WO2021200209A1 - Dispositif de commande de moteur, système moteur et procédé de commande de moteur - Google Patents

Dispositif de commande de moteur, système moteur et procédé de commande de moteur Download PDF

Info

Publication number
WO2021200209A1
WO2021200209A1 PCT/JP2021/011058 JP2021011058W WO2021200209A1 WO 2021200209 A1 WO2021200209 A1 WO 2021200209A1 JP 2021011058 W JP2021011058 W JP 2021011058W WO 2021200209 A1 WO2021200209 A1 WO 2021200209A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
rotor
motor
pwm signal
Prior art date
Application number
PCT/JP2021/011058
Other languages
English (en)
Japanese (ja)
Inventor
隆志 大場
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021200209A1 publication Critical patent/WO2021200209A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the PWM signal V is a PWM signal for driving two switching elements constituting the upper and lower arms of the V phase.
  • the switching element of the lower arm of the V phase is on (the switching element of the upper arm of the V phase is off), and when the PWM signal V is at a high level, it is below the V phase.
  • the switching element of the arm is turned off (the switching element of the upper arm of the V phase is turned on).
  • the two switching elements constituting the upper and lower arms of the V phase complementarily operate on and off in response to a change in the level of the PWM signal V.
  • the illustration of the dead time for preventing a short circuit between the upper and lower arms is omitted.
  • the upper arm of the phase corresponding to the PWM signal when the PWM signal is at a high level, the upper arm of the phase corresponding to the PWM signal is defined as on, and when the PWM signal is at a low level, the lower arm of the phase corresponding to the PWM signal is defined as on.
  • the relationship between the logic level of the PWM signal and the on / off of each arm may be defined in the opposite manner in consideration of the circuit configuration and the like.
  • Each one cycle Tpwm of the plurality of PWM signals U, V, W corresponds to the cycle of the carrier C (the reciprocal of the carrier frequency).
  • the change points (t1 to t6) represent the timing at which the logic level of the PWM signal changes.
  • the voltage value of the voltage generated at both ends of the current detector 24 at the energization time T22 is the current value of the negative W-phase current “ ⁇ Iw” flowing from the W-phase terminal of the motor 4.
  • the energizing time T22 is a time from t5 to t6.
  • the energizing time T22 corresponds to a period in which the lower arm Un, Vn and the upper arm Wp are on and the remaining three arms are off.
  • the phase current of each phase cannot be detected unless an energization section (energization time) is provided.
  • an energization section energization time
  • only one phase current can be detected in one energization time. Therefore, at least two energization times are provided during one cycle of the PWM signal (see FIG. 2), and the equation (iu + iv + iv) is provided.
  • an energizing time is provided to distinguish and detect the phase currents of each phase, the current flowing through the current detector 24 is amplified, so that the current detecting unit 27 has zero current flowing through the current detector 24. Sometimes it is not possible to measure the detection error included in the detected value of the phase current of each phase.
  • FIG. 11 is a diagram showing a first example of the waveform of the PWM signal when detecting the current value of the current flowing through the current detector before the inverter rotates the rotor.
  • the inverter 23 energizes the motor 4 having a rotor by turning on some of all the arms that are different for each energization pattern.
  • the PWM signal generation unit 32 has a first period in which all the arms are turned off during the idling of the rotor, a second period in which some arms are turned on in the first energization pattern during the idling of the rotor, and some arms are idling in the rotor.
  • a PWM signal of each phase including a third period to be turned on by the second energization pattern is generated in one cycle. As a result, the switching state of each arm as shown in FIG. 11 can be obtained.
  • the first reference current flowing through the current detector 24 in the second period and the second reference current flowing through the current detector 24 in the third period Can be treated as a two-phase reference current such as the offset current described above.
  • the current detection unit 27 detects the current at least twice in the same energization pattern as in FIG. 11 for each cycle of the PWM signal, so that each of the three-phase phase currents Detect the current value.
  • the current detection unit 27 subtracts the three-phase reference current value stored in advance in the memory from each of the three-phase phase currents detected in each cycle of the PWM signal for each cycle of the PWM signal. Therefore, the current detection values of the three-phase phase currents Iu, Iv, and Iw are calculated. As a result, the current detection unit 27 corrects the phase current of each phase flowing through the current detector 24 when the inverter 23 is rotating the rotor, according to the reference current of each phase.
  • FIG. 13 is a diagram showing a second example of the waveform of the PWM signal when detecting the current value of the current flowing through the current detector 24 before the inverter rotates the rotor.
  • the inverter 23 energizes the motor 4 having a rotor by turning on some of all the arms that are different for each energization pattern.
  • the PWM signal generation unit 32 includes a first section in which some arms are turned on in the first energization pattern while the rotor is idling, and a second section in which some arms are turned on in the second energization pattern while the rotor is idling.
  • the first period section includes a first section Q1 including the timing of the first detection, a second section Q2 including the timing of the second detection, and a third section Q3 in which all the upper arms are turned on.
  • the current detector 27 is half the sum of the first current value of the first phase flowing through the current detector 24 in the first section Q1 and the second current value of the first phase flowing through the current detector 24 in the second section Q2. Is subtracted from the first current value or the second current value. In this example, the current detection unit 27 calculates the offset current value of the first phase by subtracting it from the second current value.
  • FIG. 18 illustrates the case where the first phase is the U phase.
  • FIG. 19 illustrates a case where the PWM signal generation unit 32 generates PWM signals of each phase having a second period section at a duty ratio of 50%.
  • the PWM signal generation unit 32 has a fourth section Q4 in which some arms are turned on in the fourth energization pattern while the rotor is idling, and a fifth section Q5 in which some arms are turned on in the fifth energization pattern while the rotor is idling.
  • FIG. 19 illustrates a case where the PWM signal generation unit 32 generates PWM signals of each phase having a second period section at a duty ratio of 50%.
  • the PWM signal generation unit 32 has a fourth section Q4 in which some arms are turned on in the fourth energization pattern while the rotor is idling, and
  • the second period section includes a fourth section Q4 including the timing of the first detection, a fifth section Q5 including the timing of the second detection, and a sixth section Q6 in which all the upper arms are turned on.
  • the current detector 27 is half the sum of the third current value of the second phase flowing through the current detector 24 in the fourth section Q4 and the fourth current value of the second phase flowing through the current detector 24 in the fifth section Q5. Is subtracted from the third current value or the fourth current value.
  • the current detection unit 27 calculates the offset current value of the second phase by subtracting it from the fourth current value.
  • FIG. 19 illustrates a case where the second phase is the W phase.
  • the second cycle section may be a section adjacent to the first cycle section, a section having one or more cycle sections sandwiched between the first cycle section, or the same section as the first cycle section. good.
  • the current detection unit 27 may correct the current value of the phase current of the first phase flowing through the current detector 24 when the inverter 23 is rotating the rotor according to the offset current value of the first phase. .. Similarly, the current detection unit 27 may correct the current value of the phase current of the second phase flowing through the current detector 24 when the inverter 23 is rotating the rotor according to the offset current value of the second phase. good.
  • the first phase is the U phase and the second phase is the W phase, but other combinations may be used.
  • the functions of the current detection unit 27, the energization pattern generation unit 35, the current detection timing adjustment unit 34, and the initial position estimation unit 38 are CPU (Central Processing Unit) by a program readable and stored in a storage device (not shown). Is realized by the operation of. For example, each of these functions is realized by the collaboration of hardware and software in a microcomputer including a CPU.
  • CPU Central Processing Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne un procédé de commande de moteur mis en œuvre par un dispositif de commande de moteur, dans lequel une partie de tous les bras d'un onduleur, ladite partie différant pour chaque motif d'excitation, est activée, ce qui permet d'exciter un moteur ayant un rotor, un signal PWM étant généré pour chaque phase comprenant, dans un cycle unique, une première période, dans laquelle tous les bras sont désactivés tandis que le rotor fonctionne à pleine vitesse, une deuxième période, dans laquelle la partie des bras est activée avec un premier motif d'excitation pendant que le rotor fonctionne à pleine vitesse et une troisième période, dans laquelle la partie des bras est activée avec un second motif d'excitation pendant que le rotor fonctionne à pleine vitesse, et un premier courant de référence circulant dans un détecteur de courant pendant la deuxième période et un second courant de référence circulant dans le détecteur de courant pendant la troisième période sont détectés.
PCT/JP2021/011058 2020-03-31 2021-03-18 Dispositif de commande de moteur, système moteur et procédé de commande de moteur WO2021200209A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-064147 2020-03-31
JP2020064147A JP7382884B2 (ja) 2020-03-31 2020-03-31 モータ制御装置、モータシステム及びモータ制御方法

Publications (1)

Publication Number Publication Date
WO2021200209A1 true WO2021200209A1 (fr) 2021-10-07

Family

ID=77928390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011058 WO2021200209A1 (fr) 2020-03-31 2021-03-18 Dispositif de commande de moteur, système moteur et procédé de commande de moteur

Country Status (2)

Country Link
JP (1) JP7382884B2 (fr)
WO (1) WO2021200209A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166695A (ja) * 2005-12-09 2007-06-28 Hitachi Appliances Inc 電動機の制御装置
JP2009077503A (ja) * 2007-09-20 2009-04-09 Hitachi Appliances Inc 電動機の制御装置,空気調和機の制御装置
JP2012147599A (ja) * 2011-01-13 2012-08-02 Mitsubishi Electric Corp 空気調和機
JP2013220007A (ja) * 2012-03-14 2013-10-24 E-Bike Corp センサレスモータの制御方法、装置及び電動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166695A (ja) * 2005-12-09 2007-06-28 Hitachi Appliances Inc 電動機の制御装置
JP2009077503A (ja) * 2007-09-20 2009-04-09 Hitachi Appliances Inc 電動機の制御装置,空気調和機の制御装置
JP2012147599A (ja) * 2011-01-13 2012-08-02 Mitsubishi Electric Corp 空気調和機
JP2013220007A (ja) * 2012-03-14 2013-10-24 E-Bike Corp センサレスモータの制御方法、装置及び電動装置

Also Published As

Publication number Publication date
JP7382884B2 (ja) 2023-11-17
JP2021164280A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
JP4575547B2 (ja) モータの制御装置
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP5958477B2 (ja) インバータ装置
JP6124723B2 (ja) 三相インバータの電流検出装置
WO2020196397A1 (fr) Dispositif de commande de moteur, système moteur, et procédé de commande de moteur
JP2016163518A (ja) 回転位置検出装置,モータ制御装置及び回転位置検出方法
JP6102768B2 (ja) モータ制御装置
JP6156162B2 (ja) モータ制御装置
WO2021200389A1 (fr) Dispositif de commande de moteur, système moteur et procédé de commande de moteur
WO2020059814A1 (fr) Dispositif de commande de moteur, système de moteur, et procédé de commande d'onduleur
WO2021200209A1 (fr) Dispositif de commande de moteur, système moteur et procédé de commande de moteur
WO2021200236A1 (fr) Dispositif de commande de moteur, système moteur, et procédé de commande de moteur
JP6458684B2 (ja) 電力制御方法、及び、電力制御装置
WO2021200845A1 (fr) Dispositif de commande de moteur, système moteur, et procédé de commande de moteur
JP6116449B2 (ja) 電動機駆動制御装置
WO2020059815A1 (fr) Dispositif de commande de moteur, système de moteur et procédé de commande d'onduleur
JP2005045990A (ja) 速度起電力検出装置及び方法、並びにインバータ制御装置等
JP6493135B2 (ja) 車載用電動圧縮機
JP2010130752A (ja) 電動機の相電流推定装置
WO2020121368A1 (fr) Dispositif de pilotage de moteur et procédé de pilotage de moteur
JP6681266B2 (ja) 電動機の制御装置及びそれを備えた電動車両
WO2021200123A1 (fr) Dispositif de commande de moteur, système moteur, et procédé de commande de moteur
JP2007159349A (ja) 電動機の制御装置
JP6458683B2 (ja) 電力制御方法、及び、電力制御装置
JP2022055205A (ja) モータ制御装置、モータシステム及びモータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778923

Country of ref document: EP

Kind code of ref document: A1