WO2021197153A1 - 传输处理方法及设备 - Google Patents

传输处理方法及设备 Download PDF

Info

Publication number
WO2021197153A1
WO2021197153A1 PCT/CN2021/082580 CN2021082580W WO2021197153A1 WO 2021197153 A1 WO2021197153 A1 WO 2021197153A1 CN 2021082580 W CN2021082580 W CN 2021082580W WO 2021197153 A1 WO2021197153 A1 WO 2021197153A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical layer
channel coding
network
coding
decoding
Prior art date
Application number
PCT/CN2021/082580
Other languages
English (en)
French (fr)
Inventor
孙鹏
邬华明
秦飞
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21781433.4A priority Critical patent/EP4084374A4/en
Publication of WO2021197153A1 publication Critical patent/WO2021197153A1/zh
Priority to US17/873,945 priority patent/US20220368469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1004Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's to protect a block of data words, e.g. CRC or checksum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling

Definitions

  • the present invention relates to the field of communication technology, in particular to a transmission processing method and equipment.
  • the current information system design is based on this principle.
  • the video server is responsible for the source coding
  • the 5G network is responsible for the source coding.
  • the encoded bits are transmitted to the terminal side according to the quality of service (QoS) requirements.
  • QoS quality of service
  • different channel codes are used to adapt to different channel conditions (such as wired, wireless, etc.) ).
  • the premise of the proof of Shannon's separation theorem is a point-to-point system with a single transmitter and a single receiver, a stable channel, and an infinite packet length.
  • the above three premise assumptions are not satisfied in the actual system. In this way, the current method of separate processing of source coding and channel coding often increases processing time and causes a waste of resources.
  • the embodiments of the present invention provide a transmission processing method and device to solve the problem of time-consuming encoding and decoding processing in the existing transmission.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides a transmission processing method, which is applied to a sender device, and includes:
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • an embodiment of the present invention also provides a transmission processing method, which is applied to a receiving end device, and includes:
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • an embodiment of the present invention also provides a transmitting end device, including:
  • the first processing module is used to encode transmission bits by using available encoding methods
  • the first sending module is used to send encoded information
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • an embodiment of the present invention also provides a receiving end device, including:
  • the second processing module is used to decode the received encoded information, where the encoded information is obtained by encoding using a usable encoding method;
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • an embodiment of the present invention also provides a communication device, including a processor, a memory, and a computer program stored on the memory and running on the processor, and the computer program is executed by the processor. When executed, the steps of the transmission processing method as applied to the sending end device or the steps of the transmission processing method as applied to the receiving end device are implemented.
  • the embodiments of the present invention also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the transmission applied to the sending end device as described above is realized.
  • the transmission bits are encoded by using an available encoding method; after that, the encoded information is sent to complete the current transmission.
  • the available coding methods include at least one of the following: joint source-channel coding at the physical layer; channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding at the physical layer with a code rate greater than 1;
  • Layer channel coding is to directly use input bits as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as output bits; the channel source is used in the non-physical layer Joint coding.
  • the available encoding method is used to encode the transmission bits, which can effectively reduce the time delay of the transmission processing.
  • FIG. 1 is a schematic diagram of steps of a transmission processing method applied to a sending end device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of steps of a transmission processing method applied to a receiving end device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a transmitting end device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a receiving end device according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • a transmission processing method which is applied to a sending end device, includes:
  • Step 101 Use an available encoding method to encode transmission bits
  • Step 102 Send the encoded information
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • channel coding consists of at least the following two parts, a cyclic redundancy check (Cyclic Redundancy Check, CRC) part and a part that directly uses input bits as output bits;
  • CRC Cyclic Redundancy Check
  • the sending end device applying the method of the embodiment of the present invention encodes the transmission bits by using an available encoding method; then, the encoded information is sent to complete the current transmission.
  • the available coding methods include at least one of the following: joint source-channel coding at the physical layer; channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding at the physical layer with a code rate greater than 1; Layer channel coding is to directly use input bits as output bits; the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as output bits; the channel source is used in the non-physical layer Joint coding. Then, the available encoding method is used to encode the transmission bits, which can effectively reduce the time delay of the transmission processing.
  • the joint source-channel coding is based on the deep learning neural network joint source-channel coding.
  • the code rate refers to the number of encoded input bits to the number of output bits.
  • At least the physical layer channel coding is composed of a CRC part and a part that directly uses input bits as output bits.
  • the CRC can be a 16-bit or 24-bit parity check bit to determine whether the received bit is correct.
  • the available coding method is to perform joint source-channel coding at the non-physical layer.
  • the joint source-channel coding is placed on the application layer, the corresponding package process is as follows:
  • the application layer performs joint source-channel coding based on the information provided by the MAC layer, and directly generates data packets that the MAC layer does not require further packetization;
  • UDP identifies the port number corresponding to the packet
  • the packet identifying the port number is directly transparently transmitted to the MAC layer
  • the MAC layer determines the target device according to the high-level application information, and generates corresponding control information
  • the physical layer sends the physical layer control channel according to the control information of the MAC layer;
  • the physical layer sends the physical layer data channel according to the resource information, modulation information, and physical layer process information of the MAC layer.
  • the available coding method is joint source-channel coding at the physical layer, that is, joint source-channel coding is placed on the physical layer, and the corresponding grouping process:
  • the application layer can choose to do encryption and decryption or out-of-order rearrangement
  • UDP identifies the corresponding packet port
  • the packet identifying the port number is directly transparently transmitted to the MAC layer
  • the packet corresponding to control plane signaling (such as Radio Resource Control (RRC)) is transmitted to the MAC layer and multiplexed in the MAC layer;
  • RRC Radio Resource Control
  • the MAC layer performs the following processing:
  • Sub-packaging and multiplexing are performed according to the channel state and the size of high-level data packets.
  • the physical layer is processed as follows:
  • the physical layer data channel is sent.
  • the sending end device may be a user side device or a network side device.
  • User-side equipment may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal equipment can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, and wearable devices.
  • the network-side equipment may refer to a base station, a core network, and so on.
  • the available coding mode is indicated by indicating a Modulation and Coding Scheme (MCS) table, where the MCS table is used to indicate at least one of a code rate and a modulation mode.
  • MCS Modulation and Coding Scheme
  • the sending end device can determine the available encoding method used for transmission through the indicated MCS table, and can also indicate the MCS table to the receiving end device so that the receiving end device knows the available encoding method used for transmission to perform corresponding decoding.
  • the non-physical layer is a layer above the transmission control protocol or the Internet protocol layer.
  • the method further includes:
  • Send codec indication information where the codec indication information includes information indicating at least one of the following:
  • the physical layer channel coding consists of at least the following two parts, the CRC part and the part that directly uses the input bits as the output bits.
  • the sender device sends the codec instruction information to inform the receiver device of at least one of the following information about the sender device: whether to use channel coding; whether to use joint source channel coding; whether to use a type of code rate greater than 1 Coding; whether channel coding is not used in the physical layer; whether channel coding or joint source-channel coding is used in the non-physical layer; whether the input bits are directly used as output bits in the physical layer channel coding; whether the physical layer channel coding consists of at least the following two Partial composition, the CRC part and the part that directly uses the input bit as the output bit.
  • the receiving end device can perform corresponding decoding based on the obtained coding and coding instruction information.
  • the method further includes:
  • Interactive encoding and decoding parameters where the encoding and decoding parameters include at least one of the following information:
  • the transmitting end device and the receiving end device interact with encoding and decoding parameters to complete the encoding and decoding of the transmission.
  • the sending end device sends the coded parameters to the receiving end device, or the receiving end device sends the coded parameters to the sending end device.
  • the physical layer related parameters include at least one of the following information:
  • the channel type includes at least one of: signal-to-noise ratio, Doppler spread, and Delay spread.
  • the environmental parameters include at least one of moving speed, indoor parameters, and outdoor parameters.
  • the computing resource related parameters include at least one of the following information:
  • the network size that can be handled by the sender device and/or the receiver device is not limited
  • the depth of the network that can be processed by the sender device and/or the receiver device is the depth of the network that can be processed by the sender device and/or the receiver device
  • the type of network that the sender and/or receiver can handle is the type of network that the sender and/or receiver can handle.
  • the service-related parameters include at least one of the following information:
  • the quality of service QOS target may include user experience parameters, such as brightness and quality that may affect user experience.
  • the service type includes at least service characteristics, such as content in images, videos, voices, and texts.
  • Historical experience can be generated according to pre-defined criteria, for example, according to a pre-configured deep learning neural network to generate corresponding historical experience. This historical experience may imply an evaluation of the signal satisfaction degree of the corresponding receiving end device.
  • the network-related parameters include at least one of the following information:
  • Indication information identifying at least one of the network type, the network coefficient, and the activation function type.
  • the network type, the network coefficient and the activation function type can be determined.
  • the network type, network coefficient, and activation function type can be the corresponding content of the deep learning neural network used in the source-channel joint coding.
  • the algorithm parameters required by the originating encoding include at least one of the following information:
  • Indication information identifying the set of related parameters of the algorithm.
  • the algorithm-related parameter set can be determined, and then the algorithm correlation coefficient can be obtained.
  • the overall evaluation parameters may be historical experience and evaluation parameters for different applications.
  • the parameter indication information is other parameters formed according to a combination of one or more of the above parameters, and the number of the other parameters may be less than the number of the original parameters.
  • the interactive encoding and decoding parameters include:
  • the indication information of the coding and decoding parameters may be indicated explicitly or implicitly (for example, included in the data). Specifically, it is pre-configured with a parameter set including one or more of physical layer related parameters, computing resource related parameters, service related parameters, network related parameters, algorithm parameters required by the originating code, overall evaluation parameters, and parameter indication information.
  • the parameter indication information can correspond to one of the parameter sets.
  • the pre-configured parameters can be used.
  • the encoding and decoding parameters are pre-configured, or indicated by at least one of the following target sources:
  • the physical layer of the sending device is the physical layer of the sending device.
  • the media access control MAC layer of the sender device The media access control MAC layer of the sender device
  • the radio resource control RRC of the sending end device is the radio resource control RRC of the sending end device
  • the application layer of the sender device is the application layer of the sender device.
  • the physical layer of the receiving device is the physical layer of the receiving device.
  • the MAC layer of the receiving device
  • the pre-configured encoding and decoding parameters can be system or user configuration, or protocol definitions.
  • the method further includes:
  • the determining whether data retransmission is required includes:
  • the feedback information includes at least one of the following information:
  • the decoded data quality is generated in a pre-appointed manner.
  • the pre-agreed manner includes a given network for calculating the quality of the decoded data.
  • the method further includes:
  • the same code as the previous transmission is used, or a different code from the previous transmission is used, and the data to be transmitted is retransmitted.
  • the retransmission can use the same encoding as the previous transmission, or a different encoding from the previous transmission.
  • the sender device and the receiver device can unify the criteria, and different criteria can be adopted for different applications.
  • the sending end device may also determine whether to retransmit and then give a retransmission instruction to the receiving end device.
  • codec indication information can be implemented in at least one of the following ways:
  • DCI Downlink Control Information
  • codec instruction information can also be activated by selecting one of a plurality of pre-configured ones.
  • the sending end device to which the method of the embodiment of the present invention is applied can be used as a receiving end device in other transmissions.
  • the method of the embodiment of the present invention encodes the transmission bits by adopting an available encoding method; afterwards, the encoded information is sent to complete the current transmission.
  • the available coding methods include at least one of the following: joint source-channel coding at the physical layer; channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding at the physical layer with a code rate greater than 1;
  • Layer channel coding is to directly use input bits as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as output bits; the channel source is used in the non-physical layer Joint coding.
  • the available encoding method is used to encode the transmission bits, which can effectively reduce the time delay of the transmission processing.
  • a transmission processing method which is applied to a receiving end device, includes:
  • Step 201 Decoding the received encoded information, where the encoded information is obtained by encoding using a usable encoding method
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • the received encoded information is decoded. Since the encoded information is encoded using a usable encoding method, the available encoding method includes at least one of the following: joint source-channel encoding at the physical layer ; Channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding with a code rate greater than 1 at the physical layer; channel coding at the physical layer directly uses input bits as output bits; at the physical layer channel coding consists of at least the following It consists of two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as the output bits; joint coding of channel sources is used in the non-physical layer.
  • the decoding of the encoded information can effectively reduce the time delay of transmission processing.
  • the available coding mode is indicated by a mode of indicating a modulation and coding strategy MCS table, where the MCS table is used to indicate at least one of a code rate and a modulation mode.
  • the non-physical layer is a layer above the transmission control protocol or the Internet protocol layer.
  • the method further includes:
  • Receive codec indication information where the codec indication information includes information indicating at least one of the following:
  • the physical layer channel coding consists of at least the following two parts, the CRC part and the part that directly uses the input bits as the output bits.
  • the method further includes:
  • Interactive encoding and decoding parameters where the encoding and decoding parameters include at least one of the following information:
  • the physical layer related parameters include at least one of the following information:
  • the computing resource related parameters include at least one of the following information:
  • the network size that can be handled by the sender device and/or the receiver device is not limited
  • the depth of the network that can be processed by the sender device and/or the receiver device is the depth of the network that can be processed by the sender device and/or the receiver device
  • the type of network that the sender and/or receiver can handle is the type of network that the sender and/or receiver can handle.
  • the service-related parameters include at least one of the following information:
  • the network-related parameters include at least one of the following information:
  • Indication information identifying at least one of the network type, the network coefficient, and the activation function type.
  • the algorithm parameters required for decoding at the receiving end include at least one of the following information:
  • Indication information identifying the set of related parameters of the algorithm.
  • the encoding and decoding parameters are pre-configured, or indicated by at least one of the following target sources:
  • the physical layer of the sending device is the physical layer of the sending device.
  • the application layer of the sender device is the application layer of the sender device.
  • the physical layer of the receiving device is the physical layer of the receiving device.
  • the MAC layer of the receiving device
  • the interactive encoding and decoding parameters include:
  • the method further includes:
  • the feedback information includes at least one of the following information:
  • the decoded data quality is generated in a pre-appointed manner.
  • the pre-agreed manner includes a given network for calculating the quality of the decoded data.
  • the method further includes:
  • the retransmission decoding parameter includes at least a retransmission indication, so that the receiving end device can know whether the currently received data is a retransmission. For the retransmitted data, complete the corresponding decoding.
  • the retransmission decoding parameters are notified at the higher layer and/or the physical layer.
  • the retransmission decoding can use the encoding and decoding parameters of the last transmission, or it can further interact with the sending end device to retransmit the corresponding encoding and decoding parameters, that is, the retransmission decoding parameters also include the encoding and decoding parameters.
  • the decoding the retransmitted data includes:
  • Fig. 3 is a block diagram of a sending end device according to an embodiment of the present invention.
  • the sending end device 300 shown in FIG. 3 includes a first processing module 310 and a first sending module 320.
  • the first processing module 310 is configured to use available encoding methods to encode transmission bits
  • the first sending module 320 is configured to send encoded information
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • the available coding mode is indicated by a mode of indicating a modulation and coding strategy MCS table, where the MCS table is used to indicate at least one of a code rate and a modulation mode.
  • the non-physical layer is a layer above the transmission control protocol or the Internet protocol layer.
  • the sending end device further includes:
  • the second sending module is configured to send codec indication information, where the codec indication information includes information indicating at least one of the following:
  • the physical layer channel coding consists of at least the following two parts, the CRC part and the part that directly uses the input bits as the output bits.
  • the sending end device further includes:
  • the first interaction module is used to interact with encoding and decoding parameters, where the encoding and decoding parameters include at least one of the following information:
  • the physical layer related parameters include at least one of the following information:
  • the computing resource related parameters include at least one of the following information:
  • the network size that can be handled by the sender device and/or the receiver device is not limited
  • the depth of the network that can be processed by the sender device and/or the receiver device is the depth of the network that can be processed by the sender device and/or the receiver device
  • the type of network that the sender and/or receiver can handle is the type of network that the sender and/or receiver can handle.
  • the service-related parameters include at least one of the following information:
  • the network-related parameters include at least one of the following information:
  • Indication information identifying at least one of the network type, the network coefficient, and the activation function type.
  • the algorithm parameters required by the originating encoding include at least one of the following information:
  • Indication information identifying the set of related parameters of the algorithm.
  • the encoding and decoding parameters are pre-configured, or indicated by at least one of the following target sources:
  • the physical layer of the sending device is the physical layer of the sending device.
  • the media access control MAC layer of the sender device The media access control MAC layer of the sender device
  • the radio resource control RRC of the sending end device is the radio resource control RRC of the sending end device
  • the application layer of the sender device is the application layer of the sender device.
  • the physical layer of the receiving device is the physical layer of the receiving device.
  • the MAC layer of the receiving device
  • the first interaction module is further used for:
  • the sending end device further includes:
  • the determination module is used to determine whether data retransmission is required.
  • the determining module is further used for:
  • the feedback information includes at least one of the following information:
  • the decoded data quality is generated in a pre-appointed manner.
  • the pre-agreed manner includes a given network for calculating the quality of the decoded data.
  • the sending end device further includes:
  • the first retransmission processing module is used to retransmit the data to be transmitted by using the same code as the previous transmission, or a different code from the previous transmission when the data needs to be retransmitted.
  • the sending end device 300 can implement each process implemented by the sending end device in the method embodiment of FIG.
  • the transmitting end device of the embodiment of the present invention encodes the transmission bits by adopting an available encoding method; after that, the encoded information is sent to complete the current transmission.
  • the available coding methods include at least one of the following: joint source-channel coding at the physical layer; channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding at the physical layer with a code rate greater than 1; Layer channel coding is to directly use input bits as output bits; the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as output bits; the channel source is used in the non-physical layer Joint coding. Then, the available encoding method is used to encode the transmission bits, which can effectively reduce the time delay of the transmission processing.
  • Fig. 4 is a block diagram of a receiving end device according to an embodiment of the present invention.
  • the receiving end device 400 shown in FIG. 4 includes a second processing module 410.
  • the second processing module 410 is configured to decode the received encoded information, where the encoded information is obtained by encoding using a usable encoding method;
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • the available coding mode is indicated by a mode of indicating a modulation and coding strategy MCS table, where the MCS table is used to indicate at least one of a code rate and a modulation mode.
  • the non-physical layer is a layer above the transmission control protocol or the Internet protocol layer.
  • the receiving end device further includes:
  • the receiving module is configured to receive coding and coding indication information, where the coding and coding indication information includes information indicating at least one of the following:
  • the physical layer channel coding consists of at least the following two parts, the CRC part and the part that directly uses the input bits as the output bits.
  • the receiving end device further includes:
  • the second interactive module uses rich interactive encoding and decoding parameters, where the encoding and decoding parameters include at least one of the following information:
  • the physical layer related parameters include at least one of the following information:
  • the computing resource related parameters include at least one of the following information:
  • the network size that can be handled by the sender device and/or the receiver device is not limited
  • the depth of the network that can be processed by the sender device and/or the receiver device is the depth of the network that can be processed by the sender device and/or the receiver device
  • the type of network that the sender and/or receiver can handle is the type of network that the sender and/or receiver can handle.
  • the service-related parameters include at least one of the following information:
  • the network-related parameters include at least one of the following information:
  • Indication information identifying at least one of the network type, the network coefficient, and the activation function type.
  • the algorithm parameters required for decoding at the receiving end include at least one of the following information:
  • Indication information identifying the set of related parameters of the algorithm.
  • the encoding and decoding parameters are configured by the user, or indicated by at least one of the following target sources:
  • the physical layer of the sending device is the physical layer of the sending device.
  • the application layer of the sender device is the application layer of the sender device.
  • the physical layer of the receiving device is the physical layer of the receiving device.
  • the MAC layer of the receiving device
  • the second interaction module is further used for:
  • the receiving end device further includes:
  • the feedback module is configured to send feedback information to the sending end device, where the feedback information includes at least one of the following information:
  • the decoded data quality is generated in a pre-appointed manner.
  • the pre-appointed manner includes a given network for calculating the quality of the decoded data
  • the receiving end device further includes:
  • the acquisition module is used to acquire retransmission data and retransmission decoding parameters
  • the second retransmission processing module is used to decode the retransmitted data.
  • the retransmission decoding parameters are notified at the higher layer and/or the physical layer.
  • the second retransmission processing module is further configured to:
  • the received encoded information is decoded. Since the encoded information is encoded using a usable encoding method, the available encoding method includes at least one of the following: joint source-channel encoding at the physical layer ; Channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding with a code rate greater than 1 at the physical layer; channel coding at the physical layer directly uses input bits as output bits; at the physical layer channel coding consists of at least the following It consists of two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as the output bits; joint coding of channel sources is used in the non-physical layer.
  • the decoding of the encoded information can effectively reduce the time delay of transmission processing.
  • the communication device 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, and a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, and a power supply 511 and other components.
  • a radio frequency unit 501 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, and a display unit 506, a user input unit 507, an interface unit 508, a memory 509, a processor 510, and a power supply 511 and other components.
  • the communication device may include more or less components than those shown in the figure, or a combination of certain components, or different components. Layout.
  • communication devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 510 is configured to use an available encoding method to encode transmission bits.
  • the radio frequency unit 501 is used to send encoded information
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • the processor 510 is configured to decode the received encoded information, where the encoded information is obtained by encoding using a usable encoding method;
  • the available encoding methods include at least one of the following:
  • the input bits are directly used as output bits;
  • the physical layer channel coding consists of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses input bits as output bits;
  • the communication device uses available encoding methods to encode transmission bits, or decodes the encoded information obtained by using available encoding methods, because the available encoding methods include at least one of the following: information source at the physical layer Channel joint coding; channel coding with a code rate greater than 1 at the physical layer; joint source-channel coding with a code rate greater than 1 at the physical layer; channel coding at the physical layer directly uses input bits as output bits; channel coding at the physical layer It is composed of at least the following two parts, the cyclic redundancy check CRC part and the part that directly uses the input bits as the output bits; the channel source joint coding is used in the non-physical layer. It can effectively reduce the delay of transmission processing.
  • the radio frequency unit 501 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 510; Uplink data is sent to the base station.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 501 can also communicate with the network and other devices through a wireless communication system.
  • the communication device provides users with wireless broadband Internet access through the network module 502, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 503 can convert the audio data received by the radio frequency unit 501 or the network module 502 or stored in the memory 509 into an audio signal and output it as sound. Moreover, the audio output unit 503 may also provide audio output related to a specific function performed by the communication device 500 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 503 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 504 is used to receive audio or video signals.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame may be displayed on the display unit 506.
  • the image frame processed by the graphics processor 5041 may be stored in the memory 509 (or other storage medium) or sent via the radio frequency unit 501 or the network module 502.
  • the microphone 5042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 501 for output in the case of a telephone call mode.
  • the communication device 500 also includes at least one sensor 505, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 5061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 5061 and the display panel 5061 when the communication device 500 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of communication equipment (such as horizontal and vertical screen switching, related games) , Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 505 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 506 is used to display information input by the user or information provided to the user.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 507 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the communication device.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072.
  • the touch panel 5071 also known as a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 5071 or near the touch panel 5071. operate).
  • the touch panel 5071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 510, the command sent by the processor 510 is received and executed.
  • the touch panel 5071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 507 may also include other input devices 5072.
  • other input devices 5072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 5071 can be overlaid on the display panel 5061.
  • the touch panel 5071 detects a touch operation on or near it, it is transmitted to the processor 510 to determine the type of touch event, and then the processor 510 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 5061.
  • the touch panel 5071 and the display panel 5061 are used as two independent components to implement the input and output functions of the communication device, in some embodiments, the touch panel 5071 and the display panel 5061 can be integrated
  • the implementation of the input and output functions of the communication device is not specifically limited here.
  • the interface unit 508 is an interface for connecting an external device and the communication device 500.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 508 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the communication device 500 or can be used to connect the communication device 500 to an external device. Transfer data between devices.
  • the memory 509 can be used to store software programs and various data.
  • the memory 509 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 510 is the control center of the communication device. It uses various interfaces and lines to connect the various parts of the entire communication device, runs or executes the software programs and/or modules stored in the memory 509, and calls the data stored in the memory 509. , Perform various functions of the communication equipment and process data, so as to monitor the communication equipment as a whole.
  • the processor 510 may include one or more processing units; preferably, the processor 510 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 510.
  • the communication device 500 may also include a power source 511 (such as a battery) for supplying power to various components.
  • a power source 511 such as a battery
  • the power source 511 may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the communication device 500 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a communication device, including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • a communication device including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the computer program is executed by the processor, the above-mentioned application in sending The transmission processing method of the end device, or the various processes of the transmission processing method applied to the receiving end device, can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)

Abstract

本发明提供一种传输处理方法及设备。该方法应用于发送端设备,包括:采用可用编码方式,对传输比特进行编码;发送编码后信息;其中,所述可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。

Description

传输处理方法及设备
相关申请的交叉引用
本申请主张在2020年3月31日在中国提交的中国专利申请号No.202010246137.0的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别是指一种传输处理方法及设备。
背景技术
香农通过分离定理指出,信源编码和信道编码可以在不牺牲系统整体性能的前提下分别进行最优化。目前的信息系统设计均基于该原则进行,例如一个通过第五代移动通信技术(5th-Generation mobile networks,5G)网络进行的视频服务中,视频服务器负责信源编码,而5G网络负责将信源编码后的比特按照服务质量(Quality of Service,QoS)需求传输至终端侧,5G网络中在不同的节点间进行传输时,分别采用不同的信道编码适配不同的信道条件(例如有线、无线等)。
然而,香农分离定理证明的前提是单发射机、单接收机的点对点系统,平稳信道,以及无限包长,但是实际系统中上述三个前提假设均不满足。如此,目前的信源编码和信道编码分离处理的方式,往往会增加处理的时间,造成资源的浪费。
发明内容
本发明实施例提供一种传输处理方法及设备,以解决现有的传输中编译码处理耗时的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明的实施例提供了一种传输处理方法,应用于发送端设备,包括:
采用可用编码方式,对传输比特进行编码;
发送编码后信息;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
第二方面,本发明的实施例还提供了一种传输处理方法,应用于接收端设备,包括:
对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
第三方面,本发明的实施例还提供了一种发送端设备,包括:
第一处理模块,用于采用可用编码方式,对传输比特进行编码;
第一发送模块,用于发送编码后信息;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
第四方面,本发明的实施例还提供了一种接收端设备,包括:
第二处理模块,用于对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
第五方面,本发明实施例还提供了一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上应用于发送端设备的传输处理方法的步骤,或者,如上应用于接收端设备的传输处理方法的步骤。
第六方面,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上应用于发送端设备的传输处理方法的步骤,或者,如上应用于接收端设备的传输处理方法的步骤。
这样,本发明实施例中,通过采用可用编码方式,对传输比特进行编码;之后发送编码后信息,完成本次传输。由于该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。则采用该可用编码方式对传输比特进行编码,能够有效减 小传输处理的时延。
附图说明
图1为本发明实施例的应用于发送端设备的传输处理方法的步骤示意图;
图2为本发明实施例的应用于接收端设备的传输处理方法的步骤示意图;
图3为本发明实施例的发送端设备的结构示意图;
图4为本发明实施例的接收端设备的结构示意图;
图5为本发明实施例的通信设备的结构示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
应该知道的是,第三代移动通信(3rd Generation Partnership Project,3GPP)相关协议栈结构如下表1,常用的信源编码位于应用层,信道编码在物理层(Physical Layer,PHY):
表1
Figure PCTCN2021082580-appb-000001
因此,为减少传输的处理时延,如图1所示,本发明实施例的一种传输处理方法,应用于发送端设备,包括:
步骤101,采用可用编码方式,对传输比特进行编码;
步骤102,发送编码后信息;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验(Cyclic Redundancy Check,CRC)部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
故,按照上述步骤101和步骤102,应用本发明实施例方法的发送端设备,通过采用可用编码方式,对传输比特进行编码;之后发送编码后信息,完成本次传输。由于该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。则采用该可用编码方式对传输比特进行编码,能够有效减小传输处理的时延。
该实施例中,信源信道联合编码是基于深度学习神经网络的信源信道联合编码。
其中,码率是指编码输入比特数比输出比特数。而至少由CRC部分和直接将输入比特作为输出比特的部分组成的物理层信道编码,CRC可为16比特或者24比特的奇偶校验码parity check bits,用于判断接收的比特是否正确。
具体地,该实施例中,可用编码方式为在非物理层进行信源信道联合编码,如将信源信道联合编码都放在应用层,对应的组包流程如下:
应用层根据MAC层提供的信息进行信源信道联合编码,直接生成MAC层不需要进一步组包的数据包packet;
UDP标识对应packet的端口号;
标识端口号的packet直接透传至MAC层;
MAC层根据高层应用信息,确定目标设备,并生成对应的控制信息;
物理层根据MAC层的控制信息发送物理层控制信道;
物理层根据MAC层的资源信息、调制信息、物理层过程信息,发送物理层数据信道。
又或者,可用编码方式为在物理层进行信源信道联合编码,即将信源信道联合编码放在物理层,对应的组包过程:
应用层可选做加解密或者乱序重排;
UDP标识对应的packet的端口;
标识端口号的packet直接透传至MAC层;
控制面信令(如无线资源控制(Radio Resource Control,RRC))对应的packet传至MAC层,在MAC层进行复用;
MAC层进行如下处理:
1)根据信道状态、高层确定的业务类型等信息确定信源信道联合编码对应的参数;
2)负责重传管理,根据PHY译码结果,确定是否重传;
3)根据应用层消息,确定目标用户,生成对应的物理层控制信息;
4)根据信道状态、高层数据包大小进行分包、复用等。
物理层进行如下处理:
1)根据MAC确定的信息进行信源信道联合编解码;
2)根据MAC层的控制信息发送物理层控制信道;
3)根据MAC层的资源信息、调制信息、物理层过程信息,发送物理层数据信道。
在该实施例中,发送端设备可为用户侧设备,也可为网络侧设备。用户侧设备可以指接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal  digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备。网络侧设备可以指基站、核心网等。
可选地,所述可用编码方式通过指示调制与编码策略(Modulation and Coding Scheme,MCS)表的方式指示,其中MCS表用于指示码率和调制方式中的至少一项。
如此,发送端设备即可通过指示的MCS表来确定传输采用的可用编码方式,也可通过向接收端设备指示MCS表,使接收端设备获知传输采用的可用编码方式,以进行对应的解码。
可选地,所述非物理层为传送控制协议或网际协议层之上的一层。
此外,该实施例中,所述方法还包括:
发送编译码指示信息,所述编译码指示信息包括指示以下至少一项的信息:
是否使用信道编码;
是否使用联合信源信道编码;
是否使用一类码率大于1的编码;
是否在物理层不使用信道编码;
是否在非物理层使用信道编码或信源信道联合编码;
是否在物理层信道编码是直接将输入比特作为输出比特;
是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。
这里,发送端设备发送该编译码指示信息,可告知接收端设备发送端设备的以下至少一项的信息:是否使用信道编码;是否使用联合信源信道编码;是否使用一类码率大于1的编码;是否在物理层不使用信道编码;是否在非物理层使用信道编码或信源信道联合编码;是否在物理层信道编码是直接将输入比特作为输出比特;是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。这样,接收端设备就能够通过获知的编译码指示信息进行对应译码。
另外,该实施例中,所述方法还包括:
交互编译码参数,所述编译码参数包括以下至少一项信息:
物理层相关参数;
计算资源相关参数;
业务相关参数;
网络相关参数;
发端编码需要的算法参数;
总体评价参数;
参数指示信息。
这样,发送端设备与接收端设备之间通过进行编译码参数的交互,来完成传输的编码和译码。例如,发送端设备向接收端设备发送编译码参数,或者,接收端设备向发送端设备发送编译码参数。
可选地,所述物理层相关参数包括以下至少一项信息:
可用的物理资源;
信道类型;
环境参数。
该信道类型至少包括:信噪比,多普勒扩展Doppler spread和延时扩展Delay spread中的一项。该环境参数至少包括:移动速度,室内参数,室外参数中的一项。
可选地,所述计算资源相关参数包括以下至少一项信息:
发送端设备和/或接收端设备可处理的网络大小;
发送端设备和/或接收端设备可处理的网络深度;
发送端设备和/或接收端设备可处理的网络类型。
可选地,所述业务相关参数包括以下至少一项信息:
各个应用缓存中的比特数量;
服务质量目标;
业务类型;
历史体验。
其中,服务质量QOS目标可包括用户体验参数,如可能影响用户体验的亮度、质量等。业务类型至少包括业务特征,如图像、视频、语音、文本中的 内容。历史体验则可根据预先定义的准则所生成的,如根据预先配置的深度学习神经网络,生成对应的历史体验。该历史体验可能隐含对应接收端设备信号满意度评价。
可选地,所述网络相关参数包括以下至少一项信息:
网络类型;
网络系数;
激活函数类型;
标识所述网络类型、所述网络系数和所述激活函数类型中至少一者的指示信息。
这里,通过标识网络类型、网络系数和激活函数类型中至少一者的指示信息,即可确定标识对应的网络类型、网络系数和激活函数类型中的一个或多个。网络类型、网络系数、激活函数类型可为信源信道联合编码所使用的深度学习神经网络的对应内容。
可选地,所述发端编码需要的算法参数包括以下至少一项信息:
算法类型;
算法相关系数;
标识算法相关参数集合的指示信息。
这里,通过标识算法相关参数集合的指示信息,可确定算法相关参数集合,继而得到算法相关系数。
此外,总体评价参数可是针对不同应用的历史体验、评价参数。参数指示信息是根据上述参数中一个或多个的组合形成的其他参数,该其他参数的数量可能少于原始参数数量。
当然,该实施例中,不限于直接交互编译码参数的具体内容,可选地,所述交互编译码参数包括:
获取所述编译码参数的指示信息。
该编译码参数的指示信息可以显式指示,也可隐式指示(例如,包含在数据中)。具体地,预先配置包含物理层相关参数、计算资源相关参数、业务相关参数、网络相关参数、发端编码需要的算法参数、总体评价参数、参数指示信息中一个或多个的参数集合,该编译码参数的指示信息可对应其中一参 数集合。
当然,如果没有编译码参数的指示信息,可采用预先配置参数。
可选地,所述编译码参数是通过预先配置,或者,通过以下至少一目标源指示的:
发送端设备的物理层;
发送端设备的媒体访问控制MAC层;
发送端设备的无线资源控制RRC;
发送端设备的应用层;
接收端设备;
接收端设备的物理层;
接收端设备的MAC层;
接收端设备的RRC;
控制节点。
其中,预先配置的编译码参数可是系统或用户配置,也可是协议定义。
该实施例中,考虑到传输的可靠性,所述方法还包括:
确定是否需要数据重传。
可选地,所述确定是否需要数据重传,包括:
根据接收端设备的反馈信息确定是否需要重传,所述反馈信息包括以下至少一项信息:
CRC结果;
是否正确接收;
解码后数据质量;
数据对应的应用。
可选地,所述解码后数据质量是按照预先约定的方式生成。
可选地,所述预先约定的方式包括给定计算解码后数据质量的网络。
若确定需要重传,可选地,该实施例中,所述确定是否需要数据重传之后,还包括:
在需要重传数据的情况下,采用与上一次传输相同的编码,或者,与上一次传输不同的编码,对待传输数据进行重传。
如此,重传可采用与上一次传输相同的编码,或者,与上一次传输不同的编码。
而对于是否重传,发送端设备和接收端设备之间可统一准则,并且可以针对不同应用采用不同准则。当然,也可由发送端设备确定是否重传后向接收端设备进行重传指示。
该实施例中,编译码指示信息、可用编码方式、编译码参数的传递,可通过以下至少一种方式实现:
下行控制信息(Downlink Control Information,DCI);
媒体接入控制层控制单元MAC CE;
RRC;
层间接口;
应用层;
高层消息。
此外,编译码指示信息、可用编码方式和编译码参数也可在预先配置的多个中选择其中一个激活。
还应该了解的是,应用本发明实施例的方法的发送端设备,在其他传输中,可作为接收端设备。
综上所述,本发明实施例的方法,通过采用可用编码方式,对传输比特进行编码;之后发送编码后信息,完成本次传输。由于该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。则采用该可用编码方式对传输比特进行编码,能够有效减小传输处理的时延。
如图2所示,本发明实施例的一种传输处理方法,应用于接收端设备,包括:
步骤201,对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码
本发明实施例的方法,对接收到的编码后信息进行译码,由于该编码后信息是采用可用编码方式编码的,该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。则对编码后信息的译码,能够有效减小传输处理的时延。
可选地,所述可用编码方式通过指示调制与编码策略MCS表的方式指示,其中MCS表用于指示码率和调制方式中的至少一项。
可选地,所述非物理层为传送控制协议或网际协议层之上的一层。
可选地,所述方法还包括:
接收编译码指示信息,所述编译码指示信息包括指示以下至少一项的信息:
是否使用信道编码;
是否使用联合信源信道编码;
是否使用一类码率大于1的编码;
是否在物理层不使用信道编码;
是否在非物理层使用信道编码或信源信道联合编码;
是否在物理层信道编码是直接将输入比特作为输出比特;
是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。
可选地,所述方法还包括:
交互编译码参数,所述编译码参数包括以下至少一项信息:
物理层相关参数;
计算资源相关参数;
业务相关参数;
网络相关参数;
收端译码需要的算法参数;
总体评价参数;
参数指示信息。
可选地,所述物理层相关参数包括以下至少一项信息:
可用的物理资源;
信道类型;
环境参数。
可选地,所述计算资源相关参数包括以下至少一项信息:
发送端设备和/或接收端设备可处理的网络大小;
发送端设备和/或接收端设备可处理的网络深度;
发送端设备和/或接收端设备可处理的网络类型。
可选地,所述业务相关参数包括以下至少一项信息:
各个应用缓存中的比特数量;
服务质量目标;
业务类型;
历史体验。
可选地,所述网络相关参数包括以下至少一项信息:
网络类型;
网络系数;
激活函数类型;
标识所述网络类型、所述网络系数和所述激活函数类型中至少一者的指示信息。
可选地,所述收端译码需要的算法参数包括以下至少一项信息:
算法类型;
算法相关系数;
标识算法相关参数集合的指示信息。
可选地,所述编译码参数是通过预先配置,或者,通过以下至少一目标源指示的:
发送端设备;
发送端设备的物理层;
发送端设备的MAC层;
发送端设备的RRC;
发送端设备的应用层;
接收端设备的物理层;
接收端设备的MAC层;
接收端设备的RRC;
控制节点。
可选地,所述交互编译码参数包括:
获取所述编译码参数的指示信息。
可选地,所述方法还包括:
向发送端设备发送反馈信息,所述反馈信息包括以下至少一项信息:
CRC结果;
是否正确接收;
解码后数据质量;
数据对应的应用。
可选地,所述解码后数据质量是按照预先约定的方式生成。
可选地,所述预先约定的方式包括给定计算解码后数据质量的网络。
可选地,所述对接收到的编码后信息进行译码之后,还包括:
获取重传数据以及重传译码参数;
对所述重传数据进行译码。
这里,该重传译码参数至少包括重传指示,以便接收端设备了解到当前接收数据是否是重传。针对重传数据,完成对应的译码。
可选地,所述重传译码参数是在高层和/或物理层通知的。
此外,重传译码可使用上一次传输的编译码参数,也可进一步与发送端设备交互重传对应的编译码参数,即重传译码参数还包括编译码参数。
可选地,所述对所述重传数据进行译码,包括:
采用与上一次传输相同的网络,或者,与上一次传输不同的网络进行重传数据的译码,并将译码后的重传数据和上一次译码后的传输数据合并。
图3是本发明一个实施例的发送端设备的框图。图3所示的发送端设备300包括第一处理模块310和第一发送模块320。
第一处理模块310,用于采用可用编码方式,对传输比特进行编码;
第一发送模块320,用于发送编码后信息;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
可选地,所述可用编码方式通过指示调制与编码策略MCS表的方式指示,其中MCS表用于指示码率和调制方式中的至少一项。
可选地,所述非物理层为传送控制协议或网际协议层之上的一层。
可选地,所述发送端设备还包括:
第二发送模块,用于发送编译码指示信息,所述编译码指示信息包括指示以下至少一项的信息:
是否使用信道编码;
是否使用联合信源信道编码;
是否使用一类码率大于1的编码;
是否在物理层不使用信道编码;
是否在非物理层使用信道编码或信源信道联合编码;
是否在物理层信道编码是直接将输入比特作为输出比特;
是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。
可选地,所述发送端设备还包括:
第一交互模块,用于交互编译码参数,所述编译码参数包括以下至少一项信息:
物理层相关参数;
计算资源相关参数;
业务相关参数;
网络相关参数;
发端编码需要的算法参数;
总体评价参数;
参数指示信息。
可选地,所述物理层相关参数包括以下至少一项信息:
可用的物理资源;
信道类型;
环境参数。
可选地,所述计算资源相关参数包括以下至少一项信息:
发送端设备和/或接收端设备可处理的网络大小;
发送端设备和/或接收端设备可处理的网络深度;
发送端设备和/或接收端设备可处理的网络类型。
可选地,所述业务相关参数包括以下至少一项信息:
各个应用缓存中的比特数量;
服务质量目标;
业务类型;
历史体验。
可选地,所述网络相关参数包括以下至少一项信息:
网络类型;
网络系数;
激活函数类型;
标识所述网络类型、所述网络系数和所述激活函数类型中至少一者的指示信息。
可选地,所述发端编码需要的算法参数包括以下至少一项信息:
算法类型;
算法相关系数;
标识算法相关参数集合的指示信息。
可选地,所述编译码参数是通过预先配置,或者,通过以下至少一目标源指示的:
发送端设备的物理层;
发送端设备的媒体访问控制MAC层;
发送端设备的无线资源控制RRC;
发送端设备的应用层;
接收端设备;
接收端设备的物理层;
接收端设备的MAC层;
接收端设备的RRC;
控制节点。
可选地,所述第一交互模块还用于:
获取所述编译码参数的指示信息。
可选地,所述发送端设备还包括:
确定模块,用于确定是否需要数据重传。
可选地,所述确定模块还用于:
根据接收端设备的反馈信息确定是否需要重传,所述反馈信息包括以下至少一项信息:
CRC结果;
是否正确接收;
解码后数据质量;
数据对应的应用。
可选地,所述解码后数据质量是按照预先约定的方式生成。
可选地,所述预先约定的方式包括给定计算解码后数据质量的网络。
可选地,所述发送端设备还包括:
第一重传处理模块,用于在需要重传数据的情况下,采用与上一次传输相同的编码,或者,与上一次传输不同的编码,对待传输数据进行重传。
发送端设备300能够实现图1的方法实施例中发送端设备实现的各个过程,为避免重复,这里不再赘述。本发明实施例的发送端设备,通过采用可用编码方式,对传输比特进行编码;之后发送编码后信息,完成本次传输。由于该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。则采用该可用编码方式对传输比特进行编码,能够有效减小传输处理的时延。
图4是本发明一个实施例的接收端设备的框图。图4所示的接收端设备400包括第二处理模块410。
第二处理模块410,用于对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
可选地,所述可用编码方式通过指示调制与编码策略MCS表的方式指示,其中MCS表用于指示码率和调制方式中的至少一项。
可选地,所述非物理层为传送控制协议或网际协议层之上的一层。
可选地,所述接收端设备还包括:
接收模块,用于接收编译码指示信息,所述编译码指示信息包括指示以下至少一项的信息:
是否使用信道编码;
是否使用联合信源信道编码;
是否使用一类码率大于1的编码;
是否在物理层不使用信道编码;
是否在非物理层使用信道编码或信源信道联合编码;
是否在物理层信道编码是直接将输入比特作为输出比特;
是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。
可选地,所述接收端设备还包括:
第二交互模块,用浓郁交互编译码参数,所述编译码参数包括以下至少一项信息:
物理层相关参数;
计算资源相关参数;
业务相关参数;
网络相关参数;
收端译码需要的算法参数;
总体评价参数;
参数指示信息。
可选地,所述物理层相关参数包括以下至少一项信息:
可用的物理资源;
信道类型;
环境参数。
可选地,所述计算资源相关参数包括以下至少一项信息:
发送端设备和/或接收端设备可处理的网络大小;
发送端设备和/或接收端设备可处理的网络深度;
发送端设备和/或接收端设备可处理的网络类型。
可选地,所述业务相关参数包括以下至少一项信息:
各个应用缓存中的比特数量;
服务质量目标;
业务类型;
历史体验。
可选地,所述网络相关参数包括以下至少一项信息:
网络类型;
网络系数;
激活函数类型;
标识所述网络类型、所述网络系数和所述激活函数类型中至少一者的指示信息。
可选地,所述收端译码需要的算法参数包括以下至少一项信息:
算法类型;
算法相关系数;
标识算法相关参数集合的指示信息。
可选地,所述编译码参数是通过用户配置,或者,通过以下至少一目标源指示的:
发送端设备;
发送端设备的物理层;
发送端设备的MAC层;
发送端设备的RRC;
发送端设备的应用层;
接收端设备的物理层;
接收端设备的MAC层;
接收端设备的RRC;
控制节点。
可选地,所述第二交互模块还用于:
获取所述编译码参数的指示信息。
可选地,所述接收端设备还包括:
反馈模块,用于向发送端设备发送反馈信息,所述反馈信息包括以下至少一项信息:
CRC结果;
是否正确接收;
解码后数据质量;
数据对应的应用。
可选地,所述解码后数据质量是按照预先约定的方式生成。
可选地,所述预先约定的方式包括给定计算解码后数据质量的网络;
可选地,所述接收端设备还包括:
获取模块,用于获取重传数据以及重传译码参数;
第二重传处理模块,用于对所述重传数据进行译码。
可选地,所述重传译码参数是在高层和/或物理层通知的。
可选地,所述第二重传处理模块还用于:
采用与上一次传输相同的网络,或者,与上一次传输不同的网络进行重传数据的译码,并将译码后的重传数据和上一次译码后的传输数据合并。
本发明实施例的方法,对接收到的编码后信息进行译码,由于该编码后信息是采用可用编码方式编码的,该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。则对编码后信息的译码,能够有效减小传输处理的时延。
图5为实现本发明各个实施例的一种通信设备的硬件结构示意图,该通信设备500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、处理器510、以及电源511等部件。本领域技术人员可以理解,图5中示出的通信设备结构并不构成对通信设备的限定,通信设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,通信设备包括但不限于手机、平板电脑、笔记本电脑、掌上电 脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器510,用于采用可用编码方式,对传输比特进行编码。
射频单元501,用于发送编码后信息;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
又或者,处理器510,用于对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
其中,所述可用编码方式包括以下至少一种:
在物理层进行信源信道联合编码;
在物理层进行码率大于1的信道编码;
在物理层进行码率大于1的信源信道联合编码;
在物理层信道编码是直接将输入比特作为输出比特;
在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
在非物理层使用信道信源联合编码。
可见,该通信设备采用可用编码方式对传输比特进行编码,或者对接收到采用可用编码方式编码所得的编码后信息进行译码,由于该可用编码方式包括以下至少一种:在物理层进行信源信道联合编码;在物理层进行码率大于1的信道编码;在物理层进行码率大于1的信源信道联合编码;在物理层信道编码是直接将输入比特作为输出比特;在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;在非物理层使用信道信源联合编码。能够有效减小传输处理的时延。
应理解的是,本发明实施例中,射频单元501可用于收发信息或通话过 程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元501还可以通过无线通信系统与网络和其他设备通信。
通信设备通过网络模块502为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元503可以将射频单元501或网络模块502接收的或者在存储器509中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元503还可以提供与通信设备500执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元503包括扬声器、蜂鸣器以及受话器等。
输入单元504用于接收音频或视频信号。输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元506上。经图形处理器5041处理后的图像帧可以存储在存储器509(或其它存储介质)中或者经由射频单元501或网络模块502进行发送。麦克风5042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元501发送到移动通信基站的格式输出。
通信设备500还包括至少一种传感器505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板5061的亮度,接近传感器可在通信设备500移动到耳边时,关闭显示面板5061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别通信设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器505还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再 赘述。
显示单元506用于显示由用户输入的信息或提供给用户的信息。显示单元506可包括显示面板5061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板5061。
用户输入单元507可用于接收输入的数字或字符信息,以及产生与通信设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5071上或在触控面板5071附近的操作)。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板5071。除了触控面板5071,用户输入单元507还可以包括其他输入设备5072。具体地,其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5071可覆盖在显示面板5061上,当触控面板5071检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板5061上提供相应的视觉输出。虽然在图5中,触控面板5071与显示面板5061是作为两个独立的部件来实现通信设备的输入和输出功能,但是在某些实施例中,可以将触控面板5071与显示面板5061集成而实现通信设备的输入和输出功能,具体此处不做限定。
接口单元508为外部装置与通信设备500连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元508可以用于接 收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到通信设备500内的一个或多个元件或者可以用于在通信设备500和外部装置之间传输数据。
存储器509可用于存储软件程序以及各种数据。存储器509可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是通信设备的控制中心,利用各种接口和线路连接整个通信设备的各个部分,通过运行或执行存储在存储器509内的软件程序和/或模块,以及调用存储在存储器509内的数据,执行通信设备的各种功能和处理数据,从而对通信设备进行整体监控。处理器510可包括一个或多个处理单元;优选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
通信设备500还可以包括给各个部件供电的电源511(比如电池),优选的,电源511可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,通信设备500包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种通信设备,包括处理器、存储器及存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述应用于发送端设备的传输处理方法,或者,应用于接收端设备的的传输处理方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于发送端设备的传输处理方法,或者,应用于接收端设备的的传输处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述 的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (40)

  1. 一种传输处理方法,应用于发送端设备,其特征在于,包括:
    采用可用编码方式,对传输比特进行编码;
    发送编码后信息;
    其中,所述可用编码方式包括以下至少一种:
    在物理层进行信源信道联合编码;
    在物理层进行码率大于1的信道编码;
    在物理层进行码率大于1的信源信道联合编码;
    在物理层信道编码是直接将输入比特作为输出比特;
    在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
    在非物理层使用信道信源联合编码。
  2. 根据权利要求1所述的方法,其中,所述可用编码方式通过指示调制与编码策略MCS表的方式指示,其中MCS表用于指示码率和调制方式中的至少一项。
  3. 根据权利要求1所述的方法,其中,所述非物理层为传送控制协议或网际协议层之上的一层。
  4. 根据权利要求1所述的方法,还包括:
    发送编译码指示信息,所述编译码指示信息包括指示以下至少一项的信息:
    是否使用信道编码;
    是否使用联合信源信道编码;
    是否使用一类码率大于1的编码;
    是否在物理层不使用信道编码;
    是否在非物理层使用信道编码或信源信道联合编码;
    是否在物理层信道编码是直接将输入比特作为输出比特;
    是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。
  5. 根据权利要求1所述的方法,还包括:
    交互编译码参数,所述编译码参数包括以下至少一项信息:
    物理层相关参数;
    计算资源相关参数;
    业务相关参数;
    网络相关参数;
    发端编码需要的算法参数;
    总体评价参数;
    参数指示信息。
  6. 根据权利要求5所述的方法,其中,所述物理层相关参数包括以下至少一项信息:
    可用的物理资源;
    信道类型;
    环境参数。
  7. 根据权利要求5所述的方法,其中,所述计算资源相关参数包括以下至少一项信息:
    发送端设备和/或接收端设备可处理的网络大小;
    发送端设备和/或接收端设备可处理的网络深度;
    发送端设备和/或接收端设备可处理的网络类型。
  8. 根据权利要求5所述的方法,其中,所述业务相关参数包括以下至少一项信息:
    各个应用缓存中的比特数量;
    服务质量目标;
    业务类型;
    历史体验。
  9. 根据权利要求5所述的方法,其中,所述网络相关参数包括以下至少一项信息:
    网络类型;
    网络系数;
    激活函数类型;
    标识所述网络类型、所述网络系数和所述激活函数类型中至少一者的指示信息。
  10. 根据权利要求5所述的方法,其中,所述发端编码需要的算法参数包括以下至少一项信息:
    算法类型;
    算法相关系数;
    标识算法相关参数集合的指示信息。
  11. 根据权利要求5所述的方法,其中,所述编译码参数是通过预先配置,或者,通过以下至少一目标源指示的:
    发送端设备的物理层;
    发送端设备的媒体访问控制MAC层;
    发送端设备的无线资源控制RRC;
    发送端设备的应用层;
    接收端设备;
    接收端设备的物理层;
    接收端设备的MAC层;
    接收端设备的RRC;
    控制节点。
  12. 根据权利要求5所述的方法,其中,所述交互编译码参数包括:
    获取所述编译码参数的指示信息。
  13. 根据权利要求1所述的方法,还包括:
    确定是否需要数据重传。
  14. 根据权利要求13所述的方法,其中,所述确定是否需要数据重传,包括:
    根据接收端设备的反馈信息确定是否需要重传,所述反馈信息包括以下至少一项信息:
    CRC结果;
    是否正确接收;
    解码后数据质量;
    数据对应的应用。
  15. 根据权利要求14所述的方法,其中,所述解码后数据质量是按照预先约定的方式生成。
  16. 根据权利要求15所述的方法,其中,所述预先约定的方式包括给定计算解码后数据质量的网络。
  17. 根据权利要求13所述的方法,其中,所述确定是否需要数据重传之后,还包括:
    在需要重传数据的情况下,采用与上一次传输相同的编码,或者,与上一次传输不同的编码,对待传输数据进行重传。
  18. 一种传输处理方法,应用于接收端设备,其特征在于,包括:
    对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
    其中,所述可用编码方式包括以下至少一种:
    在物理层进行信源信道联合编码;
    在物理层进行码率大于1的信道编码;
    在物理层进行码率大于1的信源信道联合编码;
    在物理层信道编码是直接将输入比特作为输出比特;
    在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
    在非物理层使用信道信源联合编码。
  19. 根据权利要求18所述的方法,其中,所述可用编码方式通过指示调制与编码策略MCS表的方式指示,其中MCS表用于指示码率和调制方式中的至少一项。
  20. 根据权利要求18所述的方法,其中,所述非物理层为传送控制协议或网际协议层之上的一层。
  21. 根据权利要求18所述的方法,还包括:
    接收编译码指示信息,所述编译码指示信息包括指示以下至少一项的信息:
    是否使用信道编码;
    是否使用联合信源信道编码;
    是否使用一类码率大于1的编码;
    是否在物理层不使用信道编码;
    是否在非物理层使用信道编码或信源信道联合编码;
    是否在物理层信道编码是直接将输入比特作为输出比特;
    是否物理层信道编码由至少如下两部分组成,CRC部分和直接将输入比特作为输出比特的部分。
  22. 根据权利要求18所述的方法,还包括:
    交互编译码参数,所述编译码参数包括以下至少一项信息:
    物理层相关参数;
    计算资源相关参数;
    业务相关参数;
    网络相关参数;
    收端译码需要的算法参数;
    总体评价参数;
    参数指示信息。
  23. 根据权利要求22所述的方法,其中,所述物理层相关参数包括以下至少一项信息:
    可用的物理资源;
    信道类型;
    环境参数。
  24. 根据权利要求22所述的方法,其中,所述计算资源相关参数包括以下至少一项信息:
    发送端设备和/或接收端设备可处理的网络大小;
    发送端设备和/或接收端设备可处理的网络深度;
    发送端设备和/或接收端设备可处理的网络类型。
  25. 根据权利要求22所述的方法,其中,所述业务相关参数包括以下至少一项信息:
    各个应用缓存中的比特数量;
    服务质量目标;
    业务类型;
    历史体验。
  26. 根据权利要求22所述的方法,其中,所述网络相关参数包括以下至少一项信息:
    网络类型;
    网络系数;
    激活函数类型;
    标识所述网络类型、所述网络系数和所述激活函数类型中至少一者的指示信息。
  27. 根据权利要求22所述的方法,其中,所述收端译码需要的算法参数包括以下至少一项信息:
    算法类型;
    算法相关系数;
    标识算法相关参数集合的指示信息。
  28. 根据权利要求22所述的方法,其中,所述编译码参数是通过预先配置,或者,通过以下至少一目标源指示的:
    发送端设备;
    发送端设备的物理层;
    发送端设备的MAC层;
    发送端设备的RRC;
    发送端设备的应用层;
    接收端设备的物理层;
    接收端设备的MAC层;
    接收端设备的RRC;
    控制节点。
  29. 根据权利要求22所述的方法,其中,所述交互编译码参数包括:
    获取所述编译码参数的指示信息。
  30. 根据权利要求18所述的方法,还包括:
    向发送端设备发送反馈信息,所述反馈信息包括以下至少一项信息:
    CRC结果;
    是否正确接收;
    解码后数据质量;
    数据对应的应用。
  31. 根据权利要求30所述的方法,其中,所述解码后数据质量是按照预先约定的方式生成。
  32. 根据权利要求31所述的方法,其中,所述预先约定的方式包括给定计算解码后数据质量的网络。
  33. 根据权利要求18所述的方法,其中,所述对接收到的编码后信息进行译码之后,还包括:
    获取重传数据以及重传译码参数;
    对所述重传数据进行译码。
  34. 根据权利要求33所述的方法,其中,所述重传译码参数是在高层和/或物理层通知的。
  35. 根据权利要求33所述的方法,其中,所述对所述重传数据进行译码,包括:
    采用与上一次传输相同的网络,或者,与上一次传输不同的网络进行重传数据的译码,并将译码后的重传数据和上一次译码后的传输数据合并。
  36. 一种发送端设备,其特征在于,包括:
    第一处理模块,用于采用可用编码方式,对传输比特进行编码;
    第一发送模块,用于发送编码后信息;
    其中,所述可用编码方式包括以下至少一种:
    在物理层进行信源信道联合编码;
    在物理层进行码率大于1的信道编码;
    在物理层进行码率大于1的信源信道联合编码;
    在物理层信道编码是直接将输入比特作为输出比特;
    在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直 接将输入比特作为输出比特的部分;
    在非物理层使用信道信源联合编码。
  37. 一种接收端设备,其特征在于,包括:
    第二处理模块,用于对接收到的编码后信息进行译码,所述编码后信息是采用可用编码方式编码所得;
    其中,所述可用编码方式包括以下至少一种:
    在物理层进行信源信道联合编码;
    在物理层进行码率大于1的信道编码;
    在物理层进行码率大于1的信源信道联合编码;
    在物理层信道编码是直接将输入比特作为输出比特;
    在物理层信道编码由至少如下两部分组成,循环冗余校验CRC部分和直接将输入比特作为输出比特的部分;
    在非物理层使用信道信源联合编码。
  38. 一种通信设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至17中任一项所述的传输处理方法的步骤,或者,如权利要求18至35中任一项所述的传输处理方法的步骤。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至17中任一项所述的传输处理方法的步骤,或者,如权利要求18至35中任一项所述的传输处理方法的步骤。
  40. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至17中任一项所述的传输处理方法,或者,如权利要求18至35中任一项所述的传输处理方法。
PCT/CN2021/082580 2020-03-31 2021-03-24 传输处理方法及设备 WO2021197153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21781433.4A EP4084374A4 (en) 2020-03-31 2021-03-24 TRANSFER PROCESSING METHOD AND APPARATUS
US17/873,945 US20220368469A1 (en) 2020-03-31 2022-07-26 Transmission processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010246137.0 2020-03-31
CN202010246137.0A CN113472480B (zh) 2020-03-31 2020-03-31 一种传输处理方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/873,945 Continuation US20220368469A1 (en) 2020-03-31 2022-07-26 Transmission processing method and device

Publications (1)

Publication Number Publication Date
WO2021197153A1 true WO2021197153A1 (zh) 2021-10-07

Family

ID=77865695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082580 WO2021197153A1 (zh) 2020-03-31 2021-03-24 传输处理方法及设备

Country Status (4)

Country Link
US (1) US20220368469A1 (zh)
EP (1) EP4084374A4 (zh)
CN (1) CN113472480B (zh)
WO (1) WO2021197153A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082872A1 (zh) * 2021-11-15 2023-05-19 Oppo广东移动通信有限公司 用于配置存储器的方法, 装置和终端

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472479B (zh) * 2020-03-31 2022-11-22 维沃移动通信有限公司 一种传输处理方法及设备
US11889311B2 (en) * 2020-12-18 2024-01-30 Raytheon Bbn Technologies Corp. RF repeater and method for semantic-less retransmissions
CN116112120A (zh) * 2021-11-11 2023-05-12 华为技术有限公司 传输数据的方法和通信装置
CN117134859A (zh) * 2022-05-20 2023-11-28 中兴通讯股份有限公司 数据处理方法及电子设备、计算机可读存储介质
WO2024007291A1 (zh) * 2022-07-08 2024-01-11 华为技术有限公司 调度资源的方法和通信装置
WO2024007292A1 (zh) * 2022-07-08 2024-01-11 华为技术有限公司 发送数据和接收数据的方法以及通信装置
WO2024111686A1 (ko) * 2022-11-21 2024-05-30 삼성전자 주식회사 무선 통신 시스템에서 pac 코드 기반의 하이브리드 디코딩을 수행하는 방법 및 장치
KR20240074523A (ko) 2022-11-21 2024-05-28 삼성전자주식회사 무선 통신 시스템에서 pac 코드 기반의 하이브리드 디코딩을 수행하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478373A (zh) * 2009-01-16 2009-07-08 北京航空航天大学 一种信源信道编码联合优化的自适应差错控制方法
US20120039385A1 (en) * 2010-06-18 2012-02-16 Ozgun Bursalioglu Yilmaz System and method for lossy source-channel coding at the application layer
CN103262630A (zh) * 2010-12-20 2013-08-21 英特尔公司 多媒体已知无线电和网络自适应的信令技术
CN105900494A (zh) * 2014-05-08 2016-08-24 华为技术有限公司 无线网络中移动终端的节能方法
CN110493603A (zh) * 2019-07-25 2019-11-22 南京航空航天大学 一种基于联合信源信道的率失真优化的多视点视频传输差错控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109923A2 (en) * 2005-04-09 2006-10-19 Lg Electronics Inc. Method of supporting multiple codes in a wireless mobile communication system
CN103905152B (zh) * 2014-03-21 2017-06-23 华南理工大学 删除信道中采用跨层联合编码的有效吞吐量随机优化方法
US10243638B2 (en) * 2016-10-04 2019-03-26 At&T Intellectual Property I, L.P. Forward error correction code selection in wireless systems
CN107508656A (zh) * 2017-07-24 2017-12-22 同济大学 一种在BEC信道上的Spinal信源信道联合译码方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478373A (zh) * 2009-01-16 2009-07-08 北京航空航天大学 一种信源信道编码联合优化的自适应差错控制方法
US20120039385A1 (en) * 2010-06-18 2012-02-16 Ozgun Bursalioglu Yilmaz System and method for lossy source-channel coding at the application layer
CN103262630A (zh) * 2010-12-20 2013-08-21 英特尔公司 多媒体已知无线电和网络自适应的信令技术
CN105900494A (zh) * 2014-05-08 2016-08-24 华为技术有限公司 无线网络中移动终端的节能方法
CN110493603A (zh) * 2019-07-25 2019-11-22 南京航空航天大学 一种基于联合信源信道的率失真优化的多视点视频传输差错控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084374A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082872A1 (zh) * 2021-11-15 2023-05-19 Oppo广东移动通信有限公司 用于配置存储器的方法, 装置和终端

Also Published As

Publication number Publication date
EP4084374A1 (en) 2022-11-02
CN113472480A (zh) 2021-10-01
US20220368469A1 (en) 2022-11-17
CN113472480B (zh) 2022-09-27
EP4084374A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
WO2021197153A1 (zh) 传输处理方法及设备
WO2021004316A1 (zh) Uci传输方法、接收方法、终端和网络设备
EP3751923B1 (en) Method for transmitting uci, and user terminal
JP7258041B2 (ja) サイドリンクの伝送方法及び端末
WO2021088750A1 (zh) Harq-ack码本生成方法、信息发送方法及设备
JP7326425B2 (ja) サイドリンク情報伝送方法及び端末
US11546091B2 (en) Method for determining HARQ-ACK codebook and user equipment
WO2021228131A1 (zh) 信息传输方法、装置及电子设备
WO2021228132A1 (zh) 信息发送方法、资源处理方法、装置及电子设备
WO2020192718A1 (zh) 传输块大小确定方法和通信设备
WO2021032001A1 (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
WO2020182124A1 (zh) 传输方法、网络设备和终端
WO2021018227A1 (zh) 上行控制信息的传输方法、终端设备及存储介质
WO2019184763A1 (zh) 通信范围信息的处理方法及终端
WO2020063452A1 (zh) 一种资源调度方法和装置
WO2021197309A1 (zh) 一种传输处理方法及设备
WO2020192548A1 (zh) 混合自动重传请求反馈方法及终端
WO2020088188A1 (zh) 传输方法、发送端设备、接收端设备及网络侧设备
WO2021204046A1 (zh) Tbs的确定方法及相关设备
WO2021204153A1 (zh) 资源开销的确定方法及相关设备
WO2021027780A1 (zh) 信息处理方法、设备及计算机可读存储介质
WO2019154358A1 (zh) Harq-ack码本的确定方法和终端
WO2020156473A1 (zh) 传输方法和终端
CN110798292B (zh) 映射反馈信息的方法和装置
WO2019137307A1 (zh) Bsr上报方法和移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021781433

Country of ref document: EP

Effective date: 20220728

NENP Non-entry into the national phase

Ref country code: DE