WO2021199479A1 - Film formation device, device for controlling film formation device, and film formation method - Google Patents

Film formation device, device for controlling film formation device, and film formation method Download PDF

Info

Publication number
WO2021199479A1
WO2021199479A1 PCT/JP2020/041999 JP2020041999W WO2021199479A1 WO 2021199479 A1 WO2021199479 A1 WO 2021199479A1 JP 2020041999 W JP2020041999 W JP 2020041999W WO 2021199479 A1 WO2021199479 A1 WO 2021199479A1
Authority
WO
WIPO (PCT)
Prior art keywords
process chamber
film
film forming
getter
base material
Prior art date
Application number
PCT/JP2020/041999
Other languages
French (fr)
Japanese (ja)
Inventor
弘士 薬師神
怜士 坂本
雅弘 芝本
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to CN202080099470.1A priority Critical patent/CN115427606B/en
Priority to KR1020227030318A priority patent/KR20220136402A/en
Priority to CN202311487538.5A priority patent/CN117535632A/en
Priority to JP2021512593A priority patent/JP6932873B1/en
Publication of WO2021199479A1 publication Critical patent/WO2021199479A1/en
Priority to US17/941,389 priority patent/US20230002886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a film forming apparatus for forming a film on the surface of a substrate including a printed circuit board and a film substrate, a control device for the film forming apparatus, and a film forming method.
  • an adhesion layer that serves as a base for wiring connected to the electronic component and a seed layer for forming the wiring by plating are formed.
  • a plating method or a sputtering method is used to form each layer.
  • Patent Document 1 describes a gas discharge / replacement step in which a rare gas is introduced into the vacuum chamber after the gas in the vacuum chamber is discharged by evacuation in order to form a thin film having excellent adhesion in a short time.
  • This is a thin film forming method in a low-pressure rare gas environment, which comprises a film forming step of adhering a thin film forming substance on an adherend in a rare gas environment, and the gas discharge / replacement step is performed at least twice or more.
  • a thin film forming method in which the film forming step is carried out after the execution is described.
  • Patent Document 2 in order to form a pure rare earth metal thin film, it was held in a vacuum chamber of a magnetron type sputtering apparatus by a main cathode on which a rare earth metal main target was mounted and a substrate holder at a position facing the main target.
  • a rare earth metal thin film film forming apparatus in which an auxiliary cathode with an active metal auxiliary target attached is installed at a position beside the substrate and the substrate holder toward the inner wall side of the chamber, and an inert gas introduction tube is attached to the vacuum chamber wall. Is described.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is a film forming apparatus capable of improving the adhesion between the base material and the adhesive film without lowering the productivity, a film forming apparatus control device, and a film forming apparatus. To provide a method.
  • the invention according to claim 1 is a film forming apparatus having a process chamber and a processing unit provided in the process chamber to form an adhesive film on a substrate.
  • the inner wall surface of the process chamber is obtained by the film forming apparatus characterized in that it is formed by the getter effect is greater substance to gas or water (H 2 O) remaining in the process chamber.
  • the invention according to claim 5 is a process chamber, a processing unit provided in the process chamber to form an adhesive film on a substrate, and an exhaust unit capable of vacuum exhausting the process chamber.
  • a control device for a film forming apparatus having a gas introduction unit for introducing a gas for forming the adhesive film into the process chamber, and the control device includes a storage unit for storing a control program.
  • the control program said process chamber, wherein a first step of forming with respect to the gas or water remaining in the process chamber (H 2 O) a getter effect is large material, a predetermined time after said first step, said a second step of exhausting the process chamber, wherein after the second step, the process chamber, a third step of forming a getter-effective substances against residual gas or water (H 2 O) in the process chamber
  • the control device is characterized by controlling the exhaust unit and the gas introduction unit so that P1 / P is 34% or more and 66% or less.
  • the invention of claim 9, wherein the process chamber, a first step of forming a getter-effective substances against residual gas or water (H 2 O) in the process chamber a predetermined time after said first step, a second step of exhausting the process chamber, wherein after the second step, the process chamber, the getter effect with respect to gas or water (H 2 O) remaining in the process chamber
  • a third step of forming a large substance a fourth step of exhausting the process chamber for a predetermined time after the third step, and a fourth step of exhausting the process chamber, and after the fourth step, adhesion to the substrate provided in the process chamber.
  • the adhesion between the base material and the adhesive film can be improved without lowering the productivity.
  • Duty ratios when the first embodiment (Example 1-2), the second embodiment (Example 1-2, Example 2-2, Example 3-2) and the film forming method of the conventional process are used. is a diagram showing the relationship of the process chamber of water (H 2 O) partial pressure after getter process. Exhaust operation when the first embodiment (Example 1-2), the second embodiment (Example 1-2, Example 2-2, Example 3-2) and the film forming method of the conventional process are used. is a diagram showing the relationship of the process chamber of water (H 2 O) partial pressure.
  • the present inventor has found the present invention from the following findings.
  • the findings of the inventor will be described with reference to FIGS. 1, 2 and 3.
  • FIG. 1 is a cross-sectional view of the film forming apparatus of the first embodiment of the present invention cut along a plane in the vertical direction.
  • the XY plane is a plane parallel to the horizontal plane
  • the Z axis is an axis parallel to the vertical direction.
  • the first major aspect of the film formation apparatus of the present invention the inner wall surface of the process chamber 50 is formed by the getter effect material with a large relative gas or water remaining in the process chamber 50 (H 2 O)
  • the protective plate MS1 is installed and functions as a getter material supply source MS1.
  • the material having a large getter effect is, for example, titanium (Ti), and it is desirable that the material has an adhesive film.
  • the adhesive film is preferably a film that serves as a base for wiring connected to electronic components on the base material, and is a Ti film, a TiN film, a Ta film, a TaN film, a Ni film, a Cr film, a NiCr alloy film, and a Ta alloy.
  • a membrane or a Cu alloy membrane is preferable.
  • the protective plate MS1 is preferably installed on the upper surface of the inner wall of the process chamber 50 facing the substrate S, but may be installed on both side surfaces of the inner wall of the process chamber 50 not facing the substrate S. As shown in FIG.
  • the film forming apparatus of the present invention is provided in the process chamber 50 and the process chamber 50, and is a process of forming an adhesive film on the base material S, which is a base for wiring connected to an electronic component.
  • a part FF1 an exhaust part V50 capable of evacuating the inside of the process chamber 50, a gas introduction part G1 for introducing a gas for forming the adhesive film in the process chamber 50, and a base material S in the process chamber 50.
  • the control device includes a storage unit that stores a control program.
  • the processing unit FF1 is composed of a plurality of targets (T1, T2) and a rotating cathode that rotates a support that holds the ion gun I1.
  • Target T1 is a getter effect is greater substance to gas or water remaining in the process chamber 50 (H 2 O), for example, titanium (Ti), the adhesion layer (Ti layer formed on the substrate S , TiN film, Ta film, TaN film, Ni film, Cr film, NiCr alloy film, Ta alloy film, Cu alloy film).
  • the target T2 is, for example, copper (Cu), and it is desirable that the target T2 is a material for a seed film formed on the adhesion film.
  • the seed film is preferably a film for forming wiring formed on the adhesive film, and is preferably a Cu film, a CuAl alloy film, or a CuW alloy film.
  • the inner wall surface of the process chamber 50, the deposition preventing plate is large getter effect with respect to gases or water remaining in the process chamber 50 (H 2 O) and is installed, functions as a getter material supply source MS do.
  • a voltage not shown
  • the Ti-made adhesive plate MS1 is sputtered, and the process chamber of the film formation region FFA (the side facing the substrate S).
  • a Ti film can be attached to the inner wall of the 50 and the magnetic pole of the ion gun I1.
  • the target T1 made of Ti may be used.
  • the target T1 is directed to a side other than the film formation region FFA (the side not facing the substrate S).
  • a voltage is applied to the target T1 in this state to turn Ar gas into plasma, a Ti film is formed on the adhesion plate MS1 and the inner wall of the process chamber 50 other than the film formation region FFA (the side not facing the substrate S) is formed. it can be deposited getter effect material with a large relative gas or water remaining in the process chamber 50 (H 2 O) to.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system of the process chamber 50 in the film forming apparatus 1 of the first embodiment of the present invention.
  • the control device 1000 is a control unit as a control means for controlling the process chamber 50 of the film forming device 1.
  • the control device 1000 stores a CPU 1001 that executes processing operations such as various calculations, controls, and discriminations, and a ROM 1002 that stores a control program such as processing executed by the CPU 1001 that will be described later in FIGS. 3 to 9. (Also referred to as "memory unit").
  • the control device 1000 has a RAM 1003 for temporarily storing data during the processing operation of the CPU 1001, input data, and the like, a non-volatile memory 1004, and the like.
  • control device 1000 includes an input operation unit 1005 including a keyboard for inputting predetermined commands or data, various switches, and a display unit for displaying various displays such as an input / setting state of the film forming apparatus 1. 1006 is connected. Further, the control device 1000 includes a power supply (SP) 1022 for the sputtering cathode of the process chamber 50, a power supply (IG) 1023 for the ion gun, a gas introduction system 1024, a substrate holder drive mechanism 1025, a pressure measuring device 1026, and a holder transfer mechanism.
  • SP power supply
  • IG power supply
  • the 1027, the cathode rotation mechanism 1028, the exhaust unit V50: 1030, and the like are connected via drive circuits 1011 to 1017 and 1029, respectively.
  • FIG. 3 is a diagram showing a flow of a film forming method of Example 1-1, Example 1-2, and Example 1-3 of the first embodiment of the present invention.
  • a major feature of the film forming method of the present invention is that the process chamber 50 is placed in the process chamber 50 before the adhesion film forming step of forming the adhesion film on the base material S provided in the process chamber 50 shown in FIG. evacuating the first step of forming a getter-effective substances against residual gas or water (H 2 O) and (step 102) a predetermined time after the first step (step 102), the process chamber 50 in The second step (step 103) has been carried out at least twice. As shown in FIG.
  • the film forming method of the present invention the process chamber 50, a first step of forming a getter-effective materials to gases or water remaining in the process chamber 50 (H 2 O) ( Step 102), the second step (step 103) of exhausting the process chamber 50 for a predetermined time after the first step (step 102), and after the second step (step 103), in the process chamber 50, in the process chamber 50.
  • the four steps (step 105) and after the fourth step (step 105) include an adhesive film forming step (step 107) of forming an adhesive film on the substrate S provided in the process chamber 50.
  • first depositing a getter effect is greater substance to gas or water remaining in the "process chamber 50 (H 2 O) 1 "Step (step 102)” and “second step (step 103) of exhausting the process chamber 50 for a predetermined time after the first step (step 102)” or “gas or water (H 2 O) remaining in the process chamber 50".
  • "and" 4th step (step 105) for exhausting the process chamber 50 for a predetermined time in the third step (step 104) ".
  • the “getter process” refers to a process in which the getter process is performed at least twice or more. “Steps 102 to 105” shown in FIG.
  • step 102 and step 103 performing (step 102 and step 103) or (step 104 and step 105) shown in FIG. 3 after step 104 shown in FIG. 3 is also referred to as a “getter step”.
  • Step 106) an etching step (step 101 and step 106) for etching the surface of the base material S may be included before the first step of step 102 and after the fourth step of step 105.
  • FIG. 3 an etching step of etching the surface of the base material S (step 101) before the first step of step 102, and an etching step of etching the surface of the base material S after the fourth step of step 105.
  • a seed film forming step (step 107) for forming a seed film for forming wiring on the adhesive film may be included.
  • the base material S in step 101 or 102 is either a Si substrate, a glass or resin square member, or a resin film fixed to a support.
  • the adhesion film in step 107 is preferably any one of a Ti film, a TiN film, a Ta film, a TaN film, a Ni film, a Cr film, a NiCr alloy film, a Ta alloy film, and a Cu alloy film.
  • the seed film in step 108 is preferably any of a Cu film, a CuAl alloy film, and a CuW alloy film.
  • the holding body holding the plurality of targets and the ion gun is rotated to direct the ion gun I1 toward the film formation region FFA (base material S side).
  • a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • the base material S is etched.
  • the voltage application to the ion gun I1 is stopped.
  • the holding body holding the plurality of targets and the ion gun is rotated to move the ion gun I1 to a position other than the film formation region FFA (the side not facing the base material S).
  • a protective plate MS1 is installed as a getter material supply source MS1 on the inner wall of the chamber of the process chamber 50 other than the film formation region FFA. In this state, a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • deposition preventing plate MS1 is sputtered, to deposit the getter-effective substances on the inner wall of the process chamber 50 to the residual gas or water (H 2 O) deposition region FFA (substrate S opposite to the side) be able to.
  • the adhesion film forming step is performed in step 107, the holding body holding the plurality of targets and the ion gun is rotated to direct the target T1 toward the film formation region FFA (base material S side). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, an adhesive film is formed on the base material S.
  • step 108 When the seed film forming step is performed in step 108, the retainer holding the plurality of targets and the ion gun is rotated to direct the target T2 toward the film formation region FFA (base material S side). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T2 to turn Ar gas into plasma. Then, a seed film is formed on the adhesive film.
  • Example 1-2 The procedure is the same as that of the first embodiment except for the first step of step 102 and the third step of step 104.
  • the first step of step 102 or the third step of step 104 is also possible with the target T1.
  • the holding body holding the plurality of targets and the ion gun is rotated to direct the target T1 to a side other than the film formation region FFA (the side not facing the base material S).
  • a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
  • Example 1-3 The procedure is the same as that of the first embodiment except for the first step of step 102 and the third step of step 104.
  • the above-mentioned method using the ion gun I1 and the method using the target T1 may be used in combination.
  • a material with a large getter effect can be attached.
  • the control program is stored in the ROM 1002 (also referred to as “storage unit”) of the control device of FIG.
  • the control program will be described using the film forming apparatus of FIG. 1, the control apparatus of FIG. 2, and the film forming method of FIG. Control program, the process chamber 50, a first step of forming a getter-effective materials to gases or water remaining in the process chamber (H 2 O) (step 102), after the first step (step 102 predetermined time), and a second step of evacuating the process chamber (step 103), after the second step (step 103), the getter process chamber 50 for gas or water remaining in the process chamber (H 2 O)
  • the first step or (step 102) sets the time of the third step (step 104) to P1.
  • the duty ratio D P1 /
  • the exhaust unit V50 and the gas introduction unit G1 are controlled so that P is 34% or more and 66% or less.
  • Example 1-1 Example 1-1
  • Example 1-2 Example 1-2
  • Example 1-3 specific operation examples (Example 1-1, Example 1-2, and Example 1-3) of the film forming apparatus of the first embodiment will be described with reference to FIGS. 4 to 8.
  • Example 1-1 First, as schematically shown in FIG. 4, in order to form a film on the surface of the base material S, the base material S is conveyed into the process chamber 50 by a transfer mechanism (not shown) and transferred to the holding portion 60. Holds the base material S.
  • the retainer holding the plurality of targets and the ion gun is rotated to place the ion gun I1 in the film formation region FFA (base material S). Facing the side).
  • FFA base material S
  • a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • the base material S is etched. Thereby, the surface of the substrate S is, for example, flattened, roughened, cleaned and / or activated.
  • the voltage application to the ion gun I1 is stopped.
  • the retainer holding the plurality of targets and the ion gun is rotated to move the ion gun I1 to a region other than the film formation region FFA (base material). Turn to the side that does not face S).
  • a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • a protective plate MS1 is installed as a getter material supply source MS1 on the inner wall of the chamber of the process chamber 50 other than the film formation region FFA. In this state, a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • deposition preventing plate MS1 is sputtered, to deposit the getter-effective substances on the inner wall of the process chamber 50 to the residual gas or water (H 2 O) deposition region FFA (substrate S opposite to the side) be able to.
  • the Ar gas supplied to the process chamber 50 is supplied into the process chamber 50 at the same time as the start of the first step (step 102 in FIG. 3) by using the gas introduction unit G1, and the first step is completed. At the same time, it is desirable to stop the supply to the process chamber. Further, it is desirable that the exhaust in the process chamber 50 is started before or at the same time as the start of the first step (step 102 in FIG. 3) by using the exhaust unit V50.
  • the electric power supplied to the process chamber 50 is supplied to the process chamber at the same time as the start of the first step by using the power supply (SP) or the power supply (IG) shown in FIG. 2, and the first step is completed. At the same time, it is desirable to stop the supply to the process chamber.
  • the process is performed for a predetermined time using the exhaust section V50 in a state where the supply of Ar gas from the gas introduction section G1 to the inside of the process chamber 50 is stopped. Exhaust the chamber 50 (corresponding to step 103 in FIG. 3). As a result, the first getter process (corresponding to steps 102 and 103 in FIG. 3) is completed.
  • step 104 and fourth step: step 105 in FIG. 3 When the second getter process (third step: step 104 and fourth step: step 105 in FIG. 3) is started, it is schematically shown in FIG. 5 (corresponding to step 104 in FIG. 3).
  • a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • a protective plate MS1 is installed as a getter material supply source MS1 on the inner wall of the chamber of the process chamber 50 other than the film formation region FFA. In this state, a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • deposition preventing plate MS1 is sputtered, to deposit the getter-effective substances on the inner wall of the process chamber 50 to the residual gas or water (H 2 O) deposition region FFA (substrate S opposite to the side) be able to.
  • the Ar gas supplied to the process chamber 50 is supplied into the process chamber 50 at the same time as the start of the third step (step 104 in FIG. 3) by using the gas introduction unit G1, and the third step is completed. At the same time, it is desirable to stop the supply to the process chamber. Further, the electric power supplied to the process chamber 50 is supplied to the process chamber at the same time as the start of the third step by using the power supply (SP) or the power supply (IG) shown in FIG. 2, and the third step is completed. At the same time, it is desirable to stop the supply to the process chamber.
  • SP power supply
  • IG power supply
  • the process is performed for a predetermined time using the exhaust section V50 in a state where the supply of Ar gas from the gas introduction section G1 to the inside of the process chamber 50 is stopped. Exhaust the chamber 50 (corresponding to step 105 in FIG. 3). As a result, the second getter process (corresponding to steps 104 and 105 in FIG. 3) is completed, and the “getter process” in FIG. 3 is completed.
  • the retainer holding the plurality of targets and the ion gun is rotated to set the target T1 in the film formation region (with the base material S). Turn to the opposite side).
  • a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, an adhesive film can be formed on the base material S.
  • the retainer holding the plurality of targets and the ion gun is rotated to set the target T2 in the film formation region (with the base material S). Turn to the opposite side).
  • a preset electric power is supplied to the target T2 to turn Ar gas into plasma. Then, a seed film can be formed on the base material S.
  • the first step of step 102 or the third step of step 104 shown in FIG. 3 can also be performed with the target T1.
  • the retainer holding the plurality of targets and the ion gun is rotated to form the target T1. It faces the area other than the FFA (the side that does not face the base material S).
  • a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
  • the above-mentioned method using the ion gun I1 and the method using the target T1 may be used in combination.
  • the ion gun I1 is directed to a side other than the film formation region FFA (the side not facing the base material S).
  • the target T1 is located at a position facing the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion gun I1 to supply a preset electric power to the target T1 to turn Ar gas into plasma.
  • the ion gun I1 is located at a position facing the side wall of the inner wall of the process chamber 50.
  • a voltage is applied to the ion gun I1 to supply a preset electric power to the target T1 to turn Ar gas into plasma.
  • a material having a large getter effect can be attached to the material.
  • the method of using the above-mentioned method using the ion gun I1 and the method using the target T1 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
  • the ion gun I1 is directed to a side other than the film formation region FFA (the side not facing the base material S).
  • a voltage is applied to the ion gun I1 to turn Ar gas into plasma.
  • Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S).
  • a material having a large getter effect is attached to the material.
  • the ion gun I1 sputters the protective plate MS1 formed on the upper inner wall of the process chamber 50.
  • the target T1 faces the upper inner wall of the process chamber 50.
  • a preset electric power is supplied to the target T1 to turn Ar gas into plasma.
  • a substance having a large getter effect can be formed on the protective plate MS1 formed on the upper inner wall of the process chamber 50, which is sputtered by the ion gun I1.
  • FIG. 9 is a schematic cross-sectional view of the film forming apparatus according to the embodiment of the present invention cut along a plane parallel to a horizontal plane.
  • the film forming apparatus 1 of FIG. 9 is a platform 10 that can be used for transferring the base material S between the process chamber 50 and an apparatus other than the film forming apparatus, and an untreated platform 10 provided by the platform 10. It is composed of a base material S and a load lock chamber 30 that can be used for delivering the base material S after film formation provided from the process chamber 50.
  • the basic configuration of the process chamber 50 of the second embodiment is the same as the basic configuration of the process chamber of the first embodiment, but the processing unit FF is composed of the first processing unit FF1 and the second processing unit FF2.
  • the inner wall surface of the process chamber 50, gas or water (H 2 O) getter effect is larger than the material remaining in the process chamber 50 (e.g., Ti film ) Is installed and functions as a getter material supply source MS.
  • the getter material supply source MS is composed of a first getter material supply source MS1 of the first processing unit FF1 and a second getter material supply source MS2 of the second processing unit FF2. Is different.
  • the XY plane is a plane parallel to the horizontal plane
  • the Z axis is an axis parallel to the vertical direction.
  • the film forming apparatus is configured as an apparatus for forming a film on the base material S.
  • the base material S can be transported and processed while being held by the carrier CR, for example.
  • the film forming apparatus shown in this embodiment is a plasma processing apparatus capable of performing a plurality of types of processing in one processing chamber.
  • a plasma processing apparatus capable of performing multiple types of processing in one processing chamber does not require a different processing chamber for each processing, so that the area occupied by the entire apparatus can be reduced, which is advantageous in saving space in the apparatus.
  • the processing is switched by rotating the support that holds the plurality of targets and the ion gun.
  • the film forming apparatus has a platform 10 and a load lock chamber 30 provided with a heating mechanism, in addition to a process chamber 50 for performing a process of forming a film on the base material S.
  • the platform 10 is used to transfer the base material S to and from other devices.
  • the load lock chamber 30 is provided with an exhaust unit V30 capable of evacuating the inside of the load lock chamber 30, and the process chamber 50 is provided with an exhaust unit V50 capable of evacuating the inside of the process chamber 50.
  • the exhaust unit V30 and the exhaust unit V50 are vacuum pumps such as a dry pump and a turbo molecular pump.
  • a gate valve 20 is provided between the platform 10 and the load lock chamber 30, and a gate valve 40 is provided between the load lock chamber 30 and the process chamber 50.
  • the base material S is conveyed while being held by the carrier CR.
  • a transport device for transporting the carrier CR is incorporated in the load lock chamber 30 and the process chamber 50.
  • the transport device of the load lock chamber 30 is a carrier CR on which the untreated base material S provided from the platform 10 is installed and a carrier on which the base material S after the film provided from the process chamber 50 is formed. It has a mechanism to operate the CR.
  • the operation mechanism 72 drives, for example, a container capable of holding a plurality of base materials S along the X axis.
  • the base material S is transported between the platform 10 and the load lock chamber 30 by a transport mechanism (not shown).
  • the carrier CR is transported between the load lock chamber 30 and the process chamber 50 by the transport mechanism 74.
  • the transfer device of the process chamber 50 includes a transfer mechanism for transferring the carrier CR conveyed from the load lock chamber 30 to the holding unit 60 in the process chamber 50, and a holding unit for holding the carrier CR in the process chamber 50. It has 60.
  • the holding portion 60 has a first chuck CH1 and a second chuck CH2 arranged on opposite sides of each other.
  • the first chuck CH1 and the second chuck CH2 may include, for example, an electrostatic chuck or a mechanical chuck.
  • the film forming apparatus shown in FIG. 9 includes a driving unit that moves the holding portion 60 holding the carrier CR along the moving path TP so that the base material S passes through the film forming region FFA in the process chamber 50. ..
  • the drive unit may employ, for example, a linear motor or a ball screw mechanism.
  • the movement path TP is, for example, parallel to the surface to be treated of the base material S.
  • the base material S may be, for example, a Si substrate, a glass or resin square member, or a resin film fixed to a support.
  • a resin square member for example, a glass epoxy base material or a build-up substrate can be used.
  • a resin film for example, a polyimide film can be used.
  • a laminate of a polyimide-based, epoxy-based, phenol-based, or polybenzoxazole-based resin which is an interlayer insulating film can be used.
  • the base material S which is a laminate with the resin, may have a wiring layer formed therein, or may be a laminate in which the resin is coated on the base material without forming the wiring.
  • the shape and material of the base material S are not limited to specific ones.
  • a material having a large getter effect for example, Ti film
  • the processing unit FF may be provided with a step of causing the substrate S to be formed and a step of performing an etching treatment and a step of forming a film on the base material S passing through the film forming region FFA.
  • the film-forming region FFA is a region where an etching process and a film are formed on the base material S.
  • the processing unit FF is used as a base material during a step of adhering a material having a large getter effect (for example, Ti film) to gas or water (H 2 O) remaining on the inner wall other than the film formation region FFA of the process chamber 50. It can be configured so that the material does not adhere to S. Further, the processing unit FF is based on when the base material S is moving in the first direction along the movement path TP and in the second direction which is opposite to the first direction along the movement path TP. Both when the material S is in motion, it can be configured to be etched and film formed on the substrate S.
  • a material having a large getter effect for example, Ti film
  • H 2 O gas or water
  • the processing unit FF is arranged so that the etching treatment and the film are simultaneously formed on the two carriers held by the holding unit 60 so that the surfaces to be processed of the base material S face opposite to each other, and the film is formed on the first carrier.
  • the first processing unit FF1 to be formed and the second processing unit FF2 forming a film on the second carrier may be included.
  • the film formation region FFA may be arranged between the first processing unit FF1 and the second processing unit FF2.
  • the first processing unit FF1 and the second processing unit FF2 are provided by the separation unit SP provided in the holding unit 60 so that the base material S does not face each other when the base material S moves to perform the etching process and the film is formed.
  • the space on the side of the first processing unit FF1 and the space on the side of the second processing unit FF2 are separated.
  • the processing unit FF is a getter material supply source MS for adhering a material having a large getter effect (for example, Ti film) to gas or water (H 2 O) remaining on the inner wall of the chamber other than the film formation region FFA.
  • the processing unit FF may be composed of a rotating cathode that rotates a support that holds a plurality of targets and an ion gun, but this is only an example.
  • the processing unit FF may have another configuration.
  • the first processing unit, a target T1, the target T2, the ion gun I1, gas or water (H 2 O) getter effect is larger than the material remaining on the inner wall of the chamber other than the film formation region FFA (e.g. Ti film ) May be provided as a getter material source MS1 for adhering.
  • the getter material supply source MS1 for adhering a material having a large getter effect (for example, a Ti film) to the inner wall of the chamber other than the film formation region FFA has a Ti-made adhesive plate, a Ti target, or a Ti film formed on the getter material supply source MS1. It may be composed of a protective plate other than Ti.
  • the second processing unit similarly, the target T3, the target T4, and ion gun I2, gas remaining in the inner wall of the chamber other than the film formation region FFA or water (H 2 O) getter effect with respect to material having a large (e.g. A getter material source MS2 for adhering the Ti film) may be provided.
  • the getter material supply source MS2 for adhering a material having a large getter effect (for example, a Ti film) to the inner wall of the chamber other than the film formation region FFA may be composed of a Ti-made adhesive plate or a Ti target.
  • the holding unit 60 includes a cooling unit that cools the holding unit 60. By cooling the holding portion 60, the base material S held by the holding portion 60 is cooled, and for example, deformation of the base material S can be suppressed.
  • the procedure for processing the base material S in the film forming apparatus is shown below.
  • the base materials S1, S2, S3, and S4 are described in order to distinguish the base materials S from each other.
  • the base material S1 and the base material S2 are installed on the first carrier and the second carrier, respectively.
  • the first carrier on which the base material S1 is installed and the second carrier on which the base material S2 is installed move to the load lock chamber 30, respectively, and the load lock chamber 30 is evacuated by the exhaust unit V30.
  • the heat treatment is performed in the load lock chamber 30, the base material S is heat-treated by the lamp heater when the pressure in the load lock chamber 30 becomes equal to or lower than a predetermined pressure.
  • the base materials S1 installed on the first carrier and the base material S2 installed on the second carrier were installed.
  • the surface to be treated of the base material S2 has a surface to be treated facing opposite sides, the surface to be treated of the base material S1 is facing the + X direction, and the surface to be treated of the base material S2 is facing the ⁇ X direction. It shall be the surface that was there.
  • the operation mechanism 72 of the load lock chamber 30 prepares for transportation to the process chamber 50, and the first carrier is moved to the process chamber 50 and transferred to the holding unit 60 provided in the process chamber 50.
  • the same operation is performed for the second carrier.
  • the two carrier CRs have a surface to be treated in which the surfaces to be treated of the base material S installed in each carrier CR face opposite to each other. Then, the surface to be treated of the base material S1 is held so as to face the surface facing the + X direction, and the surface to be treated of the base material S2 is held so as to face the surface facing the ⁇ X direction.
  • the first carrier and the second carrier move along the movement path TP while being held by the holding portion 60 of the process chamber 50 so that the surfaces to be processed face opposite to each other, and move along the movement path TP.
  • the film formation region FFA inside two carriers are simultaneously etched and a film is formed.
  • the venting operation of the load lock chamber 30 When the first carrier and the second carrier are arranged in the process chamber 50, the venting operation of the load lock chamber 30, the installation of the base material S3 and the base material S4 on the third carrier and the fourth carrier on the platform 10, the base.
  • the third carrier and the fourth carrier on which the material S3 and the base material S4 are installed are moved to the load lock chamber 30, and the exhaust unit V30 sequentially exhausts the load lock chamber 30 in vacuum.
  • the heat treatment is performed in the load lock chamber 30, the base material S is heat-treated by the lamp heater when the pressure in the load lock chamber 30 becomes equal to or lower than a predetermined pressure.
  • the load lock chamber 30 prepares for transportation by the operation mechanism 72.
  • the first carrier is transferred from the holding unit 60 provided in the process chamber 50 to the transfer mechanism 74, and the first carrier is moved to the load lock chamber 30.
  • the operation mechanism 72 of the load lock chamber 30 prepares for transporting the third carrier to the process chamber 50. conduct.
  • the third carrier is moved to the process chamber 50.
  • the second carrier is moved to the load lock chamber 30 by the same operation as the first carrier.
  • the fourth carrier is moved to the process chamber 50 by the same operation as the second carrier.
  • the gate valve 40 is closed.
  • the load lock chamber 30 is vented, the first carrier and the second carrier are moved to the platform 10, respectively, and the base material S1 and the base material S2 are removed from the respective carrier CRs. ..
  • the third carrier and the fourth carrier are transferred to the holding portion 60, and the etching process and the film formation are performed.
  • the venting operation of the load lock chamber 30 When the third carrier and the fourth carrier are arranged in the process chamber 50, the venting operation of the load lock chamber 30, the installation of the base material S5 and the base material S6 on the first carrier and the second carrier on the platform 10, the base.
  • the first carrier and the second carrier on which the material S5 and the base material S6 are installed are moved to the load lock chamber 30, and the vacuum exhaust of the load lock chamber 30 is sequentially performed by the exhaust unit V30.
  • the heat treatment is performed in the load lock chamber 30, the base material S is heat-treated by the lamp heater when the pressure in the load lock chamber 30 becomes equal to or lower than a predetermined pressure.
  • the load lock chamber 30 prepares for transportation by the operation mechanism 72.
  • the third carrier is transferred from the holding unit 60 provided in the process chamber 50 to the transfer mechanism 74, and the third carrier is moved to the load lock chamber 30.
  • the same operation is performed for the fourth carrier.
  • the operation mechanism 72 of the load lock chamber 30 prepares for transporting the first carrier to the process chamber 50. After that, the first carrier is moved to the process chamber 50. The same operation is performed for the second carrier.
  • the load lock chamber 30 After closing the gate valve 40, in the load lock chamber 30, the load lock chamber 30 is vented, the third carrier and the fourth carrier are moved to the platform 10, respectively, and the base material S3 and the base material S4 are removed from the respective carriers. ..
  • the first carrier and the second carrier are transferred to the holding portion 60, and the base material S5 mounted on the first carrier and the base material S6 mounted on the second carrier are etched and filmed. Is formed. Continuous processing is performed by repeating the above operation.
  • FIG. 10 is a block diagram showing a schematic configuration of a control system of a load lock chamber and a process chamber in the film forming apparatus 1 of the second embodiment of the present invention.
  • the difference between the control system of the first embodiment of FIG. 11 and the control system of FIG. 2 is that the control device 1000 includes a control unit as a control means for controlling the load lock chamber 10 of the film forming device 1. Is
  • the control device 1000 is a control unit as a control means for controlling the load lock chamber 10 and the process chamber 50 of the film forming apparatus 1.
  • the control device 1000 includes a CPU 1001 that executes processing operations such as various calculations, controls, and discriminations, and a control program such as processing that is executed by the CPU 1001 and is described later in FIGS. 11 to 13 and 15 to 16. It has a ROM 1002 (also referred to as a "storage unit") for storing the above. Further, the control device 1000 has a RAM 1003 for temporarily storing data during the processing operation of the CPU 1001, input data, and the like, a non-volatile memory 1004, and the like.
  • control device 1000 includes an input operation unit 1005 including a keyboard for inputting predetermined commands or data, various switches, and a display unit for displaying various displays such as an input / setting state of the film forming apparatus 1. 1006 is connected. Further, the control device 1000 includes a power supply 1018 for the load lock chamber 30, a gas introduction system 1019, a substrate holder drive mechanism 1020, a pressure measuring instrument 1021, a power supply (SP) 1022 for the sputtering cathode of the process chamber 50, and a power supply for the ion gun.
  • SP power supply
  • a control program is stored in the ROM 1002 (also referred to as a “storage unit”).
  • Control program the process chamber 50, a first step of forming a getter-effective substances against residual gas or water (H 2 O) in the process chamber (step 102 in FIG. 2), after the first step
  • the second step (step 103 of FIG. 2) of exhausting the process chamber for a predetermined time in (step 102 of FIG. 2) and after the second step (step 103 of FIG. 2) remain in the process chamber 50 in the process chamber 50.
  • a third step of forming a getter-effective materials to gases or water (H 2 O) step 104 in FIG. 2), a predetermined time after the third step (step 104 in FIG.
  • Step 107 in FIG. 2) and the first step or (step 102 in FIG. 2) sets the time of the third step (step 104 in FIG. 2) to P1 and the time in the first step (step 102 in FIG. 2).
  • the duty ratio D P1 /.
  • the exhaust unit V50 and the gas introduction unit G1 are controlled so that P is 34% or more and 66% or less.
  • FIG. 11 is a diagram showing a flow of a film forming method of Example 1-1, Example 1-2, and Example 1-3 when the film forming apparatus of the second embodiment is used.
  • the basic configuration of the getter step 33 is the same as the film forming method when the film forming apparatus of the first embodiment of FIG. 2 is used. That is, the getter step 33 of FIG. 11 is composed of steps 102 to 105 of the film forming method of FIG.
  • the difference between the film forming method of Example 1-1 in FIG. 11 and the film forming method of FIG. 2 is that carrier transfer: step 31, target cleaning step for adhesive film: step 34: target cleaning step for seed film: step. 36, Carrier discharge step: Step 38 has been added.
  • step 31 the carrier CR is transferred to the holding unit 60 in the process chamber 50.
  • step 32 an etching step is performed.
  • the holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA (the side facing the base material S).
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the carrier is started to be conveyed toward the film forming region FFA, and the base material S is etched by passing the carrier through the film forming region FFA a predetermined number of times at a preset transfer speed. ..
  • the voltage application to the ion guns I1 and I2 is stopped.
  • Ar gas is used as the introduction gas, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
  • a getter step is performed.
  • the holding body holding the plurality of targets and the ion gun is rotated so that the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the substrate S).
  • a protective plate made of (Ti film) is installed. In this state, when a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma, the protective plate is sputtered and other than the film formation region FFA.
  • the material for example, Ti film
  • the material can be attached to the inner wall of the chamber and the magnetic poles of the ion guns I1 and I2.
  • the getter process (step 102 and step 103 in FIG. 3 or step 104 and step 105 in FIG. 3) in which the sputtering of the adhesive plate MS and the exhaust after the sputtering are performed as a series of operations is repeated two or more times.
  • the pressure or water (H 2 O) partial pressure of the process chamber 50 is continued until the predetermined pressure or less.
  • the reactive gas is used in the getter step of step 33, the introduction of the reactive gas is stopped before the start of step 34.
  • step 34 a cleaning step of the target used for forming the adhesive film is performed.
  • the process chamber 50 is rotated so that the holding body holding the plurality of targets and the ion gun is directed so that the targets T1 and T3 (for example, all Ti targets) are directed to other than the film formation region FFA (the side facing the base material S).
  • the targets T1 and T3 for example, all Ti targets
  • FFA the film formation region
  • step 35 an adhesive film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA (the side facing the base material S).
  • preset electric power is supplied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma.
  • the carrier is started to be transferred toward the film forming region FFA, and the film is formed a specified number of times at a preset transfer speed.
  • an adhesive film for example, Ti film
  • step 36 a cleaning step of the target used for forming the seed film is performed.
  • the targets T2 and T4 for example, all Cu targets
  • the targets T2 and T4 are directed to other than the film formation region FFA (the side that does not face the base material S) in the process chamber 50.
  • power is applied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are converted to plasma at a predetermined time with a preset power. Clean the target).
  • a seed film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA (the side facing the base material S).
  • preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma.
  • carrier transfer is started toward the film formation region FFA, and the carrier is designated at a preset transfer speed.
  • a seed film (for example, Cu film) is formed on the adhesive film (for example, Ti film) formed on the base material S by passing the film formation region FFA for the number of times.
  • step 38 the carrier is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
  • the getter material supply source MS by providing the getter material supply source MS separately from the cathode for film formation, it is not necessary to install a target as a getter material supply source on the rotating cathode, and the number of sputtered film types is limited.
  • the getter process can be carried out without being carried out.
  • the adhesion plate MS for example, Ti which is the getter material supply source MS is activated by ion beam irradiation. When it is converted, it acts as an adsorption surface for gas molecules.
  • the area of the adsorption surface on which the gas molecules are adsorbed becomes large, and a high getter effect can be obtained. Furthermore, in the getter process, by performing the getter process multiple times, the surface on which gas molecules are adsorbed can be activated for each getter process, so that the adsorption effect is promoted and the Ar gas is stopped when the supply of Ar gas is stopped. water (H 2 O) cleaning of the process chamber 50 so the gas is also exhausted quickly is promoted with.
  • a pressure or quadrupole mass spectrometer RGA process chamber 50 within the process chamber 50 of water (H 2 O) partial pressure by constantly measuring the predetermined Since the getter process can be continued until the pressure becomes lower than the pressure, the atmosphere in the process chamber 50 at the time of forming the adhesive film can be stabilized.
  • Example 1-2 Next, the film forming method of Example 1-2, which is a modification of Example 1-1, will be described with reference to the flowchart of the film forming method of Example 1-1 of FIG.
  • the difference between the film forming method of Example 1-2 and the film forming method of Example 1-1 is step 33.
  • the basic configuration of the getter step 33 is the same as the film forming method of FIG. That is, the getter step 33 of FIG. 11 is composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • step 33 will be described with reference to the flowchart of FIG. 11 and FIG. Since each step of step 31, step 32, and steps 34 to 38 is the same as each step of Example 1-1, the description thereof will be omitted.
  • Step 33 of Example 1-2 In the getter step, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated so that the targets T1 and T3 are placed on the target T1 and T3 other than the film formation region FFA (opposing the base material S). Turn to the side that does not). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
  • Example 1-3 Next, the film forming method of Example 1-3, which is a modification of Example 1-1, will be described with reference to the flowchart of the film forming method of Example 1-1 of FIG.
  • the difference between the film forming method of Example 1-3 and the film forming method of Example 1-1 is step 33.
  • the basic configuration of the getter step 33 is the same as the film forming method of FIG. That is, the getter step 33 of FIG. 11 is composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • step 33 will be described with reference to the flowchart of FIG. 11 and FIG. Since each step of step 31, step 32, and steps 34 to 38 is the same as each step of Example 1-1, the description thereof will be omitted.
  • Step 33 of Example 1-3 In the getter step, the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 are used in combination.
  • the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S).
  • the targets T1 and T3 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • the ion guns I1 and I2 are positioned so as to face the side wall of the inner wall of the process chamber 50.
  • a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • a material having a large getter effect can be attached to the material.
  • the method of using the above-mentioned methods using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
  • the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S).
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the targets T1 and T3 are in a state of facing the upper inner wall of the process chamber 50.
  • preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • a substance having a large getter effect can be formed on the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50, which are sputtered by the ion guns I1 and I2.
  • Example 2-1 In Example 1-1 of FIG. 11 described above, an example in which the getter step is performed between the etching step and the adhesion film forming step has been described, but the getter step may be performed before the etching step. An example in which the getter step is performed before the etching step will be described below as Example 2-1.
  • FIG. 12 is a flowchart showing a processing procedure of the film forming method of Example 2-1 and Example 2-2 and Example 2-3.
  • the basic configuration of the getter process and the getter process 42 is the same as the film forming method of FIG. That is, the getter step 42 of FIG. 6 is composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • step 41 the carrier CR is transferred to the holding unit 60 in the process chamber 50.
  • a getter step is performed.
  • the holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 to other than the film formation region FFA.
  • a protective plate (for example, made of Ti) is installed as a getter material supply source MS on the inner wall of the chamber of the process chamber 50 other than the film forming region FFA, and in this state, a voltage is applied to the ion guns I1 and I2.
  • the adhesive plate for example, made of Ti
  • a material having a large getter effect for example, Ti film
  • the "getter process” is an exhaust after sputtering and the sputtering of the Ti deposition preventing plate and a series of operations, since the operation is repeated two or more times, the pressure in the process chamber 50 or H 2 O content It is desirable to continue until the pressure drops below a predetermined pressure.
  • step 43 an etching step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA.
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and the film forming region FFA (the side facing the base material S) is subjected to a predetermined number of times at a preset transfer speed.
  • the base material S is etched by passing it through.
  • Ar gas is used as the gas introduced from the gas introduction unit G1, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
  • step 44 a cleaning step of the target used for forming the adhesive film is performed.
  • the targets T1 and T3 for example, all Ti targets
  • the targets T1 and T3 are directed to other than the film formation region FFA (the side that does not face the base material S) in the process chamber 50.
  • power is applied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma, and the preset power is used for a predetermined time to target T1 and T3 (for example, both Ti targets).
  • the preset power is used for a predetermined time to target T1 and T3 (for example, both Ti targets).
  • an adhesive film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA (the side facing the base material S).
  • preset power is supplied to the targets T1 and T3 (for example, both Ti targets) Ti targets to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed.
  • step 46 a cleaning step of the target used for forming the seed film is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) to other than the film formation region FFA, and after the pressure in the process chamber 50 is stabilized, the targets T2, Electric power is applied to T4 (for example, both Cu targets) to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are cleaned with a preset power for a predetermined time.
  • a seed film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA (the side facing the base material S).
  • preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed.
  • a seed film (for example, a Cu film) is formed on the adhesive film formed on the base material S.
  • step 48 the carrier is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
  • a material having a large getter effect for example, a Ti film
  • a getter is attached to the magnetic pole of the ion gun in the getter process. Since a material with a large effect (for example, Ti film) is coated, the active adsorption surface having a getter action is exposed in the film formation region FFA during the etching process, so that it is released from the base material S by etching. the water (H 2 O) gas can be adsorbed in real time.
  • Example 2-2 Next, the film forming method of Example 2-2, which is a modification of Example 2-1, will be described with reference to the flowchart of the film forming method of Example 2-1 of FIG.
  • the difference between the film forming method of Example 2-2 and the film forming method of Example 2-1 is step 42.
  • the basic configuration of the getter step 42 is the same as the film forming method of FIG. That is, the getter step 33 of FIG. 12 is composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • step 42 will be described with reference to the flowchart of FIG. 12 and FIG. Since each step of step 41 and steps 43 to 48 is the same as each step of Example 2-1, the description thereof will be omitted.
  • Step 42 of Example 2-2 In the getter step, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated so that the targets T1 and T3 are placed on the target T1 and T3 other than the film formation region FFA (opposing the base material S). Turn to the side that does not). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
  • Example 2-3 Next, the film forming method of Example 2-3, which is a modification of Example 2-1, will be described with reference to the flowchart of the film forming method of Example 2-1 of FIG.
  • the difference between the film forming method of Example 2-3 and the film forming method of Example 2-1 is step 42.
  • the basic configuration of the getter step 42 is the same as the film forming method of FIG. That is, the getter step 42 of FIG. 12 is composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • step 42 will be described with reference to the flowchart of FIG. 12 and FIG. Since each step of step 41 and steps 43 to 48 is the same as each step of Example 2-1, the description thereof will be omitted.
  • Step 33 of Example 2-3 In the getter step, the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 are used in combination.
  • the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S).
  • the targets T1 and T3 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • the ion guns I1 and I2 are positioned so as to face the side wall of the inner wall of the process chamber 50.
  • a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • a material having a large getter effect can be attached to the material.
  • the method of using the above-mentioned methods using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
  • the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S).
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the targets T1 and T3 are in a state of facing the upper inner wall of the process chamber 50.
  • preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • a substance having a large getter effect can be formed on the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50, which are sputtered by the ion guns I1 and I2.
  • Example 3-1 In Example 1-1 described above, an example in which the getter step is performed between the etching step and the adhesion film forming step is described, and in Example 2-1 the example in which the getter step is performed before the etching step is described. It may be performed both before the etching step and between the etching step and the adhesion film forming step. An example in which the getter step is performed both before the etching step and between the etching step and the adhesion film forming step will be described below as Example 3-1.
  • FIG. 13 is a flowchart of the film forming method of Example 3-1 and Example 3-2 and Example 3-3.
  • the basic configuration of the getter step 52 and the getter step 54 is the same as the film forming method of FIG. That is, the getter step 42 of FIG. 6 is composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG
  • step 51 the carrier CR is transferred to the holding unit 60 in the process chamber 50.
  • a getter step is performed.
  • the holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 to other than the film formation region FFA.
  • a protective plate (for example, made of Ti) is installed as a getter material supply source MS on the inner wall of the chamber of the process chamber 50 other than the film forming region FFA, and in this state, a voltage is applied to the ion guns I1 and I2.
  • the adhesion plate for example, made of Ti
  • the Ti film can be attached to the inner wall of the chamber other than the film formation region FFA and the magnetic poles of the ion guns I1 and I2.
  • the "getter process” is an exhaust after sputtering and the sputtering of the Ti deposition preventing plate and a series of operations, since the operation is repeated two or more times, the pressure in the process chamber 50 or H 2 O content It is desirable to continue until the pressure drops below a predetermined pressure.
  • an etching step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA.
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the carrier CR is started to be transported toward the film forming region FFA, and the base material S is etched by passing the carrier CR through the film forming region FFA a predetermined number of times at a preset transport speed. do.
  • the voltage application to the ion gun is stopped.
  • Ar gas is used as the introduction gas, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
  • a getter step is performed.
  • the holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 to other than the film formation region FFA.
  • a protective plate (for example, made of Ti) is installed as a getter material supply source MS on the inner wall of the chamber of the process chamber 50 other than the film forming region FFA, and in this state, a voltage is applied to the ion guns I1 and I2.
  • the adhesive plate for example, made of Ti
  • a material having a large getter effect for example, Ti film
  • the "getter process” is an exhaust after sputtering and the sputtering of the Ti deposition preventing plate and a series of operations, since the operation is repeated two or more times, the pressure in the process chamber 50 or H 2 O content It is desirable to continue until the pressure drops below a predetermined pressure.
  • step 55 a cleaning step of the target used for forming the adhesive film is performed.
  • the pressure in the process chamber is stable by rotating the retainer that holds the plurality of targets and the ion gun so that the targets T1 and T3 (for example, the Ti target) are directed to other than the film formation region FFA (the side that does not face the base material S).
  • electric power is applied to the targets T1 and T3 (for example, Ti target) to turn Ar gas into plasma, and the targets T1 and T3 (for example, Ti target) are cleaned with a preset power for a predetermined time.
  • step 56 an adhesive film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA.
  • preset electric power is supplied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed.
  • step 57 a cleaning step of the target used for forming the seed film is performed.
  • the targets T2 and T4 for example, all Cu targets
  • the targets T2 and T4 are directed to other than the film formation region FFA (the side that does not face the base material S) in the process chamber 50.
  • power is applied to the Cu target to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are cleaned with a preset power for a predetermined time.
  • a seed film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA (the side facing the base material S).
  • preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed.
  • a seed film (for example, a Cu film) is formed on the adhesive film formed on the base material S.
  • step 59 the carrier CR is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
  • Example 3-1 the effects of both the above-mentioned Examples 1-1 and 2-1 can be exhibited. Specifically, both the real-time getter effect during the etching process and the effect of cleaning the atmosphere in the process chamber before the adhesion film forming process can be expected.
  • Example 3-2 Next, the film forming method of Example 3-2, which is a modification of Example 3-1 will be described with reference to the flowchart of the film forming method of Example 3-1 of FIG.
  • the difference between the film forming method of Example 3-2 and the film forming method of Example 3-1 is step 52 and step 54.
  • the basic configuration of the getter step 52 and the getter step 54 is the same as the film forming method of FIG. That is, the getter step 52 and the getter step 54 of FIG. 13 are composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • steps 52 and 54 will be described with reference to the flowchart of FIG. 13 and FIG. Since each step of step 51, step 53, and steps 55 to 58 is the same as each step of Example 3-1. Therefore, the description thereof will be omitted.
  • Step 52 and Step 54 of Example 3-2 In the getter step, as shown in FIG. 6, the retainer holding the plurality of targets and the ion gun is rotated to set the targets T1 and T3 other than the film formation region FFA (base material). Turn to the side that does not face S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
  • Example 3-3 Next, the film forming method of Example 3-3, which is a modification of Example 3-1 will be described with reference to the flowchart of the film forming method of Example 3-1 of FIG.
  • the difference between the film forming method of Example 3-3 and the film forming method of Example 3-1 is step 52 and step 54.
  • the basic configuration of the getter step 52 and the getter step 54 is the same as the film forming method of FIG. That is, the getter step 52 and the getter step 54 of FIG. 13 are composed of steps 102 to 105 of the film forming method of FIG.
  • the getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
  • steps 52 and 54 will be described with reference to the flowchart of FIG. 13 and FIG. Since each step of step 51, step 53, and steps 55 to 58 is the same as each step of Example 3-1. Therefore, the description thereof will be omitted.
  • Step 52 and Step 54 of Example 3-3 In the getter step, the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 are used in combination.
  • the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S).
  • the targets T1 and T3 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • the ion guns I1 and I2 are positioned so as to face the side wall of the inner wall of the process chamber 50.
  • a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • a material having a large getter effect can be attached to the material.
  • the method of using the above-mentioned methods using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
  • the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S).
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the targets T1 and T3 are in a state of facing the upper inner wall of the process chamber 50.
  • preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma.
  • a substance having a large getter effect can be formed on the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50, which are sputtered by the ion guns I1 and I2.
  • FIG. 14 is a flowchart showing a processing procedure of a film forming method that does not perform a getter step.
  • step 61 the carrier CR is transferred to the holding unit 60 in the process chamber 50.
  • an etching step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA.
  • a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma.
  • the carrier CR is started to be transported toward the film forming region FFA, and the base material S is etched by passing the carrier CR through the film forming region FFA a predetermined number of times at a preset transport speed. do.
  • the voltage application to the ion guns I1 and I2 is stopped.
  • Ar gas is used as the introduction gas, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
  • step 63 a cleaning step of the target used for forming the adhesive film is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated so that the targets T1 and T3 (for example, all Ti targets) are directed to other than the film formation region FFA, and after the pressure in the process chamber 50 is stabilized, the targets T1 and T1 are Electric power is applied to T3 (for example, both Ti targets) to turn Ar gas into plasma, and the targets T1 and T3 (for example, both Ti targets) are cleaned with a preset power for a predetermined time.
  • an adhesive film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA (the side facing the base material S).
  • preset electric power is supplied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed.
  • step 65 a cleaning step of the target used for forming the seed film is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) to other than the film formation region FFA, and after the pressure in the process chamber 50 is stabilized, the targets T2, Electric power is applied to T4 (for example, both Cu targets) to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are cleaned with a preset power for a predetermined time.
  • a seed film forming step is performed.
  • the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA.
  • preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma.
  • the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed.
  • a seed film (for example, a Cu film) is formed on the adhesive film formed on the base material S.
  • step 67 the carrier CR is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
  • FIG. 15 shows the first embodiment (Examples 1-1 to 1-3) and the second embodiment (Examples 1-1 to 1-3, Examples 2-1 to 2-3. It is a figure which shows an example of the output signal of the gas introduction system 1024 when the getter process is repeated 2 times or more in the getter process of Examples 3-1 to 3-3).
  • Ar gas is supplied to the process chamber 50.
  • the cycle of the gas introduction system output signal (getter process cycle) is P
  • the gas supply time time to supply Ar gas to the process chamber 50, gas or water remaining in the process chamber 50).
  • the Ar gas supplied to the process chamber 50 starts to be supplied to the process chamber at the same time as the start of the first step or the third step shown in FIG. 3, and at the same time as the end of the first step or the third step. It is desirable to stop the supply to the process chamber. Further, it is desirable that the exhaust in the process chamber 50 is started before or at the same time as the start of the first step shown in FIG.
  • the exhaust of the process chamber 50 is performed for a predetermined time in a state where the supply of Ar gas to the process chamber is stopped at the same time as the end of the first step or the third step shown in FIG.
  • the Ar gas is supplied into the process chamber 50 by the gas introduction unit G1 of the film forming apparatus of FIGS. 1 and 9, and the exhaust into the process chamber 50 is performed by the exhaust unit V50 of the film forming apparatus of FIGS. 1 and 9.
  • FIG. 16 shows the first embodiment (Examples 1-1 to 1-3) and the second embodiment (Examples 1-1 to 1-3, Examples 2-1 to 2-3. It is a figure which shows an example of the output signal of the power source (SP) 1022 or 1023 power source (IG) 1023 when the getter process is repeated two or more times in the getter process of Examples 3-1 to 3-3).
  • SP power source
  • IG power source
  • Ar gas is supplied to the process chamber 50.
  • the gas supply time gas or water remaining in the process chamber 50 (H 2 O)
  • the time for forming a substance having a large getter effect is P1
  • the predetermined time the time for exhausting the process chamber 50
  • the electric power supplied to the process chamber 50 starts to be supplied to the process chamber at the same time as the start of the first step or the third step shown in FIG. 3, and is processed at the same time as the end of the first step or the third step.
  • the exhaust in the process chamber 50 is started before or at the same time as the start of the first step shown in FIG. Further, in P2, it is desirable that the exhaust of the process chamber 50 is performed for a predetermined time in a state where the supply of Ar gas to the process chamber is stopped at the same time as the end of the first step or the third step shown in FIG.
  • the output of electric power into the process chamber 50 is the output signal of the power supply (SP) 1022 or the power supply (IG) 1023 of FIGS. 2 and 10, and the exhaust of the process chamber 50 is the exhaust of the film forming apparatus of FIGS. 1 and 9. This is done in part V50.
  • FIG. 17 shows the time of the getter step and the time after the getter step of the film forming methods of Example 1-2 of the first embodiment, Example 1-2 of the second embodiment, Example 2-2 and Example 3-2. is a diagram showing the relationship between the process chamber of water (H 2 O) partial pressure.
  • water (H 2 O) partial pressure found that it is desirable that not more than 0.3. If a getter process time was 300 seconds, the getter process is repeated twice more water (H 2 O) partial pressure became 0.3 at a duty ratio of 50% as shown in FIG. 17. In contrast, when the getter process time was 300 seconds, if the duty ratio of 100 percent to conduct once the getter process as shown in FIG.
  • the getter process of the other film forming method described above (Example 1-1 and Example 1-3 of the first embodiment, Example 1-1 and the embodiment 1-3 and the embodiment 2-1 of the second embodiment).
  • gas or water (H) remaining on the inner wall of the chamber of the process chamber 50 of the film formation region FFA and the magnetic pole of the ion gun. Since a material having a large getter effect can be attached to 2 O), a better effect can be obtained than in the case shown in FIG.
  • FIG. 18 shows a getter process time of 300 seconds in the getter process of the film forming methods of Example 1-2 of the first embodiment, Example 1-2 of the second embodiment, Example 2-2, and Example 3-2.
  • it is a diagram showing the relationship between the duty ratio and the getter processing chamber of the water after step (H 2 O) partial pressure in the.
  • the duty ratio is 0% in which vacuum exhaust is performed without performing the getter step
  • the partial pressure of water (H 2 O) is 0.6. If the duty ratio of 100 percent to conduct once the getter process as shown in FIG. 18, water (H 2 O) partial pressure is 0.45.
  • a getter process is repeated two more times if reduced water (H 2 O) partial pressure of the process chamber, H2 O partial pressure in the range of 66 percent from the duty ratio 34% is 0.3 or less, the duty ratio Compared to the case of 0 percent, the partial pressure of water (H 2 O) is reduced to about 1/2 (0.3 / 0.6). Furthermore, when the getter process is repeated twice or more, the partial pressure of water (H 2 O) in the process chamber is reduced, and the partial pressure of water (H 2 O) becomes 0.3 or less in the duty ratio range of 34% to 66%. as compared with the case of the ratio 100%, reduced water (H 2 O) partial pressure to about 2/3 (0.3 / 0.45).
  • FIG. 19 shows the repetitive operation and the exhaust operation in the getter process of the film forming methods of the first embodiment 1-2, the second embodiment 1-2, the second embodiment and the third embodiment.
  • water (H 2 O) partial pressure becomes 0.3 or less, it can improve the adhesion between the substrate S and the adhesive layer without reducing the productivity.
  • the getter material has been described as Ti, but the getter material is not limited to Ti, and the getter effect is applied to oxygen and water composed of Ta, Zr, Cr, Nb, Mo and the like. Larger substances can be used. Further, two or more alloys having a large getter effect can be used.
  • the adhesion film of the first embodiment and the second embodiment has been described as a Ti film
  • the adhesion film is not limited to the Ti film, and is not limited to the Ti film, but TiN, Ta, TaN, Ni, Cr, NiCr alloy, Ta alloy, Cu. Alloys and the like can be used.
  • a Cu film is formed on the adhesive film as a seed film for stable growth of electrolytic Cu plating. Therefore, the adhesive film and the seed film are made into a Cu etching solution on the adhesive film. A Cu alloy that can be removed all at once is preferable.
  • the Cu alloy is not a substance having a large getter effect on oxygen and water, when a Cu alloy is used as the adhesion film, a substance having a large getter effect is not mounted on the cathode. It has MS and can carry out the getter process without being limited to the sputtered film type.
  • the seed film of the first embodiment and the second embodiment has been described as a Cu film, the seed film is not limited to the Cu film, and a CuAl alloy, a CuW alloy, or the like can be used.
  • the time P1 of the third step becomes smaller than the time P1 of the first step
  • the time P1 of the fifth step becomes smaller than the time P1 of the third step.
  • the time P2 of the sixth step becomes larger than the time P2 of the fourth step.
  • the getter effect at the initial stage of the getter process in which the partial pressure of water (H 2 O) is high is increased, so that the desired partial pressure of water (H 2 O) can be reached in a short time, and the productivity can be improved. ..

Abstract

A film formation device according to the present invention is provided with a process chamber and a treatment unit which is arranged in the process chamber and in which an adhesive film is formed. The inner wall surface of the process chamber is formed from a substance having a high getter effect against a gas or water (H2O) remaining in the process chamber.

Description

成膜装置、成膜装置の制御装置及び成膜方法Film forming device, control device of film forming device and film forming method
 本発明は、プリント基板及びフィルム基板を含む基材の表面に膜を形成するための成膜装置、成膜装置の制御装置および成膜方法に関する。 The present invention relates to a film forming apparatus for forming a film on the surface of a substrate including a printed circuit board and a film substrate, a control device for the film forming apparatus, and a film forming method.
 プリント基板及びフィルム基板を含む基材に電子部品を実装する実装工程では、電子部品に接続される配線の下地となる密着層や、配線をめっきによって形成するためのシード層が形成される。各層の形成には、例えば、めっき法やスパッタ法が用いられている。 In the mounting process of mounting an electronic component on a substrate including a printed circuit board and a film substrate, an adhesion layer that serves as a base for wiring connected to the electronic component and a seed layer for forming the wiring by plating are formed. For example, a plating method or a sputtering method is used to form each layer.
特開平7-310180号公報Japanese Unexamined Patent Publication No. 7-310180 特開平2-50959号公報Japanese Unexamined Patent Publication No. 2-50959
 例えば特許文献1には、密着性に優れた薄膜を短時間で形成するため、真空引きによって真空槽内の気体を排出した後、同真空槽内に希ガスを導入する気体排出・置換工程と、希ガス環境下で被着体上に薄膜形成用物質を付着させる成膜工程とからなる低圧の希ガス環境下での薄膜形成方法であって、前記気体排出・置換工程を少なくとも2回以上実施した後に前記成膜工程を実施する薄膜形成方法が記載されている。
 しかし、特許文献1記載の薄膜形成方法では、密着膜と基材との界面および密着膜の膜中に水(HO)ガス起因の水素や酸素が混入し、密着膜と基材との十分な密着性が得られない。
For example, Patent Document 1 describes a gas discharge / replacement step in which a rare gas is introduced into the vacuum chamber after the gas in the vacuum chamber is discharged by evacuation in order to form a thin film having excellent adhesion in a short time. This is a thin film forming method in a low-pressure rare gas environment, which comprises a film forming step of adhering a thin film forming substance on an adherend in a rare gas environment, and the gas discharge / replacement step is performed at least twice or more. A thin film forming method in which the film forming step is carried out after the execution is described.
However, in the thin film forming method described in Patent Document 1, the adhesion layer and the substrate in the interface and adhesion layer of the film of water (H 2 O) gas due to hydrogen and oxygen is mixed with the adhesion layer and the substrate and the Sufficient adhesion cannot be obtained.
 特許文献2には、純粋な希土類金属薄膜を成膜するため、マグネトロン型スパッタリング装置の真空チャンバ内に、希土類金属主ターゲットを搭載した主カソード、該主ターゲットと対向位置の基板ホルダで保持された基板および該基板ホルダの脇位置でチャンバ内壁側に向いて活性金属補助ターゲットを取付けた補助カソードをそれぞれ設置すると共に、真空チャンバ壁に不活性ガス導入管を取付けてなる希土類金属薄膜の成膜装置が記載されている。
 しかしながら、特許文献2に記載の成膜装置では、活性金属補助ターゲットを取付けた補助カソードが、基板および該基板ホルダの脇位置でチャンバ内壁側に向いているため、チャンバ内壁側以外の空間内の残留酸素や窒素などを捕獲するゲッターとしては不十分である。
In Patent Document 2, in order to form a pure rare earth metal thin film, it was held in a vacuum chamber of a magnetron type sputtering apparatus by a main cathode on which a rare earth metal main target was mounted and a substrate holder at a position facing the main target. A rare earth metal thin film film forming apparatus in which an auxiliary cathode with an active metal auxiliary target attached is installed at a position beside the substrate and the substrate holder toward the inner wall side of the chamber, and an inert gas introduction tube is attached to the vacuum chamber wall. Is described.
However, in the film forming apparatus described in Patent Document 2, since the auxiliary cathode to which the active metal auxiliary target is attached faces the inner wall side of the chamber at the side position of the substrate and the substrate holder, it is in a space other than the inner wall side of the chamber. It is insufficient as a getter to capture residual oxygen and nitrogen.
 本発明は、上記従来技術の課題を鑑みてなされたものであり、生産性を低下することなく基材と密着膜との密着性を向上できる成膜装置、成膜装置の制御装置及び成膜方法を提供することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and is a film forming apparatus capable of improving the adhesion between the base material and the adhesive film without lowering the productivity, a film forming apparatus control device, and a film forming apparatus. To provide a method.
 上記目的を達成するために、請求項1記載の発明は、プロセス室と、前記プロセス室内に設けられ、基材上に密着膜を形成する処理部と、を有する成膜装置であって、前記プロセス室の内壁表面は、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質で形成されていることを特徴とする成膜装置としたものである。
 上記目的を達成するために、請求項5記載の発明は、プロセス室と、前記プロセス室内に設けられ、基材上に密着膜を形成する処理部と、前記プロセス室内を真空排気可能な排気部と、前記プロセス室内に前記密着膜を形成するためのガスを導入するガス導入部と、を有する成膜装置の制御装置であって、前記制御装置は、制御プログラムを記憶する記憶部を備え、前記制御プログラムは、前記プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程と、前記第1工程後に所定時間、前記プロセス室内を排気する第2工程と、前記第2工程後、前記プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程と、前記第3工程後に所定時間、前記プロセス室内を排気する第4工程、前記第4工程後、前記プロセス室内に設けられた基材上に密着膜を形成する密着膜形成工程と、を含む、前記第1工程又は前記第3工程の時間をP1、前記第1工程と前記第2工程の合計時間又は前記第3工程と前記第4工程の合計時間をPとした場合、デューティ比D=P1/Pが、34パーセント以上66パーセント以下になるように、前記排気部と前記ガス導入部とを制御することを特徴とする制御装置としたものである。
 上記目的を達成するために、請求項9記載の発明は、プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程と、前記第1工程後に所定時間、前記プロセス室内を排気する第2工程と、前記第2工程後、前記プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程と、前記第3工程後に所定時間、前記プロセス室内を排気する第4工程と、前記第4工程後、前記プロセス室内に設けられた基材上に、密着膜を形成する密着膜形成工程と、を含む成膜方法としたものである。
In order to achieve the above object, the invention according to claim 1 is a film forming apparatus having a process chamber and a processing unit provided in the process chamber to form an adhesive film on a substrate. the inner wall surface of the process chamber is obtained by the film forming apparatus characterized in that it is formed by the getter effect is greater substance to gas or water (H 2 O) remaining in the process chamber.
In order to achieve the above object, the invention according to claim 5 is a process chamber, a processing unit provided in the process chamber to form an adhesive film on a substrate, and an exhaust unit capable of vacuum exhausting the process chamber. A control device for a film forming apparatus having a gas introduction unit for introducing a gas for forming the adhesive film into the process chamber, and the control device includes a storage unit for storing a control program. wherein the control program, said process chamber, wherein a first step of forming with respect to the gas or water remaining in the process chamber (H 2 O) a getter effect is large material, a predetermined time after said first step, said a second step of exhausting the process chamber, wherein after the second step, the process chamber, a third step of forming a getter-effective substances against residual gas or water (H 2 O) in the process chamber A fourth step of exhausting the process chamber for a predetermined time after the third step, and after the fourth step, an adhesive film forming step of forming an adhesive film on a substrate provided in the process chamber. When the time of the first step or the third step is P1, the total time of the first step and the second step, or the total time of the third step and the fourth step is P, the duty ratio D = The control device is characterized by controlling the exhaust unit and the gas introduction unit so that P1 / P is 34% or more and 66% or less.
To achieve the above object, the invention of claim 9, wherein the process chamber, a first step of forming a getter-effective substances against residual gas or water (H 2 O) in the process chamber a predetermined time after said first step, a second step of exhausting the process chamber, wherein after the second step, the process chamber, the getter effect with respect to gas or water (H 2 O) remaining in the process chamber A third step of forming a large substance, a fourth step of exhausting the process chamber for a predetermined time after the third step, and a fourth step of exhausting the process chamber, and after the fourth step, adhesion to the substrate provided in the process chamber. This is a film forming method including an adhesive film forming step of forming a film.
 本発明に係る成膜装置、成膜装置の制御装置及び成膜方法によれば、生産性を低下することなく基材と密着膜との密着性を向上することができる。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。  
According to the film forming apparatus, the control device of the film forming apparatus, and the film forming method according to the present invention, the adhesion between the base material and the adhesive film can be improved without lowering the productivity.
Other features and advantages of the present invention will become apparent in the following description with reference to the accompanying drawings. In the attached drawings, the same or similar configurations are given the same reference numbers.
本発明の第1実施形態の成膜装置を鉛直方向に沿った面で切断した断面図である。It is sectional drawing which cut | cut the film forming apparatus of 1st Embodiment of this invention in the plane along the vertical direction. 本発明の第1実施形態の成膜装置のプロセス室における制御系の概略構成を示す図である。It is a figure which shows the schematic structure of the control system in the process room of the film forming apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜方法のフローを示す図である。It is a figure which shows the flow of the film forming method of Example 1-1, Example 1-2 and Example 1-3 of the 1st Embodiment of this invention. 本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜手順の具体的な動作例を示す図である。It is a figure which shows the specific operation example of the film formation procedure of Example 1-1, Example 1-2 and Example 1-3 of the 1st Embodiment of this invention. 本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜手順の具体的な動作例を示す図である。It is a figure which shows the specific operation example of the film formation procedure of Example 1-1, Example 1-2 and Example 1-3 of the 1st Embodiment of this invention. 本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜手順の具体的な動作例を示す図である。It is a figure which shows the specific operation example of the film formation procedure of Example 1-1, Example 1-2 and Example 1-3 of the 1st Embodiment of this invention. 本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜手順の具体的な動作例を示す図である。It is a figure which shows the specific operation example of the film formation procedure of Example 1-1, Example 1-2 and Example 1-3 of the 1st Embodiment of this invention. 本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜手順の具体的な動作例を示す図である。It is a figure which shows the specific operation example of the film formation procedure of Example 1-1, Example 1-2 and Example 1-3 of the 1st Embodiment of this invention. 本発明の第2実施形態の成膜装置を水平面に平行な面で切断した模式的な断面図である。It is a schematic cross-sectional view which cut the film forming apparatus of 2nd Embodiment of this invention in the plane parallel to the horizontal plane. 本発明の第2実施形態の成膜装置のロードロック室とプロセス室における制御系の概略構成を示す図である。It is a figure which shows the schematic structure of the control system in the load lock chamber and the process chamber of the film forming apparatus of the 2nd Embodiment of this invention. 本発明の第2実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜方法のフローを示す図である。It is a figure which shows the flow of the film forming method of Example 1-1, Example 1-2 and Example 1-3 of the 2nd Embodiment of this invention. 本発明の第2実施形態の実施例2-1、実施例2-2及び実施例2-3の成膜方法のフローを示す図である。It is a figure which shows the flow of the film forming method of Example 2-1, Example 2-2 and Example 2-3 of the 2nd Embodiment of this invention. 本発明の第2実施形態の実施例3-1、実施例3-2及び実施例3-3の成膜方法のフローを示す図である。It is a figure which shows the flow of the film forming method of Example 3-1 and Example 3-2 and Example 3-3 of the 2nd Embodiment of this invention. 従来工程の成膜方法のフローを示す図である。It is a figure which shows the flow of the film formation method of a conventional process. 本発明(第1実施形態、第2実施形態)のゲッター工程におけるガス導入系の出力信号の一例を示す図である。It is a figure which shows an example of the output signal of the gas introduction system in the getter process of this invention (the first embodiment, the second embodiment). 本発明(第1実施形態、第2実施形態)のゲッター工程における電源(IG)の出力信号の一例を示す図である。It is a figure which shows an example of the output signal of the power source (IG) in the getter process of this invention (the first embodiment, the second embodiment). 第1実施形態(実施例1-2)、実施形態2(実施例1-2、実施例2-2、実施例3-2)および従来工程の成膜方法を適用した場合、ゲッター工程の時間とゲッター工程後のプロセス室の水(HO)分圧の関係を示す図である。When the first embodiment (Example 1-2), the second embodiment (Example 1-2, Example 2-2, Example 3-2) and the film forming method of the conventional step are applied, the time of the getter step and is a diagram showing the relationship of the getter processing chamber of the water after step (H 2 O) partial pressure. 第1実施形態(実施例1-2)、実施形態2(実施例1-2、実施例2-2、実施例3-2)および従来工程の成膜方法を使用した場合の、デューティ比とゲッター工程後のプロセス室の水(HO)分圧の関係を示す図である。Duty ratios when the first embodiment (Example 1-2), the second embodiment (Example 1-2, Example 2-2, Example 3-2) and the film forming method of the conventional process are used. is a diagram showing the relationship of the process chamber of water (H 2 O) partial pressure after getter process. 第1実施形態(実施例1-2)、実施形態2(実施例1-2、実施例2-2、実施例3-2)および従来工程の成膜方法を使用した場合の、排気動作とプロセス室の水(HO)分圧の関係を示す図である。Exhaust operation when the first embodiment (Example 1-2), the second embodiment (Example 1-2, Example 2-2, Example 3-2) and the film forming method of the conventional process are used. is a diagram showing the relationship of the process chamber of water (H 2 O) partial pressure.
 本発明者は、以下の知見から本発明を見出した。図1、図2、図3を用いて、発明者の知見を説明する。 The present inventor has found the present invention from the following findings. The findings of the inventor will be described with reference to FIGS. 1, 2 and 3.
(第1実施形態)
 図1は本発明の第1実施形態の成膜装置を鉛直方向に沿った面で切断した断面図である。ここで、XY平面は水平面に平行な面であり、Z軸は鉛直方向に平行な軸である。
本発明の成膜装置の第1の大きな特徴点は、プロセス室50の内壁表面は、プロセス室50内に残留するガス又は水(HO)に対してゲッター効果が大きい材料で形成された防着板MS1が設置されており、ゲッター材供給源MS1として機能することである。ゲッター効果が大きな材料は、例えばチタン(Ti)であり、密着膜の材料であることが望ましい。密着膜は、基材上に電子部品に接続される配線の下地となる膜であることが好ましく、Ti膜、TiN膜、Ta膜、TaN膜、Ni膜、Cr膜、NiCr合金膜、Ta合金膜、Cu合金膜ことが好ましい。
 防着板MS1は、基板Sと対向する、プロセス室50の内壁上面に設置することが望ましいが、基板Sと対向しない、プロセス室50の内壁両側面に設置しても良い。
 図1に示すように、本発明の成膜装置は、プロセス室50と、プロセス室50内に設けられ、基材S上に電子部品に接続される配線の下地となる密着膜を形成する処理部FF1と、プロセス室50内を真空排気可能な排気部V50と、プロセス室50内に前記密着膜を形成するためのガスを導入するガス導入部G1と、プロセス室50の中で基材Sを保持する保持部60と、基材Sがプロセス室50の中の成膜領域を通過するように基材Sを保持した保持部60を移動させる駆動部(不図示)と、保持部60を冷却する冷却部(不図示)と、排気部V50とガス導入部G1とを制御する制御装置(不図示)とを備える。制御装置の詳細は、後述する第2図で説明する。
 制御装置は、制御プログラムを記憶する記憶部を備える。
 処理部FF1は複数のターゲット(T1、T2)およびイオンガンI1を保持する支持体を回転させる回転カソードで構成されている。
 ターゲットT1は、プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質である、例えばチタン(Ti)であり、基材S上に形成される密着膜(Ti膜、TiN膜、Ta膜、TaN膜、Ni膜、Cr膜、NiCr合金膜、Ta合金膜、Cu合金膜)の材料であることが望ましい。
 ターゲットT2は、例えば、銅(Cu)であり、密着膜上に形成されるシード膜の材料であることが望ましい。シード膜は密着膜上に形成される配線を形成するための膜であることが好ましく、Cu膜、CuAl合金膜、CuW合金膜であることが好ましい。
 前述の通り、プロセス室50の内壁表面は、プロセス室50内に残留するガス又は水(HO)に対してゲッター効果が大きい防着板が設置されており、ゲッター材供給源MSとして機能する。
この状態でイオンガンI1に不図示の電圧を印加して、Arガスをプラズマ化すると、例えば、Ti製の防着板MS1がスパッタリングされ、成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁およびイオンガンI1の磁極にTi膜を付着させることができる。
 なお、イオンガンI1を使用せずに、例えば、Ti製のターゲットT1を用いても良い。この場合には、ターゲットT1を成膜領域FFA以外(基板Sと対向しない側)に向ける。この状態でターゲットT1に電圧を印加して、Arガスをプラズマ化すると、防着板MS1にTi膜が成膜され、成膜領域FFA以外(基板Sと対向しない側)のプロセス室50の内壁にプロセス室50内に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
(First Embodiment)
FIG. 1 is a cross-sectional view of the film forming apparatus of the first embodiment of the present invention cut along a plane in the vertical direction. Here, the XY plane is a plane parallel to the horizontal plane, and the Z axis is an axis parallel to the vertical direction.
The first major aspect of the film formation apparatus of the present invention, the inner wall surface of the process chamber 50 is formed by the getter effect material with a large relative gas or water remaining in the process chamber 50 (H 2 O) The protective plate MS1 is installed and functions as a getter material supply source MS1. The material having a large getter effect is, for example, titanium (Ti), and it is desirable that the material has an adhesive film. The adhesive film is preferably a film that serves as a base for wiring connected to electronic components on the base material, and is a Ti film, a TiN film, a Ta film, a TaN film, a Ni film, a Cr film, a NiCr alloy film, and a Ta alloy. A membrane or a Cu alloy membrane is preferable.
The protective plate MS1 is preferably installed on the upper surface of the inner wall of the process chamber 50 facing the substrate S, but may be installed on both side surfaces of the inner wall of the process chamber 50 not facing the substrate S.
As shown in FIG. 1, the film forming apparatus of the present invention is provided in the process chamber 50 and the process chamber 50, and is a process of forming an adhesive film on the base material S, which is a base for wiring connected to an electronic component. A part FF1, an exhaust part V50 capable of evacuating the inside of the process chamber 50, a gas introduction part G1 for introducing a gas for forming the adhesive film in the process chamber 50, and a base material S in the process chamber 50. A holding unit 60 for holding the base material S, a driving unit (not shown) for moving the holding unit 60 holding the base material S so that the base material S passes through a film forming region in the process chamber 50, and a holding unit 60. A cooling unit (not shown) for cooling and a control device (not shown) for controlling the exhaust unit V50 and the gas introduction unit G1 are provided. The details of the control device will be described with reference to FIG. 2 described later.
The control device includes a storage unit that stores a control program.
The processing unit FF1 is composed of a plurality of targets (T1, T2) and a rotating cathode that rotates a support that holds the ion gun I1.
Target T1 is a getter effect is greater substance to gas or water remaining in the process chamber 50 (H 2 O), for example, titanium (Ti), the adhesion layer (Ti layer formed on the substrate S , TiN film, Ta film, TaN film, Ni film, Cr film, NiCr alloy film, Ta alloy film, Cu alloy film).
The target T2 is, for example, copper (Cu), and it is desirable that the target T2 is a material for a seed film formed on the adhesion film. The seed film is preferably a film for forming wiring formed on the adhesive film, and is preferably a Cu film, a CuAl alloy film, or a CuW alloy film.
As described above, the inner wall surface of the process chamber 50, the deposition preventing plate is large getter effect with respect to gases or water remaining in the process chamber 50 (H 2 O) and is installed, functions as a getter material supply source MS do.
In this state, when a voltage (not shown) is applied to the ion gun I1 to turn Ar gas into plasma, for example, the Ti-made adhesive plate MS1 is sputtered, and the process chamber of the film formation region FFA (the side facing the substrate S). A Ti film can be attached to the inner wall of the 50 and the magnetic pole of the ion gun I1.
Instead of using the ion gun I1, for example, the target T1 made of Ti may be used. In this case, the target T1 is directed to a side other than the film formation region FFA (the side not facing the substrate S). When a voltage is applied to the target T1 in this state to turn Ar gas into plasma, a Ti film is formed on the adhesion plate MS1 and the inner wall of the process chamber 50 other than the film formation region FFA (the side not facing the substrate S) is formed. it can be deposited getter effect material with a large relative gas or water remaining in the process chamber 50 (H 2 O) to.
 図2は、本発明の第1実施形態の成膜装置1におけるプロセス室50の制御系の概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of a control system of the process chamber 50 in the film forming apparatus 1 of the first embodiment of the present invention.
 図2において、制御装置1000は成膜装置1のプロセス室50を制御する制御手段としての制御部である。この制御装置1000は、種々の演算、制御、判別などの処理動作を実行するCPU1001と、このCPU1001によって実行される、図3乃至図9にて後述される処理などの制御プログラムなどを格納するROM1002(「記憶部」ともいう)とを有する。また、制御装置1000は、CPU1001の処理動作中のデータや入力データなどを一時的に格納するRAM1003、および不揮発性メモリ1004などを有する。また、制御装置1000には、所定の指令あるいはデータなどを入力するキーボードあるいは各種スイッチなどを含む入力操作部1005、成膜装置1の入力・設定状態などをはじめとする種々の表示を行う表示部1006が接続されている。さらに制御装置1000には、プロセス室50のスパッタリングカソード用の電源(SP)1022、イオンガン用の電源(IG)1023、ガス導入系1024、基板ホルダ駆動機構1025、圧力測定器1026、ホルダ移載機構1027、カソード回転機構1028、排気部V50:1030などがそれぞれ駆動回路1011乃至1017、1029を介して接続されている。 In FIG. 2, the control device 1000 is a control unit as a control means for controlling the process chamber 50 of the film forming device 1. The control device 1000 stores a CPU 1001 that executes processing operations such as various calculations, controls, and discriminations, and a ROM 1002 that stores a control program such as processing executed by the CPU 1001 that will be described later in FIGS. 3 to 9. (Also referred to as "memory unit"). Further, the control device 1000 has a RAM 1003 for temporarily storing data during the processing operation of the CPU 1001, input data, and the like, a non-volatile memory 1004, and the like. Further, the control device 1000 includes an input operation unit 1005 including a keyboard for inputting predetermined commands or data, various switches, and a display unit for displaying various displays such as an input / setting state of the film forming apparatus 1. 1006 is connected. Further, the control device 1000 includes a power supply (SP) 1022 for the sputtering cathode of the process chamber 50, a power supply (IG) 1023 for the ion gun, a gas introduction system 1024, a substrate holder drive mechanism 1025, a pressure measuring device 1026, and a holder transfer mechanism. The 1027, the cathode rotation mechanism 1028, the exhaust unit V50: 1030, and the like are connected via drive circuits 1011 to 1017 and 1029, respectively.
(実施例1-1)
 図3は本発明の第1実施形態の実施例1-1、実施例1-2及び実施例1-3の成膜方法のフローを示す図である。本発明の成膜方法の大きな特徴点は、図1に示すプロセス室内50に設けられた基材S上に、密着膜を形成する密着膜形成工程前に、プロセス室50内に、プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程(ステップ102)と、第1工程後(ステップ102)に所定時間、プロセス室内50を排気する第2工程(ステップ103)とを、少なくとも2回以実施したことである。図3に示すように、本発明の成膜方法は、プロセス室内50に、プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程(ステップ102)と、第1工程後(ステップ102)に所定時間、プロセス室内50を排気する第2工程(ステップ103)と、第2工程後(ステップ103)、プロセス室内50に、プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程(ステップ104)と、第3工程後(ステップ104)に所定時間、プロセス室内50を排気する第4工程(ステップ105)と、第4工程後(ステップ105)、プロセス室内50に設けられた基材上Sに、密着膜を形成する密着膜形成工程(ステップ107)と、を含む。なお、以下、本明細書において、「ゲッタープロセス」とは、図3に示す、「プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程(ステップ102)」と「第1工程(ステップ102)後に所定時間、プロセス室内50を排気する第2工程(ステップ103)」、又は、「プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程(ステップ104)」と「第3工程(ステップ104)に所定時間、プロセス室内50を排気する第4工程(ステップ105)」と、をいう。
 「ゲッター工程」とは、前記ゲッタープロセスを少なくとも2回以上行う工程をいう。図3の示す「ステップ102からステップ105」を「ゲッター工程」という。従って、本明細書においては、図3に示すステップ104の後に、図3に示す(ステップ102とステップ103)又は(ステップ104とステップ105)とを行うことも「ゲッター工程」という。
 図3に示すように、ステップ102の第1工程前に、基材Sの表面をエッチングするエッチング工程(ステップ101)、ステップ105の第4工程後、基材Sの表面をエッチングするエッチング工程(ステップ106)、ステップ102の第1工程前及びステップ105の第4工程後、基材Sの表面をエッチングするエッチング工程(ステップ101とステップ106)を含めても良い。
 図3に示すように、密着膜形成工程後(ステップ107)、密着膜上に、配線を形成するためのシード膜を形成するシード膜形成工程(ステップ107)を含めても良い。
 ステップ101又はステップ102の基材Sは、Si基板、ガラス製若しくは樹脂製の角状部材や支持体に固定された樹脂フィルムのいずれかであることが望ましい。
 ステップ107の密着膜は、Ti膜、TiN膜、Ta膜、TaN膜、Ni膜、Cr膜、NiCr合金膜、Ta合金膜、Cu合金膜のいずれかであることが望ましい。
 ステップ108のシード膜は、Cu膜、CuAl合金膜、CuW合金膜のいずれかであることが望ましい。
 ステップ101又はステップ106のエッチング工程を行う場合、複数のターゲットおよびイオンガンを保持する保持体を回転させてイオンガンI1を成膜領域FFA(基材S側)に向ける。ガス導入部G1からプロセス室50内の圧力が安定化した後にイオンガンI1に電圧を印加して、Arガスをプラズマ化する。そして、基材Sをエッチングする。ステップ101又はステップ106のエッチング工程が完了した時点でイオンガンI1への電圧印加を停止する。
 ステップ102の第1工程又はステップ104の第3工程を行う場合、複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1を成膜領域FFA以外(基材Sと対向しない側)に向ける。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MS1として、防着板MS1が設置されており、この状態でイオンガンI1に電圧を印加して、Arガスをプラズマ化すると、防着板MS1がスパッタリングされ、成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。
 ステップ107で密着膜形成工程を行う場合、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1を成膜領域FFA(基材S側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。そして、基材Sに密着膜を成膜する。
 ステップ108でシード膜形成工程を行う場合、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2を成膜領域FFA(基材S側)に向ける。プロセス室50の圧力が安定化した後にターゲットT2に予め設定された電力を供給しArガスをプラズマ化する。そして、密着膜上にシード膜を成膜する。
(Example 1-1)
FIG. 3 is a diagram showing a flow of a film forming method of Example 1-1, Example 1-2, and Example 1-3 of the first embodiment of the present invention. A major feature of the film forming method of the present invention is that the process chamber 50 is placed in the process chamber 50 before the adhesion film forming step of forming the adhesion film on the base material S provided in the process chamber 50 shown in FIG. evacuating the first step of forming a getter-effective substances against residual gas or water (H 2 O) and (step 102) a predetermined time after the first step (step 102), the process chamber 50 in The second step (step 103) has been carried out at least twice. As shown in FIG. 3, the film forming method of the present invention, the process chamber 50, a first step of forming a getter-effective materials to gases or water remaining in the process chamber 50 (H 2 O) ( Step 102), the second step (step 103) of exhausting the process chamber 50 for a predetermined time after the first step (step 102), and after the second step (step 103), in the process chamber 50, in the process chamber 50. a third step of forming a getter-effective substances against residual gas or water (H 2 O) and (step 104) a predetermined time after the third step (step 104), the exhausting process chamber 50 The four steps (step 105) and after the fourth step (step 105) include an adhesive film forming step (step 107) of forming an adhesive film on the substrate S provided in the process chamber 50. Hereinafter, in this specification, the term "getter process" shown in FIG. 3, first depositing a getter effect is greater substance to gas or water remaining in the "process chamber 50 (H 2 O) 1 "Step (step 102)" and "second step (step 103) of exhausting the process chamber 50 for a predetermined time after the first step (step 102)" or "gas or water (H 2 O) remaining in the process chamber 50". 3rd step (step 104) for forming a substance having a large getter effect with respect to) "and" 4th step (step 105) for exhausting the process chamber 50 for a predetermined time in the third step (step 104) ". To say.
The “getter process” refers to a process in which the getter process is performed at least twice or more. “Steps 102 to 105” shown in FIG. 3 are referred to as “getter steps”. Therefore, in the present specification, performing (step 102 and step 103) or (step 104 and step 105) shown in FIG. 3 after step 104 shown in FIG. 3 is also referred to as a “getter step”.
As shown in FIG. 3, an etching step of etching the surface of the base material S (step 101) before the first step of step 102, and an etching step of etching the surface of the base material S after the fourth step of step 105 (step 101). Step 106), an etching step (step 101 and step 106) for etching the surface of the base material S may be included before the first step of step 102 and after the fourth step of step 105.
As shown in FIG. 3, after the adhesive film forming step (step 107), a seed film forming step (step 107) for forming a seed film for forming wiring on the adhesive film may be included.
It is desirable that the base material S in step 101 or 102 is either a Si substrate, a glass or resin square member, or a resin film fixed to a support.
The adhesion film in step 107 is preferably any one of a Ti film, a TiN film, a Ta film, a TaN film, a Ni film, a Cr film, a NiCr alloy film, a Ta alloy film, and a Cu alloy film.
The seed film in step 108 is preferably any of a Cu film, a CuAl alloy film, and a CuW alloy film.
When performing the etching step of step 101 or step 106, the holding body holding the plurality of targets and the ion gun is rotated to direct the ion gun I1 toward the film formation region FFA (base material S side). After the pressure in the process chamber 50 is stabilized from the gas introduction unit G1, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. Then, the base material S is etched. When the etching step of step 101 or step 106 is completed, the voltage application to the ion gun I1 is stopped.
When the first step of step 102 or the third step of step 104 is performed, the holding body holding the plurality of targets and the ion gun is rotated to move the ion gun I1 to a position other than the film formation region FFA (the side not facing the base material S). Turn. A protective plate MS1 is installed as a getter material supply source MS1 on the inner wall of the chamber of the process chamber 50 other than the film formation region FFA. In this state, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. , deposition preventing plate MS1 is sputtered, to deposit the getter-effective substances on the inner wall of the process chamber 50 to the residual gas or water (H 2 O) deposition region FFA (substrate S opposite to the side) be able to.
When the adhesion film forming step is performed in step 107, the holding body holding the plurality of targets and the ion gun is rotated to direct the target T1 toward the film formation region FFA (base material S side). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, an adhesive film is formed on the base material S.
When the seed film forming step is performed in step 108, the retainer holding the plurality of targets and the ion gun is rotated to direct the target T2 toward the film formation region FFA (base material S side). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T2 to turn Ar gas into plasma. Then, a seed film is formed on the adhesive film.
(実施例1-2)
 ステップ102の第1工程又はステップ104の第3工程以外は、前記実施例1-1と同様である。
 ステップ102の第1工程又はステップ104の第3工程は、ターゲットT1でも可能である。この場合には、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1を成膜領域FFA以外(基材Sと対向しない側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。そして、成膜領域FFA以外のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。
(Example 1-2)
The procedure is the same as that of the first embodiment except for the first step of step 102 and the third step of step 104.
The first step of step 102 or the third step of step 104 is also possible with the target T1. In this case, the holding body holding the plurality of targets and the ion gun is rotated to direct the target T1 to a side other than the film formation region FFA (the side not facing the base material S). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
(実施例1-3)
 ステップ102の第1工程又はステップ104の第3工程以外は、前記実施例1-1と同様である。
 ステップ102の第1工程又はステップ104の第3工程は、前述したイオンガンI1を用いる方法とターゲットT1を用いる方法とを併用しても良い。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
(Example 1-3)
The procedure is the same as that of the first embodiment except for the first step of step 102 and the third step of step 104.
In the first step of step 102 or the third step of step 104, the above-mentioned method using the ion gun I1 and the method using the target T1 may be used in combination. Deposition region FFA to gas or water (H 2 O) remaining on the inner wall of the process chamber 50 of the inner wall and the film forming region FFA process chamber 50 (substrate S opposite to the side) of the (substrate S opposite to the side) A material with a large getter effect can be attached.
 図2の制御装置のROM1002(「記憶部」ともいう)には制御プログラムが記憶されている。図1の成膜装置、図2の制御装置及び図3の成膜方法を用いて制御プログラムについて説明する。
 制御プログラムは、プロセス室内50に、プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程(ステップ102)と、第1工程後(ステップ102)に所定時間、プロセス室内を排気する第2工程(ステップ103)と、第2工程後(ステップ103)、プロセス室内50に、プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程(ステップ104)と、第3工程後(ステップ104)に所定時間、プロセス室内50を排気する第4工程(ステップ105)と、第4工程後(ステップ105) 、プロセス室内50に設けられた基材S上に、密着膜を形成する密着膜形成工程と、を含み、第1工程又(ステップ102)は第3工程(ステップ104)の時間をP1、第1工程(ステップ102)と第2工程(ステップ103)の合計時間又は第3工程(ステップ104)と第4工程(ステップ105)の合計時間をPとした場合、デューティ比D=P1/Pが、34パーセント以上66パーセント以下になるように、排気部V50とガス導入部G1とを制御する。
The control program is stored in the ROM 1002 (also referred to as “storage unit”) of the control device of FIG. The control program will be described using the film forming apparatus of FIG. 1, the control apparatus of FIG. 2, and the film forming method of FIG.
Control program, the process chamber 50, a first step of forming a getter-effective materials to gases or water remaining in the process chamber (H 2 O) (step 102), after the first step (step 102 predetermined time), and a second step of evacuating the process chamber (step 103), after the second step (step 103), the getter process chamber 50 for gas or water remaining in the process chamber (H 2 O) A third step (step 104) for forming a highly effective substance, a fourth step (step 105) for exhausting the process chamber 50 for a predetermined time after the third step (step 104), and a fourth step (step 105). 105), including an adhesive film forming step of forming an adhesive film on the base material S provided in the process chamber 50, the first step or (step 102) sets the time of the third step (step 104) to P1. When the total time of the first step (step 102) and the second step (step 103) or the total time of the third step (step 104) and the fourth step (step 105) is P, the duty ratio D = P1 / The exhaust unit V50 and the gas introduction unit G1 are controlled so that P is 34% or more and 66% or less.
 以下、図4~図8を参照しながら第1実施形態の成膜装置の具体的な動作例(実施例1-1、実施例1-2及び実施例1-3)を説明する。 Hereinafter, specific operation examples (Example 1-1, Example 1-2, and Example 1-3) of the film forming apparatus of the first embodiment will be described with reference to FIGS. 4 to 8.
(実施例1-1)
 まず、図4に模式的に示されているように、基材Sの表面に膜を形成するために、不図示の搬送機構によって基材Sをプロセス室50内に搬送し、保持部60に基材Sを保持する。
(Example 1-1)
First, as schematically shown in FIG. 4, in order to form a film on the surface of the base material S, the base material S is conveyed into the process chamber 50 by a transfer mechanism (not shown) and transferred to the holding portion 60. Holds the base material S.
 次いで、図4(図3のステップ101に相当)に模式的に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1を成膜領域FFA(基材Sと対向する側)に向ける。ガス導入部G1からプロセス室50内の圧力が安定化した後にイオンガンI1に電圧を印加して、Arガスをプラズマ化する。そして、基材Sをエッチングする。これによって、基板Sの表面は、例えば、平坦化、粗面化、クリーニングおよび/または活性化される。エッチング工程が完了した時点でイオンガンI1への電圧印加を停止する。 Then, as schematically shown in FIG. 4 (corresponding to step 101 in FIG. 3), the retainer holding the plurality of targets and the ion gun is rotated to place the ion gun I1 in the film formation region FFA (base material S). Facing the side). After the pressure in the process chamber 50 is stabilized from the gas introduction unit G1, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. Then, the base material S is etched. Thereby, the surface of the substrate S is, for example, flattened, roughened, cleaned and / or activated. When the etching step is completed, the voltage application to the ion gun I1 is stopped.
 次いで、図5(図3のステップ102に相当)に模式的に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1を成膜領域FFA以外(基材Sと対向しない側)に向ける。ガス導入部G1からプロセス室50内の圧力が安定化した後にイオンガンI1に電圧を印加して、Arガスをプラズマ化する。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MS1として、防着板MS1が設置されており、この状態でイオンガンI1に電圧を印加して、Arガスをプラズマ化すると、防着板MS1がスパッタリングされ、成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。
 なお、プロセス室50に供給するArガスは、ガス導入部G1を用いて、第1工程(図3のステップ102)の開始と同時にプロセス室50内への供給を開始し、第1工程の終了と同時にプロセス室内への供給を停止することが望ましい。
 また、プロセス室50内の排気は、排気部V50を用いて、第1工程(図3のステップ102)の開始前又は開始と同時に、プロセス室50内の排気を開始することが望ましい。
 また、プロセス室50に供給する電力は、図2に示す電源(SP)又は電源(IG)を用いて、前記第1工程の開始と同時にプロセス室内への供給を開始し、第1工程の終了と同時にプロセス室内への供給を停止することが望ましい。
Then, as schematically shown in FIG. 5 (corresponding to step 102 in FIG. 3), the retainer holding the plurality of targets and the ion gun is rotated to move the ion gun I1 to a region other than the film formation region FFA (base material). Turn to the side that does not face S). After the pressure in the process chamber 50 is stabilized from the gas introduction unit G1, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. A protective plate MS1 is installed as a getter material supply source MS1 on the inner wall of the chamber of the process chamber 50 other than the film formation region FFA. In this state, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. , deposition preventing plate MS1 is sputtered, to deposit the getter-effective substances on the inner wall of the process chamber 50 to the residual gas or water (H 2 O) deposition region FFA (substrate S opposite to the side) be able to.
The Ar gas supplied to the process chamber 50 is supplied into the process chamber 50 at the same time as the start of the first step (step 102 in FIG. 3) by using the gas introduction unit G1, and the first step is completed. At the same time, it is desirable to stop the supply to the process chamber.
Further, it is desirable that the exhaust in the process chamber 50 is started before or at the same time as the start of the first step (step 102 in FIG. 3) by using the exhaust unit V50.
Further, the electric power supplied to the process chamber 50 is supplied to the process chamber at the same time as the start of the first step by using the power supply (SP) or the power supply (IG) shown in FIG. 2, and the first step is completed. At the same time, it is desirable to stop the supply to the process chamber.
 プロセス室50の内壁面へのゲッター効果が大きい物質を成膜後、ガス導入部G1からプロセス室50内へのArガスの供給を停止した状態で、排気部V50を用いて、所定時間、プロセス室50を排気する(図3のステップ103相当)。
 これにより、第1回ゲッタープロセス(図3のステップ102とステップ103に相当)が終了する。
After forming a substance having a large getter effect on the inner wall surface of the process chamber 50, the process is performed for a predetermined time using the exhaust section V50 in a state where the supply of Ar gas from the gas introduction section G1 to the inside of the process chamber 50 is stopped. Exhaust the chamber 50 (corresponding to step 103 in FIG. 3).
As a result, the first getter process (corresponding to steps 102 and 103 in FIG. 3) is completed.
 第2回目のゲッタープロセス(図3の第3工程:ステップ104と第4工程:ステップ105)を開始する場合には、図5(図3のステップ104に相当)に模式的に示されているように、ガス導入部G1からプロセス室50内の圧力が安定化した後にイオンガンI1に電圧を印加して、Arガスをプラズマ化する。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MS1として、防着板MS1が設置されており、この状態でイオンガンI1に電圧を印加して、Arガスをプラズマ化すると、防着板MS1がスパッタリングされ、成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。
 なお、プロセス室50に供給するArガスは、ガス導入部G1を用いて、第3工程(図3のステップ104)の開始と同時にプロセス室50内への供給を開始し、第3工程の終了と同時にプロセス室内への供給を停止することが望ましい。
 また、プロセス室50に供給する電力は、図2に示す電源(SP)又は電源(IG)を用いて、前記第3工程の開始と同時にプロセス室内への供給を開始し、第3工程の終了と同時にプロセス室内への供給を停止することが望ましい。
When the second getter process (third step: step 104 and fourth step: step 105 in FIG. 3) is started, it is schematically shown in FIG. 5 (corresponding to step 104 in FIG. 3). As described above, after the pressure in the process chamber 50 is stabilized from the gas introduction unit G1, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. A protective plate MS1 is installed as a getter material supply source MS1 on the inner wall of the chamber of the process chamber 50 other than the film formation region FFA. In this state, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. , deposition preventing plate MS1 is sputtered, to deposit the getter-effective substances on the inner wall of the process chamber 50 to the residual gas or water (H 2 O) deposition region FFA (substrate S opposite to the side) be able to.
The Ar gas supplied to the process chamber 50 is supplied into the process chamber 50 at the same time as the start of the third step (step 104 in FIG. 3) by using the gas introduction unit G1, and the third step is completed. At the same time, it is desirable to stop the supply to the process chamber.
Further, the electric power supplied to the process chamber 50 is supplied to the process chamber at the same time as the start of the third step by using the power supply (SP) or the power supply (IG) shown in FIG. 2, and the third step is completed. At the same time, it is desirable to stop the supply to the process chamber.
 プロセス室50の内壁面へのゲッター効果が大きい物質を成膜後、ガス導入部G1からプロセス室50内へのArガスの供給を停止した状態で、排気部V50を用いて、所定時間、プロセス室50を排気する(図3のステップ105相当)。
 これにより、第2回ゲッタープロセス(図3のステップ104とステップ105に相当)が終了し、図3の「ゲッター工程」が終了する。
After forming a substance having a large getter effect on the inner wall surface of the process chamber 50, the process is performed for a predetermined time using the exhaust section V50 in a state where the supply of Ar gas from the gas introduction section G1 to the inside of the process chamber 50 is stopped. Exhaust the chamber 50 (corresponding to step 105 in FIG. 3).
As a result, the second getter process (corresponding to steps 104 and 105 in FIG. 3) is completed, and the “getter process” in FIG. 3 is completed.
 次いで、図7(図3のステップ107に相当)に模式的に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1を成膜領域(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。そして、基材Sに密着膜を成膜することができる。 Then, as schematically shown in FIG. 7 (corresponding to step 107 in FIG. 3), the retainer holding the plurality of targets and the ion gun is rotated to set the target T1 in the film formation region (with the base material S). Turn to the opposite side). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, an adhesive film can be formed on the base material S.
 次いで、図8(図3のステップ108に相当)に模式的に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2を成膜領域(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT2に予め設定された電力を供給しArガスをプラズマ化する。そして、基材Sにシード膜を成膜することができる。 Then, as schematically shown in FIG. 8 (corresponding to step 108 in FIG. 3), the retainer holding the plurality of targets and the ion gun is rotated to set the target T2 in the film formation region (with the base material S). Turn to the opposite side). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T2 to turn Ar gas into plasma. Then, a seed film can be formed on the base material S.
(実施例1-2)
 図3に示すステップ102の第1工程又はステップ104の第3工程は、ターゲットT1でも可能である。この場合には、図6(図3のステップ102又はステップ104に相当)に模式的に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1を成膜領域FFA以外(基材Sと対向しない側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。そして、成膜領域FFA以外のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。
(Example 1-2)
The first step of step 102 or the third step of step 104 shown in FIG. 3 can also be performed with the target T1. In this case, as schematically shown in FIG. 6 (corresponding to step 102 or step 104 in FIG. 3), the retainer holding the plurality of targets and the ion gun is rotated to form the target T1. It faces the area other than the FFA (the side that does not face the base material S). After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T1 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
(実施例1-3)
 更に、図3に示すステップ102の第1工程又はステップ104の第3工程は、前述したイオンガンI1を用いる方法とターゲットT1を用いる方法とを併用しても良い。この場合には、図5に示すように、イオンガンI1を成膜領域FFA以外(基材Sと対向しない側)に向ける。この時、ターゲットT1はプロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1に電圧を印加し、ターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1を用いる方法とターゲットT1を用いる方法とを併用する方法は、図6の場合でも可能である。この場合には、図6(図3のステップ102又はステップ104に相当)に模式的に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1を成膜領域FFA以外(基材Sと対向しない側)に向ける。この場合、イオンガンI1は、プロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1に電圧を印加し、ターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1を用いる方法とターゲットT1を用いる方法とを併用する方法は、図5の場合と図6の場合とを併用することでも可能である。
 この場合には、図5に示すように、イオンガンI1を成膜領域FFA以外(基材Sと対向しない側)に向ける。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1に電圧を印加し、Arガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させる。
 この時、イオンガンI1により、プロセス室50の上部内壁に形成された防着板MS1がスパッタリングされる。
 この状態で、図6に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1を成膜領域FFA以外(基材Sと対向しない側)に向けると、ターゲットT1はプロセス室50の上部内壁と対向した状態となる。プロセス室50の圧力が安定化した後にターゲットT1に予め設定された電力を供給しArガスをプラズマ化する。これにより、イオンガンI1でスパッタリングされた、プロセス室50の上部内壁に形成された防着板MS1にもゲッター効果が大きい物質を成膜することができる。
(Example 1-3)
Further, in the first step of step 102 or the third step of step 104 shown in FIG. 3, the above-mentioned method using the ion gun I1 and the method using the target T1 may be used in combination. In this case, as shown in FIG. 5, the ion gun I1 is directed to a side other than the film formation region FFA (the side not facing the base material S). At this time, the target T1 is located at a position facing the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion gun I1 to supply a preset electric power to the target T1 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned method using the ion gun I1 and the method using the target T1 in combination is also possible in the case of FIG. In this case, as schematically shown in FIG. 6 (corresponding to step 102 or step 104 in FIG. 3), the retainer holding the plurality of targets and the ion gun is rotated to form the target T1. It faces the area other than the FFA (the side that does not face the base material S). In this case, the ion gun I1 is located at a position facing the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion gun I1 to supply a preset electric power to the target T1 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned method using the ion gun I1 and the method using the target T1 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
In this case, as shown in FIG. 5, the ion gun I1 is directed to a side other than the film formation region FFA (the side not facing the base material S). In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion gun I1 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect is attached to the material.
At this time, the ion gun I1 sputters the protective plate MS1 formed on the upper inner wall of the process chamber 50.
In this state, as shown in FIG. 6, when the holding body holding the plurality of targets and the ion gun is rotated and the target T1 is directed to other than the film formation region FFA (the side not facing the base material S), The target T1 faces the upper inner wall of the process chamber 50. After the pressure in the process chamber 50 is stabilized, a preset electric power is supplied to the target T1 to turn Ar gas into plasma. As a result, a substance having a large getter effect can be formed on the protective plate MS1 formed on the upper inner wall of the process chamber 50, which is sputtered by the ion gun I1.
(第2実施形態)
 以下、添付図面を参照しながら本発明の第2実施形態の成膜装置、成膜装置の制御装置及び成膜方法をその実施例1-1から実施例3-3を通して説明する。
(Second Embodiment)
Hereinafter, the film forming apparatus of the second embodiment of the present invention, the control apparatus of the film forming apparatus, and the film forming method will be described with reference to the accompanying drawings through Examples 1-1 to 3-3.
 図9は、本発明の一実施形態の成膜装置を水平面に平行な面で切断した模式的な断面図である。図9の成膜装置1は、プロセス室50と、成膜装置以外の他の装置との間で基材Sを受け渡しするために使用されうるプラットホーム10と、プラットホーム10から提供される未処理の基材Sおよびプロセス室50から提供される成膜後の基材Sの受け渡しために使用されうるロードロック室30と、から構成される。
 第2実施形態のプロセス室50の基本構成は、第1実施形態のプロセス室の基本構成と同様であるが、処理部FFが、第1処理部FF1と第2処理部FF2とからなる点で、第1実施形態のプロセス室の基本構成とは相違する。
 図9の成膜装置の第1の大きな特徴点は、プロセス室50の内壁表面は、プロセス室50内に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)の防着板が設置されており、ゲッター材供給源MSとして機能することである。ゲッター材供給源MSは、第1処理部FF1の第1ゲッター材供給源MS1と第2処理部FF2の第2ゲッター材供給源MS2とからなる点で、第1実施形態のゲッター材供給源MS1とは相違する。
 ここで、XY平面は水平面に平行な面であり、Z軸は鉛直方向に平行な軸である。成膜装置は基材Sに膜を形成する装置として構成される。基材Sは、例えば、キャリアCRによって保持された状態で搬送され処理されうる。
FIG. 9 is a schematic cross-sectional view of the film forming apparatus according to the embodiment of the present invention cut along a plane parallel to a horizontal plane. The film forming apparatus 1 of FIG. 9 is a platform 10 that can be used for transferring the base material S between the process chamber 50 and an apparatus other than the film forming apparatus, and an untreated platform 10 provided by the platform 10. It is composed of a base material S and a load lock chamber 30 that can be used for delivering the base material S after film formation provided from the process chamber 50.
The basic configuration of the process chamber 50 of the second embodiment is the same as the basic configuration of the process chamber of the first embodiment, but the processing unit FF is composed of the first processing unit FF1 and the second processing unit FF2. , It is different from the basic configuration of the process room of the first embodiment.
The first major aspect of the film deposition apparatus of FIG. 9, the inner wall surface of the process chamber 50, gas or water (H 2 O) getter effect is larger than the material remaining in the process chamber 50 (e.g., Ti film ) Is installed and functions as a getter material supply source MS. The getter material supply source MS is composed of a first getter material supply source MS1 of the first processing unit FF1 and a second getter material supply source MS2 of the second processing unit FF2. Is different.
Here, the XY plane is a plane parallel to the horizontal plane, and the Z axis is an axis parallel to the vertical direction. The film forming apparatus is configured as an apparatus for forming a film on the base material S. The base material S can be transported and processed while being held by the carrier CR, for example.
 本実施形態に示す成膜装置は、1つの処理室で複数種類の処理が可能なプラズマ処理装置である。1つの処理室で複数種類の処理が可能なプラズマ処理装置は、処理毎に異なる処理室を必要とすることがないため、装置全体の専有面積を小さくでき、従って、装置の省スペース化に有利である。本実施形態では、複数のターゲットおよびイオンガンを保持する支持体を回転させることによって処理の切り替えが実現されている。 The film forming apparatus shown in this embodiment is a plasma processing apparatus capable of performing a plurality of types of processing in one processing chamber. A plasma processing apparatus capable of performing multiple types of processing in one processing chamber does not require a different processing chamber for each processing, so that the area occupied by the entire apparatus can be reduced, which is advantageous in saving space in the apparatus. Is. In the present embodiment, the processing is switched by rotating the support that holds the plurality of targets and the ion gun.
 成膜装置は、基材Sに膜を形成する処理を行うためのプロセス室50の他に、プラットホーム10および加熱機構を具備したロードロック室30を有する。プラットホーム10は、他の装置との間で基材Sの受け渡しをするために使用される。ロードロック室30にはロードロック室30内を真空排気できる排気部V30、プロセス室50にはプロセス室50内を真空排気できる排気部V50を備えている。排気部V30及び排気部V50は、ドライポンプ及びターボ分子ポンプ等の真空ポンプである。プラットホーム10とロードロック室30との間にはゲートバルブ20が設けられ、ロードロック室30とプロセス室50との間にはゲートバルブ40が設けられている。基材Sは、キャリアCRによって保持された状態で搬送される。ロードロック室30とプロセス室50には、キャリアCRを搬送する搬送装置が組み込まれている。 The film forming apparatus has a platform 10 and a load lock chamber 30 provided with a heating mechanism, in addition to a process chamber 50 for performing a process of forming a film on the base material S. The platform 10 is used to transfer the base material S to and from other devices. The load lock chamber 30 is provided with an exhaust unit V30 capable of evacuating the inside of the load lock chamber 30, and the process chamber 50 is provided with an exhaust unit V50 capable of evacuating the inside of the process chamber 50. The exhaust unit V30 and the exhaust unit V50 are vacuum pumps such as a dry pump and a turbo molecular pump. A gate valve 20 is provided between the platform 10 and the load lock chamber 30, and a gate valve 40 is provided between the load lock chamber 30 and the process chamber 50. The base material S is conveyed while being held by the carrier CR. A transport device for transporting the carrier CR is incorporated in the load lock chamber 30 and the process chamber 50.
 ロードロック室30の搬送装置は、プラットホーム10から提供される未処理の基材Sが設置されたキャリアCRおよびプロセス室50から提供される膜が形成された後の基材Sが設置されたキャリアCRを操作する機構を備えている。操作機構72は、例えば、複数の基材Sを保持可能なコンテナをX軸に沿って駆動する。プラットホーム10とロードロック室30の間では、不図示の搬送機構によって基材Sが搬送される。ロードロック室30とプロセス室50との間では、搬送機構74によってキャリアCRが搬送される。 The transport device of the load lock chamber 30 is a carrier CR on which the untreated base material S provided from the platform 10 is installed and a carrier on which the base material S after the film provided from the process chamber 50 is formed. It has a mechanism to operate the CR. The operation mechanism 72 drives, for example, a container capable of holding a plurality of base materials S along the X axis. The base material S is transported between the platform 10 and the load lock chamber 30 by a transport mechanism (not shown). The carrier CR is transported between the load lock chamber 30 and the process chamber 50 by the transport mechanism 74.
 プロセス室50の搬送装置は、ロードロック室30から搬送されるキャリアCRをプロセス室50の中で保持部60に移載する移載機構と、プロセス室50の中でキャリアCRを保持する保持部60を備えている。保持部60は、互いに反対側に配置された第1チャックCH1および第2チャックCH2を有している。第1チャックCH1および第2チャックCH2は、例えば、静電チャックまたはメカニカルチャックを含みうる。図9に示す成膜装置は、基材Sがプロセス室50内の成膜領域FFAを通過するようにキャリアCRを保持した保持部60を移動経路TPに沿って移動させる駆動部を備えている。駆動部は、例えば、リニアモータまたはボールネジ機構を採用しうる。移動経路TPは、例えば、基材Sの被処理面に対して平行である。 The transfer device of the process chamber 50 includes a transfer mechanism for transferring the carrier CR conveyed from the load lock chamber 30 to the holding unit 60 in the process chamber 50, and a holding unit for holding the carrier CR in the process chamber 50. It has 60. The holding portion 60 has a first chuck CH1 and a second chuck CH2 arranged on opposite sides of each other. The first chuck CH1 and the second chuck CH2 may include, for example, an electrostatic chuck or a mechanical chuck. The film forming apparatus shown in FIG. 9 includes a driving unit that moves the holding portion 60 holding the carrier CR along the moving path TP so that the base material S passes through the film forming region FFA in the process chamber 50. .. The drive unit may employ, for example, a linear motor or a ball screw mechanism. The movement path TP is, for example, parallel to the surface to be treated of the base material S.
 基材Sは、例えば、Si基板、ガラス製若しくは樹脂製の角状部材や支持体に固定された樹脂フィルムでありうる。樹脂製の角状部材としては、例えば、ガラスエポキシ基材、ビルドアップ基板を用いることができる。樹脂フィルムとしては、例えば、ポリイミドフィルムを用いることができる。また、基材Sには、層間絶縁膜であるポリイミド系、エポキシ系、フェノール系、ポリベンゾオキサゾール系樹脂との積層体を用いることができる。ここで、樹脂との積層体である基材Sには、配線層が形成されていてもよいし、配線形成がなく母材上に樹脂が塗布された積層体であってもよい。但し、基材Sの形状および材料は、特定のものに限定されない。 The base material S may be, for example, a Si substrate, a glass or resin square member, or a resin film fixed to a support. As the resin square member, for example, a glass epoxy base material or a build-up substrate can be used. As the resin film, for example, a polyimide film can be used. Further, as the base material S, a laminate of a polyimide-based, epoxy-based, phenol-based, or polybenzoxazole-based resin which is an interlayer insulating film can be used. Here, the base material S, which is a laminate with the resin, may have a wiring layer formed therein, or may be a laminate in which the resin is coated on the base material without forming the wiring. However, the shape and material of the base material S are not limited to specific ones.
 図9に示す成膜装置は、プラズマ源を成膜領域FFA以外に向けて、チャンバの内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)を付着させる工程と、成膜領域FFAを通過している基材Sに対してエッチング処理および膜を形成する工程、を行う処理部FFを備えうる。ここで成膜領域FFAとは、基材Sにエッチング処理および膜が形成される領域のことである。 In the film forming apparatus shown in FIG. 9, a material having a large getter effect (for example, Ti film) is attached to the gas or water (H 2 O) remaining on the inner wall of the chamber with the plasma source directed to other than the film forming region FFA. The processing unit FF may be provided with a step of causing the substrate S to be formed and a step of performing an etching treatment and a step of forming a film on the base material S passing through the film forming region FFA. Here, the film-forming region FFA is a region where an etching process and a film are formed on the base material S.
 処理部FFは、プロセス室50の成膜領域FFA以外の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)を付着させる工程の際に、基材Sに該材料が付着しないように構成されうる。また、処理部FFは、移動経路TPに沿って第1方向に基材Sが移動しているとき、および、移動経路TPに沿って該第1方向とは反対方向である第2方向に基材Sが移動しているときの双方において、基材Sにエッチング処理および膜を形成するように構成されうる。処理部FFは、基材Sの被処理面が互いに反対側を向くよう保持部60に保持された2つのキャリアにエッチング処理および膜を同時に形成するように配置され、第1キャリアに膜を形成する第1処理部FF1と第2キャリアに膜を形成する第2処理部FF2とを含みうる。成膜領域FFAは、第1処理部FF1と第2処理部FF2の間に配されうる。なお、第1処理部FF1と第2処理部FF2は、基材Sが移動してエッチング処理および膜が形成している際に対面しないように、保持部60に備えられた分離部SPによって、第1処理部FF1側の空間と第2処理部FF2側の空間とが分離されている。 The processing unit FF is used as a base material during a step of adhering a material having a large getter effect (for example, Ti film) to gas or water (H 2 O) remaining on the inner wall other than the film formation region FFA of the process chamber 50. It can be configured so that the material does not adhere to S. Further, the processing unit FF is based on when the base material S is moving in the first direction along the movement path TP and in the second direction which is opposite to the first direction along the movement path TP. Both when the material S is in motion, it can be configured to be etched and film formed on the substrate S. The processing unit FF is arranged so that the etching treatment and the film are simultaneously formed on the two carriers held by the holding unit 60 so that the surfaces to be processed of the base material S face opposite to each other, and the film is formed on the first carrier. The first processing unit FF1 to be formed and the second processing unit FF2 forming a film on the second carrier may be included. The film formation region FFA may be arranged between the first processing unit FF1 and the second processing unit FF2. The first processing unit FF1 and the second processing unit FF2 are provided by the separation unit SP provided in the holding unit 60 so that the base material S does not face each other when the base material S moves to perform the etching process and the film is formed. The space on the side of the first processing unit FF1 and the space on the side of the second processing unit FF2 are separated.
 また、処理部FFは、成膜領域FFA以外のチャンバの内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)を付着させるためのゲッター材供給源MSと成膜領域FFA以外のチャンバ内壁に該材料(例えばTi膜)を付着させるためのプラズマを発生するプラズマ発生部と成膜領域FFAにおいてエッチング処理および膜を形成させるためのプラズマを発生するプラズマ発生部を含みうる。例えば、処理部FFは複数のターゲットおよびイオンガンを保持する支持体を回転させる回転カソードで構成されうるが、これは一例に過ぎない。処理部FFは他の構成でもよい。 Further, the processing unit FF is a getter material supply source MS for adhering a material having a large getter effect (for example, Ti film) to gas or water (H 2 O) remaining on the inner wall of the chamber other than the film formation region FFA. And the plasma generation part that generates plasma for adhering the material (for example, Ti film) to the inner wall of the chamber other than the film formation area FFA, and the plasma generation that generates plasma for etching treatment and film formation in the film formation area FFA. Can include parts. For example, the processing unit FF may be composed of a rotating cathode that rotates a support that holds a plurality of targets and an ion gun, but this is only an example. The processing unit FF may have another configuration.
 第1処理部は、ターゲットT1と、ターゲットT2と、イオンガンI1と、成膜領域FFA以外のチャンバの内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)を付着させるためのゲッター材供給源MS1を備えうる。例えば、成膜領域FFA以外のチャンバ内壁にゲッター効果が大きい材料(例えばTi膜)を付着させるためのゲッター材供給源MS1は、Ti製の防着板、TiターゲットもしくはTi膜が成膜されたTi製以外の防着板で構成されうる。 The first processing unit, a target T1, the target T2, the ion gun I1, gas or water (H 2 O) getter effect is larger than the material remaining on the inner wall of the chamber other than the film formation region FFA (e.g. Ti film ) May be provided as a getter material source MS1 for adhering. For example, the getter material supply source MS1 for adhering a material having a large getter effect (for example, a Ti film) to the inner wall of the chamber other than the film formation region FFA has a Ti-made adhesive plate, a Ti target, or a Ti film formed on the getter material supply source MS1. It may be composed of a protective plate other than Ti.
 同様に第2処理部は、ターゲットT3と、ターゲットT4と、イオンガンI2と、成膜領域FFA以外のチャンバの内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)を付着させるためのゲッター材供給源MS2を備えうる。例えば、成膜領域FFA以外のチャンバ内壁にゲッター効果が大きい材料(例えばTi膜)を付着させるためのゲッター材供給源MS2は、Ti製の防着板もしくはTiターゲットで構成されうる。 The second processing unit similarly, the target T3, the target T4, and ion gun I2, gas remaining in the inner wall of the chamber other than the film formation region FFA or water (H 2 O) getter effect with respect to material having a large (e.g. A getter material source MS2 for adhering the Ti film) may be provided. For example, the getter material supply source MS2 for adhering a material having a large getter effect (for example, a Ti film) to the inner wall of the chamber other than the film formation region FFA may be composed of a Ti-made adhesive plate or a Ti target.
 保持部60は、保持部60を冷却する冷却部を備えている。保持部60が冷却されることによって、保持部60によって保持されている基材Sが冷却され、例えば、基材Sの変形などが抑制されうる。 The holding unit 60 includes a cooling unit that cools the holding unit 60. By cooling the holding portion 60, the base material S held by the holding portion 60 is cooled, and for example, deformation of the base material S can be suppressed.
 以下、成膜装置における基材Sの処理手順を示す。以下では、基材Sを相互に区別するために基材S1、S2、S3、S4のように記載する。まず、プラットホーム10で第1キャリアと第2キャリアに各々基材S1と基材S2が設置される。基材S1が設置された第1キャリアと基材S2が設置された第2キャリアは、それぞれロードロック室30に移動して、ロードロック室30は排気部V30で真空排気される。ロードロック室30で加熱処理を行う場合は、ロードロック室30の圧力が所定の圧力以下となった時点で、ランプヒータにより基材Sの加熱処理が行われる。ここで、第1キャリアに設置された基材S1と第2キャリアに設置された基材S2に同時に処理を行うために、第1キャリアに設置された基材S1と第2キャリアに設置された基材S2の被処理面は、互いに反対側を向いた被処理面を有し、基材S1の被処理面は+X方向に向いた面、基材S2の被処理面は-X方向に向いた面であるものとする。 The procedure for processing the base material S in the film forming apparatus is shown below. In the following, the base materials S1, S2, S3, and S4 are described in order to distinguish the base materials S from each other. First, on the platform 10, the base material S1 and the base material S2 are installed on the first carrier and the second carrier, respectively. The first carrier on which the base material S1 is installed and the second carrier on which the base material S2 is installed move to the load lock chamber 30, respectively, and the load lock chamber 30 is evacuated by the exhaust unit V30. When the heat treatment is performed in the load lock chamber 30, the base material S is heat-treated by the lamp heater when the pressure in the load lock chamber 30 becomes equal to or lower than a predetermined pressure. Here, in order to simultaneously process the base material S1 installed on the first carrier and the base material S2 installed on the second carrier, the base materials S1 installed on the first carrier and the base material S2 installed on the second carrier were installed. The surface to be treated of the base material S2 has a surface to be treated facing opposite sides, the surface to be treated of the base material S1 is facing the + X direction, and the surface to be treated of the base material S2 is facing the −X direction. It shall be the surface that was there.
 次いで、ロードロック室30の操作機構72でプロセス室50への搬送準備がなされ、第1キャリアはプロセス室50に移動して、プロセス室50内に具備された保持部60に移載される。第2キャリアに対しても同様の動作が行われる。ここで、2つのキャリアCRは、プロセス室50内に具備された保持部60には、それぞれのキャリアCRに設置された基材Sの被処理面が互いに反対側を向いた被処理面を有し、基材S1の被処理面は+X方向に向いた面、基材S2の被処理面は-X方向に向いた面を向くように保持される。第1キャリアと第2キャリアは、プロセス室50の保持部60に被処理面が互いに反対側を向くように保持部60に保持された状態で、移動経路TPに沿って移動し、プロセス室50内の成膜領域FFAを通過することによって、2キャリア同時にエッチング処理および膜が形成される。 Next, the operation mechanism 72 of the load lock chamber 30 prepares for transportation to the process chamber 50, and the first carrier is moved to the process chamber 50 and transferred to the holding unit 60 provided in the process chamber 50. The same operation is performed for the second carrier. Here, in the holding portion 60 provided in the process chamber 50, the two carrier CRs have a surface to be treated in which the surfaces to be treated of the base material S installed in each carrier CR face opposite to each other. Then, the surface to be treated of the base material S1 is held so as to face the surface facing the + X direction, and the surface to be treated of the base material S2 is held so as to face the surface facing the −X direction. The first carrier and the second carrier move along the movement path TP while being held by the holding portion 60 of the process chamber 50 so that the surfaces to be processed face opposite to each other, and move along the movement path TP. By passing through the film formation region FFA inside, two carriers are simultaneously etched and a film is formed.
 第1キャリアおよび第2キャリアがプロセス室50に配置されているときに、ロードロック室30のベント動作、プラットホーム10で第3キャリアおよび第4キャリアへの基材S3および基材S4の設置、基材S3および基材S4が設置された第3キャリアと第4キャリアのロードロック室30への移動、排気部V30でロードロック室30の真空排気が順次行われる。ロードロック室30で加熱処理を行う場合は、ロードロック室30の圧力が所定の圧力以下となった時点で、ランプヒータにより基材Sの加熱処理が行われる。 When the first carrier and the second carrier are arranged in the process chamber 50, the venting operation of the load lock chamber 30, the installation of the base material S3 and the base material S4 on the third carrier and the fourth carrier on the platform 10, the base. The third carrier and the fourth carrier on which the material S3 and the base material S4 are installed are moved to the load lock chamber 30, and the exhaust unit V30 sequentially exhausts the load lock chamber 30 in vacuum. When the heat treatment is performed in the load lock chamber 30, the base material S is heat-treated by the lamp heater when the pressure in the load lock chamber 30 becomes equal to or lower than a predetermined pressure.
 第1キャリアおよび第2キャリアのプロセス室50でのエッチング処理および膜形成がなされた後は、ロードロック室30では操作機構72により、搬送準備を行う。搬送準備動作完了後にプロセス室50内に具備された保持部60から搬送機構74へ第1キャリアを移載し、第1キャリアをロードロック室30に移動する。プロセス室50でのエッチングおよび膜の形成がなされた第1キャリアをロードロック室30へ排出した後、ロードロック室30の操作機構72にて、第3キャリアをプロセス室50に移動する搬送準備を行う。その後、第3キャリアをプロセス室50に移動する。第3キャリアをプロセス室50に移動させた後に第1キャリアと同じ動作により第2キャリアをロードロック室に30に移動する。第2キャリアをプロセス室50からロードロック室30に移動させた後に第2キャリアと同じ動作により第4キャリアをプロセス室50に移動する。第3キャリアと第4キャリアをプロセス室50に移動させた後にゲートバルブ40を閉める。ゲートバルブ40を閉めた後にロードロック室30では、ロードロック室30をベントし、第1キャリアと第2キャリアをそれぞれプラットホーム10に移動し、基材S1および基材S2をそれぞれのキャリアCRから取り外す。このとき同時にプロセス室50では、保持部60に第3キャリアおよび第4キャリアを移載し、エッチング処理および膜の形成を行う。 After the etching treatment and film formation in the process chambers 50 of the first carrier and the second carrier are performed, the load lock chamber 30 prepares for transportation by the operation mechanism 72. After the transfer preparation operation is completed, the first carrier is transferred from the holding unit 60 provided in the process chamber 50 to the transfer mechanism 74, and the first carrier is moved to the load lock chamber 30. After the first carrier that has been etched and the film formed in the process chamber 50 is discharged to the load lock chamber 30, the operation mechanism 72 of the load lock chamber 30 prepares for transporting the third carrier to the process chamber 50. conduct. After that, the third carrier is moved to the process chamber 50. After moving the third carrier to the process chamber 50, the second carrier is moved to the load lock chamber 30 by the same operation as the first carrier. After moving the second carrier from the process chamber 50 to the load lock chamber 30, the fourth carrier is moved to the process chamber 50 by the same operation as the second carrier. After moving the third carrier and the fourth carrier to the process chamber 50, the gate valve 40 is closed. After closing the gate valve 40, in the load lock chamber 30, the load lock chamber 30 is vented, the first carrier and the second carrier are moved to the platform 10, respectively, and the base material S1 and the base material S2 are removed from the respective carrier CRs. .. At the same time, in the process chamber 50, the third carrier and the fourth carrier are transferred to the holding portion 60, and the etching process and the film formation are performed.
 第3キャリアおよび第4キャリアがプロセス室50に配置されているときに、ロードロック室30のベント動作、プラットホーム10で第1キャリアおよび第2キャリアへの基材S5および基材S6の設置、基材S5および基材S6が設置された第1キャリアと第2キャリアのロードロック室30への移動、排気部V30でロードロック室30の真空排気が順次行われる。ロードロック室30で加熱処理を行う場合は、ロードロック室30の圧力が所定の圧力以下となった時点で、ランプヒータにより基材Sの加熱処理が行われる。 When the third carrier and the fourth carrier are arranged in the process chamber 50, the venting operation of the load lock chamber 30, the installation of the base material S5 and the base material S6 on the first carrier and the second carrier on the platform 10, the base. The first carrier and the second carrier on which the material S5 and the base material S6 are installed are moved to the load lock chamber 30, and the vacuum exhaust of the load lock chamber 30 is sequentially performed by the exhaust unit V30. When the heat treatment is performed in the load lock chamber 30, the base material S is heat-treated by the lamp heater when the pressure in the load lock chamber 30 becomes equal to or lower than a predetermined pressure.
 第3キャリアおよび第4キャリアのプロセス室50でのエッチング処理および膜形成がなされた後は、ロードロック室30では操作機構72により、搬送準備を行う。搬送準備動作完了後にプロセス室50内に具備された保持部60から搬送機構74へ第3キャリアを移載し、第3キャリアをロードロック室30に移動する。第4キャリアに対しても同じ動作を行う。プロセス室50でのエッチングおよび膜の形成がなされたキャリアをロードロック室30へ排出した後、ロードロック室30の操作機構72にて、第1キャリアをプロセス室50に移動する搬送準備を行う。その後、第1キャリアをプロセス室50に移動する。第2キャリアについても同じ動作を行う。ゲートバルブ40を閉めた後、ロードロック室30では、ロードロック室30をベントし、第3キャリアと第4キャリアをそれぞれプラットホーム10に移動し、基材S3および基材S4をそれぞれのキャリアから取り外す。このとき同時にプロセス室50では、保持部60に第1キャリアおよび第2キャリアを移載し、第1キャリアに搭載された基材S5と第2キャリアに搭載された基材S6のエッチング処理および膜の形成を行う。上記の動作を繰り返し行うことで連続処理がなされる。 After the etching treatment and film formation in the process chambers 50 of the third carrier and the fourth carrier are performed, the load lock chamber 30 prepares for transportation by the operation mechanism 72. After the transfer preparation operation is completed, the third carrier is transferred from the holding unit 60 provided in the process chamber 50 to the transfer mechanism 74, and the third carrier is moved to the load lock chamber 30. The same operation is performed for the fourth carrier. After the carriers that have been etched and formed into a film in the process chamber 50 are discharged to the load lock chamber 30, the operation mechanism 72 of the load lock chamber 30 prepares for transporting the first carrier to the process chamber 50. After that, the first carrier is moved to the process chamber 50. The same operation is performed for the second carrier. After closing the gate valve 40, in the load lock chamber 30, the load lock chamber 30 is vented, the third carrier and the fourth carrier are moved to the platform 10, respectively, and the base material S3 and the base material S4 are removed from the respective carriers. .. At the same time, in the process chamber 50, the first carrier and the second carrier are transferred to the holding portion 60, and the base material S5 mounted on the first carrier and the base material S6 mounted on the second carrier are etched and filmed. Is formed. Continuous processing is performed by repeating the above operation.
 図10は、本発明第2実施形態の成膜装置1におけるロードロック室とプロセス室の制御系の概略構成を示すブロック図である。図11の実施例1-1の制御系が図2の制御系と相違する点は、制御装置1000は成膜装置1のロードロック室10を制御する制御手段としての制御部を備えている点である FIG. 10 is a block diagram showing a schematic configuration of a control system of a load lock chamber and a process chamber in the film forming apparatus 1 of the second embodiment of the present invention. The difference between the control system of the first embodiment of FIG. 11 and the control system of FIG. 2 is that the control device 1000 includes a control unit as a control means for controlling the load lock chamber 10 of the film forming device 1. Is
 図10において、制御装置1000は成膜装置1のロードロック室10とプロセス室50を制御する制御手段としての制御部である。この制御装置1000は、種々の演算、制御、判別などの処理動作を実行するCPU1001と、このCPU1001によって実行される、図11乃至13及び図15乃至16にて後述される処理などの制御プログラムなどを格納するROM1002(「記憶部」ともいう)とを有する。また、制御装置1000は、CPU1001の処理動作中のデータや入力データなどを一時的に格納するRAM1003、および不揮発性メモリ1004などを有する。また、制御装置1000には、所定の指令あるいはデータなどを入力するキーボードあるいは各種スイッチなどを含む入力操作部1005、成膜装置1の入力・設定状態などをはじめとする種々の表示を行う表示部1006が接続されている。さらに制御装置1000には、ロードロック室30の電源1018、ガス導入系1019、基板ホルダ駆動機構1020、圧力測定器1021、およびプロセス室50のスパッタリングカソード用の電源(SP)1022、イオンガン用の電源(IG)1023、ガス導入系1024、基板ホルダ駆動機構1025、圧力測定器1026、ホルダ移載機構1027、カソード回転機構1028、排気部V50:1030などがそれぞれ駆動回路1007乃至1017、1029を介して接続されている。 In FIG. 10, the control device 1000 is a control unit as a control means for controlling the load lock chamber 10 and the process chamber 50 of the film forming apparatus 1. The control device 1000 includes a CPU 1001 that executes processing operations such as various calculations, controls, and discriminations, and a control program such as processing that is executed by the CPU 1001 and is described later in FIGS. 11 to 13 and 15 to 16. It has a ROM 1002 (also referred to as a "storage unit") for storing the above. Further, the control device 1000 has a RAM 1003 for temporarily storing data during the processing operation of the CPU 1001, input data, and the like, a non-volatile memory 1004, and the like. Further, the control device 1000 includes an input operation unit 1005 including a keyboard for inputting predetermined commands or data, various switches, and a display unit for displaying various displays such as an input / setting state of the film forming apparatus 1. 1006 is connected. Further, the control device 1000 includes a power supply 1018 for the load lock chamber 30, a gas introduction system 1019, a substrate holder drive mechanism 1020, a pressure measuring instrument 1021, a power supply (SP) 1022 for the sputtering cathode of the process chamber 50, and a power supply for the ion gun. (IG) 1023, gas introduction system 1024, substrate holder drive mechanism 1025, pressure measuring device 1026, holder transfer mechanism 1027, cathode rotation mechanism 1028, exhaust unit V50: 1030, etc. are via drive circuits 1007 to 1017, 1029, respectively. It is connected.
 ROM1002(「記憶部」ともいう)には制御プログラが記憶されている。
 制御プログラムは、プロセス室内50に、プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程(図2のステップ102)と、第1工程後(図2のステップ102)に所定時間、プロセス室内を排気する第2工程(図2のステップ103)と、第2工程後(図2のステップ103)、プロセス室内50に、プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程(図2のステップ104)と、第3工程後(図2のステップ104)に所定時間、プロセス室内50を排気する第4工程(図2のステップ105)と、第4工程後(図2のステップ105)、プロセス室50内に設けられた基材S上に、密着膜を形成する密着膜形成工程(図2のステップ107)と、を含み、第1工程又(図2のステップ102)は第3工程(図2のステップ104)の時間をP1、第1工程(図2のステップ102)と第2工程(図2のステップ103)の合計時間又は第3工程(図2のステップ104)と第4工程(図2のステップ105)の合計時間をPとした場合、デューティ比D=P1/Pが、34パーセント以上66パーセント以下になるように、排気部V50とガス導入部G1とを制御する。
A control program is stored in the ROM 1002 (also referred to as a “storage unit”).
Control program, the process chamber 50, a first step of forming a getter-effective substances against residual gas or water (H 2 O) in the process chamber (step 102 in FIG. 2), after the first step The second step (step 103 of FIG. 2) of exhausting the process chamber for a predetermined time in (step 102 of FIG. 2) and after the second step (step 103 of FIG. 2) remain in the process chamber 50 in the process chamber 50. a third step of forming a getter-effective materials to gases or water (H 2 O) (step 104 in FIG. 2), a predetermined time after the third step (step 104 in FIG. 2), the process chamber 50 4th step (step 105 in FIG. 2) and after the 4th step (step 105 in FIG. 2), an adhesive film forming step of forming an adhesive film on the base material S provided in the process chamber 50. (Step 107 in FIG. 2), and the first step or (step 102 in FIG. 2) sets the time of the third step (step 104 in FIG. 2) to P1 and the time in the first step (step 102 in FIG. 2). When the total time of the second step (step 103 of FIG. 2) or the total time of the third step (step 104 of FIG. 2) and the fourth step (step 105 of FIG. 2) is P, the duty ratio D = P1 /. The exhaust unit V50 and the gas introduction unit G1 are controlled so that P is 34% or more and 66% or less.
(実施例1-1)
 図11は、第2実施形態の成膜装置を使用した場合における実施例1-1、実施例1-2及び実施例1-3の成膜方法のフローを示す図である。以下、このフローチャートを参照して、各工程を説明する。ゲッター工程33の基本構成は、図2の第1実施形態の成膜装置を使用した場合における成膜方法と同じである。即ち、図11のゲッター工程33は、図2の成膜方法のステップ102からステップ105から構成される。
 図11の実施例1-1の成膜方法が図2の成膜方法と相違する点は、キャリア移載:ステップ31、密着膜用ターゲットクリーニング工程:ステップ34:シード膜用ターゲットクリーニング工程:ステップ36、キャリア排出工程:ステップ38を追加したことである。
(Example 1-1)
FIG. 11 is a diagram showing a flow of a film forming method of Example 1-1, Example 1-2, and Example 1-3 when the film forming apparatus of the second embodiment is used. Hereinafter, each step will be described with reference to this flowchart. The basic configuration of the getter step 33 is the same as the film forming method when the film forming apparatus of the first embodiment of FIG. 2 is used. That is, the getter step 33 of FIG. 11 is composed of steps 102 to 105 of the film forming method of FIG.
The difference between the film forming method of Example 1-1 in FIG. 11 and the film forming method of FIG. 2 is that carrier transfer: step 31, target cleaning step for adhesive film: step 34: target cleaning step for seed film: step. 36, Carrier discharge step: Step 38 has been added.
 ステップ31では、キャリアCRをプロセス室50内の保持部60に移載する。 In step 31, the carrier CR is transferred to the holding unit 60 in the process chamber 50.
 ステップ32では、エッチング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させてイオンガンI1、I2を成膜領域FFA(基材Sと対向する側)に向ける。ガス導入部G1からプロセス室50内の圧力が安定化した後にイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化する。そして、エッチング処理をするために、成膜領域FFAへ向かってキャリアの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで基材Sをエッチングする。エッチング工程が完了した時点でイオンガンI1、I2への電圧印加を停止する。本実施形態では、導入ガスとしてArガスを用いたが、これに限られることはなく、窒素、酸素、水素などの反応性のガスを用いることもできる。 In step 32, an etching step is performed. The holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized from the gas introduction unit G1, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Then, in order to perform the etching process, the carrier is started to be conveyed toward the film forming region FFA, and the base material S is etched by passing the carrier through the film forming region FFA a predetermined number of times at a preset transfer speed. .. When the etching step is completed, the voltage application to the ion guns I1 and I2 is stopped. In the present embodiment, Ar gas is used as the introduction gas, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
 ステップ33では、ゲッター工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1、I2を成膜領域FFA以外(基板Sと対向しない側)に向ける。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MSとして、プロセス室50のチャンバの内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料(例えばTi膜)で形成された防着板が設置されており、この状態でイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化すると、防着板がスパッタリングされ、成膜領域FFA以外のチャンバの内壁およびイオンガンI1、I2の磁極に前記材料(例えばTi膜)を付着させることができる。この「ゲッター工程」は、防着板MSのスパッタリングとスパッタリング後の排気を一連の動作とするゲッタープロセス(図3のステップ102とステップ103又は図3のステップ104とステップ105)を2回以上繰り返すので、プロセス室50内の圧力もしくは水(HO)分圧が所定の圧力以下となるまで継続することが望ましい。ここで、ステップ33のゲッター工程で反応性ガスを使用する場合は、ステップ34の開始前に反応性ガスの導入を停止する。 In step 33, a getter step is performed. The holding body holding the plurality of targets and the ion gun is rotated so that the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the substrate S). The inner wall of the chamber of the process chamber 50 other than the film formation region FFA, as a getter material supply source MS, gas remaining in the inner wall of the chamber of the process chamber 50 or water (H 2 O) getter effect with respect to material having a large (e.g. A protective plate made of (Ti film) is installed. In this state, when a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma, the protective plate is sputtered and other than the film formation region FFA. The material (for example, Ti film) can be attached to the inner wall of the chamber and the magnetic poles of the ion guns I1 and I2. In this "getter step", the getter process (step 102 and step 103 in FIG. 3 or step 104 and step 105 in FIG. 3) in which the sputtering of the adhesive plate MS and the exhaust after the sputtering are performed as a series of operations is repeated two or more times. because, it is desirable that the pressure or water (H 2 O) partial pressure of the process chamber 50 is continued until the predetermined pressure or less. Here, when the reactive gas is used in the getter step of step 33, the introduction of the reactive gas is stopped before the start of step 34.
 ステップ34では、密着膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFA以外(基材Sと対向しな側)に向けて、プロセス室50の圧力が安定化した後にターゲットT1、T3に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT1、T3のクリーニングを行う。 In step 34, a cleaning step of the target used for forming the adhesive film is performed. The process chamber 50 is rotated so that the holding body holding the plurality of targets and the ion gun is directed so that the targets T1 and T3 (for example, all Ti targets) are directed to other than the film formation region FFA (the side facing the base material S). After the pressure is stabilized, electric power is applied to the targets T1 and T3 to turn Ar gas into plasma, and the targets T1 and T3 are cleaned for a predetermined time with a preset power.
 ステップ35では、密着膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFA(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3(例えば、いずれもTiターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、基材S上に密着膜(例えば、Ti膜)を成膜するために、成膜領域FFAへ向かってキャリアの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに密着膜(例えば、Ti膜)を成膜する。 In step 35, an adhesive film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma. Then, in order to form an adhesive film (for example, Ti film) on the base material S, the carrier is started to be transferred toward the film forming region FFA, and the film is formed a specified number of times at a preset transfer speed. By passing the region FFA, an adhesive film (for example, Ti film) is formed on the base material S.
 ステップ36では、シード膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA以外(基材Sと対向しない側)に向けて、プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間にターゲットT2、T4(例えば、いずれもCuターゲット)のクリーニングを行う。 In step 36, a cleaning step of the target used for forming the seed film is performed. By rotating the retainer that holds the plurality of targets and the ion gun, the targets T2 and T4 (for example, all Cu targets) are directed to other than the film formation region FFA (the side that does not face the base material S) in the process chamber 50. After the pressure stabilizes, power is applied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are converted to plasma at a predetermined time with a preset power. Clean the target).
 ステップ37では、シード膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、前記密着膜(例えば、Ti膜)上にシード膜(例えば、Cu膜)を成膜するために、成膜領域FFAへ向かってキャリアの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに成膜された密着膜(例えば、Ti膜)上にシード膜(例えば、Cu膜)を成膜する。 In step 37, a seed film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma. Then, in order to form a seed film (for example, Cu film) on the adhesion film (for example, Ti film), carrier transfer is started toward the film formation region FFA, and the carrier is designated at a preset transfer speed. A seed film (for example, Cu film) is formed on the adhesive film (for example, Ti film) formed on the base material S by passing the film formation region FFA for the number of times.
 ステップ38では、プロセス室50内の保持部60からキャリアを取り外し、プロセス室50からキャリアCRを排出する。 In step 38, the carrier is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
 本実施例1-1によれば、ゲッター材供給源MSを膜形成用のカソードとは別に設けることで、回転カソードへのゲッター材供給源としてのターゲットの設置が不要となり、スパッタ膜種に制限されることなく、ゲッター工程を実施することができる。また、イオンビームスパッタによりチャンバ内壁にゲッター効果が大きい材料(例えばTi膜)を付着させた範囲に加えて、ゲッター材供給源MSである防着板MS(例えば、Ti)がイオンビーム照射により活性化されることでガス分子の吸着面として作用する。従って、ガス分子が吸着する吸着面の面積が広くなり、高いゲッター効果を得ることができる。さらに、ゲッター工程において、ゲッタープロセスを複数回行うことで、ガス分子が吸着する面をゲッタープロセス毎に活性化することができるので吸着効果の促進と、Arガスの供給を停止した時点でArガスとともに水(HO)ガスも速やかに排気されるのでプロセス室50内の清浄化が促進される。
 また、本実施例1-1によれば、プロセス室50内の圧力若しくは四重極型質量分析計RGAでプロセス室50内の水(HO)分圧を常時測定することで、所定の圧力以下となるまでゲッター工程を継続することができるので、密着膜形成時のプロセス室50内の雰囲気を安定化することができる。
According to the present embodiment 1-1, by providing the getter material supply source MS separately from the cathode for film formation, it is not necessary to install a target as a getter material supply source on the rotating cathode, and the number of sputtered film types is limited. The getter process can be carried out without being carried out. Further, in addition to the range in which a material having a large getter effect (for example, Ti film) is attached to the inner wall of the chamber by ion beam sputtering, the adhesion plate MS (for example, Ti) which is the getter material supply source MS is activated by ion beam irradiation. When it is converted, it acts as an adsorption surface for gas molecules. Therefore, the area of the adsorption surface on which the gas molecules are adsorbed becomes large, and a high getter effect can be obtained. Furthermore, in the getter process, by performing the getter process multiple times, the surface on which gas molecules are adsorbed can be activated for each getter process, so that the adsorption effect is promoted and the Ar gas is stopped when the supply of Ar gas is stopped. water (H 2 O) cleaning of the process chamber 50 so the gas is also exhausted quickly is promoted with.
Further, according to this embodiment 1-1, a pressure or quadrupole mass spectrometer RGA process chamber 50 within the process chamber 50 of water (H 2 O) partial pressure by constantly measuring the predetermined Since the getter process can be continued until the pressure becomes lower than the pressure, the atmosphere in the process chamber 50 at the time of forming the adhesive film can be stabilized.
(実施例1-2)
 次に、図11の実施例1-1の成膜方法のフローチャートを用いて、実施例1-1の変形例である実施例1-2の成膜方法について、説明する。実施例1-2の成膜方法が、実施例1-1の成膜方法と相違する点は、ステップ33である。ゲッター工程33の基本構成は、図2の成膜方法と同じである。即ち、図11のゲッター工程33は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
 以下、図11のフローチャート及び図6を参照して、ステップ33について説明する。ステップ31、ステップ32,ステップ34からステップ38の各工程は、実施例1-1の各工程と同じなので、説明を省略する。
(Example 1-2)
Next, the film forming method of Example 1-2, which is a modification of Example 1-1, will be described with reference to the flowchart of the film forming method of Example 1-1 of FIG. The difference between the film forming method of Example 1-2 and the film forming method of Example 1-1 is step 33. The basic configuration of the getter step 33 is the same as the film forming method of FIG. That is, the getter step 33 of FIG. 11 is composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
Hereinafter, step 33 will be described with reference to the flowchart of FIG. 11 and FIG. Since each step of step 31, step 32, and steps 34 to 38 is the same as each step of Example 1-1, the description thereof will be omitted.
 実施例1-2のステップ33:ゲッター工程では、図6のように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。そして、成膜領域FFA以外のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。 Step 33 of Example 1-2: In the getter step, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated so that the targets T1 and T3 are placed on the target T1 and T3 other than the film formation region FFA (opposing the base material S). Turn to the side that does not). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
(実施例1-3)
 次に、図11の実施例1-1の成膜方法のフローチャートを用いて、実施例1-1の変形例である実施例1-3の成膜方法について、説明する。実施例1-3の成膜方法が、実施例1-1の成膜方法と相違する点は、ステップ33である。ゲッター工程33の基本構成は、図2の成膜方法と同じである。即ち、図11のゲッター工程33は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
 以下、図11のフローチャート及び図5を参照して、ステップ33について説明する。ステップ31、ステップ32,ステップ34からステップ38の各工程は、実施例1-1の各工程と同じなので、説明を省略する。
(Example 1-3)
Next, the film forming method of Example 1-3, which is a modification of Example 1-1, will be described with reference to the flowchart of the film forming method of Example 1-1 of FIG. The difference between the film forming method of Example 1-3 and the film forming method of Example 1-1 is step 33. The basic configuration of the getter step 33 is the same as the film forming method of FIG. That is, the getter step 33 of FIG. 11 is composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
Hereinafter, step 33 will be described with reference to the flowchart of FIG. 11 and FIG. Since each step of step 31, step 32, and steps 34 to 38 is the same as each step of Example 1-1, the description thereof will be omitted.
 実施例1-3のステップ33:ゲッター工程では、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用して行う。この場合には、図5に示すように、イオンガンI1、I2を成膜領域FFA以外(基材Sと対向しない側)に向ける。この時、ターゲットT1、T3はプロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、ターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用する方法は、図6の場合でも可能である。この場合には、図6に示すように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向ける。この場合、イオンガンI1、I2は、プロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、ターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用する方法は、図5の場合と図6の場合とを併用することでも可能である。
 この場合には、図5に示すように、イオンガンI1、I2を成膜領域FFA以外(基材Sと対向しない側)に向ける。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、Arガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させる。
 この時、イオンガンI1、I2により、プロセス室50の上部内壁に形成された防着板MS1、MS2がスパッタリングされる。
 この状態で、図6に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向けると、ターゲットT1、T3はプロセス室50の上部内壁と対向した状態となる。プロセス室50の圧力が安定化した後にターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。これにより、イオンガンI1、I2でスパッタリングされた、プロセス室50の上部内壁に形成された防着板MS1、MS2にもゲッター効果が大きい物質を成膜することができる。
Step 33 of Example 1-3: In the getter step, the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 are used in combination. In this case, as shown in FIG. 5, the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S). At this time, the targets T1 and T3 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination is also possible in the case of FIG. In this case, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 to other than the film formation region FFA (the side not facing the base material S). In this case, the ion guns I1 and I2 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned methods using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
In this case, as shown in FIG. 5, the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S). In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect is attached to the material.
At this time, the ion guns I1 and I2 sputter the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50.
In this state, as shown in FIG. 6, the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 to other than the film formation region FFA (the side not facing the base material S). Then, the targets T1 and T3 are in a state of facing the upper inner wall of the process chamber 50. After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. As a result, a substance having a large getter effect can be formed on the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50, which are sputtered by the ion guns I1 and I2.
(実施例2-1)
 上述の図11の実施例1-1では、エッチング工程と密着膜形成工程の間にゲッター工程を行う例について説明したが、ゲッター工程をエッチング工程の前に行ってもよい。ゲッター工程をエッチング工程の前に行う例について、実施例2-1として以下に説明する。図12は、実施例2-1、実施例2-2及び実施例2-3の成膜方法の処理手順を示すフローチャートである。ゲッタープロセスとゲッター工程42の基本構成は、図2の成膜方法と同じである。即ち、図6のゲッター工程42は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
(Example 2-1)
In Example 1-1 of FIG. 11 described above, an example in which the getter step is performed between the etching step and the adhesion film forming step has been described, but the getter step may be performed before the etching step. An example in which the getter step is performed before the etching step will be described below as Example 2-1. FIG. 12 is a flowchart showing a processing procedure of the film forming method of Example 2-1 and Example 2-2 and Example 2-3. The basic configuration of the getter process and the getter process 42 is the same as the film forming method of FIG. That is, the getter step 42 of FIG. 6 is composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
 ステップ41では、キャリアCRをプロセス室50内の保持部60に移載する。 In step 41, the carrier CR is transferred to the holding unit 60 in the process chamber 50.
 ステップ42では、ゲッター工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1、I2を成膜領域FFA以外に向ける。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MSとして、防着板(例えば、Ti製)が設置されており、この状態でイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化すると、防着板(例えば、Ti製)がスパッタリングされ、成膜領域FFA以外のチャンバの内壁およびイオンガンの磁極にゲッター効果が大きい材料(例えばTi膜)を付着させることができる。この「ゲッター工程」は、Ti製防着板のスパッタリングとスパッタリング後の排気を一連の動作とするゲッタープロセスして、この動作を2回以上繰り返すので、プロセス室50内の圧力もしくはHO分圧が所定の圧力以下となるまで継続することが望ましい。 In step 42, a getter step is performed. The holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 to other than the film formation region FFA. A protective plate (for example, made of Ti) is installed as a getter material supply source MS on the inner wall of the chamber of the process chamber 50 other than the film forming region FFA, and in this state, a voltage is applied to the ion guns I1 and I2. When Ar gas is turned into plasma, the adhesive plate (for example, made of Ti) is sputtered, and a material having a large getter effect (for example, Ti film) can be attached to the inner wall of the chamber other than the film formation region FFA and the magnetic pole of the ion gun. can. The "getter process", the getter process is an exhaust after sputtering and the sputtering of the Ti deposition preventing plate and a series of operations, since the operation is repeated two or more times, the pressure in the process chamber 50 or H 2 O content It is desirable to continue until the pressure drops below a predetermined pressure.
 ステップ43では、エッチング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させてイオンガンI1、I2を成膜領域FFAに向ける。プロセス室50内の圧力が安定化した後にイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化する。そして、エッチング処理をするために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFA(基材Sと対向する側)を通過させることで基材Sをエッチングする。エッチング工程が完了した時点でイオンガンI1、I2への電圧印加を停止する。本実施形態では、ガス導入部G1からの導入ガスとしてArガスを用いたが、これに限られることはなく、窒素、酸素、水素などの反応性のガスを用いることもできる。 In step 43, an etching step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA. After the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Then, in order to perform the etching process, the carrier CR is started to be conveyed toward the film forming region FFA, and the film forming region FFA (the side facing the base material S) is subjected to a predetermined number of times at a preset transfer speed. The base material S is etched by passing it through. When the etching step is completed, the voltage application to the ion guns I1 and I2 is stopped. In the present embodiment, Ar gas is used as the gas introduced from the gas introduction unit G1, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
 ステップ44では、密着膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFA以外(基材Sと対向しない側)に向けて、プロセス室50の圧力が安定化した後にターゲットT1、T3(例えば、いずれもTiターゲット)に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT1、T3(例えば、いずれもTiターゲット)のクリーニングを行う。 In step 44, a cleaning step of the target used for forming the adhesive film is performed. By rotating the retainer that holds the plurality of targets and the ion gun, the targets T1 and T3 (for example, all Ti targets) are directed to other than the film formation region FFA (the side that does not face the base material S) in the process chamber 50. After the pressure stabilizes, power is applied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma, and the preset power is used for a predetermined time to target T1 and T3 (for example, both Ti targets). ) Cleaning.
 ステップ45では、密着膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFA(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3(例えば、いずれもTiターゲット)Tiターゲットに予め設定された電力を供給しArガスをプラズマ化する。そして、密着膜(例えば、Ti膜)を成膜するために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに密着膜(例えば、Ti膜)を成膜する。 In step 45, an adhesive film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized, preset power is supplied to the targets T1 and T3 (for example, both Ti targets) Ti targets to turn Ar gas into plasma. Then, in order to form an adhesive film (for example, a Ti film), the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed. By allowing the substrate S to form an adhesive film (for example, a Ti film).
 ステップ46では、シード膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA以外に向けて、プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT2、T4(例えば、いずれもCuターゲット)のクリーニングを行う。 In step 46, a cleaning step of the target used for forming the seed film is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) to other than the film formation region FFA, and after the pressure in the process chamber 50 is stabilized, the targets T2, Electric power is applied to T4 (for example, both Cu targets) to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are cleaned with a preset power for a predetermined time.
 ステップ47では、シード膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、シード膜(例えば、Cu膜)を成膜するために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに形成された密着膜上にシード膜(例えば、Cu膜)を成膜する。 In step 47, a seed film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma. Then, in order to form a seed film (for example, Cu film), the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed. A seed film (for example, a Cu film) is formed on the adhesive film formed on the base material S.
 ステップ48では、プロセス室50内の保持部60からキャリアを取り外し、プロセス室50からキャリアCRを排出する。 In step 48, the carrier is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
 本実施例2-1によれば、エッチング工程前に成膜領域FFA以外のチャンバ内壁にゲッター効果が大きい材料(例えばTi膜)を付着させることができ、さらにはゲッター工程でイオンガンの磁極にゲッター効果が大きい材料(例えばTi膜)がコーティングされるので、エッチング工程の最中に成膜領域FFAにゲッター作用がある活性な吸着面が露出する状態となることから、エッチングで基材Sから放出した水(HO)ガスをリアルタイムで吸着させることができる。 According to the second embodiment, a material having a large getter effect (for example, a Ti film) can be attached to the inner wall of the chamber other than the film formation region FFA before the etching process, and further, a getter is attached to the magnetic pole of the ion gun in the getter process. Since a material with a large effect (for example, Ti film) is coated, the active adsorption surface having a getter action is exposed in the film formation region FFA during the etching process, so that it is released from the base material S by etching. the water (H 2 O) gas can be adsorbed in real time.
(実施例2-2)
 次に、図12の実施例2-1の成膜方法のフローチャートを用いて、実施例2-1の変形例である実施例2-2の成膜方法について、説明する。実施例2-2の成膜方法が、実施例2-1の成膜方法と相違する点は、ステップ42である。ゲッター工程42の基本構成は、図2の成膜方法と同じである。即ち、図12のゲッター工程33は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
 以下、図12のフローチャート及び図6を参照して、ステップ42について説明する。ステップ41、ステップ43からステップ48の各工程は、実施例2-1の各工程と同じなので、説明を省略する。
(Example 2-2)
Next, the film forming method of Example 2-2, which is a modification of Example 2-1, will be described with reference to the flowchart of the film forming method of Example 2-1 of FIG. The difference between the film forming method of Example 2-2 and the film forming method of Example 2-1 is step 42. The basic configuration of the getter step 42 is the same as the film forming method of FIG. That is, the getter step 33 of FIG. 12 is composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
Hereinafter, step 42 will be described with reference to the flowchart of FIG. 12 and FIG. Since each step of step 41 and steps 43 to 48 is the same as each step of Example 2-1, the description thereof will be omitted.
 実施例2-2のステップ42:ゲッター工程では、図6のように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。そして、成膜領域FFA以外のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。 Step 42 of Example 2-2: In the getter step, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated so that the targets T1 and T3 are placed on the target T1 and T3 other than the film formation region FFA (opposing the base material S). Turn to the side that does not). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
(実施例2-3)
 次に、図12の実施例2-1の成膜方法のフローチャートを用いて、実施例2-1の変形例である実施例2-3の成膜方法について、説明する。実施例2-3の成膜方法が、実施例2-1の成膜方法と相違する点は、ステップ42である。ゲッター工程42の基本構成は、図2の成膜方法と同じである。即ち、図12のゲッター工程42は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
 以下、図12のフローチャート及び図5を参照して、ステップ42について説明する。ステップ41、ステップ43からステップ48の各工程は、実施例2-1の各工程と同じなので、説明を省略する。
(Example 2-3)
Next, the film forming method of Example 2-3, which is a modification of Example 2-1, will be described with reference to the flowchart of the film forming method of Example 2-1 of FIG. The difference between the film forming method of Example 2-3 and the film forming method of Example 2-1 is step 42. The basic configuration of the getter step 42 is the same as the film forming method of FIG. That is, the getter step 42 of FIG. 12 is composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
Hereinafter, step 42 will be described with reference to the flowchart of FIG. 12 and FIG. Since each step of step 41 and steps 43 to 48 is the same as each step of Example 2-1, the description thereof will be omitted.
 実施例2-3のステップ33:ゲッター工程では、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用して行う。この場合には、図5に示すように、イオンガンI1、I2を成膜領域FFA以外(基材Sと対向しない側)に向ける。この時、ターゲットT1、T3はプロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、ターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用する方法は、図6の場合でも可能である。この場合には、図6に示すように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向ける。この場合、イオンガンI1、I2は、プロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、ターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用する方法は、図5の場合と図6の場合とを併用することでも可能である。
 この場合には、図5に示すように、イオンガンI1、I2を成膜領域FFA以外(基材Sと対向しない側)に向ける。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、Arガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させる。
 この時、イオンガンI1、I2により、プロセス室50の上部内壁に形成された防着板MS1、MS2がスパッタリングされる。
 この状態で、図6に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向けると、ターゲットT1、T3はプロセス室50の上部内壁と対向した状態となる。プロセス室50の圧力が安定化した後にターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。これにより、イオンガンI1、I2でスパッタリングされた、プロセス室50の上部内壁に形成された防着板MS1、MS2にもゲッター効果が大きい物質を成膜することができる。
Step 33 of Example 2-3: In the getter step, the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 are used in combination. In this case, as shown in FIG. 5, the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S). At this time, the targets T1 and T3 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination is also possible in the case of FIG. In this case, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 to other than the film formation region FFA (the side not facing the base material S). In this case, the ion guns I1 and I2 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned methods using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
In this case, as shown in FIG. 5, the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S). In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect is attached to the material.
At this time, the ion guns I1 and I2 sputter the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50.
In this state, as shown in FIG. 6, the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 to other than the film formation region FFA (the side not facing the base material S). Then, the targets T1 and T3 are in a state of facing the upper inner wall of the process chamber 50. After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. As a result, a substance having a large getter effect can be formed on the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50, which are sputtered by the ion guns I1 and I2.
(実施例3-1)
 上述の実施例1-1では、エッチング工程と密着膜形成工程の間にゲッター工程を行う例、実施例2-1ではゲッター工程をエッチング工程の前に行う例について各々説明したが、ゲッター工程をエッチング工程の前と、エッチング工程と密着膜形成工程の間の両方に行ってもよい。ゲッター工程をエッチング工程の前と、エッチング工程と密着膜形成工程の間の両方に行う例について、実施例3-1として以下に説明する。図13は、実施例3-1、実施例3-2及び実施例3-3の成膜方法のフローチャートである。ゲッター工程52及びゲッター工程54の基本構成は、図2の成膜方法と同じである。即ち、図6のゲッター工程42は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
(Example 3-1)
In Example 1-1 described above, an example in which the getter step is performed between the etching step and the adhesion film forming step is described, and in Example 2-1 the example in which the getter step is performed before the etching step is described. It may be performed both before the etching step and between the etching step and the adhesion film forming step. An example in which the getter step is performed both before the etching step and between the etching step and the adhesion film forming step will be described below as Example 3-1. FIG. 13 is a flowchart of the film forming method of Example 3-1 and Example 3-2 and Example 3-3. The basic configuration of the getter step 52 and the getter step 54 is the same as the film forming method of FIG. That is, the getter step 42 of FIG. 6 is composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
 ステップ51では、キャリアCRをプロセス室50内の保持部60に移載する。 In step 51, the carrier CR is transferred to the holding unit 60 in the process chamber 50.
 ステップ52では、ゲッター工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1、I2を成膜領域FFA以外に向ける。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MSとして、防着板(例えば、Ti製)が設置されており、この状態でイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化すると、防着板(例えば、Ti製)がスパッタリングされ、成膜領域FFA以外のチャンバの内壁およびイオンガンI1、I2の磁極にTi膜を付着させることができる。この「ゲッター工程」は、Ti製防着板のスパッタリングとスパッタリング後の排気を一連の動作とするゲッタープロセスして、この動作を2回以上繰り返すので、プロセス室50内の圧力もしくはHO分圧が所定の圧力以下となるまで継続することが望ましい。 In step 52, a getter step is performed. The holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 to other than the film formation region FFA. A protective plate (for example, made of Ti) is installed as a getter material supply source MS on the inner wall of the chamber of the process chamber 50 other than the film forming region FFA, and in this state, a voltage is applied to the ion guns I1 and I2. When the Ar gas is turned into plasma, the adhesion plate (for example, made of Ti) is sputtered, and the Ti film can be attached to the inner wall of the chamber other than the film formation region FFA and the magnetic poles of the ion guns I1 and I2. The "getter process", the getter process is an exhaust after sputtering and the sputtering of the Ti deposition preventing plate and a series of operations, since the operation is repeated two or more times, the pressure in the process chamber 50 or H 2 O content It is desirable to continue until the pressure drops below a predetermined pressure.
 ステップ53では、エッチング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させてイオンガンI1、I2を成膜領域FFAに向ける。ガス導入部G1からプロセス室50内の圧力が安定化した後にイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化する。そして、エッチング処理をするために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで基材Sをエッチングする。エッチング工程が完了した時点でイオンガンへの電圧印加を停止する。本実施形態では、導入ガスとしてArガスを用いたが、これに限られることはなく、窒素、酸素、水素などの反応性のガスを用いることもできる。 In step 53, an etching step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA. After the pressure in the process chamber 50 is stabilized from the gas introduction unit G1, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Then, in order to perform the etching process, the carrier CR is started to be transported toward the film forming region FFA, and the base material S is etched by passing the carrier CR through the film forming region FFA a predetermined number of times at a preset transport speed. do. When the etching process is completed, the voltage application to the ion gun is stopped. In the present embodiment, Ar gas is used as the introduction gas, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
 ステップ54では、ゲッター工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、イオンガンI1、I2を成膜領域FFA以外に向ける。成膜領域FFA以外のプロセス室50のチャンバ内壁には、ゲッター材供給源MSとして、防着板(例えば、Ti製)が設置されており、この状態でイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化すると、防着板(例えば、Ti製)がスパッタリングされ、成膜領域FFA以外のチャンバの内壁およびイオンガンI1、I2の磁極にゲッター効果が大きい材料(例えばTi膜)を付着させることができる。この「ゲッター工程」は、Ti製防着板のスパッタリングとスパッタリング後の排気を一連の動作とするゲッタープロセスして、この動作を2回以上繰り返すので、プロセス室50内の圧力もしくはHO分圧が所定の圧力以下となるまで継続することが望ましい。 In step 54, a getter step is performed. The holding body holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 to other than the film formation region FFA. A protective plate (for example, made of Ti) is installed as a getter material supply source MS on the inner wall of the chamber of the process chamber 50 other than the film forming region FFA, and in this state, a voltage is applied to the ion guns I1 and I2. When Ar gas is turned into plasma, the adhesive plate (for example, made of Ti) is sputtered, and a material having a large getter effect (for example, Ti film) is attached to the inner wall of the chamber other than the film formation region FFA and the magnetic poles of the ion guns I1 and I2. Can be made to. The "getter process", the getter process is an exhaust after sputtering and the sputtering of the Ti deposition preventing plate and a series of operations, since the operation is repeated two or more times, the pressure in the process chamber 50 or H 2 O content It is desirable to continue until the pressure drops below a predetermined pressure.
 ステップ55では、密着膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、Tiターゲット)を成膜領域FFA以外(基材Sと対向しない側)に向けて、プロセス室の圧力が安定化した後にターゲットT1、T3(例えば、Tiターゲット)に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT1、T3(例えば、Tiターゲット)のクリーニングを行う。 In step 55, a cleaning step of the target used for forming the adhesive film is performed. The pressure in the process chamber is stable by rotating the retainer that holds the plurality of targets and the ion gun so that the targets T1 and T3 (for example, the Ti target) are directed to other than the film formation region FFA (the side that does not face the base material S). After the conversion, electric power is applied to the targets T1 and T3 (for example, Ti target) to turn Ar gas into plasma, and the targets T1 and T3 (for example, Ti target) are cleaned with a preset power for a predetermined time.
 ステップ56では、密着膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFAに向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3(例えば、いずれもTiターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、密着膜(例えば、Ti膜)を成膜するために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに密着膜(例えば、Ti膜)を成膜する。 In step 56, an adhesive film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA. After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma. Then, in order to form an adhesive film (for example, a Ti film), the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed. By allowing the substrate S to form an adhesive film (for example, a Ti film).
 ステップ57では、シード膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA以外(基材Sと対向しない側)に向けて、プロセス室50の圧力が安定化した後にCuターゲットに電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT2、T4(例えば、いずれもCuターゲット)のクリーニングを行う。 In step 57, a cleaning step of the target used for forming the seed film is performed. By rotating the retainer that holds the plurality of targets and the ion gun, the targets T2 and T4 (for example, all Cu targets) are directed to other than the film formation region FFA (the side that does not face the base material S) in the process chamber 50. After the pressure stabilizes, power is applied to the Cu target to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are cleaned with a preset power for a predetermined time.
 ステップ58では、シード膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、シード膜(例えば、Cu膜)を成膜するために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに形成された密着膜上にシード膜(例えば、Cu膜)を成膜する。 In step 58, a seed film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma. Then, in order to form a seed film (for example, Cu film), the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed. A seed film (for example, a Cu film) is formed on the adhesive film formed on the base material S.
 ステップ59では、プロセス室50内の保持部60からキャリアCRを取り外し、プロセス室50からキャリアCRを排出する。 In step 59, the carrier CR is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
 本実施例3-1によれば、上述の実施例1-1と実施例2-1の双方の効果を発揮することができる。具体的には、エッチング工程中のリアルタイムのゲッター効果と密着膜形成工程前のプロセス室内の雰囲気の清浄化の双方の効果を期待できる。 According to the present Example 3-1, the effects of both the above-mentioned Examples 1-1 and 2-1 can be exhibited. Specifically, both the real-time getter effect during the etching process and the effect of cleaning the atmosphere in the process chamber before the adhesion film forming process can be expected.
(実施例3-2)
 次に、図13の実施例3-1の成膜方法のフローチャートを用いて、実施例3-1の変形例である実施例3-2の成膜方法について、説明する。実施例3-2の成膜方法が、実施例3-1の成膜方法と相違する点は、ステップ52とステップ54である。ゲッター工程52とゲッター工程54の基本構成は、図2の成膜方法と同じである。即ち、図13のゲッター工程52とゲッター工程54は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
 以下、図13のフローチャート及び図6を参照して、ステップ52とステップ54について説明する。ステップ51、ステップ53,ステップ55からステップ58の各工程は、実施例3-1の各工程と同じなので、説明を省略する。
(Example 3-2)
Next, the film forming method of Example 3-2, which is a modification of Example 3-1 will be described with reference to the flowchart of the film forming method of Example 3-1 of FIG. The difference between the film forming method of Example 3-2 and the film forming method of Example 3-1 is step 52 and step 54. The basic configuration of the getter step 52 and the getter step 54 is the same as the film forming method of FIG. That is, the getter step 52 and the getter step 54 of FIG. 13 are composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
Hereinafter, steps 52 and 54 will be described with reference to the flowchart of FIG. 13 and FIG. Since each step of step 51, step 53, and steps 55 to 58 is the same as each step of Example 3-1. Therefore, the description thereof will be omitted.
 実施例3-2のステップ52とステップ54:ゲッター工程では、図6のように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。そして、成膜領域FFA以外のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することができる。 Step 52 and Step 54 of Example 3-2: In the getter step, as shown in FIG. 6, the retainer holding the plurality of targets and the ion gun is rotated to set the targets T1 and T3 other than the film formation region FFA (base material). Turn to the side that does not face S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Then, it is possible to deposit the getter effect is greater substance to gas or water remaining on the inner wall of the process chamber 50 other than the film formation region FFA (H 2 O).
(実施例3-3)
 次に、図13の実施例3-1の成膜方法のフローチャートを用いて、実施例3-1の変形例である実施例3-3の成膜方法について、説明する。実施例3-3の成膜方法が、実施例3-1の成膜方法と相違する点は、ステップ52とステップ54である。ゲッター工程52とゲッター工程54の基本構成は、図2の成膜方法と同じである。即ち、図13のゲッター工程52とゲッター工程54は、図2の成膜方法のステップ102からステップ105から構成される。ゲッタープロセスは図2の成膜方法のステップ102とステップ103又はステップ104とステップ105から構成される。
 以下、図13のフローチャート及び図5を参照して、ステップ52とステップ54について説明する。ステップ51、ステップ53,ステップ55からステップ58の各工程は、実施例3-1の各工程と同じなので、説明を省略する。
(Example 3-3)
Next, the film forming method of Example 3-3, which is a modification of Example 3-1 will be described with reference to the flowchart of the film forming method of Example 3-1 of FIG. The difference between the film forming method of Example 3-3 and the film forming method of Example 3-1 is step 52 and step 54. The basic configuration of the getter step 52 and the getter step 54 is the same as the film forming method of FIG. That is, the getter step 52 and the getter step 54 of FIG. 13 are composed of steps 102 to 105 of the film forming method of FIG. The getter process is composed of step 102 and step 103 or step 104 and step 105 of the film forming method shown in FIG.
Hereinafter, steps 52 and 54 will be described with reference to the flowchart of FIG. 13 and FIG. Since each step of step 51, step 53, and steps 55 to 58 is the same as each step of Example 3-1. Therefore, the description thereof will be omitted.
 実施例3-3のステップ52とステップ54:ゲッター工程では前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用して行う。この場合には、図5に示すように、イオンガンI1、I2を成膜領域FFA以外(基材Sと対向しない側)に向ける。この時、ターゲットT1、T3はプロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、ターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用する方法は、図6の場合でも可能である。この場合には、図6に示すように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向ける。この場合、イオンガンI1、I2は、プロセス室50の内壁の側壁と対向した位置になる。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、ターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができる。
 また、前述したイオンガンI1、I2を用いる方法とターゲットT1、T3を用いる方法とを併用する方法は、図5の場合と図6の場合とを併用することでも可能である。
 この場合には、図5に示すように、イオンガンI1、I2を成膜領域FFA以外(基材Sと対向しない側)に向ける。この状態で、プロセス室50の圧力が安定化した後に、イオンガンI1、I2に電圧を印加し、Arガスをプラズマ化する。成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁の側壁及び成膜領域FFA(基板Sと対向する側)のプロセス室50の内壁に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させる。
 この時、イオンガンI1、I2により、プロセス室50の上部内壁に形成された防着板MS1、MS2がスパッタリングされる。
 この状態で、図6に示されているように、複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3を成膜領域FFA以外(基材Sと対向しない側)に向けると、ターゲットT1、T3はプロセス室50の上部内壁と対向した状態となる。プロセス室50の圧力が安定化した後にターゲットT1、T3に予め設定された電力を供給しArガスをプラズマ化する。これにより、イオンガンI1、I2でスパッタリングされた、プロセス室50の上部内壁に形成された防着板MS1、MS2にもゲッター効果が大きい物質を成膜することができる。
Step 52 and Step 54 of Example 3-3: In the getter step, the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 are used in combination. In this case, as shown in FIG. 5, the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S). At this time, the targets T1 and T3 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned method using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination is also possible in the case of FIG. In this case, as shown in FIG. 6, the holding body holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 to other than the film formation region FFA (the side not facing the base material S). In this case, the ion guns I1 and I2 are positioned so as to face the side wall of the inner wall of the process chamber 50. In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2, and preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect can be attached to the material.
Further, the method of using the above-mentioned methods using the ion guns I1 and I2 and the method using the targets T1 and T3 in combination can also be used in combination with the case of FIG. 5 and the case of FIG.
In this case, as shown in FIG. 5, the ion guns I1 and I2 are directed to other than the film formation region FFA (the side not facing the base material S). In this state, after the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Gas or water (H 2 O) remaining on the side wall of the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S) and the inner wall of the process chamber 50 of the film forming region FFA (the side facing the substrate S). A material having a large getter effect is attached to the material.
At this time, the ion guns I1 and I2 sputter the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50.
In this state, as shown in FIG. 6, the retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 to other than the film formation region FFA (the side not facing the base material S). Then, the targets T1 and T3 are in a state of facing the upper inner wall of the process chamber 50. After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 to turn Ar gas into plasma. As a result, a substance having a large getter effect can be formed on the protective plates MS1 and MS2 formed on the upper inner wall of the process chamber 50, which are sputtered by the ion guns I1 and I2.
(比較例)
 前述した本発明のゲッター工程を行わない従来の工程(前述した特許文献1)で密着膜形成工程を行った。図14は、ゲッター工程を行わない成膜方法の処理手順を示すフローチャートである。
(Comparison example)
The adhesive film forming step was performed in a conventional step (Patent Document 1 described above) in which the getter step of the present invention was not performed. FIG. 14 is a flowchart showing a processing procedure of a film forming method that does not perform a getter step.
 ステップ61では、キャリアCRをプロセス室50内の保持部60に移載する。 In step 61, the carrier CR is transferred to the holding unit 60 in the process chamber 50.
 ステップ62では、エッチング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させてイオンガンI1、I2を成膜領域FFAに向ける。プロセス室50内の圧力が安定化した後にイオンガンI1、I2に電圧を印加して、Arガスをプラズマ化する。そして、エッチング処理をするために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで基材Sをエッチングする。エッチング工程が完了した時点でイオンガンI1、I2への電圧印加を停止する。本実施形態では、導入ガスとしてArガスを用いたが、これに限られることはなく、窒素、酸素、水素などの反応性のガスを用いることもできる。 In step 62, an etching step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the ion guns I1 and I2 toward the film formation region FFA. After the pressure in the process chamber 50 is stabilized, a voltage is applied to the ion guns I1 and I2 to turn Ar gas into plasma. Then, in order to perform the etching process, the carrier CR is started to be transported toward the film forming region FFA, and the base material S is etched by passing the carrier CR through the film forming region FFA a predetermined number of times at a preset transport speed. do. When the etching step is completed, the voltage application to the ion guns I1 and I2 is stopped. In the present embodiment, Ar gas is used as the introduction gas, but the present invention is not limited to this, and reactive gases such as nitrogen, oxygen, and hydrogen can also be used.
 ステップ63では、密着膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFA以外に向けて、プロセス室50の圧力が安定化した後にターゲットT1、T3(例えば、いずれもTiターゲット)に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT1、T3(例えば、いずれもTiターゲット)のクリーニングを行う。 In step 63, a cleaning step of the target used for forming the adhesive film is performed. The retainer holding the plurality of targets and the ion gun is rotated so that the targets T1 and T3 (for example, all Ti targets) are directed to other than the film formation region FFA, and after the pressure in the process chamber 50 is stabilized, the targets T1 and T1 are Electric power is applied to T3 (for example, both Ti targets) to turn Ar gas into plasma, and the targets T1 and T3 (for example, both Ti targets) are cleaned with a preset power for a predetermined time.
 ステップ64では、密着膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT1、T3(例えば、いずれもTiターゲット)を成膜領域FFA(基材Sと対向する側)に向ける。プロセス室50の圧力が安定化した後にターゲットT1、T3(例えば、いずれもTiターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、密着膜(例えば、Ti膜)を成膜するために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに密着膜(例えば、Ti膜)を成膜する。 In step 64, an adhesive film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T1 and T3 (for example, all Ti targets) toward the film formation region FFA (the side facing the base material S). After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T1 and T3 (for example, both Ti targets) to turn Ar gas into plasma. Then, in order to form an adhesive film (for example, a Ti film), the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed. By allowing the substrate S to form an adhesive film (for example, a Ti film).
 ステップ65では、シード膜形成で用いるターゲットのクリーニング工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFA以外に向けて、プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に電力を印加してArガスをプラズマ化し、予め設定されたパワーで所定の時間ターゲットT2、T4(例えば、いずれもCuターゲット)のクリーニングを行う。 In step 65, a cleaning step of the target used for forming the seed film is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) to other than the film formation region FFA, and after the pressure in the process chamber 50 is stabilized, the targets T2, Electric power is applied to T4 (for example, both Cu targets) to turn Ar gas into plasma, and the targets T2 and T4 (for example, both Cu targets) are cleaned with a preset power for a predetermined time.
 ステップ66では、シード膜形成工程を行う。複数のターゲットおよびイオンガンを保持する保持体を回転させて、ターゲットT2、T4(例えば、いずれもCuターゲット)を成膜領域FFAに向ける。プロセス室50の圧力が安定化した後にターゲットT2、T4(例えば、いずれもCuターゲット)に予め設定された電力を供給しArガスをプラズマ化する。そして、シード膜(例えば、Cu膜)を成膜するために、成膜領域FFAへ向かってキャリアCRの搬送を開始し、予め設定された搬送速度で指定された回数、成膜領域FFAを通過させることで、基材Sに形成された密着膜上にシード膜(例えば、Cu膜)を成膜する。 In step 66, a seed film forming step is performed. The retainer holding the plurality of targets and the ion gun is rotated to direct the targets T2 and T4 (for example, all Cu targets) toward the film formation region FFA. After the pressure in the process chamber 50 is stabilized, preset electric power is supplied to the targets T2 and T4 (for example, both Cu targets) to turn Ar gas into plasma. Then, in order to form a seed film (for example, Cu film), the carrier CR is started to be conveyed toward the film forming region FFA, and passes through the film forming region FFA a specified number of times at a preset transfer speed. A seed film (for example, a Cu film) is formed on the adhesive film formed on the base material S.
 ステップ67では、プロセス室50内の保持部60からキャリアCRを取り外し、プロセス室50からキャリアCRを排出する。 In step 67, the carrier CR is removed from the holding portion 60 in the process chamber 50, and the carrier CR is discharged from the process chamber 50.
 図15は、第1実施形態(実施例1-1から実施例1-3)、第2実施形態(実施例1-1から実施例1-3,実施例2-1から実施例2-3、実施例3-1から実施例3-3)のゲッター工程において、ゲッタープロセスを2回以上繰り返す場合のガス導入系1024の出力信号の一例を示す図である。プロセス室50には、Arガスが供給される。このガス導入系1024の出力信号において、ガス導入系出力信号の周期(ゲッタープロセスの周期)はP、ガス供給時間(プロセス室50にArガスを供給する時間、プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する時間)はP1、所定時間、プロセス室内50を排気する時間はP2、デューティ比は、D=P1/Pである。
 なお、P1において、プロセス室50に供給するArガスは、図3に示す第1工程又は第3工程の開始と同時にプロセス室内への供給を開始し、第1工程又は第3工程の終了と同時にプロセス室内への供給を停止することが望ましい。
 また、プロセス室内50の排気は、図3に示す第1工程の開始前又は開始と同時に、プロセス室内の排気を開始することが望ましい。
 また、P2において、プロセス室内50の排気は、図3に示す第1工程又は第3工程の終了と同時にプロセス室内へのArガスの供給を停止した状態で、所定時間行うことが望ましい。
 プロセス室50内へのArガスの供給は図1、図9の成膜装置のガス導入部G1で、プロセス室50内の排気は図1、図9の成膜装置の排気部V50で行う。
FIG. 15 shows the first embodiment (Examples 1-1 to 1-3) and the second embodiment (Examples 1-1 to 1-3, Examples 2-1 to 2-3. It is a figure which shows an example of the output signal of the gas introduction system 1024 when the getter process is repeated 2 times or more in the getter process of Examples 3-1 to 3-3). Ar gas is supplied to the process chamber 50. In the output signal of the gas introduction system 1024, the cycle of the gas introduction system output signal (getter process cycle) is P, the gas supply time (time to supply Ar gas to the process chamber 50, gas or water remaining in the process chamber 50). (H 2 O) time of forming a getter-effective material against) is P1, a predetermined time period for exhausting the process chamber 50 is P2, the duty ratio is D = P1 / P.
In P1, the Ar gas supplied to the process chamber 50 starts to be supplied to the process chamber at the same time as the start of the first step or the third step shown in FIG. 3, and at the same time as the end of the first step or the third step. It is desirable to stop the supply to the process chamber.
Further, it is desirable that the exhaust in the process chamber 50 is started before or at the same time as the start of the first step shown in FIG.
Further, in P2, it is desirable that the exhaust of the process chamber 50 is performed for a predetermined time in a state where the supply of Ar gas to the process chamber is stopped at the same time as the end of the first step or the third step shown in FIG.
The Ar gas is supplied into the process chamber 50 by the gas introduction unit G1 of the film forming apparatus of FIGS. 1 and 9, and the exhaust into the process chamber 50 is performed by the exhaust unit V50 of the film forming apparatus of FIGS. 1 and 9.
 図16は、第1実施形態(実施例1-1から実施例1-3)、第2実施形態(実施例1-1から実施例1-3,実施例2-1から実施例2-3、実施例3-1から実施例3-3)のゲッター工程において、ゲッタープロセスを2回以上繰り返す場合の電源(SP)1022又は1023電源(IG)1023の出力信号の一例を示す図である。この場合、プロセス室50には、Arガスが供給される。この電源(SP)1022又は電源(IG)1023の出力信号において、電源出力信号の周期(ゲッタープロセスの周期)はP、ガス供給時間(プロセス室内50に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する時間)はP1、所定時間、プロセス室内50を排気する時間はP2、デューティ比は、D=P1/Pであり、前記図15のガス導入系と同期して出力される。
 なお、P1において、プロセス室50に供給する電力は、図3の示す第1工程又は第3工程の開始と同時にプロセス室内への供給を開始し、第1工程又は第3工程の終了と同時にプロセス室内への供給を停止する。
 また、プロセス室内50の排気は、図3に示す第1工程の開始前又は開始と同時に、プロセス室内の排気を開始することが望ましい。
 また、P2において、プロセス室内50の排気は、図3に示す第1工程又は第3工程の終了と同時にプロセス室内へのArガスの供給を停止した状態で、所定時間行うことが望ましい。
 プロセス室50内への電力の出力は図2と図10の電源(SP)1022又は電源(IG)1023の出力信号で、プロセス室50内の排気は図1と図9の成膜装置の排気部V50で行う。
FIG. 16 shows the first embodiment (Examples 1-1 to 1-3) and the second embodiment (Examples 1-1 to 1-3, Examples 2-1 to 2-3. It is a figure which shows an example of the output signal of the power source (SP) 1022 or 1023 power source (IG) 1023 when the getter process is repeated two or more times in the getter process of Examples 3-1 to 3-3). In this case, Ar gas is supplied to the process chamber 50. In the output signal of the power supply (SP) 1022 or power supply (IG) 1023, (the period of getter process) cycle of the power supply output signal P, the gas supply time (gas or water remaining in the process chamber 50 (H 2 O) On the other hand, the time for forming a substance having a large getter effect) is P1, the predetermined time, the time for exhausting the process chamber 50 is P2, and the duty ratio is D = P1 / P, which are synchronized with the gas introduction system of FIG. Is output.
In P1, the electric power supplied to the process chamber 50 starts to be supplied to the process chamber at the same time as the start of the first step or the third step shown in FIG. 3, and is processed at the same time as the end of the first step or the third step. Stop the supply to the room.
Further, it is desirable that the exhaust in the process chamber 50 is started before or at the same time as the start of the first step shown in FIG.
Further, in P2, it is desirable that the exhaust of the process chamber 50 is performed for a predetermined time in a state where the supply of Ar gas to the process chamber is stopped at the same time as the end of the first step or the third step shown in FIG.
The output of electric power into the process chamber 50 is the output signal of the power supply (SP) 1022 or the power supply (IG) 1023 of FIGS. 2 and 10, and the exhaust of the process chamber 50 is the exhaust of the film forming apparatus of FIGS. 1 and 9. This is done in part V50.
 図17は、第1実施形態の実施例1-2と第2実施形態の実施例1-2、実施例2-2及び実施例3-2の成膜方法のゲッター工程の時間とゲッター工程後のプロセス室の水(HO)分圧の関係を示す図である。
発明者は、生産性を低下することなく基材と密着膜との密着性を考慮した場合、水(HO)分圧が0.3以下であることが望ましいことを発見した。
ゲッター工程時間を300秒とした場合、図17に示すようにデューティ比50パーセントでゲッタープロセスを2回以上繰り返すと水(HO)分圧が0.3になった。これに対し、ゲッター工程時間を300秒とした場合、図17に示すようにゲッタープロセスを1回行うデューティ比100パーセントの場合、水(HO)分圧が0.45になった。デューティ比50パーセントでゲッタープロセスを2回以上繰り返すと、ゲッタープロセスを1回行う場合の水(HO)分圧と比較して、約2/3(0.3/0.45)に低減することができる。
 一方、図17に示すように、ゲッタープロセスを1回行う場合、HO分圧が0.3になるのは、ゲッター工程時間が400秒ある。このように、デューティ比50パーセントでゲッタープロセスを2回以上繰り返すと、ゲッター工程時間を100秒(400秒)短縮することができる。従って、デューティ比50パーセントでゲッタープロセスを2回以上繰り返すと、スループットは、ゲッタープロセスを1回行うデューティ比100パーセントの場合と比較して、約3/4(300/400)に低減することができる。
 なお、前述したその他の成膜方法のゲッター工程(実施形態1の実施例1-1と実施例1-3、実施形態2の実施例1-1と実施例1-3と実施例2-1と実施例2-3と実施例3-1と実施例3-3)を実施した場合には、成膜領域FFAのプロセス室50のチャンバの内壁およびイオンガンの磁極に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができるので、図17に示す場合より、良い効果を得ることができる。
FIG. 17 shows the time of the getter step and the time after the getter step of the film forming methods of Example 1-2 of the first embodiment, Example 1-2 of the second embodiment, Example 2-2 and Example 3-2. is a diagram showing the relationship between the process chamber of water (H 2 O) partial pressure.
Inventors, in consideration of adhesion between the substrate and the adhesion layer without reducing productivity, water (H 2 O) partial pressure found that it is desirable that not more than 0.3.
If a getter process time was 300 seconds, the getter process is repeated twice more water (H 2 O) partial pressure became 0.3 at a duty ratio of 50% as shown in FIG. 17. In contrast, when the getter process time was 300 seconds, if the duty ratio of 100 percent to conduct once the getter process as shown in FIG. 17, water (H 2 O) partial pressure became 0.45. Repeating duty ratio of 50% in the getter process two or more times, compared with water (H 2 O) partial pressure in the case of performing once getter process, reduced to about 2/3 (0.3 / 0.45) can do.
On the other hand, as shown in FIG. 17, when carried out once a getter process, the H 2 O partial pressure of 0.3 is getter process time 400 seconds. As described above, when the getter process is repeated twice or more with a duty ratio of 50%, the getter process time can be shortened by 100 seconds (400 seconds). Therefore, if the getter process is repeated twice or more with a duty ratio of 50%, the throughput can be reduced to about 3/4 (300/400) as compared with the case of a duty ratio of 100% in which the getter process is performed once. can.
In addition, the getter process of the other film forming method described above (Example 1-1 and Example 1-3 of the first embodiment, Example 1-1 and the embodiment 1-3 and the embodiment 2-1 of the second embodiment). When Examples 2-3, 3-1 and 3-3) were carried out, gas or water (H) remaining on the inner wall of the chamber of the process chamber 50 of the film formation region FFA and the magnetic pole of the ion gun. Since a material having a large getter effect can be attached to 2 O), a better effect can be obtained than in the case shown in FIG.
 図18は、第1実施形態の実施例1-2と第2実施形態の実施例1-2、実施例2-2及び実施例3-2の成膜方法のゲッター工程のゲッター工程時間300秒におけるデューティ比とゲッター工程後のプロセス室の水(HO)分圧の関係を示す図である。図18に示すようにゲッター工程を行わずに真空排気を行うデューティ比0パーセントの場合、水(HO)分圧は0.6である。図18に示すようにゲッタープロセスを1回行うデューティ比100パーセントの場合、水(HO)分圧は0.45である。これに対して、ゲッタープロセスを2回以上繰り返すとプロセス室の水(HO)分圧が低減し、デューティ比34パーセントから66パーセントの範囲でH2O分圧が0.3以下となり、デューティ比0パーセントの場合と比較して、水(HO)分圧を約1/2(0.3/0.6)にまで低減する。更に、ゲッタープロセスを2回以上繰り返すとプロセス室の水(HO)分圧が低減し、デューティ比34パーセントから66パーセントの範囲で水(HO)分圧が0.3以下となりデューティ比100パーセントの場合と比較して、水(HO)分圧を約2/3(0.3/0.45)にまで低減する。
 なお、前述したその他の成膜方法のゲッター工程(実施形態1の実施例1-1と実施例1-3、実施形態2の実施例1-1と実施例1-3と実施例2-1と実施例2-3と実施例3-1と実施例3-3)を実施した場合には、成膜領域FFAのプロセス室50のチャンバの内壁およびイオンガンの磁極に残留するガス又は水(HO)に対してゲッター効果が大きい材料を付着させることができるので、図18に示す場合より、良い効果を得ることができる。
FIG. 18 shows a getter process time of 300 seconds in the getter process of the film forming methods of Example 1-2 of the first embodiment, Example 1-2 of the second embodiment, Example 2-2, and Example 3-2. it is a diagram showing the relationship between the duty ratio and the getter processing chamber of the water after step (H 2 O) partial pressure in the. As shown in FIG. 18, when the duty ratio is 0% in which vacuum exhaust is performed without performing the getter step, the partial pressure of water (H 2 O) is 0.6. If the duty ratio of 100 percent to conduct once the getter process as shown in FIG. 18, water (H 2 O) partial pressure is 0.45. In contrast, a getter process is repeated two more times if reduced water (H 2 O) partial pressure of the process chamber, H2 O partial pressure in the range of 66 percent from the duty ratio 34% is 0.3 or less, the duty ratio Compared to the case of 0 percent, the partial pressure of water (H 2 O) is reduced to about 1/2 (0.3 / 0.6). Furthermore, when the getter process is repeated twice or more, the partial pressure of water (H 2 O) in the process chamber is reduced, and the partial pressure of water (H 2 O) becomes 0.3 or less in the duty ratio range of 34% to 66%. as compared with the case of the ratio 100%, reduced water (H 2 O) partial pressure to about 2/3 (0.3 / 0.45).
In addition, the getter process of the other film forming method described above (Example 1-1 and Example 1-3 of the first embodiment, Example 1-1 and the embodiment 1-3 and the embodiment 2-1 of the second embodiment). When Examples 2-3, 3-1 and 3-3) were carried out, gas or water (H) remaining on the inner wall of the chamber of the process chamber 50 of the film formation region FFA and the magnetic pole of the ion gun. Since a material having a large getter effect can be attached to 2 O), a better effect can be obtained than in the case shown in FIG.
 図19は、実施形態1の実施例1-2と第2実施形態の実施例1-2、実施例2-2及び実施例3-2の成膜方法のゲッター工程における繰り返し動作および排気動作とプロセス室の水(HO)分圧の関係を示す図である。プロセス室にArガス導入したままTi膜の成膜1回のみのプロセスの場合(図19の右のグラフ)、水(HO)分圧は0.45である。プロセス室にArガス導入したままTi膜の成膜を間欠的に繰り返すプロセス(Ti成膜間に排気無し)(特許文献2に相当、図19の中央のグラフ)の場合、水(HO)分圧は0.4である。これに対して、Ti膜の成膜とTi膜成膜後の排気を一連の動作とするゲッタープロセスを2回以上繰り返し行う本発明のゲッター工程(図19の左のグラフ)の場合、HO分圧は0.3以下となり、プロセス室にArガス導入したままTi膜の成膜1回のみのプロセスの場合(図19の右のグラフ)と比較して、水(HO)分圧を約2/3(0.3/0.45)にまで、プロセス室にArガス導入したままTi膜の成膜を間欠的に繰り返すプロセス(Ti成膜間に排気無し)(特許文献2に相当、図19の中央のグラフ)の場合と比較して、約3/4(0.3/0.4)にまで、低減することができる。
 このように、本発明によれば、水(HO)分圧は0.3以下となり、生産性を低下することなく基材Sと密着膜との密着性を向上できる。
FIG. 19 shows the repetitive operation and the exhaust operation in the getter process of the film forming methods of the first embodiment 1-2, the second embodiment 1-2, the second embodiment and the third embodiment. is a diagram showing the relationship of the process chamber of water (H 2 O) partial pressure. If the process chamber of the process only the film forming one Ti film while introducing Ar gas (right graph of FIG. 19), water (H 2 O) partial pressure is 0.45. In the case of a process in which the formation of a Ti film is intermittently repeated with Ar gas introduced into the process chamber (no exhaust during the formation of Ti) (corresponding to Patent Document 2, the graph in the center of FIG. 19), water (H 2 O). ) The partial pressure is 0.4. On the other hand, in the case of the getter process of the present invention (graph on the left in FIG. 19) in which the getter process in which the formation of the Ti film and the exhaust after the formation of the Ti film is performed as a series of operations is repeated two or more times, H 2 The O partial pressure is 0.3 or less, and the water (H 2 O) component is compared with the case of a process in which the Ti film is formed only once with Ar gas introduced into the process chamber (graph on the right in FIG. 19). A process in which the formation of a Ti film is intermittently repeated with Ar gas introduced into the process chamber until the pressure is reduced to about 2/3 (0.3 / 0.45) (no exhaust during the formation of Ti) (Patent Document 2). It can be reduced to about 3/4 (0.3 / 0.4) as compared with the case of (the graph in the center of FIG. 19).
Thus, according to the present invention, water (H 2 O) partial pressure becomes 0.3 or less, it can improve the adhesion between the substrate S and the adhesive layer without reducing the productivity.
 以上、本発明の好ましい実施形態1,実施形態2について説明したが、本発明はこれらの実施形態1,実施形態2に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments 1 and 2 of the present invention have been described above, the present invention is not limited to these embodiments 1 and 2, and various modifications and modifications can be made within the scope of the gist thereof. ..
 本実施形態1,本実施形態2においては、ゲッター材をTiとして説明したが、Tiに限定されるものではなく、Ta、Zr、Cr、Nb、Mo等からなる酸素や水に対してゲッター効果大きい物質を用いることができる。また、ゲッター効果の大きい2つ以上の合金とすることもできる。 In the first embodiment and the second embodiment, the getter material has been described as Ti, but the getter material is not limited to Ti, and the getter effect is applied to oxygen and water composed of Ta, Zr, Cr, Nb, Mo and the like. Larger substances can be used. Further, two or more alloys having a large getter effect can be used.
 また、本実施形態1及び本実施形態2の密着膜は、Ti膜として説明したが、Ti膜に限定されるものではなく、TiN、Ta、TaN、Ni、Cr、NiCr合金、Ta合金、Cu合金等を用いることができる。ここで、生産性を考慮すると、密着膜の上には電解Cuめっきを安定成長させるためのシード膜としてCu膜が形成されることから、密着膜には、密着膜とシード膜をCuエッチング液で一括して除去できるCu合金が好ましい。Cu合金は酸素や水に対して、ゲッター効果が大きい物質ではないため、密着膜としてCu合金を用いた場合には、カソードにゲッター効果の大きい物質が搭載されないが、本発明ではゲッター材供給源MSを有しており、スパッタ膜種に制限されることなく、ゲッター工程を実施することができる。 Further, although the adhesion film of the first embodiment and the second embodiment has been described as a Ti film, the adhesion film is not limited to the Ti film, and is not limited to the Ti film, but TiN, Ta, TaN, Ni, Cr, NiCr alloy, Ta alloy, Cu. Alloys and the like can be used. Here, in consideration of productivity, a Cu film is formed on the adhesive film as a seed film for stable growth of electrolytic Cu plating. Therefore, the adhesive film and the seed film are made into a Cu etching solution on the adhesive film. A Cu alloy that can be removed all at once is preferable. Since the Cu alloy is not a substance having a large getter effect on oxygen and water, when a Cu alloy is used as the adhesion film, a substance having a large getter effect is not mounted on the cathode. It has MS and can carry out the getter process without being limited to the sputtered film type.
 また、本実施形態1及び本実施形態2のシード膜は、Cu膜として説明したが、Cu膜に限定されるものではなく、CuAl合金、CuW合金等を用いることができる。 Further, although the seed film of the first embodiment and the second embodiment has been described as a Cu film, the seed film is not limited to the Cu film, and a CuAl alloy, a CuW alloy, or the like can be used.
 また、図15及び図16において、デューティ比D=P1/Pが34パーセントから66パーセントの範囲内で、第3工程及び前記第4工程のデューティ比D=P1/Pが、第1工程及び第2工程のデューティ比D=P1/Pより小さくなるように図1又は図9のガス導入部G1と、図1又は図9の排気部V50とを制御することが好ましい。
 更に、図15及び図16において、デューティ比D=P1/Pが34パーセントから66パーセントの範囲内で、第5工程及び前記第6工程のデューティ比D=P1/Pが、第3工程及び第4工程のデューティ比D=P1/Pより小さくなるように図1又は図9のガス導入部G1と、図1又は図9の排気部V50とを制御することが好ましい。
 これにより、第3工程の時間P1が第1工程の時間P1より小さくなり、第5工程の時間P1が第3工程の時間P1より小さくなるので、相対的に、第4工程の時間P2が第2工程の時間P2より大きくなり、第6工程の時間P2が第4工程の時間P2より大きくなる。
 これにより、水(HO)分圧が高いゲッター工程初期のゲッター効果が大きくなるので、所望の水(HO)分圧により短い時間で到達させることができ生産性向上が可能となる。
Further, in FIGS. 15 and 16, the duty ratio D = P1 / P is in the range of 34% to 66%, and the duty ratios D = P1 / P of the third step and the fourth step are the first step and the first step. It is preferable to control the gas introduction unit G1 of FIG. 1 or 9 and the exhaust unit V50 of FIG. 1 or 9 so that the duty ratio D = P1 / P of the two steps is smaller.
Further, in FIGS. 15 and 16, the duty ratio D = P1 / P is in the range of 34% to 66%, and the duty ratio D = P1 / P of the fifth step and the sixth step is the third step and the third step. It is preferable to control the gas introduction unit G1 of FIG. 1 or 9 and the exhaust unit V50 of FIG. 1 or 9 so that the duty ratio D = P1 / P of the four steps is smaller.
As a result, the time P1 of the third step becomes smaller than the time P1 of the first step, and the time P1 of the fifth step becomes smaller than the time P1 of the third step. It becomes larger than the time P2 of the second step, and the time P2 of the sixth step becomes larger than the time P2 of the fourth step.
As a result, the getter effect at the initial stage of the getter process in which the partial pressure of water (H 2 O) is high is increased, so that the desired partial pressure of water (H 2 O) can be reached in a short time, and the productivity can be improved. ..

Claims (26)

  1.  プロセス室と、
     前記プロセス室内に設けられ、密着膜を形成する処理部と、
     を有する成膜装置であって、
     前記プロセス室の内壁表面は、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質で形成されていることを特徴とする成膜装置。
    Process room and
    A processing unit provided in the process chamber to form an adhesive film, and
    It is a film forming apparatus having
    An inner wall surface of the process chamber, the deposition apparatus characterized by being formed by the getter effect is greater substance to gas or water (H 2 O) remaining in the process chamber.
  2.  前記プロセス室の中で基材を保持する保持部と、
     前記基材が前記プロセス室の中の成膜領域を通過するように前記基材を保持した前記保持部を移動させる駆動部と、
     前記保持部を冷却する冷却部と、
     を備えることを特徴とする請求項1に記載の成膜装置。
    A holding part that holds the base material in the process chamber,
    A driving unit that moves the holding portion that holds the base material so that the base material passes through a film forming region in the process chamber.
    A cooling unit that cools the holding unit,
    The film forming apparatus according to claim 1, further comprising.
  3.  前記成膜装置は、前記成膜装置以外の他の装置との間で前記基材を受け渡しするために使用されうるプラットホームと、
     前記プラットホームから提供される未処理の基材および前記プロセス室から提供される成膜後の基材の受け渡しするために使用されうるロードロック室と、
     を備えることを特徴とする請求項1又は2に記載の成膜装置。
    The film forming apparatus includes a platform that can be used for transferring the base material to and from an apparatus other than the film forming apparatus.
    A load lock chamber that can be used to deliver the untreated substrate provided by the platform and the post-deposition substrate provided by the process chamber.
    The film forming apparatus according to claim 1 or 2, wherein the film forming apparatus is provided.
  4.  前記処理部は複数のターゲットおよびイオンガンを保持する支持体を回転させる回転カソードで構成されていることを特徴とする請求項1から3のいずれか1項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 3, wherein the processing unit is composed of a rotating cathode that rotates a support that holds a plurality of targets and an ion gun.
  5.  プロセス室と、
     前記プロセス室内に設けられ、密着膜を形成する処理部と、
     前記プロセス室内を真空排気可能な排気部と、
     前記プロセス室内に前記密着膜を形成するためのガスを導入するガス導入部と、
     を有する成膜装置の制御装置であって、
     前記制御装置は、制御プログラムを記憶する記憶部を備え、
     前記制御プログラムは、
     前記プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程と、
     前記第1工程後に所定時間、前記プロセス室内を排気する第2工程と、
     前記第2工程後、前記プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程と、
     前記第3工程後に所定時間、前記プロセス室内を排気する第4工程と、
     前記第4工程後、前記プロセス室内に設けられた基材上に、密着膜を形成する密着膜形成工程と、を含む、
     前記第1工程又は前記第3工程の時間をP1、前記第1工程と前記第2工程の合計時間又は前記第3工程と前記第4工程の合計時間をPとした場合、デューティ比D=P1/Pが、34パーセント以上66パーセント以下になるように、前記排気部と前記ガス導入部とを制御することを特徴とする制御装置。
    Process room and
    A processing unit provided in the process chamber to form an adhesive film, and
    An exhaust unit that can evacuate the process chamber and
    A gas introduction unit that introduces a gas for forming the adhesion film in the process chamber,
    It is a control device of a film forming apparatus having
    The control device includes a storage unit that stores a control program.
    The control program
    The process chamber, a first step of forming a getter-effective materials to gases or water (H 2 O) remaining in the process chamber,
    A second step of exhausting the process chamber for a predetermined time after the first step, and
    After the second step, the said process chamber, and a third step of forming a getter-effective materials to gases or water (H 2 O) remaining in the process chamber,
    A fourth step of exhausting the process chamber for a predetermined time after the third step, and
    After the fourth step, the step of forming an adhesive film on the substrate provided in the process chamber is included.
    When the time of the first step or the third step is P1, the total time of the first step and the second step, or the total time of the third step and the fourth step is P, the duty ratio D = P1. A control device characterized in that the exhaust unit and the gas introduction unit are controlled so that / P is 34% or more and 66% or less.
  6.  前記プロセス室に供給するガスは、前記ガス導入部を用いて、前記第1工程又は第3工程の開始と同時にプロセス室内への供給を開始し、第1工程又は第3工程の終了と同時にプロセス室内への供給を停止することを特徴とする請求項5に記載の制御装置。 The gas supplied to the process chamber is started to be supplied to the process chamber at the same time as the start of the first step or the third step by using the gas introduction unit, and the process is started at the same time as the end of the first step or the third step. The control device according to claim 5, wherein the supply to the room is stopped.
  7.  前記プロセス室内の排気は、前記排気部を用いて、前記第1工程の開始と同時にプロセス室内の排気を開始することを特徴とする請求項5又は6に記載の成膜方法。 The film forming method according to claim 5 or 6, wherein the exhaust in the process chamber is started by using the exhaust unit to start the exhaust in the process chamber at the same time as the start of the first step.
  8.  前記プロセス室に供給する電力は、電源を用いて、前記第1工程又は第3工程の開始と同時に前記プロセス室内への供給を開始し、前記第1工程又は第3工程の終了と同時に前記プロセス室内への供給を停止することを特徴とする請求項5から7のいずれか1項に記載の制御装置。 The electric power supplied to the process chamber is started to be supplied to the process chamber at the same time as the start of the first step or the third step by using a power source, and the process is started at the same time as the end of the first step or the third step. The control device according to any one of claims 5 to 7, wherein the supply to the room is stopped.
  9.  プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第1工程と、
     前記第1工程後に所定時間、前記プロセス室内を排気する第2工程と、
     前記第2工程後、前記プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜する第3工程と、
     前記第3工程後に所定時間、前記プロセス室内を排気する第4工程と、
     前記第4工程後、前記プロセス室内に設けられた基材上に、密着膜を形成する密着膜形成工程と、を含む成膜方法。
    The process chamber, a first step of forming a getter-effective materials to gases or water (H 2 O) remaining in the process chamber,
    A second step of exhausting the process chamber for a predetermined time after the first step, and
    After the second step, the said process chamber, and a third step of forming a getter-effective materials to gases or water (H 2 O) remaining in the process chamber,
    A fourth step of exhausting the process chamber for a predetermined time after the third step, and
    A film forming method comprising a adhesion film forming step of forming an adhesion film on a substrate provided in the process chamber after the fourth step.
  10.  前記第1工程又は前記第3工程の時間をP1、前記第1工程と前記第2工程の合計時間又は前記第3工程と前記第4工程の合計時間をPとした場合、デューティ比D=P1/Pが、34パーセント以上66パーセント以下であることを特徴とする請求項9に記載の成膜方法。 When the time of the first step or the third step is P1, the total time of the first step and the second step, or the total time of the third step and the fourth step is P, the duty ratio D = P1. The film forming method according to claim 9, wherein / P is 34% or more and 66% or less.
  11.  前記密着膜形成工程後、前記密着膜上にシード膜を形成するシード膜形成工程を含むことを特徴とする請求項9又は10に記載の成膜方法。 The film forming method according to claim 9 or 10, further comprising a seed film forming step of forming a seed film on the adhesive film after the adhesive film forming step.
  12.  前記第1工程前に、前記基材の表面をエッチングするエッチング工程を含むことを特徴とする請求項9から11のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 9 to 11, further comprising an etching step of etching the surface of the base material before the first step.
  13.  前記第4工程後に、前記基材の表面をエッチングするエッチング工程を含むことを特徴とする請求項9から12のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 9 to 12, further comprising an etching step of etching the surface of the base material after the fourth step.
  14.  前記基材は、Si基板、ガラス製若しくは樹脂製の角状部材や支持体に固定された樹脂フィルムのいずれかであることを特徴とする請求項9から13のいずれか1項に記載の成膜方法。 The result according to any one of claims 9 to 13, wherein the base material is either a Si substrate, a glass or resin square member, or a resin film fixed to a support. Membrane method.
  15.  前記密着膜は、Ti膜、TiN膜、Ta膜、TaN膜、Ni膜、Cr膜、NiCr合金膜、Ta合金膜、Cu合金膜のいずれかであることを特徴とする請求項9から14のいずれか1項に記載の成膜方法。 Claims 9 to 14, wherein the adhesion film is any one of a Ti film, a TiN film, a Ta film, a TaN film, a Ni film, a Cr film, a NiCr alloy film, a Ta alloy film, and a Cu alloy film. The film forming method according to any one item.
  16.  前記シード膜は、Cu膜、CuAl合金膜、CuW合金膜のいずれかであることを特徴とする請求項11に記載の成膜方法。 The film forming method according to claim 11, wherein the seed film is any one of a Cu film, a CuAl alloy film, and a CuW alloy film.
  17.  前記第1工程又は前記第3工程は、前記密着膜を形成するためのターゲット、前記シード膜を形成するためのターゲットおよびイオンガンを保持する保持体を回転させて、前記イオンガンを前記基材と対向しない側に向け、前記プロセス室の内壁表面に形成されたガス又は水(HO)に対してゲッター効果が大きい物質をエッチングすることにより、プロセス室内に、前記プロセス室内に残留するガス又は水(HO)に対してゲッター効果が大きい物質を成膜することを特徴とする請求項9から16のいずれか1項に記載の成膜方法。 In the first step or the third step, the target for forming the adhesion film, the target for forming the seed film, and the holding body holding the ion gun are rotated to face the ion gun with the base material. toward the city side, by etching the getter-effective materials to the process chamber gas or water is formed on the inner wall surface of the (H 2 O), a process chamber, gas or water remaining in the process chamber The film forming method according to any one of claims 9 to 16, wherein a substance having a large getter effect with respect to (H 2 O) is formed.
  18.  前記第1工程又は前記第3工程は、前記保持体を回転させて、前記密着膜を形成するためのターゲットを前記基材と対向しない側に向け、前記プロセス室の内壁表面に前記密着膜を成膜することを特徴とする請求項17に記載の成膜方法。 In the first step or the third step, the holding body is rotated so that the target for forming the adhesion film is directed to a side not facing the base material, and the adhesion film is formed on the inner wall surface of the process chamber. The film forming method according to claim 17, wherein a film is formed.
  19.  前記エッチングの工程は、前記保持体を回転させて、前記イオンガンを前記基材と対向する側に向け、前記基材の表面をエッチングすることを特徴とする請求項17又は18に記載の成膜方法。 The film formation according to claim 17 or 18, wherein the etching step is to rotate the holding body, direct the ion gun toward the side facing the base material, and etch the surface of the base material. Method.
  20.  前記密着膜形成工程は、前記保持体を回転させて、前記密着膜を形成するためのターゲットを前記基材と対向する側に向け、前記基材に前記密着膜を成膜することを特徴とする請求項17から19のいずれか1項に記載の成膜方法。 The adhesive film forming step is characterized in that the holding body is rotated to direct the target for forming the adhesive film to the side facing the base material, and the adhesive film is formed on the base material. The film forming method according to any one of claims 17 to 19.
  21.  前記シード膜形成工程は、前記保持体を回転させて、前記シード膜を形成するためのターゲットを前記基材と対向する側に向け、前記密着膜上に前記シード膜を成膜することを特徴とする請求項11から20のいずれか1項に記載の成膜方法。 The seed film forming step is characterized in that the holding body is rotated to direct the target for forming the seed film toward the side facing the base material, and the seed film is formed on the adhesive film. The film forming method according to any one of claims 11 to 20.
  22.  前記プロセス室に供給するガスは、前記第1工程又は第3工程の開始と同時にプロセス室内への供給を開始し、第1工程又は第3工程の終了と同時にプロセス室内への供給を停止することを特徴とする請求項9から21のいずれか1項に記載の成膜方法。 The gas supplied to the process chamber shall start supplying to the process chamber at the same time as the start of the first step or the third step, and stop supplying to the process chamber at the same time as the end of the first step or the third step. The film forming method according to any one of claims 9 to 21, wherein the film forming method is characterized.
  23.  前記プロセス室内の排気は、前記第1工程の開始と同時にプロセス室内の排気を開始することを特徴とする請求項9から22のいずれか1項に記載の成膜方法。 The film forming method according to any one of claims 9 to 22, wherein the exhaust in the process chamber starts exhaust in the process chamber at the same time as the start of the first step.
  24.  前記プロセス室に供給する電力は、前記第1工程又は第3工程の開始と同時にプロセス室内への供給を開始し、前記第1工程又は第3工程の終了と同時にプロセス室内への供給を停止することを特徴とする請求項9から23のいずれか1項に記載の成膜方法。 The electric power supplied to the process chamber starts to be supplied to the process chamber at the same time as the start of the first step or the third step, and stops to be supplied to the process chamber at the same time as the end of the first step or the third step. The film forming method according to any one of claims 9 to 23.
  25.  前記デューティ比D=P1/Pが34パーセント以上66パーセント以下の範囲内で、前記第3工程及び前記第4工程のデューティ比D=P1/Pが、前記第1工程及び前記第2工程のデューティ比D=P1/Pより小さくなるように前記排気部と前記ガス導入部とを制御することを特徴とする請求項5に記載の制御装置。 Within the range where the duty ratio D = P1 / P is 34% or more and 66% or less, the duty ratio D = P1 / P of the third step and the fourth step is the duty of the first step and the second step. The control device according to claim 5, wherein the exhaust unit and the gas introduction unit are controlled so that the ratio D = P1 / P or less.
  26.  前記デューティ比D=P1/Pが34パーセント以上66パーセント以下の範囲内で、前記第3工程及び前記第4工程のデューティ比D=P1/Pが、前記第1工程及び前記第2工程のデューティ比D=P1/Pより小さくすることを特徴とする請求項10に記載の成膜方法。 Within the range where the duty ratio D = P1 / P is 34% or more and 66% or less, the duty ratio D = P1 / P of the third step and the fourth step is the duty of the first step and the second step. The film forming method according to claim 10, wherein the ratio is made smaller than D = P1 / P.
PCT/JP2020/041999 2020-04-01 2020-11-11 Film formation device, device for controlling film formation device, and film formation method WO2021199479A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080099470.1A CN115427606B (en) 2020-04-01 2020-11-11 Film forming apparatus, control apparatus for film forming apparatus, and film forming method
KR1020227030318A KR20220136402A (en) 2020-04-01 2020-11-11 Film-forming apparatus, control apparatus of film-forming apparatus, and film-forming method
CN202311487538.5A CN117535632A (en) 2020-04-01 2020-11-11 Film forming apparatus, control apparatus, and film forming method
JP2021512593A JP6932873B1 (en) 2020-04-01 2020-11-11 Film forming device, control device of film forming device and film forming method
US17/941,389 US20230002886A1 (en) 2020-04-01 2022-09-09 Film forming apparatus, control apparatus for film forming appartus, and film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020065522 2020-04-01
JP2020-065522 2020-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/941,389 Continuation US20230002886A1 (en) 2020-04-01 2022-09-09 Film forming apparatus, control apparatus for film forming appartus, and film forming method

Publications (1)

Publication Number Publication Date
WO2021199479A1 true WO2021199479A1 (en) 2021-10-07

Family

ID=77928387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041999 WO2021199479A1 (en) 2020-04-01 2020-11-11 Film formation device, device for controlling film formation device, and film formation method

Country Status (3)

Country Link
JP (1) JP2021165432A (en)
TW (1) TWI807269B (en)
WO (1) WO2021199479A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637074A (en) * 1992-07-17 1994-02-10 Fujitsu Ltd Cleaning method for semiconductor manufacturing apparatus
JPH0855804A (en) * 1994-08-10 1996-02-27 Toshiba Corp Method of manufacturing semiconductor film
JPH09320963A (en) * 1996-05-20 1997-12-12 Applied Materials Inc Adjusting method after cleaning of cvd chamber
WO2016056275A1 (en) * 2014-10-10 2016-04-14 キヤノンアネルバ株式会社 Film forming device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492811B (en) * 2009-02-20 2012-01-25 电子科技大学 Self-air-suction vacuum plating method
JP6013901B2 (en) * 2012-12-20 2016-10-25 東京エレクトロン株式会社 Method for forming Cu wiring
CN109415804A (en) * 2017-06-14 2019-03-01 应用材料公司 Depositing device for coating flexible substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637074A (en) * 1992-07-17 1994-02-10 Fujitsu Ltd Cleaning method for semiconductor manufacturing apparatus
JPH0855804A (en) * 1994-08-10 1996-02-27 Toshiba Corp Method of manufacturing semiconductor film
JPH09320963A (en) * 1996-05-20 1997-12-12 Applied Materials Inc Adjusting method after cleaning of cvd chamber
WO2016056275A1 (en) * 2014-10-10 2016-04-14 キヤノンアネルバ株式会社 Film forming device

Also Published As

Publication number Publication date
JP2021165432A (en) 2021-10-14
TW202140828A (en) 2021-11-01
TWI807269B (en) 2023-07-01
TW202336253A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US6328858B1 (en) Multi-layer sputter deposition apparatus
WO2000018979A9 (en) Sputter deposition apparatus
JP2004536970A (en) Method of manufacturing a coated substrate
JP2005048260A (en) Reactive sputtering method
JP2010001565A (en) Sputtering apparatus and method of manufacturing solar battery and image display device by using the same
US9885107B2 (en) Method for continuously forming noble metal film and method for continuously manufacturing electronic component
JP6932873B1 (en) Film forming device, control device of film forming device and film forming method
WO2021199479A1 (en) Film formation device, device for controlling film formation device, and film formation method
JP2007092095A (en) Thin film deposition method, and thin film deposition apparatus
CN114015997A (en) Ion-assisted multi-target magnetron sputtering equipment
TWI837004B (en) Film forming device, film forming device control device and film forming method
US6500264B2 (en) Continuous thermal evaporation system
JPH09202965A (en) Electron beam vapor deposition apparatus
US11948784B2 (en) Tilted PVD source with rotating pedestal
KR20200051947A (en) Sputtering apparatus
CN112877662B (en) Magnetron sputtering equipment
JP2001230217A (en) Equipment and method for treating substrate
JP2011208255A (en) Cleaning device, film forming apparatus, and film forming method
KR100701365B1 (en) Apparatus for improving sputtering effect according to plasma source in pvd
KR20240013471A (en) Film forming apparatus
JP2023084589A (en) Sputtering device and controlling method
CN110819959A (en) Physical vapor deposition equipment
JP2008045153A (en) Ecr sputtering apparatus and film-forming method
JP2011168827A (en) Substrate treatment device and method of producing semiconductor device
JP2001115256A (en) Film deposition system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512593

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227030318

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929656

Country of ref document: EP

Kind code of ref document: A1