピルスルフィニル、ブチルスルフィニル、イソブチルスルフィニル、sec-ブチルスルフィニル、tert-ブチルスルフィニル、ペンチルスルフィニル、イソペンチルスルフィニル、ネオペンチルスルフィニル、tert-ペンチルスルフィニル、オクチルスルフィニル等の炭素数1~18の直鎖又は分岐のアルキルスルフィニル基;
 フェニルスルフィニル、トリルスルフィニル、ナフチルスルフィニル等の炭素数6~10のアリールスルフィニル基;
 メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、イソブチルスルホニル、sec-ブチルスルホニル、tert-ブチルスルホニル、ペンチルスルホニル、イソペンチルスルホニル、ネオペンチルスルホニル、tert-ペンチルスルホニル、オクチルスルホニル等の炭素数1~18の直鎖又は分岐のアルキルスルホニル基;
 フェニルスルホニル、トリルスルホニル(トシル基)、ナフチルスルホニル等の炭素数の6~10のアリールスルホニル基;
 式(B-1-2):
Figure JPOXMLDOC01-appb-C000005
で表されるアルキレンオキシ基(Qは水素原子又はメチル基を表し、kは1~5の整数を表す);
 非置換のアミノ基;
 炭素数1~5のアルキル及び/又は炭素数6~10のアリールでモノ置換もしくはジ置換されているアミノ基;
 シアノ基;
 ニトロ基;
 フッ素、塩素、臭素、ヨウ素等のハロゲン等が挙げられる。
 式(B-1)中のpは[D-Am-1]結合の繰り返し単位数を表し、0~3の整数であることが好ましい。
 式(B-1)中のオニウムイオン[A]として好ましいものはスルホニウム、ヨードニウム、セレニウムであるが、代表例としては以下のものが挙げられる。
 スルホニウムイオンとしては、トリフェニルスルホニウム、トリ-p-トリルスルホニウム、トリ-o-トリルスルホニウム、トリス(4-メトキシフェニル)スルホニウム、1-ナフチルジフェニルスルホニウム、2-ナフチルジフェニルスルホニウム、トリス(4-フルオロフェニル)スルホニウム、トリ-1-ナフチルスルホニウム、トリ-2-ナフチルスルホニウム、トリス(4-ヒドロキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジフェニルスルホニウム、4-(p-トリルチオ)フェニルジ-p-トリルスルホニウム、4-(4-メトキシフェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジ-p-トリルスルホニウム、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド、ビス〔4-{ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホニオ}フェニル〕スルフィド、ビス{4-[ビス(4-フルオロフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メチルフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メトキシフェニル)スルホニオ]フェニル}スルフィド、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルジフェニルスルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジ-p-トリルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジフェニルスルホニウム、2-[(ジ-p-トリル)スルホニオ]チオキサントン、2-[(ジフェニル)スルホニオ]チオキサントン、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジ-p-トリルスルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジフェニルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジ-p-トリルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジフェニルスルホニウム、5-(4-メトキシフェニル)チアアンスレニウム、5-フェニルチアアンスレニウム、5-トリルチアアンスレニウム、5-(4-エトキシフェニル)チアアンスレニウム、5-(2,4,6-トリメチルフェニル)チアアンスレニウム等のトリアリールスルホニウム;
 ジフェニルフェナシルスルホニウム、ジフェニル4-ニトロフェナシルスルホニウム、ジフェニルベンジルスルホニウム、ジフェニルメチルスルホニウム等のジアリールスルホニウム;
 フェニルメチルベンジルスルホニウム、4-ヒドロキシフェニルメチルベンジルスルホニウム、4-メトキシフェニルメチルベンジルスルホニウム、4-アセトカルボニルオキシフェニルメチルベンジルスルホニウム、2-ナフチルメチルベンジルスルホニウム、2-ナフチルメチル(1-エトキシカルボニル)エチルスルホニウム、フェニルメチルフェナシルスルホニウム、4-ヒドロキシフェニルメチルフェナシルスルホニウム、4-メトキシフェニルメチルフェナシルスルホニウム、4-アセトカルボニルオキシフェニルメチルフェナシルスルホニウム、2-ナフチルメチルフェナシルスルホニウム、2-ナフチルオクタデシルフェナシルスルホニウム、9-アントラセニルメチルフェナシルスルホニウム等のモノアリールスルホニウム;
 ジメチルフェナシルスルホニウム、フェナシルテトラヒドロチオフェニウム、ジメチルベンジルスルホニウム、ベンジルテトラヒドロチオフェニウム、オクタデシルメチルフェナシルスルホニウム等のトリアルキルスルホニウム;等が挙げられる。
 これらのオニウムイオンの中では、スルホニウムイオンとヨードニウムイオンからなる1種以上が好ましく、スルホニウムイオンがより好ましい。スルホニウムイオンとしては、トリフェニルスルホニウム、トリ-p-トリルスルホニウム、4-(フェニルチオ)フェニルジフェニルスルホニウム、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド、ビス〔4-{ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホニオ}フェニル〕スルフィド、ビス{4-[ビス(4-フルオロフェニル)スルホニオ]フェニル}スルフィド、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジ-p-トリルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジフェニルスルホニウム、2-[(ジ-p-トリル)スルホニオ]チオキサントン、2-[(ジフェニル)スルホニオ]チオキサントン、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジ-p-トリルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジフェニルスルホニウム、5-(4-メトキシフェニル)チアアンスレニウム、5-フェニルチアアンスレニウム、ジフェニルフェナシルスルホニウム、4-ヒドロキシフェニルメチルベンジルスルホニウム、2-ナフチルメチル(1-エトキシカルボニル)エチルスルホニウム、4-ヒドロキシフェニルメチルフェナシルスルホニウム及びオクタデシルメチルフェナシルスルホニウムからなる1種以上が好ましい。
 式(B-1)においてXは対イオンである。その個数は1分子当りp+1である。対イオンは、特に限定されないが、ホウ素化合物、リン化合物、アンチモン化合物、ヒ素化合物、アルキルスルホン酸化合物等のハロゲン化物、メチド化合物等が挙げられる。Xとしては、例えば、F、Cl、Br、I等のハロゲンイオン;OH;ClO ;FSO 、ClSO 、CHSO 、CSO 、CFSO 等のスルホン酸イオン類;HSO 、SO 2-等の硫酸イオン類;HCO 、CO 2-等の炭酸イオン類;HPO 、HPO 2-、PO 3-等のリン酸イオン類;PF 、PFOH、フッ素化アルキルフルオロリン酸イオン等のフルオロリン酸イオン類;BF 、B(C 、B(CCF 等のホウ酸イオン類;AlCl ;BiF 等が挙げられる。その他にはSbF 、SbFOH等のフルオロアンチモン酸イオン類、AsF 、AsFOH等のフルオロヒ素酸イオン類等が挙げられる。
 フッ素化アルキルフルオロリン酸イオンとしては、式(B-1-3)等で表されるフッ素化アルキルフルオロリン酸イオン等が挙げられる。
  [(Rf)PF6-b     (B-1-3)
 式(B-1-3)において、Rfはフッ素原子で置換されたアルキル基を表す。Rfの個数bは、1~5であり、整数であることが好ましい。b個のRfはそれぞれ同一であっても異なっていてもよい。Rfの個数bは、2~4がより好ましく、2~3が最も好ましい。すなわち、Rfの個数bは、例えば1~5、1~4、1~3、2~4又は2~3であってよい。
 式(B-1-3)で表されるフッ素化アルキルフルオロリン酸イオンにおいて、Rfはフッ素原子で置換されたアルキル基を表し、好ましい炭素数は1~8、更に好ましい炭素数は1~4である。アルキル基としては、メチル、エチル、プロピル、ブチル、ペンチル、オクチル等の直鎖アルキル基;イソプロピル、イソブチル、sec-ブチル、tert-ブチル等の分岐アルキル基;更にシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等のシクロアルキル基等が挙げられる。Rfの具体例としては、CF、CFCF、(CFCF、CFCFCF、CFCFCFCF、(CFCFCF、CFCF(CF)CF、(CFC等が挙げられる。
 好ましいフッ素化アルキルフルオロリン酸アニオンの具体例としては、[(CFCFPF、[(CFCFPF、[((CFCF)PF、[((CFCF)PF、[(CFCFCFPF、[(CFCFCFPF、[((CFCFCFPF、[((CFCFCFPF、[(CFCFCFCFPF及び[(CFCFCFCFPF等が挙げられる。
 光カチオン重合開始剤は、重合性化合物との混合を容易にするため、あらかじめ溶剤類に溶解したものを用いてもよい。溶剤類としては、例えば、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類等が挙げられる。
 光カチオン重合開始剤としては、式(B-2)で表されるトリアリールスルホニウム塩ヘキサフルオロアンチモネート及び式(B-3)で表されるジフェニル4-チオフェノキシフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェートからなる群より選択される少なくとも1種が好ましく、トリアリールスルホニウム塩ヘキサフルオロアンチモネートがより好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 光ラジカル重合開始剤としては、特に限定されないが、
 ベンゾフェノン及びその誘導体;
 ベンジル及びその誘導体;
 アントラキノン及びその誘導体;
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン型光重合開始剤;
 ジエトキシアセトフェノン、4-tert-ブチルトリクロロアセトフェノン等のアセトフェノン型光重合開始剤;
 2-ジメチルアミノエチルベンゾエート;
 p-ジメチルアミノエチルベンゾエート;
 ジフェニルジスルフィド;
 チオキサントン及びその誘導体;
 カンファーキノン、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-ブロモエチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-メチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸クロライド等のカンファーキノン型光重合開始剤;
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン型光重合開始剤;
 ベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ベンゾイルジエトキシホスフィンオキサイド、2,4,6-トリメチルベンゾイルジメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジエトキシフェニルホスフィンオキサイド、ビス(2,4,6―トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド型光重合開始剤;
 フェニル-グリオキシリックアシッド-メチルエステル;
 オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル;
 オキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステル;等が挙げられる。
 重合開始剤の含有量は、重合性化合物100質量部に対して、0.01質量部以上が好ましく、0.1質量部以上がより好ましい。これにより硬化性がより向上する。また、重合開始剤の含有量は、重合性化合物100質量部に対して、5質量部以下が好ましく、3質量部以下がより好ましい。これにより、ガラス基板等への接着性がより向上し、より信頼性に優れた封止材を形成できる。すなわち、重合開始剤の含有量は、重合性化合物100質量部に対して、例えば0.01~5質量部、0.01~3質量部、0.1~5質量部又は0.1~3質量部であってよい。
 無機充填材としては、シリカ粒子、ガラスフィラー、球状アルミナ、破砕アルミナ、酸化マグネシウム、酸化ベリリウム、酸化チタン、ジルコニア、酸化亜鉛等の酸化物類、窒化ホウ素、窒化ケイ素、窒化アルミニウム等の窒化物類、炭化ケイ素等の炭化物類、水酸化アルミニウム、水酸化マグネシウム等の水酸化物類、銅、銀、金、鉄、アルミニウム、ニッケル、チタン等の金属類及び合金類、ダイヤモンド、カーボン等の炭素系充填材、炭酸カルシウム、硫酸バリウム、タルク、マイカ等が挙げられる。
 無機充填材は、脂肪酸、シリコーンカップリング剤、チタネート系カップリング剤等で表面処理が施されたものであってもよい。無機充填材は、必要に応じて1種又は2種以上を用いることができる。
 無機充填材の真比重は、例えば1.3以上であってよく、好ましくは1.4以上、より好ましくは1.5以上である。また、無機充填材の真比重は、例えば20.0以下であってよく、好ましくは8.0以下、より好ましくは5.0以下である。なお、無機充填材の真比重は、ASTM D2840により測定される値を示す。すなわち、無機充填材の真比重は、例えば1.3~20.0、1.3~8.0、1.3~5.0、1.4~20.0、1.4~8.0、1.4~5.0、1.5~20.0、1.5~8.0又は1.5~5.0であってよい。
 無機充填材は、好ましくは、シリカ、マイカ、カオリン、タルク及び酸化アルミニウムからなる群より選択される少なくとも1種を含み、より好ましくはタルクを含む。
 無機充填材は、平均粒子径(以下、単に粒子径や粒径ともいうことがある。)を有する無機粒子であってよい。無機粒子の平均粒子径は、0.005μm以上が好ましく、0.01μm以上がより好ましい。また、無機粒子の平均粒子径は、50μm以下が好ましく、30μm以下がより好ましい。すなわち、無機粒子の平均粒子径は、例えば0.005~50μm、0.005~30μm、0.01~50μm又は0.01~30μmであってよい。なお、無機粒子の平均粒子径は、マイクロトラック粒度分布装置を用い、レーザー回折・散乱法により測定される値を示す。
 無機充填材の含有量は、重合性化合物100質量部に対して、例えば5質量部以上であってよく、好ましくは10質量部以上、より好ましくは15質量部以上である。また、無機充填材の含有量は、重合性化合物100質量部に対して、例えば500質量部以下であってよく、350質量部以下であってもよく、好ましくは300質量部以下、より好ましくは200質量部以下、更に好ましくは100質量部以下、一層好ましくは50質量部以下である。すなわち、無機充填材の含有量は、重合性化合物100質量部に対して、例えば5~500質量部、5~350質量部、5~300質量部、5~200質量部、5~100質量部、5~50質量部、10~500質量部、10~350質量部、10~300質量部、10~200質量部、10~100質量部、10~50質量部、15~500質量部、15~350質量部、15~300質量部、15~200質量部、15~100質量部又は15~50質量部であってよい。
 本実施形態の組成物は、光増感剤を更に含んでいてもよい。光増感剤とは、エネルギー線を吸収して、重合開始剤から反応種(例えば、光カチオン重合開始剤から発生するカチオン、光ラジカル重合開始剤から発生するラジカル)を効率よく発生させることができる化合物を示す。
 光増感剤は特に限定されず、例えば、ベンゾフェノン誘導体、フェノチアジン誘導体、フェニルケトン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ナフタセン誘導体、クリセン誘導体、ペリレン誘導体、ペンタセン誘導体、アクリジン誘導体、ベンゾチアゾール誘導体、ベンゾイン誘導体、フルオレン誘導体、ナフトキノン誘導体、アントラキノン誘導体、キサンテン誘導体、キサントン誘導体、チオキサンテン誘導体、チオキサントン誘導体、クマリン誘導体、ケトクマリン誘導体、シアニン誘導体、アジン誘導体、チアジン誘導体、オキサジン誘導体、インドリン誘導体、アズレン誘導体、トリアリルメタン誘導体、フタロシアニン誘導体、スピロピラン誘導体、スピロオキサジン誘導体、チオスピロピラン誘導体、有機ルテニウム錯体等が挙げられる。これらの中では、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のフェニルケトン誘導体、9,10-ジブトキシアントラセン等のアントラセン誘導体が好ましく、アントラセン誘導体がより好ましい。アントラセン誘導体の中では、9,10-ジブトキシアントラセンが好ましい。光増感剤は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。
 本実施形態の組成物が光増感剤を含む場合、光増感剤の含有量は、重合性化合物100質量部に対して、例えば0.01質量部以上であってよく、0.02質量部以上であってもよい。また、光増感剤の含有量は、貯蔵安定性の観点からは、重合性化合物100質量部に対して、例えば5質量部以下であってよく、3質量部以下が好ましい。すなわち、光増感剤の含有量は、重合性化合物100質量部に対して、例えば0.01~5質量部、0.01~3質量部、0.02~5質量部又は0.02~3質量部であってよい。
 本実施形態の組成物は、シランカップリング剤を更に含んでいてもよい。シランカップリング剤の配合により、本実施形態の組成物の接着性及び接着耐久性がより向上する傾向がある。
 シランカップリング剤としては、例えば、γ-クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニル-トリス(β-メトキシエトキシ)シラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン及びγ-ユレイドプロピルトリエトキシシラン等が挙げられる。これらの中では、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシランからなる群から選択される1種以上が好ましく、γ-グリシドキシプロピルトリメトキシシランがより好ましい。シランカップリング剤は、1種を単独で用いてよく、2種以上を組み合わせて用いてもよい。
 本実施形態の組成物がシランカップリング剤を含む場合、シランカップリング剤の含有量は、重合性化合物100質量部に対して、例えば0.1質量部以上であってよく、0.2質量部以上が好ましい。また、シランカップリング剤の含有量は、重合性化合物100質量部に対して、例えば10質量部以下であってよく、5質量部以下が好ましい。すなわち、シランカップリング剤の含有量は、重合性化合物100質量部に対して、例えば0.1~10質量部、0.1~5質量部、0.2~10質量部又は0.2~5質量部であってよい。
 本実施形態の組成物は、酸化防止剤を更に含んでいてもよい。
 本実施形態の組成物は、樹脂粒子を更に含んでいてもよい。樹脂粒子の配合により、厚みのある硬化体の形成がより容易となる。このため、樹脂粒子を配合した組成物は、ダム形成用封止剤としてより好適である。
 樹脂粒子としては、組成物中で溶解せずに形状を保持できるものを特に制限無く使用でき、例えば、ポリエチレン粒子、ポリプロピレン粒子、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリスチレン粒子、架橋ポリ(メタ)アクリル酸メチルポリスチレン共重合体粒子等が挙げられる。樹脂粒子は、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリスチレン粒子及び架橋ポリ(メタ)アクリル酸メチルポリスチレン共重合体粒子からなる群より選択される少なくとも一種であることが好ましく、架橋ポリ(メタ)アクリル酸メチル粒子及び架橋ポリスチレン粒子からなる群より選択される少なくとも一種であることがより好ましい。
 樹脂粒子の平均粒子径は、例えば0.1μm以上であってよく、好ましくは1μm以上、より好ましくは5μm以上である。また、樹脂粒子の平均粒子径は、例えば200μm以下であってよく、好ましくは100μm以下である。すなわち、樹脂粒子の平均粒子径は、例えば0.1~200μm、0.1~100μm、1~200μm、1~100μm、5~200μm又は5~100μmであってよい。なお、本明細書中、樹脂粒子の平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD-2200」により測定される体積基準の平均粒子径を示す。
 樹脂粒子は、粒径(μm)を対数で表示したときの粒径に対する粒子体積分布の標準偏差が、0.25以下であることが好ましい。これにより、樹脂粒子の粒径のばらつきに起因する硬化体の厚みのばらつきが抑制され、硬化体の寸法をより高精度で制御することができる。当該標準偏差は、0.2以下がより好ましく、0.1以下が更に好ましい。また、当該標準偏差は、例えば0.001以上であってよく、0.005以上であってもよい。すなわち、当該標準偏差は、例えば0.001~0.25、0.001~0.2、0.001~0.1、0.005~0.25、0.005~0.2又は0.05~0.1であってよい。
 本実施形態の組成物が樹脂粒子を含む場合、樹脂粒子の含有量は、重合性化合物100質量部に対して、例えば0.01質量部以上であってよく、好ましくは0.02質量部以上、より好ましくは0.1質量部以上である。また、樹脂粒子の含有量は、重合性化合物100質量部に対して、例えば10質量部以下であってよく、好ましくは5質量部以下、より好ましくは4質量部以下、更に好ましくは3質量部以下である。すなわち、樹脂粒子の含有量は、重合性化合物100質量部に対して、例えば0~10質量部、0~5質量部、0~4質量部、0~3質量部、0.01~10質量部、0.01~5質量部、0.01~4質量部、0.01~3質量部、0.02~10質量部、0.02~5質量部、0.02~4質量部、0.02~3質量部、0.1~10質量部、0.1~5質量部、0.1~4質量部又は0.1~3質量部であってよい。
 本実施形態の組成物は、上記以外の他の成分を更に含有していてもよい。他の成分としては、封止剤分野で用いられる公知の添加剤を特に制限なく使用できる。他の成分としては、例えば、金属不活性化剤、填料、安定剤、中和剤、滑剤、抗菌剤等が挙げられる。
 本実施形態の組成物の25℃における粘度は、組成物の塗工性が向上し、硬化体の成形性に優れる観点からは、例えば50000mPa・s以上であってよく、好ましくは70000mPa・s以上、より好ましくは80000mPa・s以上、更に好ましくは100000mPa・s以上である。また、本実施形態の組成物の25℃における粘度は、組成物の塗工時の吐出性が向上し、成形方法の選択に幅が広がる観点からは、例えば1000000mPa・s以下であってよく、好ましくは950000mPa・s以下、より好ましくは900000mPa・s以下、更に好ましくは850000mPa・s以下である。すなわち、本実施形態の組成物の25℃における粘度は、例えば50000~1000000mPa・s、50000~950000mPa・s、50000~900000mPa・s、50000~850000mPa・s、70000~1000000mPa・s、70000~950000mPa・s、70000~900000mPa・s、70000~850000mPa・s、80000~1000000mPa・s、80000~950000mPa・s、80000~900000mPa・s、80000~850000mPa・s、100000~1000000mPa・s、100000~950000mPa・s、100000~900000mPa・s又は100000~850000mPa・sであってよい。なお、組成物の25℃における粘度は、コーンローター式粘度計により測定される値を示す。
 本実施形態の組成物は、25℃における粘度が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の組成物は、25℃、1rpmにおける粘度ηに対する、25℃、0.1rpmにおける粘度ηの比(η/η)が1.1~10.0であることが好ましい。比(η/η)が1.1以上であると、組成物の塗工性がより向上し、硬化体の成形性により優れる傾向がある。この傾向がより顕著となる観点から、比(η/η)は1.15以上が好ましく、1.2以上がより好ましい。また、比(η/η)が10.0以下であると、組成物の塗工時の吐出性がより向上する傾向があり、この傾向がより顕著となる観点から、比(η/η)は9.5以下が好ましく、9.0以下がより好ましい。すなわち、比(η/η)は、例えば1.1~10.0、1.1~9.5、1.1~9.0、1.15~10.0、1.15~9.5、1.15~9.0、1.2~10.0、1.2~9.5又は1.2~9.0であってよい。なお、組成物の25℃、1rpmにおける粘度η及び25℃、0.1rpmにおける粘度ηは、コーンローター式粘度計により測定される値を示す。
 本実施形態の組成物は、比(η/η)が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の組成物の液比重は、1.3~4.0が好ましい。組成物の液比重は、好ましくは1.4以上であり、より好ましくは1.5以上である。また、組成物の液比重は、好ましくは3.0以下であり、より好ましくは2.5以下であり、更に好ましくは2.0以下である。すなわち、組成物の液比重は、例えば、1.3~4.0、1.3~3.0、1.3~2.5、1.3~2.0、1.4~4.0、1.4~3.0、1.4~2.5、1.4~2.0、1.5~4.0、1.5~3.0、1.5~2.5又は1.5~2.0であってよい。なお、組成物の液比重は、5mLゲーリュサック型比重瓶を用い、JIS-K-0061の8.2.2に準拠して測定される値を示す。
 本実施形態の組成物は、液比重が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の組成物の製造方法は、特に限定されず、上述の各成分が十分に混合される方法であればよい。混合方法としては、例えば、プロペラの回転に伴う撹拌力を利用する撹拌方法、自転公転による遊星式撹拌機等の通常の分散機を利用する方法等が挙げられる。これらの混合方法は、低コストで、安定した混合を行える点で、好ましい。
 本実施形態の組成物を硬化することで、重合性化合物の重合体及び無機充填材を含む硬化体を得ることができる。当該硬化体は、透湿性が低く、封止材(特に、有機EL表示素子用封止材)として好適に用いることができる。
 本実施形態の組成物は、例えばエネルギー線の照射により硬化することができる。本実施形態の組成物の硬化に用いられる光源としては、特に限定されないが、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ(インジウム等を含有する)、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、キセノンエキシマランプ、キセノンフラッシュランプ、ライトエミッティングダイオード(以下、LEDという)等が挙げられる。これらの光源は、それぞれの光重合開始剤の反応波長に対応するエネルギー線の照射を効率よく行える点で、好ましい。
 上記光源は、各々放射波長やエネルギー分布が異なる。そのため、上記光源は重合開始剤の反応波長等により適宜選択される。また、自然光(太陽光)も反応開始光源になり得る。
 上記光源による照射は、直接照射であってもよく、反射鏡、ファイバー等による集光照射であってもよい。また、低波長カットフィルター、熱線カットフィルター、コールドミラー等を用いた照射であってもよい。
 本実施形態の組成物の硬化に際しては、光照射後、硬化促進のために後加熱処理をしてもよい。後加熱の温度は、有機EL表示素子への影響を避ける観点から150℃以下が好ましく、100℃以下がより好ましい。後加熱の温度は、40℃以上が好ましい。
 本実施形態の組成物は、接着剤として用いることもできる。本実施形態の組成物は、例えば、有機EL表示素子等のパッケージ等の接着に好適に用いることができる。
 本実施形態の組成物を用いて2つの部材を接着する方法としては、例えば、組成物を第一の部材の全面又は一部に塗布する工程と、第一の部材上に塗布された組成物に光を照射する工程と、光を照射された組成物が硬化するまでの間に、組成物を介して第一の部材と第二の部材とを接着させる工程と、を含む方法が挙げられる。このような方法によれば、第二の部材を光及び熱に晒すことなく、第一の部材上に接着することができる。このため、上記方法は、背面板と有機EL表示素子との接着に好適に用いることができる。
 本実施形態の組成物を用いて有機EL表示装置を製造する方法としては、例えば、背面板上に組成物を塗布する工程と、背面板上に塗布された組成物に光を照射する工程と、光を遮断して、組成物を介して、背面板と有機EL表示素子を形成した基板とを接着させる工程と、を含む製造方法が挙げられる。このような方法によれば、有機EL表示素子を光及び熱に晒すことなく封止できる。
 また、本実施形態の組成物を用いて有機EL表示装置を製造する方法としては、例えば、一方の基板に組成物を塗布する工程と、組成物を介して一方の基板と他方の基板とを接着させる工程と、基板間の組成物に光を照射して組成物を硬化させる工程と、を含む製造方法も挙げられる。
 本実施形態の組成物の硬化体(以下、単に本実施形態の硬化体ともいう。)の比重は、例えば1.35以上である。また、本実施形態の硬化体の比重は、例えば19.0以下である。なお、硬化体の比重は、JIS K7112 B法に準拠し、浸せき液として23℃の水を使用して測定される値を示す。
 本実施形態の組成物は、硬化体の比重が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の硬化体において、重合性化合物の重合体のガラス転移温度は、例えば60℃以上であってよく、好ましくは70℃以上、より好ましくは80℃以上、更に好ましくは85℃以上である。
 なお、本明細書中、重合体のガラス転移温度(Tg)は、動的粘弾性スペクトルから求められる値を示す。動的粘弾性スペクトルでは、重合体に昇温速度一定で応力及び歪みを加え、損失正接(以下、tanδと略す)のピークトップを示す温度をガラス転移温度とすることができる。なお、-150℃程度の十分に低い温度からある温度(Ta℃)まで昇温してもtanδのピークが現れない場合、ガラス転移温度としては、-150℃以下又はある温度(Ta℃)以上と考えられるが、ガラス転移温度が-150℃以下である硬化体は考えられないため、ある温度(Ta℃)以上と判断することができる。
 本実施形態の組成物は、重合体のガラス転移温度が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の硬化体は、その架橋密度が、1.0×10-3mol/cm以上であることが好ましく、2.0×10-3mol/cm以上であることがより好ましい。これにより、硬化体中に結合点が多いことでミクロブラウン運動が抑制され、透湿度がより低下すると考えられる。また、硬化体の架橋密度は、例えば1.0mol/cm以下であってよい。これにより、硬化体の脆さに起因する信頼性低下がより抑制される。すなわち、硬化体の架橋密度は、例えば1.0×10-3~1.0mol/cm、又は2.0×10-3~1.0mol/cmであってよい。
 なお、本明細書中、硬化体の架橋密度は、動的粘弾性スペクトルから求められる値を示す。具体的には、厚み100μmの硬化体を幅5mm×長さ25mmに切り出し、試験片とする。この試験片について、温度範囲-50℃~200℃、昇温速度2℃/min、引っ張りモードの条件で、動的粘弾性測定を行い、温度と貯蔵弾性率(G’)との関係を求める。架橋密度は、Tg+40℃の温度をT(K)、T(K)における貯蔵弾性率(G’)をG’T+40、気体定数をR、フロント係数をφ(=1)として、以下の式で算出される。
    架橋密度(ρ)=G’T+40/φRT
 本実施形態の組成物は、硬化体の架橋密度が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の硬化体は、硬化体の平均自由体積が1nm以下であることが好ましく、1nm未満であることが好ましく、0.5nm以下であることがより好ましく、0.3nm以下であることが更に好ましく、0.1nm以下であることが一層好ましく、0.1nm未満であることがより一層好ましい。
 高分子の自由体積を求める手法として、陽電子消滅法が知られている(高分子 42巻12月号(1993)参照)。一般に、高分子に陽電子(e)を入射させると、陽電子は電子(e)と結合してポジトロニウム(Ps)を生成する。陽電子消滅法とは、このポジトロニウム(Ps)の3/4を占めるオルトポジトロニウム(o-Ps、半径0.1nm、以下、「o-Ps」ともいう)が、高分子の空孔に入り込んだ際のo-Psの寿命(τ)を測定することで、高分子の自由体積を求める手法である。o-Psの寿命(τ)は、高分子中に存在する空孔の壁と衝突したときに、o-Psの陽電子(e)と空孔の壁の中の電子(e)が重なる確率で決まり、高分子の空孔が大きいほど、o-Psの寿命(τ)が長くなる。空孔を無限高さの球状井戸型ポテンシャルと考え、空孔の壁面に厚さΔRの電子層があると仮定して、この電子層とo-Psの波動関数との重なりを計算することによって得られる陽電子(e)消滅の速度を求めるモデルが、実際に実験を行った場合のデータと良く合う。そのため、高分子の空孔径Rが0.16~0.8nm程度までであれば、o-Psの寿命τと空孔径Rとの間で下記式(1)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000008
(上記式(1)において、τは測定したオルトポジトロニウム(o-Ps)の寿命、Rは高分子の空孔径、ΔRは空孔の壁面の厚さを示す。)
 すなわち、陽電子消滅法を用いて、オルトポジトロニウム(o-Ps)の寿命(τ)を求めることにより、上記式(1)における高分子の空孔径Rが求められる。さらに、空孔体積(平均自由体積)=4/3πRであるため、求めた高分子の空孔径Rの値から、高分子の平均自由体積を算出することができる。
 本実施形態の組成物は、硬化体の平均自由体積が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の硬化体は、硬化体の空孔径が20%未満であることが好ましい。
 陽電子消滅法により解析される自由体積は、多孔性基材や電解質を形成する分子鎖に占有されない領域を示しており、基材及び電解質を形成する分子鎖が変化した際に、その分子鎖近傍に生ずる体積を反映する。具体的には、陽電子を試料に入射してから消滅するまでの時間を測定し、その消滅寿命から原子空孔や自由体積の大きさ、数密度などに関する情報を非破壊的に観察する手法により自由体積を求めることが可能である。
 陽電子は電子の反粒子であり、電子と同じ質量を有するが、反対符号の電荷をもつ素粒子である。高分子のようなアモルファス固体中では、陽電子が電子と対を形成することがあり、ポジトロニウムと呼ばれる。ポジトロニウムが消滅する際に、消滅γ線が二方向に放出される。この消滅γ線強度の時間変化を測定することにより陽電子の寿命が測定される。
 ポジトロニウムにはパラポジトロニウムとオルトポジトロニウムがあり、オルトポジトロニウムの平均寿命は140ns程度であるが、物質中の他の電子を奪い取るピックオフ過程を経る場合には1ns~5nsにまで短縮化する。固体内の自由体積空間内にオルトポジトロニウムが存在する際には、その空間の大きさとオルトポジトロニウムの寿命は正の相関関係にあり、オルトポジトロニウムのピックオフ消滅による寿命を測定することにより、空孔サイズの情報を得ることができる。
 具体的には、陽電子の寿命を非線形最小二乗法により3成分解析して、消滅寿命の小さいものから、τ、τ、τとし、それに応じた強度をI、I,I(I+I+I=100%)とする。重合体の空孔率は、上記I、I、Iを用いて次の式により定義される。
  空孔率(%)=I/(I+I+I
 本実施形態の組成物は、重合体の空孔率が上記範囲となるように各成分の種類及び含有量が適宜調整されていてよい。
 本実施形態の硬化体は、JIS Z0208に準拠して、温度85℃、相対湿度85%の条件下で測定される透湿度が、60(g/m・24h/100μm)以下であることが好ましく、55(g/m・24h/100μm)以下であることがより好ましく、50(g/m・24h/100μm)以下であることが更に好ましい。透湿度が低いことで、有機EL表示素子用封止材として用いた場合に、有機発光材料層への水分の到達によるダークスポットの発生を顕著に抑制できる。なお、上記透湿度は、JIS Z 0208:1976に準拠して、85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度(g/m)ということもできる。上記透湿度は、例えば0.01(g/m・24h/100μm)以上であってよく、0.1(g/m・24h/100μm)以上であってもよく、1(g/m・24h/100μm)以上であってもよく、10(g/m・24h/100μm)以上であってもよい。すなわち、上記透湿度は、例えば0.01~60(g/m・24h/100μm)、0.01~55(g/m・24h/100μm)、0.01~50(g/m・24h/100μm)、0.1~60(g/m・24h/100μm)、0.1~55(g/m・24h/100μm)、0.1~50(g/m・24h/100μm)、1~60(g/m・24h/100μm)、1~55(g/m・24h/100μm)、1~50(g/m・24h/100μm)、10~60(g/m・24h/100μm)、10~55(g/m・24h/100μm)、又は10~50(g/m・24h/100μm)であってよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、本発明は、上述の組成物を塗布及び硬化して、ダムを形成する工程を含む、ダム・フィル封止構造を有する有機エレクトロルミネッセンス表示装置の製造方法に関するものであってよい。
 また、本発明は、ダム及びフィル剤を備えるダム・フィル封止構造を有する有機EL表示装置に関するものであってよく、このとき、ダムは上述の組成物の硬化体を含んでいてよい。
 なお、ダム・フィル封止構造は公知のダム・フィル封止構造であってよく、フィル剤は公知のフィル剤であってよい。また、有機EL表示装置のダム・フィル封止構造以外の構成は、公知の有機EL表示装置と同様の構成であってよい。本発明は、例えば、特許文献5より十分な透湿性が得られる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例は、特記しない限り、23℃、相対湿度50質量%で試験した。
 実施例及び比較例では、以下の化合物を使用した。
(A)重合性化合物-高比重化合物(比重1.3~4.0の重合性化合物)
(A-1)ジブロモフェニルグリシジルエーテル(日本化薬社製「BR-250」、臭素元素の含有量:51質量%)(最大原子番号:35、比重:1.8、1分子中の重合性官能基数:1、分子量308、臭素元素の含有量:50質量%)
(A-2)臭素化クレジルグリシジルエーテル(日本化薬社製「BROC」)(最大原子番号:35、比重:1.8、1分子中の重合性官能基数:1、臭素元素の含有量:50質量%)
(A-3)TBBPAエポキシ樹脂(DIC社「エピクロン152」)(最大原子番号:35、比重:1.7、1分子中の重合性官能基数:2、分子量972、臭素元素の含有量:48質量%)
(A-4)臭素化ビスフェノールA型エポキシ樹脂(阪本薬品社「SR-T1000」、平均分子量2000)(最大原子番号:35、比重:1.7、1分子中の重合性官能基数:2)
(A-5)2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプチルオキシラン(ダイキン工業社「C6エポキシ」)(最大原子番号:8、比重:1.5、1分子中の重合性官能基数:1、分子量376)
(A-6)ペンタフルオロフェニルアクリレート(東京化成工業社製「ペンタフルオロフェニルアクリレート」)(最大原子番号:9、比重:1.5、1分子中の重合性官能基数:1)
(A-7)アクリル酸2,4,6-トリブロモフェニル(東京化成工業社製「トリブロモフェニルアクリレート」)(最大原子番号:35、比重:2.1、1分子中の重合性官能基数:1)
(B)重合性化合物-低比重化合物(比重1.3未満の重合性化合物)
(B-1)3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学社製「セロキサイド2021P」)(最大原子番号:8、比重:1.2、1分子中の重合性官能基数:2、分子量252)
(B-2)ビスフェノールA型エポキシ樹脂(三菱化学社製「jER828」、分子量360~390)(最大原子番号:8、比重:1.2、1分子中の重合性官能基数:2)
(B-3)フェノ-ルノボラック型エポキシ樹脂(DIC製「EPICLON N-775」)(最大原子番号:8、比重:1.2、1分子中の重合性官能基数:2以上、数平均分子量800)
(B-4)シクロヘキサンジメタノールジビニルエーテル(日本カーバイド社製「CHDVE」)(最大原子番号:8、比重:0.9、1分子中の重合性官能基数:1、分子量196)
(B-5)ポリプロピレングリコールジグリシジルエーテル(ナガセケムテックス社製「EX-946L」)(最大原子番号:8、比重:1.06、1分子中の重合性官能基数:2)
(B-6)ラウリルアクリレート(大阪有機社製「LA」)(最大原子番号:8、比重:1.1、1分子中の重合性官能基数:1)
(B-7)1,6-ヘキサンジオールジメタクリレート(新中村化学社製「HD-N」)(最大原子番号:8、比重:1.0、1分子中の重合性官能基数:2)
(B-8)トリシクロデカンジメタノールジメタクリレート(新中村化学社製「DCP」)(最大原子番号:8、比重:1.1、1分子中の重合性官能基数:2)
(B-9)1,2-ポリブタジエン末端ウレタン(メタ)アクリレートの水素添加物(日本曹達社製「TEAI-1000」)(最大原子番号:8、比重:1.0、1分子中の重合性官能基数:2)
(C)重合開始剤として下記を用いた。
(C-1)トリアリールスルホニウム塩ヘキサフルオロアンチモネート(ADEKA社製「アデカオプトマーSP-170」、アニオン種はヘキサフルオロアンチモネート)
(C-2)トリアリールスルホニウム塩(ジフェニル4-チオフェノキシフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、サンアプロ社製「CPI-200K」、アニオン種はリン化合物)
(C-3)2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASFジャパン社製「TPO」)
(C-4)1-ヒドロキシシクロヘキシルフェニルケトン、BASFジャパン社製「I-184」)
(D)光増感剤として下記を用いた。
(D-1)9,10-ジブトキシアントラセン(川崎化成工業社製「ANTHRACURE UVS-1331」)
(E)シランカップリング剤として下記を用いた。
(E-1)γ-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製「KBM-403」)
(F)無機充填材として下記を用いた。
(F-1)微粒子タルク、粒子径(d50):4.5μm、真比重:2.7(松村産業社製「#5000PJ」)
(F-2)微粒子タルク、粒子径(d50):15μm、真比重:2.7(松村産業社製「SC」)
(F-3)微粒子マイカ、粒子径(d50):3.0μm、真比重:2.9(松尾産業社製「A-11」)
(F-4)微粒子カオリン、粒子径(d50):1.6μm、真比重:2.6(林化成社製「Kaopolite 1147」)
(F-5)微粒子シリカ、粒子径(d50):4.2μm、真比重:1.9(デンカ社製「FB-5SDX)
(F-6)微粒子酸化アルミ、粒子径(d50):4.0μm、真比重:4.0(デンカ社製「DAW-03」)
(F-7)微粒子金、粒子径(d50):4.0μm、真比重:19.5(徳力本店社製「TAU-200」)
(G)樹脂粒子として下記を用いた。
(G-1)GS-210:球状架橋ポリスチレン粒子(ガンツ化成社製「GS-210」)(平均粒子径:20.0μm、標準偏差:0.06μm)
 表1~表3に示す種類の原材料を、表1~表3に示す組成割合で混合し、実施例及び比較例の封止剤を調製した。組成割合の単位は質量部である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例及び比較例の封止剤について、下記の各測定を行った。その結果を表1~表3に示した。
〔重合性化合物の比重〕
 ハーバート形比重瓶を用い、JIS K0061に準拠して、測定を行った。
〔液比重〕
 5mLゲーリュサック型比重瓶を用い、JIS-K-0061の8.2.2に準拠して測定した。
〔光硬化条件〕
 封止剤の硬化物性及び接着性の評価に際し、下記光照射条件により、封止剤を硬化させた。無電極放電メタルハライドランプ搭載UV硬化装置(フュージョン社製)により、365nmの波長の積算光量4,000mJ/cmの条件にて、封止剤を光硬化させた後、100℃のオーブン中で、60分間の後加熱処理を実施し、硬化体を得た。
〔硬化体の比重〕
 厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、JIS K7112 B法に準拠して測定した。浸せき液として、温度は23℃の水を使用した。
〔Tg〕
 厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、厚み100μmの硬化体を幅5mm×長さ25mmに切り出し、試験片とした。この試験片について、温度範囲-50℃~200℃、昇温速度2℃/min、引っ張りモードの条件で、動的粘弾性測定を行った。上記動的粘弾性測定で測定されたtanδ(損失正接)のピークトップの温度を硬化物のガラス転移温度(Tg)とした。
〔架橋密度〕
 厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、厚み100μmの硬化体を幅5mm×長さ25mmに切り出し、試験片とした。この試験片について、温度範囲-50℃~200℃、昇温速度2℃/min、引っ張りモードの条件で、動的粘弾性測定を行った。架橋密度は、Tg+40℃の温度をT(K)、T(K)における貯蔵弾性率(G’)(表の「弾性率」)をG’T+40、気体定数をR、フロント係数をφ(=1)として、以下の式で算出した。
  架橋密度(ρ)=G’T+40/φRT
〔平均粒径、標準偏差〕
 無機充填材、樹脂粒子の平均粒子径(平均粒径又は粒径という場合もある)、及び、粒径(μm)を対数で表示したときの粒径に対する粒子体積分布の標準偏差(上述の「標準偏差」)は、レーザー回折式粒度分布測定装置(島津製作所製「SALD-2200」)により測定した。
〔透湿度〕
 厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、JIS Z0208「防湿包装材料の透湿度試験方法(カップ法)」に準じ、吸湿剤として塩化カルシウム(無水)を用い、雰囲気温度85℃、相対湿度85%の条件で測定した。透湿度は50g/(m・24hr)以下が好ましい。
〔平均自由体積及び空孔率〕
 厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、厚み0.1mmの硬化体を幅10mm×長さ10mmに切り出し、10枚重ねて固定したものを試験サンプルとした。
 線源を22NaClとして、下記の条件にて陽電子消滅寿命と相対強度を測定した。
 陽電子線源:22NaCl(強度0.6MBq)
 ガンマ線検出器:フッ化バリウムシンチレーター及び光電子倍増管
 装置分解能:250ps
 測定温度:25℃
 カウント数:1,000,000
 試料:陽電子線源を両側から挟み込んで測定
 上記測定条件に沿って測定された陽電子消滅寿命から、平均自由体積及び空孔率を算出した。
〔引張せん断接着強さ〕
 ホウ珪酸ガラス試験片(縦25mm×横25mm×厚2.0mm、テンパックス(登録商標)ガラス)を2枚用い、接着面積0.5cm、接着厚み10μmとなるように、封止剤を介してホウ珪酸ガラス試験片を接着し、前記光硬化条件にて封止剤を硬化させた。硬化後、封止剤で接合した試験片を用い、引張剪断接着強さ(単位:MPa)を、温度23℃、相対湿度50%の環境下で、引張速度10mm/分で測定した。
〔有機EL素子基板の作製〕
 ITO電極付きガラス基板(縦25mm×横25mm)をアセトン及びイソプロパノールを用いて洗浄した。その後、真空蒸着法にて以下の化合物を薄膜となるように順次蒸着し、陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極からなる有機EL素子基板を得た。各層の構成は以下の通りである。
・陽極:ITO、陽極の膜厚250nm
・正孔注入層:銅フタロシアニン 厚さ30nm
・正孔輸送層:N,N’-ジフェニル-N,N’-ジナフチルベンジジン(α-NPD) 厚さ20nm
・発光層:トリス(8-ヒドロキシキノリナト)アルミニウム(金属錯体系材料)、発光層の膜厚1000Å
・電子注入層:フッ化リチウム 厚さ1nm
・陰極:アルミニウム、陰極の膜厚250nm
〔有機EL素子の作製〕
 窒素雰囲気下にて塗工装置にてガラス基板に、封止剤を四角状(辺長20mm、塗布幅0.6mm、塗布高さ0.1mm)に塗布し、接着厚み10μmとなるように、封止剤を介してガラス基板と有機EL素子基板とを貼り合わせ、前記光硬化条件にて封止剤を硬化させ、有機EL素子を作製した。
〔有機EL評価〕
〔初期〕
 作製した直後の有機EL素子に6Vの電圧を印加し、有機EL素子の発光状態を目視と顕微鏡で観察し、ダークスポットの直径を測定した。
〔高温高湿試験後〕
 作製した直後の有機EL素子を、85℃、相対湿度85質量%の条件下に300時間暴露した後、6Vの電圧を印加し、有機EL素子の発光状態を目視と顕微鏡で観察し、ダークスポットの直径を測定した。
 なお、ダークスポットの直径は、60μm以下が好ましく、40μm以下がより好ましく、ダークスポットはないことが最も好ましい。
 次に、表4~表6に示す種類の原材料を、表4~表6に示す組成割合で混合し、実施例及び比較例の封止剤を調製した。組成割合の単位は質量部である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 実施例及び比較例の封止剤について、上記の各測定及び下記の各測定を行った。その結果を表4~表6に示した。
〔組成物の粘度とチキソ性〕
 コーンローター式粘度計(東機産業社製、「TV-22型」)により、25℃、1rpmの条件における粘度を測定した。また、チキソ性の評価として、25℃、1rpmにおける粘度ηに対する、25℃、0.1rpmにおける粘度ηの比(η/η)を測定した。
〔塗布直進性〕
 30mLの遮光性シリンジ(商品名「UVブロックシリンジ」、武蔵エンジニアリング(株)製)に組成物を充填し、ディスペンサー(商品名「SHOT mini 1000」、武蔵エンジニアリング(株)製)を用いて、無アルカリガラスに塗布長さ30mm±2mm、塗布幅0.6mm±0.2mm、塗布高さ0.1mm±0.05mmになるように組成物を塗布した。組成物を365nmの波長の積算光量2,000mJ/cmの条件にて、光照射した後に、100℃のオーブン中で60分間の後加熱処理を実施し、硬化体を得た。塗布直進性は、下記基準で評価した。
評価基準
 AA:硬化体の塗布幅が0.4mm以上であり、塗布幅の平均標準偏差が0.040mm未満である。
 A:硬化体の塗布幅が0.4mm以上であり、塗布幅の平均標準偏差が0.040mm~0.100mmである。
 C:硬化体の塗布幅が0.4mm以上であり、塗布幅の平均標準偏差が0.100mm以上である。
〔重合性化合物の比重〕
 ハーバート形比重瓶を用い、JIS K0061に準拠して、測定を行った。
〔硬化体の比重〕
 厚さ0.1mmのシート状の硬化体を前記光硬化条件にて作製し、JIS K7112 B法に準拠して測定した。浸せき液として、温度は23℃の水を使用した。

Claims (36)

  1.  重合性化合物、重合開始剤及び無機充填材を含み、
     前記重合性化合物が、比重が1.3~4.0の化合物を含有する、封止剤。
  2.  前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、
     前記硬化体の比重が1.35~19.0となる、請求項1に記載の封止剤。
  3.  前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、
     前記重合体のガラス転移温度が85℃以上となる、請求項1又は2に記載の封止剤。
  4.  前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、
     前記硬化体の架橋密度が1.5×10-3mol/cm以上となる、請求項1~3のいずれか一項に記載の封止剤。
  5.  前記重合性化合物が、原子番号9以上の元素を有する重合性化合物(X)を含有する、請求項1~4のいずれか一項に記載の封止剤。
  6.  前記重合性化合物(X)が、ハロゲン族元素を有する、請求項5に記載の封止剤。
  7.  前記重合性化合物(X)が、フッ素元素及び臭素元素からなる群より選択される少なくとも一種のハロゲン族元素を有する、請求項6に記載の封止剤。
  8.  前記重合性化合物(X)中のハロゲン族元素の含有量が、前記重合性化合物の総元素量に対して、10~50質量%である、請求項6又は7に記載の封止剤。
  9.  前記重合性化合物が、重合性官能基を2個以上有する架橋性化合物(Y)を含有する、請求項1~8のいずれか一項に記載の封止剤。
  10.  前記重合性化合物が、グリシジルエーテル化合物、脂環式エポキシ化合物、ビニルエーテル化合物及びオキセタン化合物からなる群より選択される少なくとも一種を含有する、請求項1~9のいずれか一項に記載の封止剤。
  11.  前記重合性化合物が、ラジカル重合性官能基を有する、請求項1~10のいずれか一項に記載の封止剤。
  12.  前記重合開始剤が、光重合開始剤である、請求項1~11のいずれか一項に記載の封止剤。
  13.  前記重合開始剤が、オニウム塩を含有する、請求項1~12のいずれか一項に記載の封止剤。
  14.  前記重合開始剤が、ラジカル重合開始剤である、請求項1~12のいずれか一項に記載の封止剤。
  15.  前記無機充填材の真比重が、1.5~5.0である、請求項1~14のいずれか一項に記載の封止剤。
  16.  前記無機充填材が、シリカ、マイカ、カオリン、タルク及び酸化アルミニウムからなる群より選択される少なくとも1種を含む、請求項1~15のいずれか一項に記載の封止剤。
  17.  前記無機充填材が、タルクを含む、請求項1~16のいずれか一項に記載の封止剤。
  18.  前記無機充填材が、平均粒子径が0.01~30μmの無機粒子を含む、請求項1~17のいずれか一項に記載の封止剤。
  19.  樹脂粒子を更に含む、請求項1~18のいずれか一項に記載の封止剤。
  20.  前記樹脂粒子が、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリスチレン粒子、及び、架橋ポリ(メタ)アクリル酸メチルポリスチレン共重合体粒子からなる群より選択される少なくとも一種を含有する、請求項19に記載の封止剤。
  21.  前記樹脂粒子の平均粒子径が1μm~100μmである、請求項19又は20に記載の封止剤。
  22.  前記樹脂粒子の粒径(μm)を対数で表示したときの粒径に対する粒子体積分布の標準偏差が、0.25以下である、請求項19~21のいずれか一項に記載の封止剤。
  23.  前記樹脂粒子の含有量が、前記重合性化合物100質量部に対して、0.01~5質量部である、請求項19~22のいずれか一項に記載の封止剤。
  24.  前記重合開始剤の含有量が、前記重合性化合物100質量部に対して、0.01~5質量部である、請求項1~23のいずれか一項に記載の封止剤。
  25.  前記無機充填材の含有量が、前記重合性化合物100質量部に対して、5~500質量部である、請求項1~24のいずれか一項に記載の封止剤。
  26.  前記重合性化合物の全量混合物の80℃における粘度が、500~30000mPa・sである、請求項1~25のいずれか一項に記載の封止剤。
  27.  25℃における粘度が、50000~1000000mPa・sである、請求項1~26のいずれか一項に記載の封止剤。
  28.  25℃、1rpmにおける粘度ηに対する、25℃、0.1rpmにおける粘度ηの比(η/η)が、1.1~10.0である、請求項1~27のいずれか一項に記載の封止剤。
  29.  前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、
     前記硬化体の平均自由体積が1nm以下となる、請求項1~28のいずれか一項に記載の封止剤。
  30.  前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、
     前記硬化体の空孔率が20%未満となる、請求項1~29のいずれか一項に記載の封止剤。
  31.  前記封止剤を硬化して、前記重合性化合物の重合体及び前記無機充填材を含有する硬化体としたとき、
     前記硬化体の、JIS Z0208に準拠して、温度85℃、相対湿度85%の条件下で測定される透湿度が、50(g/m・24h/100μm)以下となる、請求項1~30のいずれか一項に記載の封止剤。
  32.  有機エレクトロルミネッセンス表示素子用封止剤である、請求項1~31のいずれか一項に記載の封止剤。
  33.  ダム形成用封止剤である、請求項1~32のいずれか一項に記載の封止剤。
  34.  請求項1~33のいずれか一項に記載の封止剤を硬化してなる、硬化体。
  35.  請求項1~33のいずれか一項に記載の封止剤を塗布及び硬化して、ダムを形成する工程を含む、
     ダム・フィル封止構造を有する有機エレクトロルミネッセンス表示装置の製造方法。
  36.  ダム及びフィル剤を備えるダム・フィル封止構造を有し、
     前記ダムが、請求項1~33のいずれか一項に記載の封止剤の硬化体を含む、有機エレクトロルミネッセンス表示装置。
PCT/JP2021/013656 2020-04-01 2021-03-30 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法 WO2021201013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512576A JPWO2021201013A1 (ja) 2020-04-01 2021-03-30
CN202180024196.6A CN115336389A (zh) 2020-04-01 2021-03-30 密封剂、固化体、有机电致发光显示装置、及有机电致发光显示装置的制造方法
KR1020227035097A KR20220164509A (ko) 2020-04-01 2021-03-30 밀봉제, 경화체, 유기 전계발광 표시장치, 및 유기 전계발광 표시장치의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-066063 2020-04-01
JP2020066063 2020-04-01
JP2020-143725 2020-08-27
JP2020143725 2020-08-27

Publications (1)

Publication Number Publication Date
WO2021201013A1 true WO2021201013A1 (ja) 2021-10-07

Family

ID=77928626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013656 WO2021201013A1 (ja) 2020-04-01 2021-03-30 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法

Country Status (5)

Country Link
JP (1) JPWO2021201013A1 (ja)
KR (1) KR20220164509A (ja)
CN (1) CN115336389A (ja)
TW (1) TW202142666A (ja)
WO (1) WO2021201013A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085599A1 (ja) * 2020-10-20 2022-04-28 デンカ株式会社 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法
WO2022210785A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 組成物、硬化体及び有機el表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010207A (ja) * 2013-07-01 2015-01-19 株式会社カネカ Fpd貼り合わせ用活性エネルギー線硬化性ダム組成物
JP2018021209A (ja) * 2014-11-13 2018-02-08 積水化学工業株式会社 硬化体、電子部品、及び、表示素子
JP2018165835A (ja) * 2018-07-05 2018-10-25 ソマール株式会社 ハードコート膜
JP2019011443A (ja) * 2017-06-30 2019-01-24 協立化学産業株式会社 有機el素子の封止用のカチオン重合硬化型樹脂組成物、及びそれを用いた有機el素子
JP6620273B1 (ja) * 2019-08-21 2019-12-11 ナミックス株式会社 エポキシ樹脂組成物
JP2020021714A (ja) * 2018-08-03 2020-02-06 パナソニックIpマネジメント株式会社 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109231A (ja) 1994-10-13 1996-04-30 Nippon Kayaku Co Ltd モータ類回転子のバランス用活性エネルギー線硬化性樹脂組成物及びそれらを用いてバランス修正された回転子
JPH1074583A (ja) 1996-08-30 1998-03-17 Sanyo Electric Co Ltd 有機elディスプレイ及び有機elディスプレイの 製造方法
SE9803481D0 (sv) 1998-10-13 1998-10-13 Pharmacia & Upjohn Ab Photocurable siloxane polymers
JP2001124903A (ja) 1999-10-26 2001-05-11 Seed Co Ltd 光硬化性樹脂製レンズ
JP2001307873A (ja) 2000-04-21 2001-11-02 Toppan Printing Co Ltd 有機エレクトロルミネッセンス表示素子およびその製造方法
JP2001357973A (ja) 2000-06-15 2001-12-26 Sony Corp 表示装置
JP2006291072A (ja) 2005-04-12 2006-10-26 Sekisui Chem Co Ltd 光硬化型樹脂組成物、有機エレクトロルミネッセンス素子用接着剤、有機エレクトロルミネッセンス表示素子、及び、有機エレクトロルミネッセンス表示素子の製造方法
JP2009037812A (ja) 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd 有機el装置およびその製造方法
JP2010163566A (ja) 2009-01-16 2010-07-29 Three M Innovative Properties Co エポキシ樹脂組成物
KR102091871B1 (ko) 2012-07-26 2020-03-20 덴카 주식회사 수지 조성물
WO2015129783A1 (ja) 2014-02-27 2015-09-03 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子封止用硬化性樹脂組成物、有機エレクトロルミネッセンス表示素子封止用硬化性樹脂シート、及び、有機エレクトロルミネッセンス表示素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010207A (ja) * 2013-07-01 2015-01-19 株式会社カネカ Fpd貼り合わせ用活性エネルギー線硬化性ダム組成物
JP2018021209A (ja) * 2014-11-13 2018-02-08 積水化学工業株式会社 硬化体、電子部品、及び、表示素子
JP2019011443A (ja) * 2017-06-30 2019-01-24 協立化学産業株式会社 有機el素子の封止用のカチオン重合硬化型樹脂組成物、及びそれを用いた有機el素子
JP2018165835A (ja) * 2018-07-05 2018-10-25 ソマール株式会社 ハードコート膜
JP2020021714A (ja) * 2018-08-03 2020-02-06 パナソニックIpマネジメント株式会社 有機el素子封止用紫外線硬化性樹脂組成物、有機el発光装置の製造方法及び有機el発光装置
JP6620273B1 (ja) * 2019-08-21 2019-12-11 ナミックス株式会社 エポキシ樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085599A1 (ja) * 2020-10-20 2022-04-28 デンカ株式会社 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法
JPWO2022085599A1 (ja) * 2020-10-20 2022-04-28
WO2022210785A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 組成物、硬化体及び有機el表示装置

Also Published As

Publication number Publication date
KR20220164509A (ko) 2022-12-13
JPWO2021201013A1 (ja) 2021-10-07
TW202142666A (zh) 2021-11-16
CN115336389A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
JP6578339B2 (ja) 樹脂組成物
KR102385321B1 (ko) 수지 조성물
JP7385722B2 (ja) 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法
TWI822961B (zh) 組合物
WO2021201013A1 (ja) 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法
KR102536932B1 (ko) 유기 일렉트로 루미네센스 소자용 봉지제
JP2023012530A (ja) 組成物
JP4991648B2 (ja) 有機エレクトロルミネッセンス素子封止剤
WO2022085599A1 (ja) 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法
JP4555611B2 (ja) 有機エレクトロルミネッセンス素子封止剤及びトップエミッション方式の有機エレクトロルミネッセンス素子
WO2022210785A1 (ja) 組成物、硬化体及び有機el表示装置
WO2020218065A1 (ja) 組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512576

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781643

Country of ref document: EP

Kind code of ref document: A1