WO2021199504A1 - 無線伝達システム - Google Patents

無線伝達システム Download PDF

Info

Publication number
WO2021199504A1
WO2021199504A1 PCT/JP2020/045592 JP2020045592W WO2021199504A1 WO 2021199504 A1 WO2021199504 A1 WO 2021199504A1 JP 2020045592 W JP2020045592 W JP 2020045592W WO 2021199504 A1 WO2021199504 A1 WO 2021199504A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
reflection
base station
transmission system
process line
Prior art date
Application number
PCT/JP2020/045592
Other languages
English (en)
French (fr)
Inventor
久美子 神原
井川 耕司
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP20929502.1A priority Critical patent/EP4131655A4/en
Priority to KR1020227031307A priority patent/KR20220161287A/ko
Priority to JP2022511523A priority patent/JP7548297B2/ja
Priority to CN202080099140.2A priority patent/CN115349200A/zh
Publication of WO2021199504A1 publication Critical patent/WO2021199504A1/ja
Priority to US17/934,820 priority patent/US20230010669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor

Definitions

  • the present invention relates to a wireless transmission system.
  • the communication environment in production facilities such as factories and plants is different from the public mobile communication environment.
  • the production facility there are various machines and structures that hinder the propagation of radio waves for communication, and it is difficult to achieve high communication quality.
  • An object of the present invention is to provide a technique for improving radio wave propagation of mobile communication in a production facility.
  • the wireless transmission system A base station that transmits and receives radio waves in a desired band selected from the frequency band of 1 GHz to 170 GHz, and An electromagnetic wave reflecting device having a reflecting surface for reflecting the radio waves, which is arranged along at least a part of a process line in which the production equipment for transmitting and receiving the radio waves is arranged. To be equipped.
  • the electromagnetic wave reflecting device having the above configuration improves radio wave propagation of mobile communication in production facilities such as factories and plants.
  • FIG. 1 is a schematic diagram of a process line in a factory to which the present disclosure can be applied.
  • a process line is a belt-shaped production site in which equipment for assembly and production is arranged as a series of flows.
  • Industrial IoT production efficiency is improved and on-site safety is ensured by connecting industrial equipment, equipment, management systems, etc. used in the process line to the network.
  • Base stations BS1 and BS2 are arranged to connect the equipment of the process line to the network.
  • the devices M1 and M2 used in the process line have wireless communication units WT1 and WT2, respectively, and communicate with at least one of the base stations BS1 and BS2 to be connected to the network.
  • the base stations BS1 and BS2 (hereinafter, appropriately collectively referred to as "BS") provide a rectangular service area long in the horizontal direction.
  • BS base stations
  • the system requirement is a service in which the aspect ratio of a rectangular area in a horizontal plane is 3 to 5 times.
  • the area is shown.
  • the area size of a use case called “Motion Control” is defined as length x width x height, which is 50 m x 10 m x 10 m.
  • the base stations BS1 and BS2 are connected to the longitudinal end of the process line. It is effective in terms of coverage to place it in.
  • Base stations BS1 and BS2 may be coordinated and linked in order to improve communication quality and coverage. The details of the arrangement relationship of the base station BS with respect to the process line will be described later.
  • FIG. 2 is a schematic plan view of a wireless transmission system 1 using the electromagnetic wave reflecting device 10 of the embodiment.
  • the wireless transmission system 1 includes a process line 3 in which production equipment capable of transmitting and receiving radio waves is arranged, a base station BS that wirelessly communicates with the equipment on the process line 3, and electromagnetic wave reflection arranged along the process line 3. Includes device 10.
  • the electromagnetic wave reflecting device 10 has a reflecting surface 105 that reflects radio waves.
  • the arrangement surface of the process line is defined as the XY plane, and the height direction perpendicular to the XY plane is defined as the Z direction.
  • the equipment in the process line 3 includes all equipment related to production such as micro devices such as sensors and actuators, assembly equipment, manufacturing machines, and management systems.
  • the equipment used in the process line 3 is not limited to a fixed device or a machine, and may be an equipment that freely moves in the process line 3.
  • the base station BS and the devices M1 and M2 with wireless communication functions transmit and receive radio waves in a specific frequency band, for example, in the range of 1 GHz to 170 GHz.
  • Process lines and surrounding structures eg ducts, pipes, etc.
  • radio waves with high frequencies such as millimeter wave bands have strong straightness and are less diffracted, making it difficult for radio waves to reach.
  • the communication environment may be deteriorated due to the reflection from the peripheral equipment, the metal product being processed, or the like.
  • the electromagnetic wave reflecting device 10 is arranged along the longitudinal direction of the process line 3, and the base station BS is arranged at the end portion of the process line 3 in the longitudinal direction.
  • the electromagnetic wave reflecting device 10 suppresses the number of base station BSs installed in the production facility, and improves the wireless communication environment between the base station BS and the equipment in the process line 3.
  • the electromagnetic wave reflecting device 10 may be installed substantially parallel to the long axis of the process line 3 with respect to at least a part of the process line 3. "Almost parallel" means that the electromagnetic wave reflecting device 10 does not need to be arranged exactly parallel to the long axis of the process line 3.
  • the electromagnetic wave reflecting device 10 may be slightly tilted with respect to the long axis of the process line 3 within a range in which efficient radio wave transmission / reception is performed between the base station BS and the equipment in the process line 3.
  • the reflecting surface 105 of the electromagnetic wave reflecting device 10 reflects radio waves in the band of 1 GHz to 170 GHz.
  • the reflection surface 105 is formed of at least one of a normal reflector 101 that provides normal reflection having the same angle of incidence and an angle of reflection, and a metal reflector 102 that has an artificial surface that controls the reflection characteristics of the incident electromagnetic wave.
  • the "meta-reflector” is a kind of "meta-surface” which means an artificial surface that controls the transmission characteristics and reflection characteristics of incident electromagnetic waves.
  • radio waves are reflected in a predetermined direction other than the normal reflection direction by arranging a large number of scatterers sufficiently smaller than the wavelength and controlling the reflection phase distribution and the amplitude distribution.
  • the metal reflector 102 may realize diffusion having a predetermined angular distribution and formation of a wave surface in addition to reflection in a direction other than normal reflection.
  • 3A to 3C show modes of reflection on the reflecting surface 105 of the electromagnetic wave reflecting device 10.
  • the electromagnetic wave incident on the normal reflector 101 is reflected at the same reflection angle ⁇ ref as the incident angle ⁇ in.
  • the electromagnetic wave incident on the metal reflector 102a is reflected at a reflection angle ⁇ ref different from the incident angle ⁇ in.
  • the absolute value of the difference between the reflection angle ⁇ ref due to the metal reflector 102 and the reflection angle due to normal reflection may be referred to as an abnormal angle ⁇ abn.
  • the reflection phase distribution is controlled and the incident electromagnetic wave is reflected in a desired direction. do. Details will be described later, but when the electromagnetic wave reflecting device 10 is used for the vertically long process line 3, as shown in FIG. 3B, the electromagnetic wave is processed on the process line at a reflection angle ⁇ ref smaller than the incident angle ⁇ in of the electromagnetic wave incident from the base station BS. It is desirable to lead to the wireless communication unit WT of the device in 3.
  • the electromagnetic wave reflected by the metal reflector does not have to be a plane wave with a single reflection angle.
  • the incident electromagnetic wave is diffused in a plurality of directions at a plurality of different reflection angles ⁇ ref.
  • a method for realizing the reflection of FIG. 3C for example, there is a method described in PHYSICAL REVIEW B 97, “ARBITRARY BEAM CONTROL USING LOSSLESS METASURFACES ENABLED BY ORTHOGONALLY POLARIZED CUSTOM SURFACE WAVES”.
  • the intensity of the diffused electromagnetic wave may be uniform, or may have a predetermined intensity distribution depending on the reflection direction.
  • a plurality of electromagnetic wave reflecting devices 10 may be arranged along the process line 3. As long as the communication quality between the base station BS and the equipment in the process line 3 is maintained, the electromagnetic wave reflecting device may be used as a guard fence for safety.
  • FIG. 4 is a diagram illustrating a basic concept of the electromagnetic wave reflecting device 10 of the embodiment.
  • the electromagnetic wave reflecting device 10 is arranged upright on the XY plane where the process line is provided.
  • the height direction of the electromagnetic wave reflecting device 10 is the Z direction.
  • the electromagnetic wave reflecting device 10 has a panel 13 having a reflecting surface 105 that reflects radio waves in a desired band selected from a frequency band of 1 GHz to 170 GHz, and a support 11 that supports the panel 13.
  • the reflective surface 105 of the panel 13 reflects electromagnetic waves in a desired direction.
  • the reflection surface 105 is formed of at least one of a normal reflector 101 that normally reflects and a metal reflector 102 having an artificial surface that controls the reflection characteristics of the incident electromagnetic wave.
  • the normal reflector 101 may include a reflective surface formed of an inorganic conductive material or a conductive polymer material.
  • the material, surface shape, manufacturing method, etc. of the metal reflector 102 are not limited as long as it can reflect the incident electromagnetic wave in a desired direction or diffuse it with a desired angular distribution.
  • a metasurface can be obtained by forming a metal patch on the surface of a conductor such as metal via a dielectric layer, which is sufficiently smaller than the wavelength used.
  • the metal reflector 102 is arranged at an arbitrary position on the reflection surface 105 according to the design of the reflection direction of the electromagnetic wave.
  • the size of the panel 13 can be appropriately designed according to the environment in which it is used. As an example, the width of the panel 13 is 0.5 m to 3.0 m, the height is 1.0 m to 2.5 m, and the thickness is 3.0 mm to 9.0 mm. Considering the ease of transportation into the factory and installation / assembly, the size of the panel 13 may be about 1.4 m ⁇ 1.8 m ⁇ 5.0 mm. A part of the panel 13 may be transparent to visible light.
  • the panel 13 is supported by the support 11 so that the electromagnetic wave reflecting device 10 can stand independently.
  • the mechanical structure of the support 11 may be any structure as long as the panel 13 can be stably erected with respect to the installation surface (for example, the XY surface).
  • a plurality of electromagnetic wave reflecting devices 10 may be connected and used.
  • the total height of the electromagnetic wave reflecting device 10 including the panel 13 and the support 11 is, for example, 1.5 m to 2.5 m, and may be set to a height of about 2.0 m from the installation surface.
  • the support 11 has an electrical connection portion 15 that connects the potential surfaces of reflections that occur on the reflection surface 105 of the panel 13 in addition to the mechanical design for independently erecting the panel 13.
  • the potential that is the reference of the reflection is transmitted at high frequency from one panel to the other panel by the support 11, and the two adjacent panels are used. It is desirable that the reference potential is shared at high frequencies between them. It is desirable that the continuity of the reflected current be as uniform as possible in the contiguous zone of the support 11.
  • the configuration in which the support transmits the reference potential of the reflection generated on the reflective surface of the panel may be referred to as a configuration that "references" the reference potential.
  • the edge processing of the panel 13 and the suppression of the influence on the reflection characteristics are suppressed. It is desirable that the device is devised.
  • the "edge" of the panel 13 means an end connecting between two opposing main surfaces. The specific configuration of the electrical connection will be described later with reference to FIGS. 7 to 9D.
  • the metal reflector 102 is movably provided.
  • the configuration that changes the position of the metal reflector 102 on the reflection surface 105 may be any configuration as long as the interference between the metal reflector 102 and the reflection surface 105 is suppressed.
  • the rod 16 for holding the metal reflector 102 may be slidably attached in the horizontal direction of the panel 13 and the position of the metal reflector 102 may be held on the rod 16 so as to be movable in the vertical direction.
  • the rod 16 may be made of a non-metal and low dielectric constant material that does not interfere with the reflection characteristics of the normal reflector 101 or the metal reflector 102.
  • the rod 16 may be designed to have zero or minimal optical and mechanical interference at the panel interface.
  • the metal reflector 102 can be moved to an optimum position on the panel 13 depending on the environment of the site where the electromagnetic wave reflecting device 10 is arranged, the positional relationship with the base station BS, and the like. Similar to FIG. 4, the support 11 has an electrical connection portion 15 inside.
  • FIG. 5B shows the electromagnetic wave reflecting device 10B.
  • a brace 19 may be provided on the surface of the panel 13 opposite to the reflecting surface 105 as a reinforcement for increasing the rigidity of the panel 13 of the electromagnetic wave reflecting device 10B.
  • the brace 19 may be spanned, for example, between the support 11 holding both ends of the panel 13.
  • reinforcing beams 21a and 21b are provided above and below the panel 13.
  • the reinforcing beams 21a and 21b can be inserted between the supports 11 that support both sides of the panel 13.
  • a brace 19 is provided between the reinforcing beam 21a or 21b and the support 11.
  • FIGS. 5A to 5D can be combined with each other.
  • the metal reflector 102 may be movably held on the reflection surface 105 side, and the brace 19 may be inserted on the surface opposite to the reflection surface 105.
  • the reflecting surface 105 may have any configuration as long as it is a surface that reflects an electromagnetic wave of 1 GHz to 170 GHz.
  • the reflective surface 105 can be formed by a mesh conductor that reflects electromagnetic waves in an arbitrary frequency band selected from the range of 1 GHz to 170 GHz, a conductive film, a combination of a transparent resin and a conductor film, and the like.
  • the reflecting surface 105 By designing the reflecting surface 105 so that it can reflect radio waves in a desired frequency band from 1 GHz to 170 GHz, the 1.5 GHz band, which is the main frequency band currently used in Japanese mobile communications, 2. It can cover 5 GHz band and so on. In the next-generation 5G communication network, 4.5 GHz band, 28 GHz band, etc. are planned. In foreign countries, 2.5 GHz band, 3.5 GHz band, 4.5 GHz band, 24-28 GHz band, 39 GHz band and the like are planned as 5 G frequency bands. It is also compatible with 52.6 HGz, which is the upper limit of the millimeter wave band frequency band of the 5G standard.
  • the reflection band of the reflection surface 105 may be extended to the terahertz band by applying photonic crystal technology or the like.
  • the panel 13A has a reflective surface 105 of the conductor 131.
  • the conductor 131 does not have to be a homogeneous conductor film as long as it can reflect radio waves of 1 GHz to 170 GHz by 30% or more.
  • it may be a mesh, a grid, or a hole arrangement formed at a density that reflects electromagnetic waves in the above frequency band.
  • the repeating pitch forming the density may be a uniform period or a non-uniform period. This period, or the average period, is preferably 1/5 or less of the wavelength of the above frequency, and more preferably 1/10 or less.
  • the opening diameter of the wire mesh fence generally used in factories and warehouses is 3.2 cm, 4 cm, 5 cm, etc., and most of the electromagnetic waves of 1 GHz to 170 GHz pass through the fence. Even if electromagnetic waves are slightly reflected by the wire mesh fence in the vicinity of 1 GHz to several GHz, the transmission component is dominant in the frequency band higher than that, and stable reflection that leads to improvement of the communication environment is obtained. It may be considered not possible.
  • the panel 13B is a normal reflector and has a laminated structure of a conductor 131 and a dielectric 132 that is transparent to the operating frequency. Any surface of the conductor 131 becomes the reflecting surface 105. When an electromagnetic wave is incident from the side of the conductor 131, the interface between the conductor 131 and air becomes the reflecting surface 105. When an electromagnetic wave is incident from the side of the dielectric 132, the interface between the conductor 131 and the dielectric 132 becomes the reflecting surface 105.
  • the dielectric 132 that holds the conductor 131 or covers the surface of the conductor 131 has rigidity that can withstand vibration and meets the safety requirements of ISO014120 of ISO (International Organization for Standardization). Since it is used in a factory, it is preferable that it can withstand and protect against impact even if a part of parts or manufacturing equipment collides with it, and further, it is preferable that it is transparent in the visible light region.
  • optical plastic, tempered plastic, tempered glass, etc. having a strength equal to or higher than a predetermined value are used.
  • the optical plastic polycarbonate (PC), polymethylmethacrylate (PMMA), polystyrene (PS) and the like may be used.
  • the panel 13C has a conductor 131 sandwiched between the dielectric 132 and the dielectric 133. Depending on the incident direction of the electromagnetic wave, the interface with any of the dielectrics becomes the reflecting surface 105.
  • the rigidity required for the dielectrics 132 and 133 is the same as the configuration shown in FIG. 6B.
  • the panel 13D may have the metal reflector 102 as a part of the laminate of FIG. 6B.
  • the laminate of the conductor 131 and the dielectric 132 can be used as the normal reflector 101.
  • the metal reflector 102 may be fixed to the surface of the dielectric 132 of the normal reflector 101 by bonding or the like.
  • the region of the three-layer structure of the conductor 131, the dielectric 132, and the metal reflector 102 can be the asymmetric reflection region AS that forms the metasurface.
  • the region of the two-layer structure of the conductor 131 and the dielectric 132 without the metal reflector 102 can be the symmetric reflection region SY that gives normal reflection.
  • the metal reflector 102 is integrated with the normal reflector 101 in the panel 13D as shown in FIG. 4, but may be used separably from the normal reflector 101.
  • a position-variable metal reflector 102 may be used as shown in FIG. 5A.
  • the position of the asymmetric reflection region can be adjusted by selecting the position of the metal reflector 102 on the panel 13 according to the environment of the site.
  • a plurality of electromagnetic wave reflecting devices 10 may be connected by a support 11 and installed on the surface P.
  • the panel 13-1 and the panel 13-2 are connected by the electrical connecting portion 15 of the support 11 so that the potential planes of reflection are continuous.
  • the support 11 has a mechanical strength for connecting the panels 13 and an electrical connection performance for making the reference potential of reflection continuous between the panels 13.
  • a configuration example of the electrical connection portion 15 will be shown.
  • FIG. 8 shows an example of the electrical connection portion 15 of the support 11 as a horizontal cross-sectional view when the electromagnetic wave reflecting device 10 is erected on the surface P (see FIG. 7).
  • the connecting portion 15 is designed so that the reference potential of the reflection of one panel can be transmitted to the adjacent panels so that the reference potential of the reflection phenomenon is shared between the adjacent panels 13.
  • the support 11 has a frame 111 and an electrical connection portion 15 provided on the frame 111 and having a common reflection potential surface between the panels 13. What if the connecting portion 15 can stably transmit or share the reference potential of reflection between the adjacent panels 13-1 and 13-2 (hereinafter, appropriately collectively referred to as "panel 13")?
  • the configuration may be.
  • the frame 111 may have any configuration as long as it has a strength capable of stably holding the electrical connection portion 15. In the configuration of FIG. 8, the frame 111 may be made of an electrically insulating material.
  • the connecting portion 15 includes the conductive edge jackets 17-1 and 17-2 (hereinafter, appropriately collectively referred to as “edge jacket 17”) for gripping the edge of the panel 13, and the edge jacket 17. It has a bridge electrode 112 that electrically connects to an adjacent panel.
  • the bridge electrode 112 is an example of a conductive bridge that bridges the potential surfaces of the panel 13-1 and the panel 13-2.
  • the edge jacket 17-1 that grips the edge of the panel 13-1 and the edge jacket 17-1 that grips the edge of the panel 13-2 are electrically connected by the bridge electrode 112.
  • the bridge electrode 112 is in surface contact with the edge jackets 17-1 and 17-2 to ensure electrical connection.
  • the reflected current flows from the edge jacket 17-1 through the bridge electrode 112 to the edge jacket 17-2 and flows into the conductor 131 of the panel 13-1.
  • the reflected current flows in a short current path, there is little current wraparound, and the reflection performance is good.
  • the reflected current is a general-purpose three-dimensional electromagnetic field simulation software, in which a plane wave is incident on the model including the connection portion 15, and the current path is obtained from the current distribution in the cross section while analyzing the scattered cross section as the reflection characteristic.
  • a good range can be defined.
  • the three-dimensional electromagnetic field simulation for example, the FDTD method, the finite element method, the moment method, and the like can be used.
  • the current path is preferably 50 times or less, preferably 10 times or less, more preferably 5 times or less, still more preferably 2 times or less with respect to the linear distance between the panels.
  • the conductive material portion in the connecting portion 15, that is, the corner portion of the bridge electrode 112 and the metal layer 121 in the following modified example is preferably R-chamfered because it stabilizes scattering at the edge of the conductor.
  • the frame 111 is provided so as to secure the strength of the support 11, and it is preferable that the frame 111 is made of an insulating elastic body, a resin, or the like so that the reflected current is not shunted.
  • the above preferred range can also be applied to the modifications described below.
  • the edge jacket 17 is a conductive rail having an open square or U-shaped cross section, and may have a set of outer surfaces 171 and a bottom surface 172 connecting the outer surfaces 171.
  • the inner surface of the edge jacket 17 may be coated with a conductive adhesive 18 such as silver paste in advance.
  • the conductor 131 may be folded back at the edge of the panel 13 and pulled out to the surface of at least one dielectric.
  • the folded portion 131a of the conductor 131 comes into surface contact with the inner wall of the edge jacket 17.
  • the thicknesses of the dielectrics 132 and 133 may be reduced to form the notch 134 along the edge of the panel 13.
  • the edge region thinned by the notch 134 may be fitted to the edge jacket 17.
  • the outer surface 171 of the edge jacket is aligned with the surface position of the panel 13, and the panel 13 is easy to handle.
  • the support 11A has a frame 111A made of carbon-containing material instead of the insulating frame 111.
  • the frame 111A and the edge jackets 17-1 and 17-2 form an electrical connection 15A.
  • CFRP Carbon Fiber Reinforced Plastics: carbon fiber reinforced plastic
  • CFRP Carbon Fiber Reinforced Plastics: carbon fiber reinforced plastic
  • the CFRP itself that holds the edge jackets 17-1 and 17-2 becomes the electrical connection part 15A.
  • the edge jackets 17-1 and 17-2 can be electrically connected without using the bridge electrode 112. From the point of view of reflection, the carbon fiber has better reflection performance as compared with the metal bulk, and the reflection characteristic of the frame 111A itself is also excellent.
  • the carbon fiber content ratio of CFRP is preferably 50% or more, 60% or more, 70% or more, 80%, 90% or more.
  • the resin content ratio of CFRP is preferably 50% or less, 40% or less, 30% or less, 20% or less, and 10% or less.
  • the support 11B has a frame 111B in which a metal layer 121 and a resin layer 122 are laminated.
  • the metal layer 121 connects the panels 13-1 and 13-2 so as to cover the edge jackets 17-1 and 17-2.
  • the metal layer 121 in contact with the edge jackets 17-1 and 17-2 serves as the electrical connection 15B.
  • the resin layer 122 reinforces the connection between the panels by the metal layer 121 from the outside. In this configuration, the current wraparound is small.
  • the combined configuration of the metal layer 121 and the resin layer 122 facilitates the design and processing of the frame 111B. When viewed in the stacking direction, the strength of the frame 111B is also ensured by sandwiching the metal layer 121 between the resin layers 122.
  • FIG. 10C connects the panels 13 to which the edge processing of FIG. 8B has been performed. Since the surface of the panel 13 and the outer wall of the edge jacket 17 are aligned, the panel 13 may be inserted into the frame 111C with the edge jacket 17 fitted to the edge of the panel 13 in advance.
  • the frame 111C is made of, for example, insulating plastic.
  • the reflected current flows from the edge jacket 17 through the bridge electrode 112C into the conductor 131 of the adjacent panel in a short current path.
  • the bridge electrode 112C may also be formed wide so as to make surface contact with the entire outer surface of the edge jackets 17-1 and 17-2.
  • the electromagnetic wave is reflected by the panel 13-1, the high-frequency current flows through at least a part of the bridge electrode 112C to the conductor 131 of the panel 13-2 as shown by the white arrow, so that the current wraps around. few.
  • FIG. 10D shows a configuration example of the connection portion 15D of the support 11D.
  • the connection portion 15D has a bridge electrode 114 that electrically connects the edge jackets 17-1 and 17-2.
  • the bridge electrode 114 electrically connects the bottom surfaces 172 of the edge jackets 17-1 and 17-2.
  • the configuration of FIG. 10D is advantageous in that high frequencies flow from the conductor 131-1 to the edge jacket 17-1, the bridge electrode 114, the edge jacket 17-2, and the conductor 131-2 in the shortest path.
  • the bridge electrode 114 connects a part of the bottom surface 172 of the edge jackets 17-1 and 17-2, but the thickness of the bridge electrode 114 is increased to increase the thickness of the edge jackets 17-1 and 17-.
  • the entire surface of the bottom surface 172 of 2 may be connected. Thickening the bridge electrode 114 makes the electrical and physical connections more stable. By surrounding the bridge electrode 114 with an insulating frame 111D, the mechanical strength of the electrical connection portion 15D and the reliability of the electrical connection are ensured.
  • FIG. 10E shows an example in which a metal / resin composite type frame 111E is used. It has a metal connector 141 and a resin reinforcing portion 142 that covers the connector.
  • the connector 141 is easily manufactured by extrusion molding or the like, and the connector itself has a certain level of strength while ensuring electrical connection.
  • the strength as a support material is ensured by both the connector 141 and the resin reinforcing portion 142.
  • the thickness of the connector 141 is reduced, and the generation of residual inductance due to the bypass of the current is suppressed. Furthermore, by rounding the end part, diffraction at the corner part is prevented.
  • FIG. 10F shows a structure using an existing frame 1100 formed by extrusion molding of aluminum as a reference example.
  • the frame 1100 having a complicated cross-sectional shape, current flows in various directions, and residual inductance and stray capacitance are generated due to a complicated current bypass path.
  • the response of the incident electromagnetic wave changes in a complicated manner, which adversely affects the reference or transmission of the reference potential. From these points, it is desirable to adopt the configurations shown in FIGS. 8 and 10A to 10E as the connecting portion 15 of the support 11.
  • FIG. 11A is a diagram illustrating the connection between the electromagnetic wave reflecting devices 10-1 and 10-2.
  • Edge jackets 17-1 are provided on both edges of the panel 13-1.
  • Edge jackets 17-2 are provided on both edges of the panel 13-2.
  • the panel 13-1 and the panel 13-2 to which the edge jackets 17-1 and 17-2 are fitted in advance are connected by the support 11.
  • the support 11 may have a frame 111 having an electrical connection 15 and a guide beam 118 that receives the frame 111.
  • the frame 111 and the guide beam 118 may be formed as separate bodies or may be integrally formed.
  • the bridge electrode 112 of the connecting portion 15 is formed on the outer surface of the edge jacket 17-1 of the panel 13-1 and the edge jacket 17 of the panel 13-2. Surface contact with both outer surfaces of -1. As a result, an electrical connection is established between the reflecting surface 105-1 of the electromagnetic wave reflecting device 10-1 and the reflecting surface 105-2 of the electromagnetic wave reflecting device 10-2.
  • FIG. 11B shows the state of the electromagnetic wave reflecting device 10 before connection.
  • a frame 111 having an electrical connection portion 15 is pre-attached to one side edge of the panel 13, and a guide beam 118 is attached to the other side edge.
  • the reflecting surface 105 of the electromagnetic wave reflecting devices 10-1 to 10-3 may have any of the configurations shown in FIGS. 6A to 6D.
  • the frame 111 is formed so as to be fitted into the guide beam 118 provided in the other electromagnetic wave reflecting device 10.
  • the guide beam 118 is formed so as to be able to receive the frame 111 provided in the other electromagnetic wave reflecting device 10.
  • the guide beam 118 of the electromagnetic wave reflecting device 10-1 receives the frame 111 of the electromagnetic wave reflecting device 10-2.
  • the guide beam 118 of the electromagnetic wave reflecting device 10-2 receives the frame 111 of the electromagnetic wave reflecting device 10-3.
  • FIG. 11C shows the state of the electromagnetic wave reflecting device 10 after connection.
  • the frame 111 and the guide beam 118 are integrated to form the support 11.
  • a plurality of electromagnetic wave reflecting devices 10-1, 10-2, and 10-3 may be connected by the support 11 to form an electromagnetic wave reflecting fence 100.
  • the electrical connection 15 of the frame 111 suppresses the discontinuity of the reflected current at the connection between the panels 13.
  • the connected electromagnetic wave reflecting devices 10-1 to 10-3 stand independently on the installation surface by the base 119 of the support 11. do.
  • a cover 29 may be placed on the edge of the panel 13 of the electromagnetic wave reflecting device 10-3 located at the outermost end to protect the edge jacket 17 and the guide beam 118.
  • FIG. 12 and 13 show a mechanism for reinforcing the connection when connecting the plurality of electromagnetic wave reflecting devices 10-1 and 10-2.
  • 12 (A) is a front view of the electromagnetic wave reflection fence 100
  • FIG. 12 (B) is a side view showing a state before tightening the reinforcing mechanism 125
  • FIG. 12 (C) is a tightening of the reinforcing mechanism 125. It is a side view which shows the later state.
  • FIG. 13 is a configuration example of the reinforcing mechanism 125.
  • FIG. 13A shows a guide groove 129 formed on the mounting surface 127a of the cover 127 used in the reinforcing mechanism 125 to the panel 13.
  • FIG. 13B shows the states of the cross section A and the cross section B of FIG. 13A.
  • the reinforcing mechanism 125 shown in FIGS. 12 and 13 may be used as appropriate to the extent that the reflection characteristics are not deteriorated.
  • a hole 126 is formed in the panel 13, a pin 128 is passed through the hole, and a cover 127 is attached to a surface of the panel 13 opposite to the reflective surface.
  • the pin 128 By moving the pin 128 along the guide groove 129 formed on the mounting surface 127a of the cover 127, the panel 13 can be pressed against the support 11 from both sides.
  • the reinforcing mechanism 125 By tightening the reinforcing mechanism 125, the position of the hole 126 formed in the panel 13 is slightly shifted toward the support 11.
  • the elastic force of the panel 13 ensures the connection between the edge of the panel 13 and the connecting portion 15 (see FIG. 17) of the support 11.
  • the mechanism for strengthening the connection of the plurality of electromagnetic wave reflecting devices 10 is not limited to the examples shown in FIGS. 12 and 13, and an appropriate fastener mechanism, ratchet, or the like may be used as long as the electromagnetic wave reflection characteristics are not impaired. Assuming such a pressure welding process, the design of the edge jacket 17 and the connecting portion 15 may be appropriately adjusted.
  • FIG. 14 is a diagram illustrating the size of the metal reflector 102.
  • the transmitter be "Tx" and the receiver be "Rx".
  • the transmitter Tx is, for example, a base station BS.
  • the receiver Rx is, for example, a device in the process line 3.
  • d1 be the distance from the transmitter Ts to the surface 102S of the metal reflector 102
  • d2 be the distance from the surface 102S of the metal reflector 102 to the receiver Rx.
  • the standard length of the process line is 80m.
  • the radius R of the first Fresnel zone when the radio waves radiated from the transmitter Tx and reflected by the metal reflector 102 reach the receiver Rx in the same phase is defined by the equation (1).
  • is the wavelength used.
  • FIG. 15 shows a specific example of the radius R of the first Fresnel zone derived from the equation (1).
  • the operating frequency is 28 GHz
  • d1 is 30 m
  • d2 is 10 m
  • the radius R of the first Fresnel zone is 0.283 m.
  • the radius R is 0.216 m.
  • the radius R of the first Fresnel zone is 0.770 m.
  • the radius R is 0.588.
  • the reflected wave from the electromagnetic wave reflecting device 10 can be received in the same phase as the direct wave from the base station BS to improve the reception intensity.
  • the length of one side is set as the minimum size of one metal reflector 102. Is preferably at least 0.5 m or more. In the 3.8 GHz band, it is desirable that the length of one side is about 1 m as the minimum size of one metal reflector 102. As shown in FIGS. 5B to 5D, even when a plurality of metal reflectors 102 are used for one panel 13, it is desirable that the size of each metal reflector 102 covers at least the first Fresnel zone.
  • the radius R of the first Fresnel zone does not depend on the relationship between the incident angle and the reflection angle, the same calculation applies to the normal reflector 101.
  • the size of the normal reflector 101 is 50 cm or more on each side.
  • the metal reflector 102 When the metal reflector 102 is used in a process line covered by a service area with a large aspect ratio, the oblique incidence of either the incident angle or the reflection angle becomes deeper. Below, the arrangement relationship between the process line 3, the base station BS, and the electromagnetic wave reflecting device 10 will be examined.
  • the wireless transmission system 1 includes a base station BS that transmits and receives radio waves in the band of 1 GHz to 170 GHz, and a process line 3 in which production equipment that transmits and receives the radio waves is arranged.
  • the electromagnetic wave reflecting device 10 is provided along at least a part of the process line.
  • the electromagnetic wave reflecting device 10 has a reflecting surface 105 that reflects radio waves in the above band.
  • the base station BS is located closer to the process line 3 than the extension line L horizontal to the reflection surface 105.
  • base station BSs may be located at both ends of the process line 3 in the longitudinal direction.
  • the production equipment in the process line 3 can communicate with the base station BS directly or via the electromagnetic wave reflecting device 10 in the above band.
  • FIG. 16A shows the reflection pattern 1 in the radio transmission system 1.
  • pattern 1 as shown by the solid line arrows, in the base station BS and the process line 3, the radio waves radiated from the base station BS are incident on the perpendicular line of the reflecting surface 105 of the electromagnetic wave reflecting device 10 at a deep angle. They are arranged in a positional relationship that is reflected at a shallow angle. That is, in pattern 1, the radio wave is incident at an angle of incidence of 45 degrees or more, and is reflected so that the reflection angle is smaller than the reflection angle in normal reflection.
  • the base station BS In order to allow the radio waves from the base station BS to enter the reflecting surface 105 at a deep angle, the base station BS is located on the side of the process line 3 with respect to the extension line L of the electromagnetic wave reflecting device 10 and is located on the process line 3. It is preferably located at the end in the longitudinal direction. By incident the radio wave on the reflecting surface 105 at a deep angle, the radio wave can be sent to the central portion of the process line 3 or its vicinity.
  • FIG. 16B shows the reflection pattern 2.
  • the base station BS and the process line 3 are arranged in a positional relationship in which radio waves radiated from the base station BS are incident at a shallow angle with respect to the perpendicular line of the reflecting surface 105 and are reflected at an angle deeper than the incident angle.
  • the radio wave is incident at an angle of incidence of 45 degrees or less, and is reflected so that the reflection angle is larger than the reflection angle in the normal reflection.
  • the base station BS is located closer to the process line 3 than the extension line L horizontal to the reflecting surface 105 of the electromagnetic wave reflecting device 10, but is located closer to the center than the longitudinal end of the process line 3. do.
  • the influence on the variation of the oblique incident angle becomes large.
  • FIG. 17A shows the reference robustness of pattern 1
  • FIG. 17B shows the reference robustness of pattern 2.
  • the reference robustness refers to the stability of the reflection angle when the incident angle is changed by 1 degree. When the change in the reflection angle is small with respect to the change in the incident angle of 1 degree, the reference robustness is high.
  • the abnormal angle ⁇ abn is changed in 7 ways such as 20 °, 25 °, 30 °, 35 °, 40 °, 45 °, and 50 ° to change the variation of the reflection angle with respect to the change of the incident angle. estimate.
  • the fluctuations of the reflection angles at the seven abnormal angles ⁇ abn are almost the same, and since they overlap each other, they appear as one thick line in the figure.
  • the abnormal angle ⁇ abn is the difference between the reflection angle due to normal reflection and the reflection angle of asymmetric reflection in the asymmetric reflection in which radio waves are reflected at a reflection angle different from the incident angle, as explained with reference to FIG. 3B.
  • Changing the anomalous angle ⁇ abn from 20 ° to 50 ° corresponds to controlling the reflection direction of the asymmetric reflection over an angle range of 30 degrees.
  • the variation of the reflection angle with respect to the incident angle is estimated by changing the abnormal angle ⁇ abn to 20 °, 25 °, 30 °, 35 °, 40 °, 45 °, and 50 ° in pattern 2.
  • the variation of the reflection angle with respect to the change of the incident angle of 1 degree changes depending on the incident angle and greatly varies depending on the abnormal angle ⁇ abn.
  • the abnormal angle ⁇ abn When the abnormal angle ⁇ abn is small, that is, when the difference from the reflection angle of normal reflection is small, the incident angle dependence of the fluctuation of the reflection angle is small.
  • the abnormal angle ⁇ abn When the abnormal angle ⁇ abn is increased, that is, when the change in the reflection direction by the metal reflector 102 is increased, the fluctuation of the reflection angle with respect to the change of the incident angle of 1 degree becomes very large, and the amount of fluctuation of the reflection angle also greatly differs depending on the incident angle. .. In the shallow range of the incident angle of 15 ° to 40 °, the controllability of reflection in asymmetric reflection is not good.
  • the angle of incidence of the electromagnetic wave reflecting device 10 on the reflecting surface 105 is 50 ° from the viewpoint of suppressing fluctuations in the reflection angle depending on the incident angle. It is preferable to arrange the base station BS at a position having the above angle. Therefore, the arrangement relationship shown in FIG. 16A is preferable to the arrangement shown in FIG. 16B.
  • FIG. 18 is a diagram illustrating a method for quantifying reference robustness.
  • the reference robustness of FIGS. 17A and 17B is estimated by the following procedure. Taking a certain incident angle ⁇ i and reflection angle ⁇ r as inputs, the phase jump ⁇ (x) is obtained by using the function f of the phase jump distribution.
  • x is a position on the reflecting surface in the x direction.
  • Phase jump refers to the amount of phase applied to a reflected wave in order to reflect the reflected wave at a desired angle.
  • is the wavelength used.
  • phase jump distribution ⁇ ( The function f for finding x) is
  • arg () is a function that represents the argument on a complex number.
  • the surface impedance Zs (x) is
  • the incident angle is changed by 1 degree, and the phase jump ⁇ '(x) is obtained from the phase jump distribution function f by inputting the changed incident angle and the reflection angle'.
  • 17A and 17B are plots of the obtained variation of the reflection angle as a function of the incident angle.
  • FIG. 19A shows the change in the phase jump of pattern 1.
  • the horizontal axis is the position (m) and the vertical axis is the phase (degree).
  • the reflection angle ⁇ r is fixed at 30 degrees, and the incident angles ⁇ i are swung at 68.5 °, 70 °, and 71.5 °.
  • the phase jump distribution does not change much even if the angle of incidence is changed in the range of 3 °.
  • FIG. 19B shows the change in the phase jump of pattern 2.
  • the horizontal axis is the position (m) and the vertical axis is the phase (degree).
  • the reflection angle ⁇ r is fixed at 60 degrees, and the incident angles ⁇ i are swung at 18.5 °, 20 °, and 21.5 °.
  • the distribution of the phase jump is greatly deviated depending on the incident angle.
  • the arrangement of FIG. 16A is preferable to that of FIG. 16B in that the phase jump of the radio wave incident on the electromagnetic wave reflecting device 10 is made uniform.
  • the base station BS is arranged at a position where the radio wave from the base station BS is incident on the reflecting surface 105 of the electromagnetic wave reflecting device 10 at an incident angle of 50 degrees or more.
  • the metal reflector 102 may adopt any configuration as long as it can control the reflection characteristics such as the reflection phase, and a periodic structure having frequency selectivity or wavelength selectivity may be appropriately designed.
  • the electromagnetic wave reflecting device 10 may be arranged on one side along the long side of the process line 3 as shown in FIG. 16A, or may be arranged on both sides of the process line 3 as shown in FIG.
  • the electromagnetic wave reflecting device 10 may be installed in each area forming the rectangular area, or the electromagnetic wave reflecting device 10 may be installed in any of the main lines. You may. In either case, the base station BS is arranged at a position where radio waves are incident at a deep incident angle with respect to the reflecting surface 105 of the electromagnetic wave reflecting device 10.
  • the device in the process line 3 does not necessarily have to receive only the reflected wave from the electromagnetic wave reflecting device 10, and may directly receive the radio wave radiated from the base station BS. In this case, reception diversity may be performed by in-phase reception.
  • a cooperative base station may be used.
  • the individual electromagnetic wave reflecting devices 10 may be conveyed with the frame 111 attached to one of the opposing edges of the panel 13 and the guide beam 118 attached to the other. In this case, the work of attaching the parts on site is omitted, and the assembly becomes easy.
  • the panel 13 may be transported with only the frame 111 attached and assembled in the field using the guide beam 118.
  • the metasurface on the panel 13 may be positioned at the installation site of the electromagnetic wave reflecting device 10.
  • the electromagnetic wave reflecting device and the wireless transmission system of the embodiment contribute to the realization of a smart factory.
  • Radio transmission system 3 Process line 10, 10A to 10E, 10-1, 10-2 Electromagnetic wave reflector 11 Support 13, 13-1, 13-2 Panel 15, 15A to 15E Connection part 16 Rod 17, 17-1 , 17-2 Edge jacket 19 Streaks 100 Electromagnetic wave reflection fence 101 Normal reflector 102 Metal reflector 105 Reflective surface 111, 111A to 111E Frame 112, 112A, 114 Bridge electrode 118 Guide beam 125 Reinforcement mechanism 131 Conductor 132, 133 Dielectric BS, BS1 , BS2 Base station WT, WT1, WT2 Wireless communication unit SY Symmetric reflection area AS Asymmetric reflection area

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

工場、プラントなどの生産施設内での移動体通信の電波伝搬を改善する。無線伝達システムは、1GHz~170GHzの周波数帯から選択される所望の帯域の電波を送受信する基地局と、前記電波を送受信する生産機器が配置されるプロセスラインの少なくとも一部に沿って配置され、前記電波を反射する反射面を有する電磁波反射装置と、を備える。

Description

無線伝達システム
 本発明は無線伝達システムに関する。
 製造プロセスを自動化し、高度な生産・工程管理や予防メンテナンス(Predictive Maintenance)を製造現場に導入するインダストリアルIoT(Internet of Things)が進展している。インダストリアルIoTのうち、「スマートファクトリー」は工場内の装置、機器、管理システムなどをクラウドやエッジAI(Artificial Intelligence)に接続し、製造プロセスを効率化する。大量のデータを扱うインダストリアルIoTの通信ネットワークに、5Gのような高速大容量、低遅延、かつ、多数同時接続が可能な移動体通信技術を導入することが期待されている。移動体通信技術が本来有するモビリティと柔軟性に加えて、5Gの低遅延特性がインダストリアルIoTに好適であるといわれている。
 インテリジェントビル等の建築物で用いられる透光性電磁波シールド板の接合構造が提案されている(たとえば、特許文献1参照)。
特許第4892207号公報
 工場、プラントなどの生産施設内の通信環境は、公衆移動体通信の環境と異なる。生産施設内では、通信用電波の伝搬障害となる様々な機械や構造物が存在し、高い通信品質を実現するのが難しい。
 本発明は、生産施設内の移動体通信の電波伝搬を改善する技術を提供することを目的とする。
 本開示の一態様では、無線伝達システムは、
 1GHz~170GHzの周波数帯から選択される所望の帯域の電波を送受信する基地局と、
 前記電波を送受信する生産機器が配置されるプロセスラインの少なくとも一部に沿って配置され、前記電波を反射する反射面を有する電磁波反射装置と、
を備える。
 上記構成の電磁波反射装置により、工場、プラントなどの生産施設内で移動体通信の電波伝搬が改善される。
本開示が適用され得る工場内のプロセスラインの模式図である。 実施形態の電磁波反射装置を用いた無線伝達システムの平面模式図である。 入射角と同じ反射角での反射を説明する図である。 入射角と異なる反射角での反射を説明する図である。 複数の方向への拡散を説明する図である。 実施形態の電磁波反射装置の基本概念を説明する図である。 電磁波反射装置の変形例を示す図である。 電磁波反射装置の変形例を示す図である。 電磁波反射装置の変形例を示す図である。 電磁波反射装置の変形例を示す図である。 反射面の構成例である。 反射面の別の構成例である。 反射面のさらに別の構成例である。 反射面のさらに別の構成例である。 電磁波反射装置を接続した例を示す図である。 支持体の接続部の模式図である。 パネルのエッジ処理の例を示す図である。 パネルのエッジ処理の別の例を示す図である。 接続部の構成例を示す図である。 接続部の別の構成例を示す図である。 接続部の別の構成例を示す図である。 接続部の別の構成例を示す図である。 接続部の別の構成例を示す図である。 参考例として一般的な接続構成を示す図である。 複数パネルの連結を説明する図である。 連結前の電磁波反射装置の状態を示す図である。 連結後の電磁波反射装置の状態を示す図である。 連結した電磁波反射装置の補強例を示す図である。 固定機構の一例を示す図である。 メタリフレクタのサイズを説明する図である。 動作周波数と送受信の位置関係に応じたゾーンサイズを検討する図である。 無線伝達システムの配置関係を説明する図である。 無線伝達システムの配置関係を説明する図である。 反射パターン1の基準ロバスト性を示す図である。 反射パターン2の基準ロバスト性を示す図である。 基準ロバスト性の定量化法を説明する図である。 反射パターン1の位相ジャンプの変化を示す図である。 反射パターン2の位相ジャンプの変化を示す図である。
 <システムの全体像>
 図1は、本開示が適用され得る工場内のプロセスラインの模式図である。プロセスラインは、組み立てや生産のための設備機器などを一連の流れとして配置したベルト状の生産サイトである。インダストリアルIoTでは、プロセスラインで用いられる産業用の装置、機器、管理システムなどをネットワークにつなげることで、生産効率を向上し、現場の安全性を確保する。
 プロセスラインの機器等をネットワークに接続するために、基地局BS1、BS2が配置されている。プロセスラインで使用される機器M1、M2は、それぞれ無線通信部WT1、WT2を有し、基地局BS1、BS2の少なくとも一方と通信してネットワークに接続される。
 プロセスラインの機器とネットワークとの無線接続を実現するために、基地局BS1、及びBS2(以下、適宜「BS」と総称する)は、水平方向に長い長方形のサービスエリアを提供する。移動体通信の標準化団体である3GPP(3rd Generation Partnership Project)の技術仕様書(TS22.104)では、システム要求事項として、水平な面内での長方形エリアのアスペクト比が、3~5倍のサービスエリアが示されている。たとえば、「Motion Control」と呼ばれるユースケースのエリアサイズは、長さ×幅×高さで、50m×10m×10mと規定されている。
 基地局BS1、BS2が提供するサービスエリアでプロセスラインをカバーしてプロセスライン内に存在する機器M1、M2のネットワーク接続を実現するには、基地局BS1、BS2をプロセスラインの長手方向の端部に配置するのが、カバレッジの点で有効である。通信品質とカバレッジを向上するために、基地局BS1、BS2を協調、連携させてもよい。プロセスラインに対する基地局BSの配置関係の詳細は、後述する。
 図2は、実施形態の電磁波反射装置10を用いた無線伝達システム1の平面模式図である。無線伝達システム1は、電波の送受信が可能な生産機器が配置されるプロセスライン3と、プロセスライン3上の機器と無線通信を行う基地局BSと、プロセスライン3に沿って配置される電磁波反射装置10を含む。電磁波反射装置10は、電波を反射する反射面105を有する。プロセスラインの配置面をX-Y面とし、X-Y面に垂直な高さ方向をZ方向とする。
 プロセスライン3内の機器には、センサ、アクチュエータ等の微小デバイス、組み立て装置、製造機械、管理システムなど、生産にかかわるあらゆる機器が含まれる。プロセスライン3で用いられる機器は、固定の装置や機械に限られず、プロセスライン3内を自由に移動する機器であってもよい。
 基地局BSと、無線通信機能付きの機器M1、M2(図1参照)は、たとえば、1GHz~170GHzの範囲で、特定の周波数帯の電波を送受信する。プロセスラインや周辺の構造物(例えばダクト、パイプなど)は金属製であることが多く、それにより電波は反射され、遮蔽される。またミリ波帯など高い周波数の電波は直進性が強く、回折が少ないため電波が届きにくい。プロセスライン3の中央部に位置する機器にとって、周辺の機器や、加工中の金属製品などからの反射が障害となって、通信環境が悪化する場合がある。
 プロセスライン3の長手方向に沿って多数の基地局BSを配置すれば通信品質は維持されるが、作業空間の効率的な使用が妨げられ、設備コストも高くなる。無線伝達システム1では、プロセスライン3の長手方向に沿って電磁波反射装置10を配置し、プロセスライン3の長手方向の端部に基地局BSを配置する。電磁波反射装置10により、生産施設内に設置される基地局BSの数を抑制し、基地局BSとプロセスライン3内の機器との無線通信環境を改善する。
 電磁波反射装置10は、プロセスライン3の少なくとも一部に対して、プロセスライン3の長軸とほぼ平行に設置されていてもよい。「ほぼ平行に」というのは、厳密にプロセスライン3の長軸と平行に電磁波反射装置10が配置される必要はないことを意味する。基地局BSとプロセスライン3内の機器の間での効率的な電波の送受信が行われる範囲内で、電磁波反射装置10はプロセスライン3の長軸に対して多少傾いていてもよい。
 電磁波反射装置10の反射面105は、1GHz~170GHzの帯域の電波を反射する。反射面105は、入射角と反射角が等しい正規反射を与えるノーマルリフレクタ101と、入射した電磁波の反射特性を制御する人工的な表面を有するメタリフレクタ102の少なくとも一方で形成される。「メタリフレクタ」とは、入射電磁波の透過特性や反射特性を制御する人工表面を意味する「メタサーフェイス」の一種である。メタリフレクタでは、波長に比べて十分に小さな散乱体を多数配置して、反射位相分布と振幅分布を制御することで、正規反射の方向以外の所定の方向へ電波を反射する。メタリフレクタ102によって、正規反射以外の方向への反射に加えて、所定の角度分布をもつ拡散、及び波面の形成が実現されてもよい。
 図3A~図3Cは、電磁波反射装置10の反射面105での反射の態様を示す。図3Aでは、ノーマルリフレクタ101に入射した電磁波は、入射角θinと同じ反射角θrefで反射される。
 図3Bで、メタリフレクタ102aに入射した電磁波は、入射角θinと異なる反射角θrefで反射される。メタリフレクタ102による反射角θrefと、正規反射による反射角との差の絶対値を、異常角θabnと呼んでもよい。上述のように、メタリフレクタ102aの表面に、使用波長よりも十分に小さい金属パッチ等を配置して表面インピーダンスを形成することで、反射位相分布を制御して、所望の方向に入射電磁波を反射する。詳細は後述するが、縦長のプロセスライン3に電磁波反射装置10を用いる場合は、図3Bのように、基地局BSから入射する電磁波の入射角θinよりも小さい反射角θrefで、電磁波をプロセスライン3内の機器の無線通信部WTに導くことが望ましい。
 メタリフレクタが反射する電磁波は反射角が単一な平面波でなくともよい。メタリフレクタ102bの表面に形成する表面インピーダンスを工夫することにより、図3Cに示すように、入射した電磁波は、複数の異なる反射角θrefで複数の方向に拡散される。図3Cの反射を実現する手法として、例えば、PHYSICAL REVIEW B 97, “ARBITRARY BEAM CONTROL USING LOSSLESS METASURFACES ENABLED BY ORTHOGONALLY POLARIZED CUSTOM SURFACE WAVES”に記載される方法がある。拡散される電磁波の強度は均一であってもよいし、反射方向に応じて所定の強度分布を有していてもよい。
 複数の電磁波反射装置10をプロセスライン3に沿って配置してもよい。基地局BSとプロセスライン3内の機器との間の通信品質が保たれるかぎり、電磁波反射装置を安全のためのガードフェンスとして用いてもよい。
 プロセスライン3に対する基地局BSの最適な配置を説明する前に、以下で電磁波反射装置10の構成の詳細を説明する。
 <電磁波反射装置の構成>
 図4は、実施形態の電磁波反射装置10の基本概念を説明する図である。電磁波反射装置10は、プロセスラインが設けられているX-Y面に起立して配置される。電磁波反射装置10の高さ方向がZ方向になる。電磁波反射装置10は、1GHz~170GHzの周波数帯から選択される所望の帯域の電波を反射する反射面105を有するパネル13と、パネル13を支持する支持体11を有する。
 パネル13の反射面105は、電磁波を所望の方向へ反射する。反射面105は、正規反射するノーマルリフレクタ101と、入射した電磁波の反射特性を制御する人工的な面をもつメタリフレクタ102の少なくとも一方で形成される。ノーマルリフレクタ101は、無機導電材料や、導電性高分子材料で形成される反射面を含んでもよい。
 メタリフレクタ102は、入射電磁波を所望の方向に反射し、または、所望の角度分布で拡散できるのであれば、その材質、表面形状、作製方法などは問わない。一般的には、金属などの導体の表面に、誘電体層を介して使用波長よりも十分に小さい金属パッチを形成することでメタサーフェイスが得られる。メタリフレクタ102は、電磁波の反射方向の設計に合わせて、反射面105の任意の位置に配置される。
 パネル13のサイズは、用いられる環境に応じて適切に設計され得る。一例として、パネル13の幅は0.5m~3.0m、高さは1.0m~2.5m、厚さは3.0mm~9.0mmである。工場内への搬送と、設置・組み立ての容易性を考えると、パネル13のサイズは、1.4m×1.8m×5.0mm程度であってもよい。パネル13の一部は可視光に対して透明であってもよい。
 パネル13は、電磁波反射装置10が独立して起立可能となるように、支持体11によって支持される。支持体11の機械的な構造は、パネル13を設置面(たとえばX-Y面)に対して安定して起立させることができれば、どのような構造であってもよい。後述するように、複数の電磁波反射装置10を連結して用いてもよい。パネル13と支持体11を含めた電磁波反射装置10の全体の高さは、一例として、1.5m~2.5mであり、設置面から2.0m程度の高さに設定されてもよい。
 支持体11は、パネル13を独立して起立させるための機械的な設計に加えて、パネル13の反射面105で起きる反射の電位面を連続させる電気的な接続部15を有する。複数の電磁波反射装置10を連結して用いるときに、隣接する電磁波反射装置10のパネル13の間で、入射した電磁波によって流れる電流(これを反射電流と呼ぶ)が遮られると、反射する電磁波のエネルギーは減衰し、また、不要な方向に輻射されて、通信品質が劣化する。
 隣接する2つのパネルにおいて、反射電流の連続性を担保するには、反射の基準となる電位が、支持体11によって一方のパネルから他方のパネルに高周波的に伝達され、隣接する2つのパネルの間で基準電位が高周波的に共有されることが望ましい。反射電流の連続性は、支持体11の接続領域で可能な限り一様であることが望ましい。支持体がパネルの反射面で生じる反射の基準電位を伝達する構成を、基準電位を「参照」する構成と呼んでもよい。
 支持体11の電気的な接続部15で、一方のパネルで基準電位を伝達可能とし、他方のパネルで基準電位を共有可能とするには、パネル13のエッジの処理、反射特性に対する影響の抑制などの工夫がされていることが望ましい。パネル13の「エッジ」とは、2つの対向する主面と主面の間をつなぐ端部を意味する。電気的な接続部の具体的な構成は、図7~図9D を参照して後述する。
 図5A~図5DEは、電磁波反射装置10の変形例を示す。図5Aの電磁波反射装置10Aでは、メタリフレクタ102が移動可能に設けられている。反射面105でのメタリフレクタ102の位置を可変にする構成は、メタリフレクタ102と反射面105の干渉が抑制される限り、どのような構成をとってもよい。一例として、メタリフレクタ102を保持するロッド16を、パネル13の水平方向にスライド可能に取り付け、かつ、ロッド16上でメタリフレクタ102の位置を垂直方向に移動可能に保持してもよい。
 ロッド16は、ノーマルリフレクタ101またはメタリフレクタ102の反射特性を妨げないような非金属かつ低誘電率な材料で構成されてもよい。ロッド16は、パネル界面での光学的、及び機械的な干渉がゼロまたは最小になるように設計されていてもよい。メタリフレクタ102は、電磁波反射装置10が配置される現場の環境、基地局BSとの位置関係等に応じて、パネル13上の最適な位置へ移動され得る。支持体11は、図4と同様に、内部に電気的な接続部15を有している。
 図5Bは、電磁波反射装置10Bを示す。電磁波反射装置10Bでは、電磁波反射装置10Bのパネル13の剛性を高めるための補強として、パネル13の反射面105と反対側の面に、筋交い19が設けられてもよい。筋交い19は、たとえば、パネル13の両端を保持する支持体11と支持体11の間にかけ渡されてもよい。
 図5Cの電磁波反射装置10Cでは、パネル13の上下に補強ビーム21aと21bが設けられている。補強ビーム21aと21bは、パネル13の両側を支持する支持体11の間に挿入され得る。
 図5Dの電磁波反射装置10Dでは、補強ビーム21aまたは21bと支持体11の間に筋交い19が設けられている。これらの補強機構により、パネル13の振動モードを抑制し、工場フロアの振動に対して電磁波反射の安定化を図るとともに、大面積パネルの軽量化を実現できる。図5B~図5Dで、支持体11の内部に反射の基準電位を参照する電気的な接続部15が設けられていることは、図4と同様である。
 図5A~図5Dの変形例は、相互に組み合わせが可能である。たとえば、図5Aの構成のパネル13を用いる場合に、反射面105側でメタリフレクタ102を移動可能に保持し、反射面105と反対側の面に筋交い19を入れてもよい。
 <反射面の構成>
 図6A~図6Dは、反射面105の構成例を示す。反射面105は、1GHz~170GHzの電磁波を反射する面であれば、どのような構成であってもよい。一例として、1GHz~170GHzの範囲から選ばれる任意の周波数帯の電磁波を反射するメッシュ導体、導電膜、透明樹脂と導体膜の組み合わせ、などによって反射面105は形成され得る。
 反射面105を1GHz~170GHzのうちの所望の周波数帯の電波を反射可能に設計することで、現状の日本の移動体通信で用いられている主要な周波数帯域である1.5GHz帯、2.5GHz帯などをカバーできる。次世代の5G通信網では、4.5GHz帯域、28GHz帯などが予定されている。外国では、5Gの周波数帯として、2.5GHz帯、3.5GHz帯、4.5GHz帯、24-28GHz帯、39GHz帯等が予定されている。5G規格のミリ波帯周波数帯の上限である52.6HGzにも対応可能である。
 一方、170GHzを超える周波数は、現段階ではスマートファクトリー用途として現実的に利用される可能性は少ない。将来的に、屋内でのテラヘルツ帯域の移動体通信が実現する場合は、フォトニック結晶技術を適用するなどして、反射面105の反射帯域をテラヘルツ帯まで拡張してもよい。
 図6Aで、パネル13Aは、導体131の反射面105を有する。導体131は、1GHz~170GHzの電波を30%以上反射できれば、均質な導体膜でなくともよい。例えば、上記の周波数帯の電磁波を反射する密度に形成されたメッシュ、格子でもよく、あるいは孔配列でも良い。上記密度を形成する繰り返しピッチは、均一な周期でもよく、あるいは不均一でも良い。この周期、あるいは平均的な周期は、上記周波数の波長の1/5以下が望ましく、1/10以下がより好ましい。
 一般に工場や倉庫で用いられている金網フェンスの開口径は、3.2cm、4cm、5cmなどであり、1GHz~170GHzの電磁波の大部分はフェンスを透過する。1GHz~数GHzの近傍で、電磁波が金網フェンスでわずかに反射されることがあっても、それ以上の周波数帯では透過成分が支配的であり通信環境の改善につながるような安定した反射は得られないとみなしてよい。
 図6Bで、パネル13Bはノーマルリフレクタであり、導体131と、動作周波数に対して透明な誘電体132の積層構造を有する。導体131のいずれかの表面が反射面105となる。導体131の側から電磁波が入射するときは、導体131と空気との界面が反射面105となる。誘電体132の側から電磁波が入射するときは、導体131と誘電体132の界面が反射面105となる。
 導体131を保持し、または導体131の表面を覆う誘電体132は、振動に耐え得る剛性があり、ISO(International Organization for Standardization:国際標準化機構)のISO014120の安全性要求を満たすものが望ましい。工場内で使用されることから、部品や製造機器の一部がぶつかっても衝撃に耐え、かつ、防御できるものがよく、更に、可視光域で透明であるものが好ましい。一例として、所定以上の強度を持つ光学プラスチック、強化プラスチック、強化ガラスなどが用いられる。光学プラスチックとして、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)などを用いてもよい。
 図6Cで、パネル13Cは、誘電体132と誘電体133の間に挟まれる導体131を有する。電磁波の入射方向に応じて、いずれかの誘電体との界面が反射面105となる。誘電体132及び133に求められる剛性は、図6Bの構成と同様である。
 図6Dで、パネル13Dは、図6Bの積層体の一部にメタリフレクタ102を有していてもよい。導体131と誘電体132の積層体は、ノーマルリフレクタ101として用いられ得る。ノーマルリフレクタ101の誘電体132の表面に、貼り合わせ等により、メタリフレクタ102が固定されてもよい。導体131、誘電体132、及びメタリフレクタ102の三層構造の領域が、メタサーフェイスを形成する非対称反射領域ASとなり得る。メタリフレクタ102のない、導体131と誘電体132の二層構造の領域が、正規反射を与える対称反射領域SYとなり得る。
 図6Dの例では、メタリフレクタ102は、図4のように、ノーマルリフレクタ101と一体的にパネル13Dに組み込まれているが、ノーマルリフレクタ101と分離可能に用いられてもよい。分離可能な構成として、図5Aのように、位置可変のメタリフレクタ102を用いてもよい。現場の環境に応じてパネル13上のメタリフレクタ102の位置を選択することで、非対称反射領域の位置を調整できる。
 <支持体の接続構造>
 図7のように、複数の電磁波反射装置10を支持体11で連結して面Pに設置してもよい。たとえば、電磁波反射装置10-1と10-2を連結する場合、パネル13-1とパネル13-2は支持体11の電気的な接続部15で、反射の電位面が連続するように接続される。上述したように、支持体11は、パネル13間を連結する機械的強度と、パネル13間で反射の基準電位を連続させる電気的な接続性能を備える。以下では、電気的な接続部15の構成例を示す。
 図8は、支持体11の電気的な接続部15の一例を、電磁波反射装置10を面P(図7参照)に立てたときの水平断面図で示す。接続部15は、隣接するパネル13間で反射現象の基準電位が共有されるように一方のパネルの反射の基準電位を、隣接するパネルに伝達可能に設計されている。
 支持体11は、フレーム111と、このフレーム111に設けられてパネル13間の反射の電位面を共通にする電気的な接続部15を有する。接続部15は、隣接するパネル13-1と13-2(以下、適宜「パネル13」と総称する)の間で反射の基準電位を安定して伝達し、または共有させることができれば、どのような構成であってもよい。フレーム111は、電気的な接続部15を安定して保持できる強度を有するならば、どのような構成であってもよい。図8の構成で、フレーム111は電気絶縁性の材料で形成されていてもよい。
 図8の例では、接続部15は、パネル13のエッジを把持する導電性のエッジジャケット17-1、及び17-2(以下、適宜「エッジジャケット17」と総称する)と、エッジジャケット17を隣接パネルへと電気的に接続するブリッジ電極112とを有する。ブリッジ電極112は、パネル13-1とパネル13-2の電位面を架け渡す導電ブリッジの一例である。パネル13-1のエッジを把持するエッジジャケット17-1と、パネル13-2のエッジを把持するエッジジャケット17-1は、ブリッジ電極112によって電気的に接続される。ブリッジ電極112は、エッジジャケット17-1及び17-2と面接触して、電気的な接続を確実にしている。パネル13-1で反射電流が生じると、反射電流はエッジジャケット17-1からブリッジ電極112を通ってエッジジャケット17-2に流れ、パネル13-1の導体131に流れ込む。反射電流は短い電流パスで流れ、電流の回り込みが少なく、反射性能が良好である。
 ここで、反射電流は汎用の3次元電磁界シミュレーションソフトウェアで、接続部15を含むモデルに平面波を入射し、反射特性として散乱断面積を解析しつつ、断面の電流分布から電流パスを求めることで、良好な範囲を定めることができる。3次元電磁界シミュレーションの解法としては、例えば、FDTD法、有限要素法、モーメント法などが利用できる。電流パスはパネル間の直線距離に対して、50倍以下、好ましくは10倍以下、より好ましくは5倍以下、更に好ましくは2倍以下が望ましい。
 また、接続部15における導電性材料部分、すなわちブリッジ電極112や、下記変形例における金属層121等の角部は、R面取りをすることで、導体のエッジでの散乱を安定化するため好ましい。R面取り部における曲率半径Rは、少なくともR=1mm以上、好ましくは2mm以上、より好ましくは4mm以上、更に好ましくは8mm以上である。
 フレーム111は、支持体11の強度を確保するよう設けられ、フレーム111を、絶縁性の弾性体、樹脂等で形成することで、反射電流の分流が発生せず、好ましい。なお、上記好ましい範囲は、以下で述べる変形例においても適用できる。
 図9Aと図9Bは、パネル13のエッジ処理の例を示す。図9Aでは、パネル13は、誘電体132と誘電体133に挟まれた導体131を反射面105として有する。エッジジャケット17は、一例として、断面形状がオープンスクエア、またはU字型の導電性のレールであり、一組の外側面171と、外側面171を接続する底面172を有してもよい。エッジジャケット17の内面に、あらかじめ銀ペーストなどの導電性の接着材18が塗布されていてもよい。
 導体131は、パネル13のエッジで折り返されて、少なくとも一方の誘電体の表面に引き出されてもよい。パネル13のエッジが、エッジジャケット17に挿入されると、導体131の折り返し部131aは、エッジジャケット17の内壁と面接触する。導体131を折り返し部131aでパネル13の表面に引き出すことで、導体131とエッジジャケット17との接触面積が増大し、電気的な接続が安定する。
 図9Bに示すように、パネル13のエッジに沿って、誘電体132、及び133の厚さを低減して、切り欠き134を形成してもよい。切り欠き134により薄化されたエッジ領域が、エッジジャケット17と嵌合する構成としてもよい。この構成では、エッジジャケットの外側面171がパネル13の表面位置とそろって、パネル13が扱いやすい。
 図10A~図10Eは、支持体11の接続部15の変形例を示す。図10Aで、支持体11Aは、絶縁性のフレーム111に変えて、カーボン含有材料で形成されたフレーム111Aを有する。フレーム111Aとエッジジャケット17-1、及び17-2で、電気的な接続部15Aが形成される。カーボン含有材料としては、CFRP(Carbon Fiber Reinforced Plastics:炭素繊維強化プラスチック)を用いることができる。カーボン繊維と樹脂を組み合わせることで、連続式引き抜き成形といった製造方法で導電体であるカーボン繊維と、絶縁体である樹脂を一体成型でき、高い強度が実現される。
 エッジジャケット17-1と17-2を保持するCFRP自体が電気的な接続部15Aとなる。ブリッジ電極112を用いずに、エッジジャケット17-1と17-2の間を電気的に接続できる。反射の点からは、カーボン繊維は金属バルクと比較して反射性能が良好であり、フレーム111A自体の反射特性も優れる。
 反射性能と強度を両立するためには、CFRPのカーボン繊維含有比率は50%以上60%以上、70%以上、80%、90%以上であることが好ましい。一方、CFRPの樹脂含有比率は50%以下、40%以下、30%以下、20%以下、10%以下であることが好ましい。
 図10Bで、支持体11Bは、金属層121と樹脂層122の積層のフレーム111Bを有する。金属層121は、エッジジャケット17-1と17-2を覆う形でパネル13-1と13-2を連結する。エッジジャケット17-1及び17-2と接触する金属層121が、電気的な接続部15Bとなる。樹脂層122は、金属層121によるパネル間の連結を外側から補強する。この構成は、電流の回り込みが少ない。金属層121と樹脂層122の組み合わせた構成は、フレーム111Bの設計と加工が容易である。積層方向でみたときに、金属層121を樹脂層122で挟みこむことでフレーム111Bの強度も確保されている。
 図10Cは、図8Bのエッジ処理がされたパネル13同士を接続する。パネル13の表面とエッジジャケット17の外側壁がそろっているので、あらかじめパネル13のエッジにエッジジャケット17をはめ込んだ状態で、パネル13をフレーム111Cに挿入すればよい。フレーム111Cは、たとえば、絶縁性のプラスチックで形成されている。電気的な接続部15Cにおいて、反射電流は、エッジジャケット17からブリッジ電極112Cを通って、短い電流経路で隣接するパネルの導体131に流れ込む。ブリッジ電極112Cは、エッジジャケット17-1、及び17-2の外側面の全面と面接触するように、も幅広に形成されてもよい。パネル13-1で電磁波が反射されるときに、白矢印で示すように、高周波電流がブリッジ電極112Cの少なくとも一部を通って、パネル13-2の導体131へと流れるので、電流の回り込みが少ない。
 図10Dは、支持体11Dの接続部15Dの構成例を示す。接続部15Dは、エッジジャケット17-1と17-2を電気的に接続するブリッジ電極114を有する。ブリッジ電極114は、エッジジャケット17-1と17-2の底面172同士を電気的に接続している。図10Dの構成は、導体131-1から、エッジジャケット17-1、ブリッジ電極114、エッジジャケット17-2、導体131-2へと、最短経路で高周波が流れる点で有利である。図10Dの例では、ブリッジ電極114はエッジジャケット17-1と17-2の底面172の一部を接続しているが、ブリッジ電極114の厚さを増して、エッジジャケット17-1と17-2の底面172の全面で接続してもよい。ブリッジ電極114を厚くすることで、電気的及び物理的な接続がより安定する。ブリッジ電極114の周囲を絶縁性のフレーム111Dで囲い込むことで電気的な接続部15Dの機械的強度と、電気接続の確実性を担保している。
 図10Eは、金属と樹脂の複合型のフレーム111Eを用いる例を示す。金属のコネクタ141とコネクタを覆う樹脂補強部142を有する。コネクタ141は、押出し成型などで容易に作製され、電気的接続を担保しつつ、コネクタ自体もある程度の強度を備えている。この周囲を樹脂補強部142で覆うことで、コネクタ141と樹脂補強部142の両者で支持材としての強度を確保する。これにより、コネクタ141の厚みを薄くし、電流の迂回による残留インダクタンスの発生を抑制する。さらに端部をラウンドさせることで、角部での回折を防いでいる。
 図10Fは、参考例として、アルミニウムの押出成形で形成される既存のフレーム1100を用いた構造を示す。複雑な断面形状を有するフレーム1100では、様々な方向に電流が流れ、複雑な電流迂回経路による残留インダクタンスや浮遊容量が発生する。入射電磁波によってその応答が複雑に変化するため、基準電位の参照または伝達に悪影響を及ぼす。これらの点から、支持体11の接続部15として、図8、及び図10A~図10Eに示した構成を採用するのが望ましい。
 <パネルの連結>
 図11Aは、電磁波反射装置10-1と10-2の連結を説明する図である。パネル13-1の両側のエッジに、エッジジャケット17-1が設けられている。パネル13-2の両側のエッジに、エッジジャケット17-2が設けられている。あらかじめエッジジャケット17-1、及び17-2が嵌められたパネル13-1とパネル13-2は、支持体11によって連結される。
 支持体11は、電気的な接続部15を有するフレーム111と、フレーム111を受け取るガイドビーム118を有していてもよい。図11Aの構成例のように、フレーム111とガイドビーム118が別体として形成されていてもよいし、一体に構成されていてもよい。フレーム111が両側からパネル13-1とパネル13-2を受け取ると、接続部15のブリッジ電極112は、パネル13-1のエッジジャケット17-1の外側面と、パネル13-2のエッジジャケット17-1の外側面の両方に面接触する。これにより、電磁波反射装置10-1の反射面105-1と、電磁波反射装置10-2の反射面105-2の間に電気的な接続が確立される。
 パネル13-1とパネル13-2を連結するフレーム111をガイドビーム118に嵌めることで、フレーム111とガイドビーム118が一体となって、支持体11となる。
 図11Bは、連結前の電磁波反射装置10の状態を示す。電磁波反射装置10-1~10-3の各々で、パネル13の一方のサイドエッジに、電気的な接続部15を有するフレーム111があらかじめ取り付けられ、他方のサイドエッジに、ガイドビーム118が取り付けられている。電磁波反射装置10-1~10-3の反射面105は、図6A~図6Dのいずれの構成であってもよい。
 フレーム111は、他の電磁波反射装置10に設けられているガイドビーム118に嵌め込み可能に形成されている。ガイドビーム118は、他の電磁波反射装置10に設けられたフレーム111を受け取り可能に形成されている。たとえば、電磁波反射装置10-1のガイドビーム118は、電磁波反射装置10-2のフレーム111を受け取る。電磁波反射装置10-2のガイドビーム118は、電磁波反射装置10-3のフレーム111を受け取る。定型サイズの電磁波反射装置10を組み合わせて一体化することで、プロセスラインの長さに対応することができる。組み立て作業は、工場内の現場を行えばよい。個々の電磁波反射装置10-1~10-3は、構成が単純で、搬送が容易である。
 図11Cは、連結後の電磁波反射装置10の状態を示す。フレーム111とガイドビーム118が一体となって、支持体11が形成される。支持体11によって、複数の電磁波反射装置10-1、10-2、及び10-3が連結されて、電磁波反射フェンス100が形成されてもよい。フレーム111の電気的な接続部15により、パネル13間の連結部での反射電流の不連続性が抑制されている。
 ガイドビーム118とフレーム111の少なくとも一方に、あらかじめベース119を設けておくことで、連結された電磁波反射装置10-1~10-3は、支持体11のベース119によって設置面に独立して起立する。最も端に位置する電磁波反射装置10-3のパネル13のエッジにカバー29をかぶせて、エッジジャケット17とガイドビーム118を保護してもよい。
 図12と図13は、複数の電磁波反射装置10-1、10-2を連結する際の接続を補強する機構を示す。図12の(A)は、電磁波反射フェンス100の正面図、図12の(B)は、補強機構125の締め付け前の状態を示す側面図、図12の(C)は、補強機構125の締め付け後の状態を示す側面図である。図13は、補強機構125のひとつの構成例である。図13の(A)は、補強機構125で用いられるカバー127のパネル13への取り付け面127aに形成されたガイド溝129を示す。図13の(B)は、図13の(A)の断面Aと断面Bの状態を示す。
 連結強度の向上、および電気的接続性の向上のために、反射特性を悪化させない程度に適宜、図12、及び図13に示す補強機構125を用いてもよい。パネル13に孔126形成し、その孔にピン128を通し、パネル13の反射面と反対側の面にカバー127を装着する。カバー127の取り付け面127aに形成されたガイド溝129にそってピン128を移動させることで、支持体11に対して両側からパネル13を圧接させることができる。補強機構125の締め付けによって、パネル13に形成された孔126の位置はわずかに支持体11の方向にシフトする。パネル13の弾性力によって、パネル13のエッジと支持体11の接続部15(図17参照)との接続が確実になる。
 複数の電磁波反射装置10の連結を強化する機構は図12、図13に示した例に限定されず、電磁波の反射特性を阻害しない範囲で、適切なファスナー機構、ラチェットなどを用いてもよい。このような圧接工程を想定してエッジジャケット17、および接続部15の設計が適宜調整されてもよい。
 <プロセスラインへの適用>
 図14は、メタリフレクタ102のサイズを説明する図である。送信機を「Tx」、受信機を「Rx」とする。送信機Txは、たとえば基地局BSである。受信機Rxは、たとえばプロセスライン3内の機器である。送信機Tsから、メタリフレクタ102の表面102Sまでの距離をd1、メタリフレクタ102の表面102Sから受信機Rxまでの距離をd2とする。
 プロセスラインでの使用を前提として、d1とd2のトータル距離Dは、一例として、40mである(D=d1+d2=40m)。プロセスラインの標準的な長さは80mである。プロセスラインの長さ方向の両端部に基地局BSを配置し、2つの基地局BSで標準的な長方形のサービスエリアを提供する状態を想定して、D=40mとする。
 送信機Txから放射されメタリフレクタ102で反射された電波が同相で受信機Rxに到達するときの第1フレネルゾーンの半径Rは、式(1)で規定される。
Figure JPOXMLDOC01-appb-M000001
ここで、λは使用波長である。
 図15は、式(1)から導かれる第1フレネルゾーンの半径Rの具体例を示す。動作周波数が28GHz、d1が30m、d2が10mのとき、第1フレネルゾーンの半径Rは0.283mである。同じ周波数で、d1が35m、d2が5mのときは、半径Rは0.216mである。
 動作周波数が3.8GHzで、d1が30m、d2が10mのとき、第1フレネルゾーンの半径Rは0.770mである。同じ周波数で、d1が35m、d2が5mのときは、半径Rは0.588である。
 プロセスラインに配置される機器Mにとって、電磁波反射装置10からの反射波を、基地局BSからの直接波と同相で受信して、受信強度を向上できることが望ましい。メタリフレクタ102を用いた電磁波反射装置10をプロセスラインに適用する場合、同相受信が可能になる第1フレネルゾーンを考慮すると、28GHz帯では、ひとつのメタリフレクタ102の最小サイズとして、一辺の長さは少なくとも0.5m以上であることが望ましい。3.8GHz帯では、ひとつのメタリフレクタ102の最小サイズとして、一辺の長さは1m程度であるのが望ましい。図5B~図5Dに示したように、一つのパネル13に複数のメタリフレクタ102が用いられる場合も、各メタリフレクタ102のサイズは、少なくとも第1フレネルゾーンをカバーするものであることが望ましい。
 第1フレネルゾーンの半径Rは、入射角と反射角の関係には依存しないので、同様の計算がノーマルリフレクタ101にも当てはまる。ノーマルリフレクタ101に入射した電波を、正規反射で同相を保って受信機Rxへ導くには、ノーマルリフレクタ101のサイズは、一辺が50cm以上であることが望ましい。
 メタリフレクタ102を、アスペクト比の大きなサービスエリアによってカバーされるプロセスラインで使用するときに、入射角と反射角のいずれかの斜入射が深くなる。以下で、プロセスライン3と、基地局BSと、電磁波反射装置10の配置関係を検討する。
 <無線伝達システムの配置関係>
 図16A、図16B、図17A、図17Bを参照して、無線伝達システム1の配置関係を説明する。図1及び図2を参照して説明したように、無線伝達システム1は、1GHz~170GHzの帯域の電波を送受信する基地局BSと、前記電波を送受信する生産機器が配置されるプロセスライン3と、前記プロセスラインの少なくとも一部に沿って配置される電磁波反射装置10を備える。電磁波反射装置10は、上記帯域の電波を反射する反射面105を有する。
 以下で詳細に説明するように、基地局BSは、反射面105と水平な延長線Lよりもプロセスライン3の側に位置するのが望ましい。たとえば、基地局BSは、プロセスライン3の長手方向の両端に配置され得る。プロセスライン3内の生産機器は、基地局BSと直接、または電磁波反射装置10を介して、上記帯域で通信が可能である。
 図16Aは、無線伝達システム1における反射のパターン1を示す。パターン1では、実線の矢印で示すように、基地局BSとプロセスライン3は、基地局BSから放射される電波が、電磁波反射装置10の反射面105の垂線に対して深い角度で入射し、浅い角度で反射される位置関係で配置されている。すなわち、パターン1において、電波は、入射角45度以上の角度で入射し、反射角が正規反射における反射角度よりも小さくなるように反射される。
 基地局BSからの電波を、深い角度で反射面105に入射させるには、基地局BSは、電磁波反射装置10の延長線Lよりもプロセスライン3の側に位置し、かつ、プロセスライン3の長手方向の端部に位置するのが好ましい。深い角度で電波を反射面105に入射することで、プロセスライン3の中央部またはその近傍に、電波を送ることができる。
 図16Bは、反射のパターン2を示す。パターン2では、基地局BSとプロセスライン3は、基地局BSから放射される電波が反射面105の垂線に対して浅い角度で入射し、入射角よりも深い角度で反射される位置関係で配置されている。すなわち、パターン2において、電波は、入射角45度以下の角度で入射し、反射角が正規反射における反射角度よりも大きくなるように反射される。
 パターン2の場合、基地局BSは電磁波反射装置10の反射面105と水平な延長線Lよりもプロセスライン3の側に位置するが、プロセスライン3の長手方向の端部よりも中央寄りに位置する。以下で説明するように、パターン2の場合、斜入射角度のばらつきに対する影響が大きくなる。
 図17Aは、パターン1の基準ロバスト性を示し、図17Bは、パターン2の基準ロバスト性を示す。基準ロバスト性とは、入射角を1度変化させたときの反射角の安定性をいう。入射角1度の変化に対して反射角の変化が少ないときは、基準ロバスト性が高い。
 図17Aでは、パターン1で、異常角θabnを20°、25°、30°、35°、40°、45°、及び50°と7通りに変えて、入射角の変化に対する反射角の変動を見積もる。7通りの異常角θabnでの反射角の変動はほぼ同じであり、互いに重なっているため、図中で太い一本のラインとなって表れている。
 異常角θabnは、図3Bを参照して説明したように、電波が入射角と異なる反射角で反射する非対称反射において、正規反射による反射角と非対称反射の反射角との差である。異常角θabnを20°~50°まで変化させることは、非対称反射の反射方向を30度の角度範囲にわたって制御することに相当する。
 入射角が50°~75°の範囲(深い入射)では、入射角1度の変化に対する反射角の変動は1度未満と小さく、かつ、入射角に依存せずにほぼ一定である。入射角が深いときは非対称反射における反射の制御性が高いことがわかる。反射角の変動の少なさを示す図17Aの傾向は、入射角が75°を超えて90°近傍に至っても維持されると容易に推測される。
 図17Bでは、パターン2で、異常角θabnを20°、25°、30°、35°、40°、45°、及び50°と7通りに変えて、入射角に対する反射角の変動を見積もる。入射角が15°から40°の範囲(浅い反射)では、入射角1度の変化に対する反射角の変動は、入射角によって変化し、かつ、異常角θabnによって大きくばらつく。
 異常角θabnが小さいとき、すなわち正規反射の反射角との差が小さいときは、反射角の変動の入射角依存性は小さい。異常角θabnを大きくすると、すなわち、メタリフレクタ102による反射方向の変化を大きくすると、入射角1度の変化に対する反射角の変動が非常に大きくなり、かつ入射角によって反射角の変動量も大きく異なる。入射角が15°~40°という浅い範囲では、非対称反射における反射の制御性が良くない。
 図17Aと図17Bから、プロセスライン3に基地局BSを配置するときは、入射角に依存する反射角の変動を抑制する観点から、電磁波反射装置10の反射面105への入射角が50°以上の角度になる位置に基地局BSを配置するのが好ましい。したがって、図16Bに示す配置よりも、図16Aの配置関係のほうが好ましい。
 図18は、基準ロバスト性の定量化法を説明する図である。図17Aと図17Bの基準ロバスト性は、以下の手順で見積もられる。ある入射角θiと反射角θrを入力とし、位相ジャンプ分布の関数fを用いて、位相ジャンプΦ(x)を求める。ここで、xは反射面上のx方向の位置である。位相ジャンプは、反射波を所望の角度に反射させるために、反射波に加えられる位相量を指す。位相ジャンプ分布dΦ/dxは、
   sinθr-sinθi=(λ/2π)(dΦ/dx)
と表される。ここで、λは使用波長である。非特許文献、PHYSICAL REVIEW B 94.075142 (2016), V.S. Asadchy, et al., “PERFECT CONTROL OF REFLECTION AND REFRACTION USING SPATIALLY DISPERSIVE METASURFACES” に記載の表面インピーダンス ZS と波動インピーダンスηを用いると、位相ジャンプ分布Φ(x)を求める関数fは、
Figure JPOXMLDOC01-appb-M000002
で表される。arg()は複素数上の偏角(argument)を表す関数である。表面インピーダンスZs(x)は、
Figure JPOXMLDOC01-appb-M000003
で表される。
 次に、入射角を1度変化させ、変化後の入射角と反射角’を入力として、位相ジャンプ分布関数fから位相ジャンプΦ’(x)を求める。
 Φ’(x)-Φ(x)が最小となる反射角’を求め、これを入射角に対する反射角の変動とみなす。図17Aと図17Bは、求めた反射角の変動を入射角の関数としてプロットしたものである。
 図19Aは、パターン1の位相ジャンプの変化を示す。横軸は位置(m)、縦軸は位相(度)である。図19AのDeep-in Shallow-outでは、反射角θrを30度に固定し、入射角θiを68.5°、70°、71.5°と振っている。深い角度の入射では、入射角を3°の範囲で変えても位相ジャンプの分布はそれほど変わらない。
 図19Bは、パターン2の位相ジャンプの変化を示す。横軸は位置(m)、縦軸は位相(度)である。図19BのShallow-in Deep-outでは、反射角θrを60度に固定し、入射角θiを18.5°、20°、21.5°と振っている。浅い角度での入射では、図19Aと同様に入射角を3°の範囲で変えると、入射角によって位相ジャンプの分布が大きくずれる。
 図19Aと図19Bからも、電磁波反射装置10に入射する電波の位相ジャンプの分を均一にする点で、図16Aの配置のほうが、図16Bよりも好ましいことがわかる。図16Bの配置で、基地局BSは、基地局BSからの電波が50度以上の入射角で電磁波反射装置10の反射面105に入射する位置に配置される。
 以上、特定の構成例に基づいて本発明を説明してきたが、発明を逸脱しない範囲で様々な変形、代替が可能である。メタリフレクタ102は、反射位相などの反射特性を制御できることができれば、どのような構成を採用してもよく、周波数選択性、または波長選択性をもつ周期構造を適宜設計すればよい。
 電磁波反射装置10は、図16Aのように、プロセスライン3の長辺に沿って片側に配置されてもよいし、図2のように、プロセスライン3の両側に配置されてもよい。プロセスライン3がL字型のように曲がっている場合は、矩形領域を形成するそれぞれの領域に電磁波反射装置10を設置してもよいし、いずれか主要なラインに電磁波反射装置10を設置してもよい。いずれの場合も、基地局BSは、電磁波反射装置10の反射面105に対して深い入射角で電波が入射する位置に配置される。
 プロセスライン3内の機器は、必ずしも電磁波反射装置10からの反射波だけを受信する必要はなく、基地局BSから放射される電波を直接受信してもよい。この場合、同相受信により受信ダイバーシティを行ってもよい。プロセスライン3の長手方向の両側に基地局BSを配置するときは、協調型の基地局を用いてもよい。
 個々の電磁波反射装置10は、図11Aのように、パネル13の対向するエッジの一方にフレーム111が取り付けられ、他方にガイドビーム118が取り付けられた状態で、搬送されてもよい。この場合は、現場での部品の取り付け作業が省略され組み立てが容易になる。あるいは、パネル13に、フレーム111だけが取り付けられた状態で搬送され、現場でガイドビーム118を用いて組み立ててもよい。また、図5Aのように、パネル13上のメタサーフェイスの位置決めを電磁波反射装置10の設置現場で行ってもよい。
 実施形態の電磁波反射装置と、無線伝達システムは、スマートファクトリーの実現に貢献する。
 本出願は、2020年3月31日に出願された日本国特許出願第2020-064578号に基づきその優先権を主張するものであり、この特許出願の全内容を含む。
1 無線伝達システム
3 プロセスライン
10、10A~10E、10-1、10-2 電磁波反射装置
11 支持体
13、13-1、13-2 パネル
15,15A~15E 接続部
16 ロッド
17、17-1,17-2 エッジジャケット
19 筋交い
100 電磁波反射フェンス
101 ノーマルリフレクタ
102 メタリフレクタ
105 反射面
111、111A~111E フレーム
112、112A、114 ブリッジ電極
118 ガイドビーム
125 補強機構
131 導体
132、133 誘電体
BS、BS1、BS2 基地局
WT、WT1、WT2 無線通信部
SY 対称反射領域
AS 非対称反射領域

Claims (10)

  1.  1GHz~170GHzの周波数帯から選択される所望の帯域の電波を送受信する基地局と、
     前記電波を送受信する生産機器が配置されるプロセスラインの少なくとも一部に沿って配置され、前記電波を反射する反射面を有する電磁波反射装置と、
    を備える無線伝達システム。
  2.  前記基地局は、前記反射面の延長面よりも前記プロセスラインの側に位置する、
    請求項1に記載の無線伝達システム。
  3.  前記電磁波反射装置は、前記プロセスラインの前記少なくとも一部に沿って、前記プロセスラインの両側に配置される、
    請求項1または2に記載の無線伝達システム。
  4.  前記基地局は、前記プロセスラインの長手方向の両端に配置される第1基地局と第2基地局を含み、
     前記生産機器は、前記第1基地局と前記第2基地局の少なくとも一方と前記帯域で通信が可能である、
    請求項1~3のいずれか1項に記載の無線伝達システム。
  5.  前記反射面は、前記電波の入射角と同じ反射角で前記電波を反射する対称反射領域と、前記入射角と異なる反射角で前記電波を反射する非対称反射領域とを有する、
    請求項1~4のいずれか1項に記載の無線伝達システム。
  6.  前記基地局から送信される前記電波の、前記非対称反射領域への入射角は50°以上である、
    請求項5に記載の無線伝達システム。
  7.  前記非対称反射領域の面積は、前記電波の周波数で決まる第1フレネルゾーンを少なくともカバーする、請求項5または6に記載の無線伝達システム。
  8.  前記基地局は、当該基地局から送信される前記電波の前記反射面への入射角が50°以上となる位置に配置されている、
    請求項1に記載の無線伝達システム。
  9.  前記反射面は、前記帯域の電波を反射する密度に形成されたメッシュ、格子、または孔配列を有し、前記密度に形成された前記メッシュ、前記格子、または前記孔配列の平均的な周期は、前記帯域の自由空間波長の1/5以下である請求項1~8のいずれか1項に記載の無線伝達システム。
  10.  複数の前記電磁波反射装置が機械的、及び電気的に連結されている、
    請求項1~9のいずれか1項に記載の無線伝達システム。
PCT/JP2020/045592 2020-03-31 2020-12-08 無線伝達システム WO2021199504A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20929502.1A EP4131655A4 (en) 2020-03-31 2020-12-08 WIRELESS TRANSMISSION SYSTEM
KR1020227031307A KR20220161287A (ko) 2020-03-31 2020-12-08 무선 전달 시스템
JP2022511523A JP7548297B2 (ja) 2020-03-31 2020-12-08 無線伝達システム
CN202080099140.2A CN115349200A (zh) 2020-03-31 2020-12-08 无线传输系统
US17/934,820 US20230010669A1 (en) 2020-03-31 2022-09-23 Wireless transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064578 2020-03-31
JP2020-064578 2020-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/934,820 Continuation US20230010669A1 (en) 2020-03-31 2022-09-23 Wireless transmission system

Publications (1)

Publication Number Publication Date
WO2021199504A1 true WO2021199504A1 (ja) 2021-10-07

Family

ID=77928893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045592 WO2021199504A1 (ja) 2020-03-31 2020-12-08 無線伝達システム

Country Status (6)

Country Link
US (1) US20230010669A1 (ja)
EP (1) EP4131655A4 (ja)
JP (1) JP7548297B2 (ja)
KR (1) KR20220161287A (ja)
CN (1) CN115349200A (ja)
WO (1) WO2021199504A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128591A1 (fr) * 2021-10-27 2023-04-28 Psa Automobiles Sa Dispositif de réflexion à métasurface(s) pour un dispositif de détection d’éléments d’identification
WO2023120138A1 (ja) * 2021-12-20 2023-06-29 Agc株式会社 無線伝達システム、及び電磁波反射装置
WO2023120137A1 (ja) * 2021-12-20 2023-06-29 Agc株式会社 無線伝達システム、及び電磁波反射装置
WO2023149387A1 (ja) * 2022-02-07 2023-08-10 Agc株式会社 電磁波反射装置、電磁波反射フェンス、電磁波反射装置の設置方法、及び電磁波反射フェンスの設置方法
WO2023228693A1 (ja) * 2022-05-24 2023-11-30 京セラ株式会社 電力伝送システムおよび電力伝送方法
WO2023233879A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2023233921A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2023234082A1 (ja) * 2022-05-31 2023-12-07 京セラ株式会社 電波制御板および通信システム
WO2023233928A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2023233885A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2024029325A1 (ja) * 2022-08-03 2024-02-08 Agc株式会社 反射パネル、これを用いた電磁波反射装置、及び電磁波反射フェンス
WO2024038775A1 (ja) * 2022-08-17 2024-02-22 Agc株式会社 反射パネル、電磁波反射装置、及び電磁波反射フェンス
WO2024038682A1 (ja) * 2022-08-17 2024-02-22 Agc株式会社 無線伝達システム
WO2024048443A1 (ja) * 2022-09-02 2024-03-07 Agc株式会社 電磁波反射装置、及び電磁波反射フェンス
JP7456546B2 (ja) 2022-06-27 2024-03-27 大日本印刷株式会社 反射構造体、反射構造体の製造方法、および周波数選択反射板セット
WO2024070407A1 (ja) * 2022-09-26 2024-04-04 Agc株式会社 反射パネル、これを用いた電磁波反射装置、電磁波反射フェンス、及び反射パネルの作製方法
WO2024135455A1 (ja) * 2022-12-21 2024-06-27 Agc株式会社 反射パネル、及び電磁波反射装置
WO2024142434A1 (ja) * 2022-12-27 2024-07-04 Agc株式会社 無線伝達システム
WO2024190085A1 (ja) * 2023-03-14 2024-09-19 Agc株式会社 電磁波反射パネル、電磁波反射装置、電磁波反射フェンス、及び電磁波反射パネルの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116946328B (zh) * 2023-09-20 2023-12-29 江苏锦程船舶制造有限公司 一种救援无人船

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299232A (ja) * 2006-04-28 2007-11-15 Nec Corp Rfid通信システム及びrfid通信方法
JP2008219125A (ja) * 2007-02-28 2008-09-18 Toyota Central R&D Labs Inc 電波反射板及びアンテナ
JP4892207B2 (ja) 2005-07-25 2012-03-07 鹿島建設株式会社 透光性電磁波シールド板の接合構造及び接合具
JP2020064578A (ja) 2018-10-15 2020-04-23 株式会社エモスタ 価値観定量化装置及びこれを利用したマッチング・リコメンデーション方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249872A (ja) * 2002-02-22 2003-09-05 Sharp Corp 無線通信システム
JP2016042222A (ja) * 2014-08-14 2016-03-31 株式会社マーストーケンソリューション 搬送コンベア用rfidシステム
CN110313137B (zh) * 2017-02-21 2022-06-14 3M创新有限公司 无源中继器设备、微波网络及设计中继器设备的方法
US10547116B2 (en) * 2017-08-01 2020-01-28 University Of Cyprus Wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces
US11342682B2 (en) * 2018-05-24 2022-05-24 Metawave Corporation Frequency-selective reflector module and system
EP4131640A4 (en) 2020-03-31 2024-04-03 Agc Inc. ELECTROMAGNETIC WAVE REFLECTION DEVICE, ELECTROMAGNETIC WAVE REFLECTION BARRIER, AND METHOD FOR ASSEMBLY OF ELECTROMAGNETIC WAVE REFLECTION DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892207B2 (ja) 2005-07-25 2012-03-07 鹿島建設株式会社 透光性電磁波シールド板の接合構造及び接合具
JP2007299232A (ja) * 2006-04-28 2007-11-15 Nec Corp Rfid通信システム及びrfid通信方法
JP2008219125A (ja) * 2007-02-28 2008-09-18 Toyota Central R&D Labs Inc 電波反射板及びアンテナ
JP2020064578A (ja) 2018-10-15 2020-04-23 株式会社エモスタ 価値観定量化装置及びこれを利用したマッチング・リコメンデーション方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ARBITRARY BEAM CONTROL USING LOSSLESS METASURFACES ENABLED BY ORTHOGONALLY POLARIZED CUSTOM SURFACE WAVES", PHYSICAL REVIEW B 97
See also references of EP4131655A4
V.S. ASADCHY ET AL.: "PERFECT CONTROL OF REFLECTION AND REFRACTION USING SPATIALLY DISPERSIVE METASURFACES", PHYSICAL REVIEW B 94.075142, 2016

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073291A1 (fr) * 2021-10-27 2023-05-04 Psa Automobiles Sa Dispositif de réflexion à métasurface(s) pour un dispositif de détection d'éléments d'identification
FR3128591A1 (fr) * 2021-10-27 2023-04-28 Psa Automobiles Sa Dispositif de réflexion à métasurface(s) pour un dispositif de détection d’éléments d’identification
WO2023120138A1 (ja) * 2021-12-20 2023-06-29 Agc株式会社 無線伝達システム、及び電磁波反射装置
WO2023120137A1 (ja) * 2021-12-20 2023-06-29 Agc株式会社 無線伝達システム、及び電磁波反射装置
WO2023149387A1 (ja) * 2022-02-07 2023-08-10 Agc株式会社 電磁波反射装置、電磁波反射フェンス、電磁波反射装置の設置方法、及び電磁波反射フェンスの設置方法
WO2023228693A1 (ja) * 2022-05-24 2023-11-30 京セラ株式会社 電力伝送システムおよび電力伝送方法
WO2023234082A1 (ja) * 2022-05-31 2023-12-07 京セラ株式会社 電波制御板および通信システム
WO2023233885A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2023233921A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2023233928A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
WO2023233879A1 (ja) * 2022-06-01 2023-12-07 Agc株式会社 電磁波反射装置、電磁波反射フェンス、及び反射パネル
JP7456546B2 (ja) 2022-06-27 2024-03-27 大日本印刷株式会社 反射構造体、反射構造体の製造方法、および周波数選択反射板セット
WO2024029325A1 (ja) * 2022-08-03 2024-02-08 Agc株式会社 反射パネル、これを用いた電磁波反射装置、及び電磁波反射フェンス
WO2024038775A1 (ja) * 2022-08-17 2024-02-22 Agc株式会社 反射パネル、電磁波反射装置、及び電磁波反射フェンス
WO2024038682A1 (ja) * 2022-08-17 2024-02-22 Agc株式会社 無線伝達システム
WO2024048443A1 (ja) * 2022-09-02 2024-03-07 Agc株式会社 電磁波反射装置、及び電磁波反射フェンス
WO2024070407A1 (ja) * 2022-09-26 2024-04-04 Agc株式会社 反射パネル、これを用いた電磁波反射装置、電磁波反射フェンス、及び反射パネルの作製方法
WO2024135455A1 (ja) * 2022-12-21 2024-06-27 Agc株式会社 反射パネル、及び電磁波反射装置
WO2024142434A1 (ja) * 2022-12-27 2024-07-04 Agc株式会社 無線伝達システム
WO2024190085A1 (ja) * 2023-03-14 2024-09-19 Agc株式会社 電磁波反射パネル、電磁波反射装置、電磁波反射フェンス、及び電磁波反射パネルの製造方法

Also Published As

Publication number Publication date
US20230010669A1 (en) 2023-01-12
CN115349200A (zh) 2022-11-15
KR20220161287A (ko) 2022-12-06
JP7548297B2 (ja) 2024-09-10
EP4131655A4 (en) 2024-04-10
JPWO2021199504A1 (ja) 2021-10-07
EP4131655A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021199504A1 (ja) 無線伝達システム
WO2021199503A1 (ja) 電磁波反射装置、電磁波反射フェンス、及び電磁波反射装置の組み立て方法
US11177577B2 (en) Passive repeater device, microwave network, and method of designing a repeater device
US10741930B2 (en) Enhanced directivity feed and feed array
US8698689B2 (en) Multi-beam antenna device
EP3734753A1 (en) Concealment systems and wireless communication equipment installations and methods including same
US20230420864A1 (en) Electromagnetic wave reflector, reflected electromagnetic wave fence, and method of assembling electromagnetic wave reflector
CA2135326A1 (en) Prediction of Indoor Electromagnetic Wave Propagation for Wireless Indoor System Engineering
KR102175681B1 (ko) 재방사 중계기
US11996618B2 (en) Enhanced directivity feed and feed array
KR20220043213A (ko) 빔 형성 시스템을 위한 메타 구조의 무선 인프라구조
TW202224268A (zh) 反射單元及無線傳送系統
US11355836B2 (en) Combined antenna and radome arrangement
JP7265462B2 (ja) 電波透過板および電波透過システム
WO2023120138A1 (ja) 無線伝達システム、及び電磁波反射装置
WO2023120137A1 (ja) 無線伝達システム、及び電磁波反射装置
JP2004165707A (ja) 高周波マイクロストリップ線路
WO2024038775A1 (ja) 反射パネル、電磁波反射装置、及び電磁波反射フェンス
WO2024038682A1 (ja) 無線伝達システム
WO2024135216A1 (ja) 反射パネル、電磁波反射装置、及び電磁波反射フェンス
WO2023223896A1 (ja) 反射器
US20240145937A1 (en) Radio wave control system
WO2024135455A1 (ja) 反射パネル、及び電磁波反射装置
WO2022097581A1 (ja) アンテナセット
WO2023003961A1 (en) Method and system with fragmented metastructures formed with a plurality of metasurface arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020929502

Country of ref document: EP

Effective date: 20221031