WO2021200446A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2021200446A1
WO2021200446A1 PCT/JP2021/012185 JP2021012185W WO2021200446A1 WO 2021200446 A1 WO2021200446 A1 WO 2021200446A1 JP 2021012185 W JP2021012185 W JP 2021012185W WO 2021200446 A1 WO2021200446 A1 WO 2021200446A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
transmission line
power supply
supply device
circuit
Prior art date
Application number
PCT/JP2021/012185
Other languages
English (en)
French (fr)
Inventor
志旭 張
隆博 神川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN202180015740.0A priority Critical patent/CN115152120A/zh
Priority to JP2022512016A priority patent/JPWO2021200446A1/ja
Publication of WO2021200446A1 publication Critical patent/WO2021200446A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device including a plurality of battery modules, and particularly to a power supply device in which a failure and normality of each battery module are transmitted to a module failure determination circuit on a failure transmission line.
  • a power supply device equipped with a plurality of battery modules is used for a power supply device such as an electric vehicle or a power storage device because the number of battery modules can be increased to increase the charge / discharge capacity to increase the output.
  • This power supply device detects a failure of each battery module and guarantees stable operation (see Patent Document 1).
  • each battery module is provided with a failure determination unit for self-diagnosis to determine failure and normality, and each battery module connects the failure determination unit to the failure transmission line to connect all the battery modules.
  • Module that determines failure and normality It can be connected to a failure determination circuit to monitor the status of all battery modules.
  • the power supply device can determine the failure of each battery module with the module failure determination circuit.
  • This power supply device can connect a failure determination unit provided in each battery module to a failure transmission line and detect that any battery module has failed in the module failure determination circuit.
  • the failure determination unit of each battery module connected to the failure transmission line outputs a "High” signal in a normal state and a "Low” signal in a failure state
  • the module failure determination circuit outputs a "Low” signal.
  • the power supply device that judges failure and normality by "High” and “Low” of the failure transmission line sets “High” and “Low” when the failure transmission line is not normal, for example, when the failure transmission line has poor contact or disconnection. It cannot be detected to accurately determine the failure and normality of the battery module. Therefore, the power supply device that determines the failure of the battery module only by "High” and “Low” cannot always accurately determine the failure and normality of the battery module.
  • the present invention has been developed for the purpose of eliminating the above-mentioned drawbacks, and one of the purposes of the present invention is to provide a power supply device capable of reliably determining a failure of a battery module.
  • the power supply device includes a plurality of battery modules including a failure determination unit that determines failure and normality and outputs failure and normality with "High” and “Low” signals, and each battery module. It is provided with a failure transmission line connected to a failure determination unit and a module failure determination circuit connected to the failure transmission line to determine failure and normality of a battery module.
  • the module failure judgment circuit is a voltage judgment circuit that judges "High” and “Low” of the failure transmission line, an impedance detection circuit that detects the impedance to the ground line, and the output of the voltage judgment circuit and the impedance detection circuit. It is equipped with an arithmetic circuit that determines failure and normality, and failure transmission line abnormality.
  • the above power supply unit has the feature of being able to detect the failure of the battery module more reliably.
  • the power supply device includes a plurality of battery modules including a failure determination unit that determines failure and normality and outputs failure and normality with "High” and “Low” signals, and each battery. It is provided with a failure transmission line connected to a failure determination unit of the module and a module failure determination circuit connected to the failure transmission line to determine the failure and normality of the battery module.
  • the module failure judgment circuit is a voltage judgment circuit that judges "High” and “Low” of the failure transmission line, an impedance detection circuit that detects the impedance to the ground line, and the output of the voltage judgment circuit and the impedance detection circuit. It is equipped with an arithmetic circuit that determines failure and normality, and failure transmission line abnormality.
  • the above power supply unit has the feature of being able to detect the failure of the battery module more reliably. In particular, it is possible to reliably detect the failure and normality of the battery module and the abnormality of the failure transmission line. From the output of the voltage judgment circuit that determines the "High” and “Low” of the failure transmission line and the impedance detection circuit that detects the impedance to the ground line, the above power supply device determines whether the battery module is faulty or normal, and fault transmission. This is because the arithmetic circuit determines the abnormality of the line.
  • the power supply device includes a pull-up power supply that is connected to the end of the faulty transmission line via a pull-up resistor to pull up the voltage of the faulty transmission line to "High".
  • the failure determination unit is provided with a short-circuit switch that connects the failure transmission line to the ground line to make it "Low” on either the failure or the normal side.
  • the failure determination unit determines the failure of the battery module, the short-circuit switch is turned on, and the failure transmission line is connected to the ground line to be "Low”. ..
  • the voltage determination circuit detects the "Low” state of the faulty transmission line and turns it on, and the "High” state of the faulty transmission line and the high impedance higher than the set impedance are obtained. It is equipped with a first switching element that detects and turns off, and the impedance detection circuit detects the "High” state of the faulty transmission line and turns it on, the "Low” state of the faulty transmission line, and a high higher than the set impedance. It includes a second switching element that detects impedance and switches to the off state.
  • the arithmetic circuit determines that the battery module is normal when the first switching element is in the off state and the second switching element is in the on state, and the first switching element is in the on state. , The battery module is determined to be abnormal when the second switching element is off, and the faulty transmission line is determined to be abnormal when the first switching element and the second switching element are off.
  • the arithmetic circuit determines whether the battery module is faulty or normal, and the faulty transmission line is abnormal. Since the determination is made, there is a feature that a failure of the battery module or an abnormality of the failure transmission line can be easily and surely detected.
  • the first switching element is a p-channel FET, and the FET uses a drain as an output, connects a source to a power supply, and connects a gate to a power supply via an input resistor.
  • the faulty transmission line is connected via a diode, and the diode is connected in the direction in which the current flowing from the gate side to the faulty transmission line is in the forward direction.
  • the second switching element is an n-channel FET
  • the FET has a source as an output
  • a gate is connected to the ground line via an input resistor
  • a Zener diode is used.
  • the Zener diode Connected to the faulty transmission line via, the Zener diode is oriented in the forward direction of the current flowing from the gate to the faulty transmission line, subtracting the Zener voltage from the "High" level voltage of the faulty transmission line.
  • the voltage is input to the gate and set to the voltage that turns on the FET.
  • the battery module 2 includes a plurality of rechargeable battery cells (not shown), and further includes a circuit board (not shown) on which a protection circuit for detecting the voltage and remaining capacity of the battery cells is mounted. ..
  • the battery module 2 includes a failure determination unit 21 that determines whether the battery module 2 is in a normal state or has a failure.
  • the failure determination unit 21 detects, for example, a failure of a battery cell, a circuit board, or the like, and sets the connection terminal 22 of the failure transmission line 3 to "High” or "Low”.
  • the failure determination unit 21 connects a short-circuit switch 24 between the connection terminal 22 and the ground line 23.
  • a semiconductor switching element such as an FET or a transistor can be used as the short-circuit switch 24, but the failure determination unit 21 in FIG. 1 uses the short-circuit switch 24 as the FET 24A and inputs an on-voltage to the gate in a state of determining the failure, and the FET 24A Is switched to the on state, and in the normal state, the gate voltage of the FET 24A is set as the off voltage, and the FET 24A is turned off.
  • the faulty transmission line 3 is connected to the positive side of the pull-up power supply 10 via a pull-up resistor 25 at the terminal end, and when the short-circuit switch 24 is off, the connection terminal 22 of the faulty transmission line 3 is set to "High".
  • a pull-up power supply 10 is provided in the module failure determination circuit 1, and is connected to the end of the failure transmission line 3 via a power supply line 9 and a pull-up resistor 25.
  • the power supply device 100 does not specify the voltage of the pull-up power supply 10, but is set to, for example, 12V.
  • the connection terminal 22 Since the FET 24A of the short-circuit switch 24 of the failure determination unit 21 of the battery module 2 is turned off in the normal state, the connection terminal 22 is set to the "High" level when the battery module 2 is in the normal state. Since the FET 24A of the short-circuit switch 24 is switched to the ON state in the failure state of the battery module 2, the connection terminal 22 is connected to the ground line 23 by the FET 24A of the short-circuit switch 24 in the state where the failure determination unit 21 determines that the failure occurs. It becomes "Low" level.
  • Each battery module 2 connects the connection terminal 22 of the failure determination unit 21 to the failure transmission line 3. Therefore, when the failure determination unit 21 of any battery module 2 detects a failure and switches the short-circuit switch 24 to the on state, the failure transmission line 3 is connected to the ground line 23 via the short-circuit switch 24 in the on state. It becomes the "Low” level. When all the battery modules 2 operate normally, the short-circuit switches 24 of all the battery modules 2 are held in the off state, and the faulty transmission line 3 is held in the "High" state.
  • the module failure determination circuit 1 includes a voltage determination circuit 4 that determines "High” and “Low” of the failure transmission line 3, an impedance detection circuit 5 that detects the impedance of the failure transmission line 3 with respect to the ground line 23, and a voltage determination circuit 4. From the output of the impedance detection circuit 5, the failure and normality of the battery module 2 and the calculation circuit 6 for determining the abnormality of the failure transmission line 3 are provided.
  • the voltage determination circuit 4 detects the voltage of the failure transmission line 3 and determines whether each battery module 2 is faulty or normal.
  • the voltage determination circuit 4 includes a first switching element 11 that detects the "Low” state of the faulty transmission line 3 and turns it on, and detects the "High” state and turns it off.
  • the first switching element 11 is a p-channel FET 11A.
  • the FET 11A is connected to the arithmetic circuit 6 with the drain as the output side, the source is connected to the power supply 13, the gate is connected to the power supply 13 via the input resistor 14, and the faulty transmission line 3 is connected via the diode 15. You are connected.
  • the diode 15 is connected in a direction in which the current flowing from the gate side to the faulty transmission line 3 is in the forward direction.
  • the faulty transmission line 3 becomes high impedance in an abnormal state, the faulty transmission line 3 of high impedance cannot be energized in the forward direction from the power supply 13 to the diode 15, and the gate of the FET 11A becomes "High".
  • the FET 11A is turned off.
  • the FET 11A of the first switching element 11 is turned on only in the state where the battery module 2 has failed, that is, when any of the battery modules 2 has failed, and the FET 11A is turned on from the drain of the FET. "The signal is output to the arithmetic circuit 6. When all the battery modules 2 are in a normal state or the faulty transmission line 3 is in an abnormal state, the FET 11A of the first switching element 11 is turned off and "High" is not output.
  • the impedance detection circuit 5 includes a second switching element 12.
  • the second switching element 12 detects the "High” level of the faulty transmission line 3 and turns it on, and detects the "Low” level of the faulty transmission line 3 and switches it off.
  • the second switching element 12 that performs the above operation is an n-channel FET 12A, which is connected to the power supply 16 with the drain as the input side and connected to the arithmetic circuit 6 with the source as the output side, and the gate is an input resistor. It is connected to the ground line 19 via the 17 and the faulty transmission line 3 via the Zener diode 18.
  • the Zener diode 18 turns off the FET 12A at the "Low” level of the faulty transmission line 3 with the current flowing from the gate to the faulty transmission line 3 in the forward direction. Further, the Zener voltage of the Zener diode 18 is set to a voltage at which the voltage obtained by subtracting the Zener voltage from the "High” level voltage of the faulty transmission line 3 is input to the gate of the FET 12A to turn on the FET 12A. Furthermore, the Zener voltage of the Zener diode 18 is set higher than the voltage input from the power supply 13 of the voltage determination circuit 4 via the diode 15 in the forward direction when the failure transmission line 3 is in a high impedance state.
  • the FET 12A which is the second switching element 12, outputs the “High” level from the source to the arithmetic circuit 6 in the ON state, and does not output the “High” level because the source is not connected to the drain in the Off state.
  • the arithmetic circuit 6 turns on / off the first switching element 11 of the voltage determination circuit 4 and the second switching element 12 of the impedance detection circuit 5, that is, the “High” signal output from the voltage determination circuit 4 and the impedance detection circuit 5. Detect and determine the failure of the battery module 2 and the failure of the failure transmission line 3. The arithmetic circuit 6 determines the failure of the battery module 2 and the failure transmission line 3 in the following states.
  • the present invention can be effectively used in applications of high-power power supply devices including a plurality of battery modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電池モジュールの故障を確実に判定する。 電源装置は、故障と正常を判定して故障と正常を"High"と"Low"の信号で出力する故障判定部(21)を備える複数の電池モジュール(2)と、各々の電池モジュール(2)の故障判定部(21)に接続してなる故障伝送ライン(3)と、故障伝送ライン(3)に接続されて、電池モジュール(2)の故障と正常を判定するモジュール故障判定回路(1)とを備えている。モジュール故障判定回路(1)は、故障伝送ライン(3)の"High""Low"を判定する電圧判定回路(4)と、グランドライン(23)に対するインピーダンスを検出するインピーダンス検出回路(5)と、電圧判定回路(4)とインピーダンス検出回路(5)の出力から、電池モジュール(2)の故障と正常と、故障伝送ライン(3)の異常を判定する演算回路(6)とを備えている。

Description

電源装置
 本発明は複数の電池モジュールを備える電源装置に関し、とくに各々の電池モジュールの故障と正常を、故障伝送ラインでモジュール故障判定回路に伝送してなる電源装置に関する。
 複数の電池モジュールを備える電源装置は、電池モジュールの個数を多くして充放電容量を大きくして大出力にできることから、電動車両や蓄電装置などの電源装置に使用されている。この電源装置は、各々の電池モジュールの故障を検出して安定な動作を保証している(特許文献1参照)。
 以上の電源装置は、各々の電池モジュールに自己診断する故障判定部を設けて故障と正常を判定し、各々の電池モジュールは、故障判定部を故障伝送ラインに接続して、全ての電池モジュールの故障と正常を判定するモジュール故障判定回路に接続して、全ての電池モジュールの状態を監視できる。
特開2014-087129号公報
 電源装置は、モジュール故障判定回路で各々の電池モジュールの故障を判定できる。この電源装置は、各々の電池モジュールに設けた故障判定部を故障伝送ラインに接続して、モジュール故障判定回路でいずれかの電池モジュールが故障したことを検出できる。この電源装置は、故障伝送ラインに接続している各々の電池モジュールの故障判定部が、正常な状態で”High”信号を、故障状態で”Low”信号を出力し、モジュール故障判定回路は、故障伝送ラインが”High”の状態で、全ての電池モジュールを正常と判定し、故障伝送ラインが”Low”の状態では、いずれかの電池モジュールが故障していると判定している。故障伝送ラインの”High””Low”で故障と正常を判定する電源装置は、故障伝送ラインが正常でない状態、たとえば故障伝送ラインの接触不良や断線などの状態では、”High””Low”を検出して、電池モジュールの故障と正常を正確に判定できない。したがって、”High””Low”のみで電池モジュールの故障を判定する電源装置は、常に正確に電池モジュールの故障と正常を判定できない。
 本発明は、さらに以上の欠点を解消することを目的に開発されたもので、本発明の目的の一は、電池モジュールの故障を確実に判定できる電源装置を提供することにある。
 本発明のある態様に係る電源装置は、故障と正常を判定して故障と正常を”High”と”Low”の信号で出力する故障判定部を備える複数の電池モジュールと、各々の電池モジュールの故障判定部に接続してなる故障伝送ラインと、故障伝送ラインに接続されて、電池モジュールの故障と正常を判定するモジュール故障判定回路とを備えている。モジュール故障判定回路は、故障伝送ラインの”High””Low”を判定する電圧判定回路と、グランドラインに対するインピーダンスを検出するインピーダンス検出回路と、電圧判定回路とインピーダンス検出回路の出力から、電池モジュールの故障と正常と、故障伝送ラインの異常を判定する演算回路とを備えている。
 以上の電源装置は、電池モジュールの故障をより確実に検出できる特長がある。
本発明の一実施形態に係る電源装置のブロック図である。
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
 さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
 本発明の第1の実施態様の電源装置は、故障と正常を判定して故障と正常を”High”と”Low”の信号で出力する故障判定部を備える複数の電池モジュールと、各々の電池モジュールの故障判定部に接続してなる故障伝送ラインと、故障伝送ラインに接続されて、電池モジュールの故障と正常を判定するモジュール故障判定回路とを備えている。モジュール故障判定回路は、故障伝送ラインの”High””Low”を判定する電圧判定回路と、グランドラインに対するインピーダンスを検出するインピーダンス検出回路と、電圧判定回路とインピーダンス検出回路の出力から、電池モジュールの故障と正常と、故障伝送ラインの異常を判定する演算回路とを備えている。
 以上の電源装置は、電池モジュールの故障をより確実に検出できる特長がある。とくに、電池モジュールの故障と正常と、故障伝送ラインの異常を確実に検出できる。それは、以上の電源装置が、故障伝送ラインの”High””Low”を判定する電圧判定回路と、グランドラインに対するインピーダンスを検出するインピーダンス検出回路の出力から、電池モジュールの故障と正常と、故障伝送ラインの異常を演算回路が判定するからである。
 本発明の第2の実施態様の電源装置は、故障伝送ラインの終端部にプルアップ抵抗を介して接続されて、故障伝送ラインの電圧を”High”にプルアップするプルアップ電源を備えており、故障判定部が、故障と正常のいずれか一方で、故障伝送ラインをグランドラインに接続して”Low”とする短絡スイッチを備えている。
 本発明の第3の実施態様の電源装置は、故障判定部が、電池モジュールの故障を判定する状態で、短絡スイッチをオン状態として、故障伝送ラインをグランドラインに接続して”Low”とする。
 本発明の第4の実施態様の電源装置は、電圧判定回路が、故障伝送ラインの”Low”状態を検出してオン状態、故障伝送ラインの”High”状態と設定インピーダンスよりも高いハイインピーダンスを検出してオフ状態となる第1のスイッチング素子を備え、インピーダンス検出回路が、故障伝送ラインの”High”状態を検出してオン状態、故障伝送ラインの”Low”状態と設定インピーダンスよりも高いハイインピーダンスを検出してオフ状態に切り換えられる第2のスイッチング素子を備えている。この電源装置は、演算回路が、第1のスイッチング素子がオフ状態にあって、第2のスイッチング素子がオン状態において、電池モジュールを正常と判定し、第1のスイッチング素子がオン態にあって、第2のスイッチング素子がオフ状態において、電池モジュールを異常と判定し、第1のスイッチング素子と第2のスイッチング素子のオフ状態において、故障伝送ラインの異常と判定する。
 以上の電源装置は、電圧判定回路の第1のスイッチング素子とインピーダンス検出回路の第2のスイッチング素子のオン状態とオフ状態によって、演算回路が電池モジュールの故障と正常と、故障伝送ラインの異常を判定するので、電池モジュールの故障や故障伝送ラインの異常を簡単かつ確実に検出できる特長がある。
 本発明の第5の実施態様の電源装置は、第1のスイッチング素子がpチャンネルのFETで、FETは、ドレインを出力として、ソースを電源に接続して、ゲートを入力抵抗を介して電源に接続すると共に、ダイオードを介して故障伝送ライン接続しており、ダイオードは、ゲート側から故障伝送ラインに流れる電流を順方向とする向きで接続している。
 本発明の第6の実施態様の電源装置は、第2のスイッチング素子がnチャンネルのFETで、FETは、ソースを出力とし、ゲートを入力抵抗を介してグランドラインに接続すると共に、ツェナーダイオードを介して故障伝送ライン接続しており、ツェナーダイオードは、ゲートから故障伝送ラインに流れる電流を順方向とする向きであって、ツェナー電圧を、故障伝送ラインの”High”レベル電圧からツェナー電圧を減算した電圧がゲートに入力されて、FETをオン状態とする電圧に設定している。
(実施の形態1)
 図1の電源装置100は、複数の電池モジュール2と、各々の電池モジュール2に接続している故障伝送ライン3と、故障伝送ライン3の”High””Low”から電池モジュール2の故障と正常を判定し、さらに故障伝送ライン3のインピーダンスから故障伝送ライン3の異常を判定するモジュール故障判定回路1とを備える。
(電池モジュール2)
 電池モジュール2は、複数の充電できる電池セル(図示せず)を内蔵し、さらに電池セルの電圧や残容量などを検出する保護回路などを実装する回路基板(図示せず)等を備えている。電池モジュール2は、正常な状態にあるか故障しているかを判定する故障判定部21を備えている。故障判定部21は、たとえば、電池セルや回路基板などの故障を検出して、故障伝送ライン3の接続端子22を”High”又は”Low”とする。故障判定部21は、接続端子22とグランドライン23との間に短絡スイッチ24を接続している。短絡スイッチ24は、FETやトランジスタなどの半導体スイッチング素子が使用できるが、図1の故障判定部21は、短絡スイッチ24をFET24Aとして、故障と判定する状態ではゲートにオン電圧を入力して、FET24Aをオン状態に切り換え、正常な状態ではFET24Aのゲート電圧をオフ電圧として、FET24Aをオフ状態とする。
(故障伝送ライン3)
 故障伝送ライン3は、終端部に、プルアップ抵抗25を介してプルアップ電源10のプラス側に接続して、短絡スイッチ24のオフ状態で、故障伝送ライン3の接続端子22は”High”となる。図1の電源装置100は、プルアップ電源10をモジュール故障判定回路1に設けており、電源ライン9とプルアップ抵抗25を介して、故障伝送ライン3の終端に接続している。電源装置100は、プルアップ電源10の電圧を特定するものでないが、例えば12Vに設定する。
 電池モジュール2の故障判定部21の短絡スイッチ24のFET24Aは、正常な状態でオフ状態となるので、電池モジュール2が正常な状態では接続端子22を”High”レベルとする。電池モジュール2の故障状態で、短絡スイッチ24のFET24Aはオン状態に切り換えられるので、故障判定部21が故障と判定する状態で、接続端子22が短絡スイッチ24のFET24Aでグランドライン23に接続されて”Low”レベルとなる。
 各々の電池モジュール2は、故障判定部21の接続端子22を故障伝送ライン3に接続している。したがって、いずれかの電池モジュール2の故障判定部21が、故障を検出して短絡スイッチ24をオン状態に切り換えると、オン状態の短絡スイッチ24を介して故障伝送ライン3はグランドライン23に接続されて”Low”レベルとなる。全ての電池モジュール2が正常に動作する状態では、全ての電池モジュール2の短絡スイッチ24がオフ状態に保持されて、故障伝送ライン3は”High”状態に保持される。
(モジュール故障判定回路1)
 モジュール故障判定回路1は、故障伝送ライン3の”High””Low”を判定する電圧判定回路4と、故障伝送ライン3のグランドライン23に対するインピーダンスを検出するインピーダンス検出回路5と、電圧判定回路4とインピーダンス検出回路5の出力から、電池モジュール2の故障と正常と、故障伝送ライン3の異常を判定する演算回路6とを備えている。
(電圧判定回路4)
 電圧判定回路4は、故障伝送ライン3の電圧を検出して各々の電池モジュール2の故障と正常を判定する。電圧判定回路4は、故障伝送ライン3の”Low”状態を検出してオン状態、”High”状態を検出してオフ状態となる第1のスイッチング素子11を備える。第1のスイッチング素子11はpチャンネルのFET11Aである。このFET11Aは、ドレインを出力側として演算回路6に接続して、ソースを電源13に接続し、ゲートを入力抵抗14を介して電源13に接続すると共に、ダイオード15を介して故障伝送ライン3に接続している。ダイオード15は、ゲート側から故障伝送ライン3に流れる電流を順方向とする向きで接続されている。
 以上の電圧判定回路4は、故障伝送ライン3の電圧の”High”レベルでダイオード15に電流は流れず、pチャンネルのFET11Aのゲートはソースに接続されてオフ状態となる。故障伝送ライン3が”Low”レベルになると、電源13から入力抵抗14と順方向のダイオード15を介して故障伝送ライン3に通電されて、FET11Aのゲートに、電源13に対してマイナスのオン電圧が入力されて、FET11Aがオン状態になる。また、故障伝送ライン3は、異常な状態でハイインピーダンスとなるので、ハイインピーダンスの故障伝送ライン3には電源13からダイオード15の順方向に通電できず、FET11Aのゲートは”High”となってFET11Aはオフ状態となる。この電圧判定回路4は、電池モジュール2が故障した状態、すなわちいずれかの電池モジュール2が故障した状態に限って第1のスイッチング素子11のFET11Aがオン状態となって、FETのドレインから”High”信号を演算回路6に出力する。全ての電池モジュール2が正常な状態、あるいは故障伝送ライン3が異常な状態では第1のスイッチング素子11のFET11Aがオフ状態となって、”High”を出力しない。
(インピーダンス検出回路5)
 インピーダンス検出回路5は、第2のスイッチング素子12を備えている。第2のスイッチング素子12は、故障伝送ライン3の”High”レベルを検出してオン、故障伝送ライン3の”Low”レベルと、ハイインピーダンスを検出してオフに切り換えられる。以上の動作をする第2のスイッチング素子12はnチャンネルのFET12Aで、このFET12Aは、ドレインを入力側として電源16に接続すると共に、ソースを出力側として演算回路6に接続し、ゲートは入力抵抗17を介してグランドライン19と、ツェナーダイオード18を介して故障伝送ライン3に接続している。ツェナーダイオード18は、ゲートから故障伝送ライン3に流れる電流を順方向とする向きとして、故障伝送ライン3の”Low”レベルでFET12Aをオフ状態とする。さらに、ツェナーダイオード18のツェナー電圧は、故障伝送ライン3の”High”レベル電圧からツェナー電圧を減算した電圧がFET12Aのゲートに入力されて、FET12Aをオン状態とする電圧に設定している。さらにまた、ツェナーダイオード18のツェナー電圧は、故障伝送ライン3がハイインピーダンスな状態において、電圧判定回路4の電源13から順方向のダイオード15を介して入力される電圧よりも高く設定される。
 以上のインピーダンス検出回路5は、故障伝送ライン3が”High”レベルの状態では、ツェナーダイオード18を介してFET12Aのゲートにオン電圧が入力されてFET12Aがオン状態となる。故障伝送ライン3が”Low”レベルの状態では、ツェナーダイオード18と入力抵抗17を介してゲートがグランドライン23に接続されて、FET12Aのゲート電圧はカットオフ電圧となってオフ状態となる。さらに、故障伝送ライン3の断線や接触不良で、故障伝送ライン3がハイインピーダンス状態になると、FET12Aのゲートは、故障伝送ライン3でグランドライン23に接続されないが、入力抵抗17を介してグランドライン23に接続されて、ゲート電圧がカットオフ電圧となってオフ状態に切り換えられる。第2のスイッチング素子12であるFET12Aは、オン状態でソースから”High”レベルを演算回路6に出力し、オフ状態ではソースがドレインに接続されず、”High”レベルを出力しない。
(演算回路6)
 演算回路6は、電圧判定回路4の第1のスイッチング素子11とインピーダンス検出回路5の第2のスイッチング素子12のオンオフ、すなわち電圧判定回路4とインピーダンス検出回路5から出力される”High”信号を検出して、電池モジュール2の故障と、故障伝送ライン3の異常を判定する。演算回路6は、以下の状態で電池モジュール2と故障伝送ライン3の故障を判定する。
1.電圧判定回路4の第1のスイッチング素子11がオフ状態で、インピーダンス検出回路5の第2のスイッチング素子12がオン状態で”High”を出力する状態において、全ての電池モジュール2を正常と判定する。
2.電圧判定回路4の第1のスイッチング素子11がオン態で”High”を出力し、インピーダンス検出回路5の第2のスイッチング素子12がオフ状態においては、いずれかの電池モジュール2が異常であると判定する。
3.電圧判定回路4の第1のスイッチング素子11とインピーダンス検出回路5の第2のスイッチング素子12の両方がオフ状態にあって、両方から”High”が出力されない状態では、故障伝送ライン3の異常と判定する。
 本発明は、複数の電池モジュールを備える大出力の電源装置の用途において有効に使用できる。
100…電源装置
1…モジュール故障判定回路
2…電池モジュール
3…故障伝送ライン
4…電圧判定回路
5…インピーダンス検出回路
6…演算回路
9…電源ライン
10…プルアップ電源
11…第1のスイッチング素子
11A…FET
12…第2のスイッチング素子
12A…FET
13…電源
14…入力抵抗
15…ダイオード
16…電源
17…入力抵抗
18…ツェナーダイオード
19…グランドライン
21…故障判定部
22…接続端子
23…グランドライン
24…短絡スイッチ
24A…FET
25…プルアップ抵抗

Claims (6)

  1.  故障と正常を判定して故障と正常を”High”と”Low”の信号で出力する故障判定部を備える複数の電池モジュールと、
     各々の前記電池モジュールの前記故障判定部に接続してなる故障伝送ラインと、
     前記故障伝送ラインに接続されて、
      前記電池モジュールの故障と正常を判定するモジュール故障判定回路とを備え、
     前記モジュール故障判定回路が、
      前記故障伝送ラインの”High””Low”を判定する電圧判定回路と、
      グランドラインに対するインピーダンスを検出するインピーダンス検出回路と、
      前記電圧判定回路と前記インピーダンス検出回路の出力から、
       前記電池モジュールの故障と正常と、前記故障伝送ラインの異常を判定する演算回路とを備えることを特徴とする電源装置。
  2.  請求項1に記載する電源装置であって、
     前記故障伝送ラインの終端部に直列抵抗を介して接続されて、
      故障伝送ラインの電圧を”High”にプルアップするプルアップ電源を備え、
     前記故障判定部が、
      故障と正常のいずれか一方で、
      前記故障伝送ラインをグランドラインに接続して”Low”とする短絡スイッチを備えることを特徴とする電源装置。
  3.  請求項2に記載する電源装置であって、
     前記故障判定部が、
      前記電池モジュールの故障を判定する状態で、
      前記短絡スイッチをオン状態として、
      前記故障伝送ラインをグランドラインに接続して”Low”とすることを特徴とする電源装置。
  4.  請求項3に記載する電源装置であって、
     前記電圧判定回路が、
      前記故障伝送ラインの”Low”状態を検出してオン状態、
      前記故障伝送ラインの”High”状態と設定インピーダンスよりも高いハイインピーダンスを検出してオフ状態となる第1のスイッチング素子を備え、
     前記インピーダンス検出回路が、
      前記故障伝送ラインの”High”状態を検出してオン状態、
      前記故障伝送ラインの”Low”状態と設定インピーダンスよりも高いハイインピーダンスを検出してオフ状態に切り換えられる第2のスイッチング素子を備え、
     前記演算回路が、
      前記第1のスイッチング素子がオフ状態にあって、
      前記第2のスイッチング素子がオン状態において、
      前記電池モジュールを正常と判定し、
      前記第1のスイッチング素子がオン態にあって、
      前記第2のスイッチング素子がオフ状態において、
      前記電池モジュールを異常と判定し、
      前記第1のスイッチング素子と第2のスイッチング素子のオフ状態において、
      前記故障伝送ラインの異常と判定することを特徴とする電源装置。
  5.  請求項4に記載する電源装置であって、
     前記第1のスイッチング素子がpチャンネルのFETで、
      前記FETは、
       ドレインを出力として、
       ソースを電源に接続して、
       ゲートを入力抵抗を介して電源に接続すると共に、
        ダイオードを介して前記故障伝送ライン接続しており、
      前記ダイオードは、
       前記ゲート側から前記故障伝送ラインに流れる電流を順方向とする向きで接続されてなることを特徴とする電源装置。
  6.  請求項4又は5に記載する電源装置であって、
     前記第2のスイッチング素子がnチャンネルのFETで、
      前記FETは、
       ソースを出力とし、
       ゲートを入力抵抗を介してグランドラインに接続すると共に、
        ツェナーダイオードを介して前記故障伝送ライン接続しており、
      前記ツェナーダイオードは、
       前記ゲートから前記故障伝送ラインに流れる電流を順方向とする向きであって、
       ツェナー電圧を、
        故障伝送ラインの”High”レベル電圧からツェナー電圧を減算した電圧がゲートに入力されて、
        FETをオン状態とする電圧に設定してなることを特徴とする電源装置。
PCT/JP2021/012185 2020-03-30 2021-03-24 電源装置 WO2021200446A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180015740.0A CN115152120A (zh) 2020-03-30 2021-03-24 电源装置
JP2022512016A JPWO2021200446A1 (ja) 2020-03-30 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061462 2020-03-30
JP2020-061462 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200446A1 true WO2021200446A1 (ja) 2021-10-07

Family

ID=77927171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012185 WO2021200446A1 (ja) 2020-03-30 2021-03-24 電源装置

Country Status (3)

Country Link
JP (1) JPWO2021200446A1 (ja)
CN (1) CN115152120A (ja)
WO (1) WO2021200446A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325370A (ja) * 2001-04-25 2002-11-08 Denso Corp 充電状態制御方法及び装置
JP2006292516A (ja) * 2005-04-08 2006-10-26 Denso Corp 電池電圧検出制御装置
JP2014087129A (ja) * 2012-10-22 2014-05-12 Sharp Corp 電力供給システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325370A (ja) * 2001-04-25 2002-11-08 Denso Corp 充電状態制御方法及び装置
JP2006292516A (ja) * 2005-04-08 2006-10-26 Denso Corp 電池電圧検出制御装置
JP2014087129A (ja) * 2012-10-22 2014-05-12 Sharp Corp 電力供給システム

Also Published As

Publication number Publication date
CN115152120A (zh) 2022-10-04
JPWO2021200446A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP5113741B2 (ja) 電池パックおよびその断線検知方法
KR102052956B1 (ko) 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
US5883495A (en) Bidirectional current control circuit suitable for controlling the charging and discharging of rechargeable battery cells
JP2009017731A5 (ja)
US7719131B2 (en) Apparatus for monitoring a supply system, in particular a motor-vehicle electrical system, and method for monitoring a supply system of this type
US20150357838A1 (en) Battery system
CN108725351B (zh) 车辆用继电器的故障诊断系统
JP2006025501A (ja) 車両用の電源装置
US9941717B2 (en) Battery device
US9472941B2 (en) Battery module
KR20190094714A (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
WO2021241153A1 (ja) 電池監視装置
WO2021200446A1 (ja) 電源装置
JP2015097461A (ja) 組電池電圧検出装置
US20240213559A1 (en) Power supply device
EP3534485B1 (en) Battery pack, battery management system, and method therefor
US20240131963A1 (en) On-board switching device
KR20190013651A (ko) 배터리 셀 관리 시스템
JP7042128B2 (ja) 電圧検出装置
CN220273314U (zh) 电池保护电路、电池保护系统和供电设备
CN113552472B (zh) 一种高压互锁检测电路及应用其检测互锁回路状态的方法
JP6772931B2 (ja) 電池パックの放電制御装置
CN110361670B (zh) 电压检测装置
US20230182582A1 (en) Contactor assembly for battery pack of electric work vehicle
WO2022244687A1 (ja) 遮断制御装置、及び遮断制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512016

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17913777

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781968

Country of ref document: EP

Kind code of ref document: A1