WO2020192718A1 - 传输块大小确定方法和通信设备 - Google Patents

传输块大小确定方法和通信设备 Download PDF

Info

Publication number
WO2020192718A1
WO2020192718A1 PCT/CN2020/081307 CN2020081307W WO2020192718A1 WO 2020192718 A1 WO2020192718 A1 WO 2020192718A1 CN 2020081307 W CN2020081307 W CN 2020081307W WO 2020192718 A1 WO2020192718 A1 WO 2020192718A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
nominal
transmissions
actual
symbols
Prior art date
Application number
PCT/CN2020/081307
Other languages
English (en)
French (fr)
Inventor
鲁智
沈晓冬
李娜
陈晓航
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20779579.0A priority Critical patent/EP3952155A4/en
Publication of WO2020192718A1 publication Critical patent/WO2020192718A1/zh
Priority to US17/487,242 priority patent/US20220022184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method for determining a transport block size (Transport Block Size, TBS) and a communication device.
  • TBS Transport Block Size
  • future mobile communication systems can adapt to more diverse scenarios and business needs.
  • the main scenarios of future mobile communication systems can include: Enhanced Mobile Broadband (Enhanced Mobile Broadband) , EMBB), Massive Machine Type Communication (mMTC), and Ultra Reliable Low Latency Communications (URLLC) and other scenarios.
  • Enhanced Mobile Broadband Enhanced Mobile Broadband
  • EMBB Massive Machine Type Communication
  • mMTC Massive Machine Type Communication
  • URLLC Ultra Reliable Low Latency Communications
  • mobile communication systems need to support symbol-level repetitive transmission of the physical uplink shared channel (PUSCH) and the physical downlink shared channel (PDSCH) to meet the low-latency and high-reliability scenarios.
  • the TBS is determined based on the physical resource block (Physical Resource Block, PRB) within the duration of each transmission, and requires the same duration of each transmission.
  • PRB Physical Resource Block
  • the TBS determination method cannot be applied to repetitions with different durations. Transmission, it can be seen that there are too few application scenarios for the TBS determination method.
  • the embodiments of the present disclosure provide a TBS determination method and a communication device to solve the problem of too few application scenarios for the TBS determination method.
  • some embodiments of the present disclosure provide a method for determining TBS, including:
  • the TBS is determined based on the PRB within the duration.
  • some embodiments of the present disclosure provide a communication device, including:
  • the first determining module is configured to determine the duration of the first transmission in N nominal transmissions, where the first transmission is: the actual transmission corresponding to the first nominal transmission or the second nominal transmission, and N is an integer greater than or equal to 1;
  • the second determining module is configured to determine the TBS according to the PRB within the duration.
  • some embodiments of the present disclosure provide a communication device, including: a memory, a processor, and a program stored on the memory and running on the processor, the program being executed by the processor.
  • the steps in the TBS determination method provided by some embodiments of the present disclosure are implemented at the time.
  • some embodiments of the present disclosure provide a computer-readable storage medium with a computer program stored on the computer-readable storage medium.
  • the computer program When executed by a processor, the TBS determines the steps in the method.
  • Some embodiments of the present disclosure can make the TBS determination method suitable for more application scenarios.
  • Figure 1 is a structural diagram of a network system to which some embodiments of the present disclosure are applicable;
  • FIG. 2 is a flowchart of a method for determining TBS provided by some embodiments of the present disclosure
  • Figure 3 is a schematic diagram of transmission provided by some embodiments of the present disclosure.
  • FIG. 4 is another schematic diagram of transmission provided by some embodiments of the present disclosure.
  • FIG. 5 is another schematic diagram of transmission provided by some embodiments of the present disclosure.
  • FIG. 6 is another schematic diagram of transmission provided by some embodiments of the present disclosure.
  • FIG. 7 is another schematic diagram of transmission provided by some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a communication device provided by some embodiments of the present disclosure.
  • FIG. 9 is another structural diagram of a communication device provided by some embodiments of the present disclosure.
  • Fig. 10 is another structural diagram of a communication device provided by some embodiments of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the TBS determination method and communication device provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system or a Long Term Evolution (LTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • LTE Long Term Evolution
  • FIG. 1 is a structural diagram of a network system to which some embodiments of the present disclosure can be applied. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal (User Equipment). , UE) or other terminal-side devices, such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistant, PDA), mobile Internet devices (Mobile Internet Device, MID) ), a terminal-side device such as a wearable device (Wearable Device) or a robot.
  • UE User Equipment
  • PDA personal digital assistant
  • mobile Internet devices Mobile Internet Device, MID
  • a terminal-side device such as a wearable device (Wearable Device) or a robot.
  • the specific type of the terminal 11 is not limited in some embodiments of the present disclosure.
  • the above-mentioned network device 12 may be a 4G base station, or a 5G base station, or a base station of a later version, or a base station in other communication systems, or called Node B, Evolved Node B, or Transmission Reception Point (TRP), Or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in some embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a method for determining TBS provided by some embodiments of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Determine the duration of the first transmission in N nominal transmissions, where the first transmission is: the actual transmission corresponding to the first nominal transmission or the second nominal transmission, and N is an integer greater than or equal to 1.
  • nominal transmission may refer to nominal transmission of PUSCH or PDSCH, nominal transmission may be initial transmission or retransmission.
  • each nominal transmission may also be called repeated transmission, for example: each nominal transmission occupies Time domain resources of the same size (for example, composed of multiple consecutive symbols) may be referred to as time domain duration (duration), and these time domain resources are used for PUSCH or PDSCH transmission.
  • time domain duration duration
  • each repeated transmission can be called a nominal transmission.
  • repeated PUSCH transmission is used as an example for illustration.
  • repeated PDSCH transmission refer to PUSCH repeated transmission.
  • the foregoing N nominal transmissions may be determined according to the first message, and further, the foregoing N nominal transmissions may be N transmission opportunities determined according to the first message.
  • Nominal transmission can be a nominal transmission determined according to the first message. This transmission can be understood as a transmission opportunity.
  • not all nominal transmissions are actual transmissions. For example, some nominal transmissions are actual transmissions, and others Some nominal transmissions are divided into multiple actual transmissions.
  • the above-mentioned first message may be an indication message or a notification message sent by the network device, for example, a DCI indication or an RRC indication.
  • the foregoing first message may be used to notify the number of nominal transmissions, so that the foregoing N nominal transmissions can be determined according to the time domain resource of the first nominal transmission and the number of times. Since there may be some nominal transmissions divided into multiple actual transmissions, the number of nominal transmissions indicated or notified by the network may not be equal to the number of actual transmissions.
  • each repeated transmission lasts for 4 symbols, and the nominal transmission number is 4.
  • the nominal transmission number is 4.
  • a nominal transmission is divided into 2 actual transmissions, so that the actual number of transmissions is 5.
  • the size of the time domain resource occupied by each nominal transmission may be pre-configured, or notified by the network, or defined by the protocol, etc., which is not limited.
  • the foregoing first nominal transmission may be any nominal transmission among the foregoing N nominal transmissions, so that the TBS can be determined according to the PRB within the duration of the nominal transmission.
  • the aforementioned first nominal transmission is a nominal transmission that is not divided, that is, the nominal transmission is equal to the actual transmission.
  • the aforementioned second nominal transmission may be a nominal transmission divided into multiple actual transmissions, or a set of multiple divided nominal transmissions.
  • dividing the nominal transmission into multiple actual transmissions may be by dividing the time resource included in the nominal transmission into multiple available transmission resources, so as to perform on the multiple available transmission resources.
  • the available transmission resource may be, when the number of symbols of the available continuous time domain resource is greater than or equal to x, the continuous time domain resource is the available transmission resource, and vice versa, when the number of symbols available for the continuous time domain resource When it is less than x, the continuous time domain resource is an unavailable transmission resource.
  • the above x is a positive integer, for example: 2.
  • the minimum transmission length allowed is x symbols (for example, 2 symbols), that is, transmission is not possible if it is less than x symbols.
  • x symbols for example, 2 symbols
  • transmission is not possible if it is less than x symbols.
  • these symbols are called unavailable transmission symbols.
  • the number of consecutive symbols available for a PUSCH to be transmitted is greater than or equal to x symbols, these symbols are called available transmission symbols.
  • the duration of the first transmission may be the duration of the data transmission of the first transmission.
  • the first transmission includes 4 symbols, and one symbol is used as a demodulation reference signal (Demodulation Reference Signal, DMRS) transmission.
  • DMRS Demodulation Reference Signal
  • DMRS symbols do not transmit data
  • some embodiments of the present disclosure are also applicable to the case of DMRS symbols transmitting data. For example: if the first transmission includes 4 symbols and one symbol is used for DMRS transmission, then 4 symbols are used for data transmission. Among them, the first symbol transmits both DMRS and data symbols, and the duration is still 4 symbol.
  • Step 202 Determine TBS according to the PRB within the duration.
  • step 202 may be to calculate TBS based on the PRB within the aforementioned duration. If the method of calculating TBS is not limited in some embodiments of the present disclosure, for example, the method of calculating TBS based on PRB defined in the protocol may be referred to.
  • the TBS is determined based on the PRB within the aforementioned duration, so that the TBS can be applied to the existence duration
  • Different repeated transmissions are suitable for more application scenarios (for example: URLLC scenarios), and can also improve the reliability of transmission, so that the communication system can support repeated transmissions with different durations (for example: PUSCH repeated transmission or PDSCH repeated transmission) Transmission) to improve the transmission effect of the communication system.
  • TBS determination method provided by some embodiments of the present disclosure may be applied to communication devices such as terminals or network devices.
  • the method further includes:
  • the transmission based on the above-mentioned TBS may be that the size of the information transmitted on each transport block (TB) in each actual transmission process of repeated transmission is the above-mentioned TBS, for example, the number of transmitted information bits is the above-mentioned TBS.
  • the foregoing transmission based on TBS may be repeated PUSCH transmission or PDSCH repeated transmission.
  • the foregoing transmission based on TBS may be based on TBS for data reception and TBS for data transmission.
  • the above-mentioned transmission based on TBS may be that the terminal repeatedly sends PUSCH to the network device according to the TBS; or, for repeated PUSCH transmission, the above-mentioned transmission based on TBS may be that the network device repeatedly transmits according to the TBS receiving terminal PUSCH.
  • the above-mentioned transmission based on TBS may be that the network device repeatedly sends PDSCH to the terminal according to the TBS; or, for repeated PDSCH transmission, the above-mentioned transmission based on TBS may be that the terminal receives the network device repeatedly according to the TBS. PDSCH sent.
  • the repeated transmission is performed according to the above TBS, which can support different actual transmissions with different durations, so that repeated transmissions (for example: PUSCH repeated transmission or PDSCH repeated transmission) are more adaptable to flexible changes in the slot format, and thus Improve the reliability of repeated transmissions (such as PUSCH transmission or PDSCH transmission).
  • repeated transmissions for example: PUSCH repeated transmission or PDSCH repeated transmission
  • actual transmission may refer to actual transmission performed according to the above-mentioned TBS.
  • the duration of the first transmission in step 201 is a predetermined duration before the actual transmission.
  • the duration of the actual transmission is predetermined before the actual transmission corresponding to the second nominal transmission.
  • the nominal transmission that does not cross the slot boundary is one actual transmission, and the nominal transmission that crosses the slot boundary is divided into multiple actual transmissions;
  • the nominal transmission that does not cross the uplink/downlink switching point is one actual transmission, and the nominal transmission across the uplink/downlink switching point is divided into multiple actual transmissions; or
  • the nominal transmission of symbols that do not conflict across the transmission direction is one actual transmission
  • the nominal transmission of symbols that conflict across the transmission direction is divided into multiple actual transmissions.
  • the above-mentioned uplink/downlink switching point may be a time point at which the downlink symbol and the uplink symbol are switched, and the above-mentioned symbol conflicting in the transmission direction may be an uplink or downlink symbol conflicting with transmission.
  • the aforementioned nominal transmission is actual transmission, which may be that a repeated transmission is performed on the resources of the nominal transmission during the actual transmission. For example, if a certain nominal transmission occupies 4 symbols, a repeated transmission is performed on 4 symbols.
  • the above-mentioned nominal transmission divided into multiple actual transmissions can be divided into multiple available transmission resources for the resources occupied by the nominal transmission, and multiple transmissions are performed on these multiple available transmission resources to realize the repeated transmission corresponding to the nominal transmission. .
  • nominal transmission 1 and nominal transmission 2 do not cross the slot boundary, so nominal transmission 1 and nominal transmission 2 are actual transmission 1 and actual transmission 2, and nominal transmission 3 crosses the slot boundary. It includes 3 parts to be transmitted, of which part 1 has only one symbol, which is an unusable transmission resource, and parts 2 and 3 have two symbols respectively, which are available transmission resources, so that actual transmission is performed in part 2 and part 3 respectively.
  • the nominal transmission of symbols that do not cross the slot boundary, the uplink/downlink switching point, and the transmission direction conflict can be determined as the actual transmission according to the nominal transmission occupied resources, and the cross slot boundary, the uplink/downlink switching point, and the transmission
  • the nominal transmission of symbols with conflicting directions is divided into multiple actual transmissions, thereby improving the reliability of transmission.
  • the symbols conflicting in the transmission direction can be skipped, thereby reducing time delay.
  • the first nominal transmission is:
  • the first nominal transmission to be transmitted may be the nominal transmission that is the first to be transmitted among the above N nominal transmissions.
  • the first nominal transmission to be transmitted can also be referred to as the nominal transmission of the first transmission.
  • the TBS can be determined according to the PRB within the duration of the nominal transmission of the first transmission.
  • the number of nominal transmissions is 3, nominal transmission 1 and nominal transmission 2 are actual transmission 1 and actual transmission 2, where nominal transmission 3 is divided into 3 parts to be transmitted, and the first part is unavailable Transmission, for nominal transmission 3, there are two actual transmissions (actual transmission 3 and actual transmission 4).
  • TBS is determined according to nominal transmission 1.
  • nominal transmission 1 has one symbol used as DMRS and 3 symbols used as data. TBS determination is determined in accordance with 3 data symbols.
  • the N nominal transmissions may include a first actual transmission, and the first actual transmission is one actual transmission or a set of multiple actual transmissions of the divided nominal transmissions.
  • each actual transmission is performed through the nominal transmission mode of punching.
  • each actual transmission can send one TB.
  • the two nominally transmitted data symbols can be punctured, and then the remaining part, namely one data symbol, can be transmitted.
  • the other is, for the actual transmission set, the transmission is carried out through the nominal transmission mode of punching.
  • the multiple actual transmissions divided at this time send one TB.
  • actual transmission 3 and actual transmission 4 in Figure 5 there are a total of 2 symbols available for data transmission.
  • 1 data symbol for nominal transmission can be punctured, and then the remaining part is sent in the two actual transmissions. That is, 2 data symbols.
  • the first nominal transmission is:
  • the first of the N nominal transmissions indicates the nominal transmission of the first redundancy version (Redundancy Version, RV).
  • the first RV may be pre-configured, defined in the protocol, or indicated by the network, and so on.
  • the above-mentioned first RV is RV0, which of course is not limited.
  • the TBS it is possible to determine the TBS according to the PRB within the duration of the nominal transmission of the first indicated RV version (for example, RV0).
  • the URLLC service arrival may be random and may appear at any time. If the first nominal transmission crosses the slot boundary, the first nominal transmission may be divided into multiple parts, and the actual transmission or the nominal transmission can use different redundancy versions, because the first nominal transmission is divided into multiple actual transmissions , The number of time-domain symbols actually transmitted may be much smaller than the nominal transmission that is not divided, resulting in a higher bit rate and poor transmission reliability. The network can instruct these actual transmissions to use non-self-decoding redundant versions, thereby reducing Discard the system bit.
  • TBS can be determined according to the nominal transmission of the RV version (for example, RV0) indicated by the network to improve the reliability of transmission.
  • nominal transmission 2 has one symbol used as DMRS, and three symbols used as data, using RV 0.
  • TBS determination is based on nominal transmission 2, that is, it is determined in accordance with 3 data symbols.
  • the N nominal transmissions may include a first actual transmission, and the first actual transmission is one actual transmission of the divided nominal transmissions or a set of multiple actual transmissions.
  • the number of transmitted symbols is less than the nominal transmission, and transmission can be carried out by puncturing the nominal transmission.
  • one TB is sent for each actual transmission.
  • the nominal transmission 1 is divided into two actual transmissions, namely actual transmission 1 and actual transmission 2. Only one symbol is available for data transmission.
  • redundant version 3 of nominal transmission can be punctured separately The 2 symbols of the 2 symbols and the 2 symbols of the redundancy version 1 of the nominal transmission of puncturing, and then the remaining part is transmitted, that is, 1 data symbol is transmitted.
  • the sum of the number of data transmission symbols may be smaller than the nominal transmission data symbols, so transmission can be carried out by puncturing the nominal transmission mode.
  • Multiple actual transmissions divided at this time send one TB.
  • the actual transmission 1 and actual transmission 2 use the same RV version, and there are a total of 2 symbols for data transmission.
  • 1 symbol of rv1 can be punctured and the remaining parts are respectively Sent in two actual transmissions, that is, two data symbols are transmitted.
  • the first nominal transmission is:
  • the nominal transmissions that are not divided among the N nominal transmissions.
  • the aforementioned undivided nominal transmissions may be any of the aforementioned N nominal transmissions that are not divided. Since the undivided nominal transmission is equal to the actual transmission, that is, a complete repetitive transmission, in this embodiment, it is possible to determine the TBS based on the PRB within the duration of the complete repetitive transmission, so that when repeated transmission is performed according to the TBS, the The transmission resource utilization is better. In addition, in this implementation manner, the time-frequency domain resources occupied by each undivided nominal transmission may be the same, for example, the number of symbols is the same.
  • the TBS is determined according to the PRB within the duration of the undivided nominal transmission.
  • the undivided nominal transmission is a complete repetitive transmission.
  • the undivided nominal transmissions are nominal transmissions 1 and 2.
  • One symbol is used as DMRS and 3 symbols are used as data.
  • TBS determination is determined in accordance with 3 data symbols.
  • the N nominal transmissions may include a first actual transmission, and the first actual transmission is one actual transmission of the divided nominal transmissions or a set of multiple actual transmissions.
  • each actual transmission the number of transmitted symbols is less than the nominal transmission, so it can be transmitted through the nominal transmission mode of puncturing. At this time, each actual transmission can send one TB.
  • the sum of the number of data transmission symbols may be smaller than the nominal transmission data symbols, so transmission can be carried out by puncturing the nominal transmission mode. Multiple actual transmissions divided at this time can send one TB.
  • the actual transmission corresponding to the second nominal transmission is:
  • the foregoing duration is the duration of the set of multiple actual transmissions divided by the second nominal transmission, or the duration of the multiple actual transmissions divided by the second nominal transmission can be realized with the most or least symbols.
  • the duration of the actual transmission so that the corresponding method can be flexibly selected to determine the TBS according to the actual situation, so as to improve the reliability of repeated PUSCH transmission.
  • the set of multiple actual transmissions transmits one TB;
  • each actual transmission transmits one TB;
  • each actual transmission transmits one TB respectively.
  • the second nominal transmission may be:
  • the divided nominal transmission has the largest number of actual transmissions.
  • the nominal transmission with the most divided actual transmissions may be: if there is at least one divided nominal transmission among the above N nominal transmissions, the nominal transmission with the most actual transmissions is selected from the at least one divided nominal transmission. If no nominal transmission is divided, the number of actual transmissions among the divided nominal transmissions is 0, and any nominal transmission is selected to determine the TBS.
  • an optional solution is to select the nominal transmission that is divided into the largest number of actual transmissions, and TBS is determined according to the PRB of the duration of all actual transmission sets. At this time, the set of all actual transmissions can send one TB .
  • the nominal transmission 3 is divided into 3 parts to be transmitted. In the repeated transmission, the nominal transmission with the largest number of segments is nominal transmission 3. There are 2 symbols used as DMRS and 2 symbols used as data (there is one part to be transmitted is discarded). TBS determination is determined based on the assumption of 2 data symbols. For the nominal transmission that is not divided and other actual transmissions that are divided, the number of corresponding time-domain transmission symbols can be matched through rate matching for transmission.
  • the actual transmission corresponding to the second nominal transmission can also be the other two cases described above, that is, the actual transmission with the most or least symbols described above. transmission.
  • TBS is determined based on the PRB within the duration of the actual transmission with the least number of symbols.
  • the nominal transmission that is divided into the most actual transmissions is selected, and the TBS is determined based on the PRB within the duration of the actual transmission with the most number of symbols.
  • the rate matching method can be used for transmission. If the number of symbols actually transmitted is less than the number of symbols actually transmitted to determine the TBS, rate puncturing can be used for transmission.
  • the second nominal transmission may be:
  • a set of divided nominal transmissions among the N nominal transmissions is provided.
  • the second nominal transmission can be realized as a set of divided nominal transmissions. For example, if there are M nominal transmissions divided into multiple actual transmissions among the above N nominal transmissions, then the second nominal transmission is these M A collection of nominal transmissions.
  • an optional solution is to select the actual transmission after the nominal transmission is divided, and the TBS is determined according to the PRB within the duration of the actual transmission with the largest number of symbols.
  • each actual transmission can send one TB.
  • nominal transmission 3 is divided into 3 parts, which are divided into two actual transmissions (actual transmission 3 and actual transmission 4). Both actual transmission 3 and actual transmission 4 have the largest number of symbols.
  • TBS is determined according to The actual transmission 3 or the actual transmission 4 is determined, that is, it is determined according to the assumption of 1 data symbol.
  • the rate matching method after encoding according to the determined TBS can be used for transmission, and for the number of symbols actually transmitted less than the actual transmission determined above, the corresponding symbols can be matched for transmission by puncturing.
  • the actual transmission corresponding to the second nominal transmission can also be the other two cases described above, that is, the multiple transmissions described above.
  • a set of actual transmissions or the least actual transmission scheme can also be the other two cases described above, that is, the multiple transmissions described above.
  • the actual transmission corresponding to the second nominal transmission is:
  • the second nominal transmission is a set of the N nominal transmissions.
  • the above-mentioned symbols that conflict in the N nominal transmissions across the slot boundary, the uplink and downlink switching points, or the transmission direction may be the set of resources occupied by the N nominal transmissions conflict across the slot boundary, the uplink and downlink switching points, or the transmission direction. symbol.
  • the first nominal transmission may be any nominal transmission among the N nominal transmissions.
  • the TBS is determined according to the PRB within the duration of any nominal transmission.
  • One way to divide is when the total transmission resource (L*K) is determined according to the time domain resource allocation (length L) and the number of repetitions (K), when the total resource crosses the slot boundary (for example: slot boundary) or uplink and downlink switching Point or transmission direction conflicting symbols, the actual transmission can be transmitted within one UL time (for example: UL Period);
  • Another way to divide is to transmit within one UL time (e.g. UL Period) according to the nominal transmission number when the total resources do not cross the slot boundary (for example: slot boundary) or uplink and downlink switching points or symbols that conflict in the transmission direction. .
  • UL Period e.g. UL Period
  • the actual transmission corresponding to the second nominal transmission is: the actual transmission of the second nominal transmission within one uplink time, so that the transmission in one time slot can be realized as one actual transmission.
  • the TBS it is possible to determine the TBS according to the PRB of the actual transmission duration of the second nominal transmission within an uplink time with the least or most symbols.
  • TBS is determined according to the shortest actual number of symbols transmitted, and other actual transmissions can be transmitted in a rate matching manner; or , TBS is determined according to the longest actual number of symbols transmitted, and other actual transmissions can be transmitted in a puncturing mode.
  • TBS is determined according to each nominal transmission. Furthermore, with this approach, each actual transmission can transmit a complete TB.
  • the actual transmission corresponding to the above second nominal transmission is: the actual transmission set of the second nominal transmission in multiple uplink times, which can be realized when the total resource crosses the slot boundary (for example: slot boundary) or the uplink and downlink switching point or transmission
  • the direction conflicts with the symbols Determine the TBS according to the total number of symbols, at this time one TB is transmitted on all available uplink time domain resources.
  • some embodiments of the present disclosure adopt the following method to determine TBS:
  • Step 1 Determine the reference time domain duration length according to step 201, where the reference time domain duration is the duration determined in step 201;
  • Step 2 Calculate the number X of available resource elements (Resource Element, RE) in a resource block (Resource Block, RB) within the reference time domain duration, where:
  • X (number of REs available for one RB)—(DMRS overhead of one RB)—(other overhead), where the other overhead here may include: Channel state indication reference signal (CSI-RS) Control resource set (CORESET) and other overheads;
  • CSI-RS Channel state indication reference signal
  • CORESET Control resource set
  • Step 3 Determine an intermediate value through quantization, which can be mapped to a reference value Y (the Y value range in the protocol can be ⁇ 6,12,18,42,72,108,144,156 ⁇ ).
  • Step 6 Calculate TBS according to N_info, where the following rules need to be considered in the calculation:
  • the code block size is the same
  • TBS+Cyclic Redundancy Check (CRC) is a factor of the number of code blocks after division * code block size.
  • TBS TBS way.
  • the TBS determination method can be adapted to more application scenarios, and the reliability of repeated transmission (for example, PUSCH transmission or PDSCH transmission) can also be improved.
  • FIG. 8 is a structural diagram of a communication device provided by some embodiments of the present disclosure.
  • the communication device may be a terminal or a network device.
  • a communication device 800 includes:
  • the first determining module 801 is configured to determine the duration of the first transmission in N nominal transmissions, where the first transmission is: the actual transmission corresponding to the first nominal transmission or the second nominal transmission, and N is an integer greater than or equal to 1;
  • the second determining module 802 is configured to determine the TBS according to the PRB within the duration.
  • the communication device 800 further includes:
  • the transmission module 803 is configured to perform repeated transmission according to TBS.
  • the nominal transmission that does not cross the time slot boundary is one actual transmission, and the nominal transmission that crosses the time slot boundary is divided into multiple actual transmissions; or
  • the nominal transmission that does not cross the uplink/downlink switching point is one actual transmission, and the nominal transmission across the uplink/downlink switching point is divided into multiple actual transmissions; or
  • the nominal transmission of symbols that do not conflict across the transmission direction is one actual transmission
  • the nominal transmission of symbols that conflict across the transmission direction is divided into multiple actual transmissions.
  • the N nominal transmissions are N transmission opportunities determined according to the first message.
  • the first nominal transmission is:
  • the first nominal transmission among the N nominal transmissions or
  • the first of the N nominal transmissions indicates the nominal transmission of the first redundancy version RV;
  • the nominal transmissions that are not divided among the N nominal transmissions.
  • the N nominal transmissions include a first actual transmission, and the first actual transmission is one actual transmission of the divided nominal transmissions or a set of multiple actual transmissions.
  • the actual transmission corresponding to the second nominal transmission is:
  • the second nominal transmission is:
  • a set of divided nominal transmissions among the N nominal transmissions is provided.
  • the set of multiple actual transmissions transmits one transmission block TB;
  • each actual transmission transmits one TB;
  • each actual transmission transmits one TB respectively.
  • the actual transmission corresponding to the second nominal transmission is:
  • the second nominal transmission is a set of the N nominal transmissions.
  • the first nominal transmission is any nominal transmission among the N nominal transmissions.
  • the communication device provided by some embodiments of the present disclosure can implement each process implemented by the communication device in the method embodiment in FIG. 2. To avoid repetition, details are not described here, and the TBS determination method can be applied to more application scenarios.
  • FIG. 10 is a schematic diagram of the hardware structure of a communication device for implementing various embodiments of the present disclosure.
  • the communication device may be a terminal or a network device.
  • the communication device 1000 includes, but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, and Power supply 1011 and other components.
  • a radio frequency unit 1001 includes, but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, and Power supply 1011 and other components.
  • a radio frequency unit 1001 includes, but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, and Power supply 1011 and other components.
  • the processor 1010 is configured to determine the duration of the first transmission in N nominal transmissions, where the first transmission is: the actual transmission corresponding to the first nominal transmission or the second nominal transmission, and N is an integer greater than or equal to 1;
  • the TBS is determined based on the PRB within the duration.
  • the radio frequency unit 1001 is used for repeated transmission according to the TBS.
  • the nominal transmission that does not cross the time slot boundary is one actual transmission, and the nominal transmission that crosses the time slot boundary is divided into multiple actual transmissions; or
  • the nominal transmission that does not cross the uplink/downlink switching point is one actual transmission, and the nominal transmission across the uplink/downlink switching point is divided into multiple actual transmissions; or
  • the nominal transmission of symbols that do not conflict across the transmission direction is one actual transmission
  • the nominal transmission of symbols that conflict across the transmission direction is divided into multiple actual transmissions.
  • the N nominal transmissions are N transmission opportunities determined according to the first message.
  • the first nominal transmission is:
  • the first nominal transmission among the N nominal transmissions or
  • the first of the N nominal transmissions indicates the nominal transmission of the first redundancy version RV;
  • the nominal transmissions that are not divided among the N nominal transmissions.
  • the N nominal transmissions include a first actual transmission, and the first actual transmission is one actual transmission of the divided nominal transmissions or a set of multiple actual transmissions.
  • the actual transmission corresponding to the second nominal transmission is:
  • the second nominal transmission is:
  • a set of divided nominal transmissions among the N nominal transmissions is provided.
  • the set of multiple actual transmissions transmits one transmission block TB;
  • each actual transmission transmits one TB;
  • each actual transmission transmits one TB respectively.
  • the actual transmission corresponding to the second nominal transmission is:
  • the second nominal transmission is a set of the N nominal transmissions.
  • the first nominal transmission is any nominal transmission among the N nominal transmissions.
  • the above-mentioned communication device can make the TBS determination method suitable for more application scenarios.
  • the radio frequency unit 1001 can be used for receiving and sending signals in the process of sending and receiving information or talking.
  • the downlink data from the base station is received and processed by the processor 1010; in addition, , Send the uplink data to the base station.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1001 can also communicate with the network and other devices through a wireless communication system.
  • the communication device provides users with wireless broadband Internet access through the network module 1002, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1003 can convert the audio data received by the radio frequency unit 1001 or the network module 1002 or stored in the memory 1009 into audio signals and output them as sounds. Moreover, the audio output unit 1003 may also provide audio output related to a specific function performed by the communication device 1000 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1003 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1004 is used to receive audio or video signals.
  • the input unit 1004 may include a graphics processing unit (GPU) 10041 and a microphone 10042, and the graphics processor 10041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1006.
  • the image frame processed by the graphics processor 10041 may be stored in the memory 1009 (or other storage medium) or sent via the radio frequency unit 1001 or the network module 1002.
  • the microphone 10042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 1001 for output in the case of a telephone call mode.
  • the communication device 1000 further includes at least one sensor 1005, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 10061 according to the brightness of the ambient light
  • the proximity sensor can close the display panel 10061 and 10061 when the communication device 1000 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of communication equipment (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 1005 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 1006 is used to display information input by the user or information provided to the user.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1007 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the communication device.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072.
  • the touch panel 10071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 10071 or near the touch panel 10071. operating).
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it
  • the processor 1010 receives and executes the command sent by the processor 1010.
  • the touch panel 10071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1007 may also include other input devices 10072.
  • other input devices 10072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 10071 can be overlaid on the display panel 10061.
  • the touch panel 10071 detects a touch operation on or near it, it transmits it to the processor 1010 to determine the type of the touch event, and then the processor 1010 determines the type of touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 10061.
  • the touch panel 10071 and the display panel 10061 are used as two independent components to implement the input and output functions of the communication device, in some embodiments, the touch panel 10071 and the display panel 10061 can be integrated
  • the implementation of the input and output functions of the communication device is not specifically limited here.
  • the interface unit 1008 is an interface for connecting an external device and the communication device 1000.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1008 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the communication device 1000 or can be used to connect the communication device 1000 and the external device. Transfer data between devices.
  • the memory 1009 can be used to store software programs and various data.
  • the memory 1009 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1010 is the control center of the communication device. It uses various interfaces and lines to connect the various parts of the entire communication device, runs or executes software programs and/or modules stored in the memory 1009, and calls data stored in the memory 1009 , Perform various functions of the communication equipment and process data, so as to monitor the communication equipment as a whole.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1010.
  • the communication device 1000 may also include a power supply 1011 (such as a battery) for supplying power to various components.
  • a power supply 1011 (such as a battery) for supplying power to various components.
  • the power supply 1011 may be logically connected to the processor 1010 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the communication device 1000 includes some functional modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure also provide a communication device, including a processor 1010, a memory 1009, a computer program stored in the memory 1009 and capable of running on the processor 1010, and the computer program is When 1010 is executed, each process of the above-mentioned TBS determination method embodiment is realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the TBS determination method provided in some embodiments of the present disclosure is implemented. Each process can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种传输块大小确定方法和通信设备,该方法包括:确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;依据所述持续时间内的PRB确定TBS。

Description

传输块大小确定方法和通信设备
相关申请的交叉引用
本申请主张在2019年3月28日在中国提交的中国专利申请号No.201910245826.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种传输块大小(Transport Block Size,TBS)确定方法和通信设备。
背景技术
与相关移动通信系统相比,未来移动通信系统(例如:5G移动通信系统)可以适应更加多样化的场景和业务需求,例如:未来移动通信系统主要场景可以包括:增强型移动宽带(Enhance Mobile Broadband,eMBB)、海量机器类通信(Massive Machine Type Communication,mMTC)和高可靠低时延通信(Ultra Reliable Low Latency Communications,URLLC)等场景。且在未来移动通信系统需要支持物理上行共享信道(Physical uplink shared channel,PUSCH)和物理下行共享信道(Physical downlink shared channel,PDSCH)符号级的重复传输,以满足低时延高可靠的场景。但TBS是依据每次传输的持续时间内的物理资源块(Physical Resource Block,PRB)确定的,且要求每次传输的持续时间相同。而在一些场景(例如:URLLC场景)中的重复传输过程(例如:PUSCH重复传输过程或者PDSCH重复传输过程)可能会存在持续时间不同的传输,这样TBS确定方式无法适用于存在持续时间不同的重复传输,可见,TBS确定方法适用的应用场景过少。
发明内容
本公开实施例提供一种TBS确定方法和通信设备,以解决TBS确定方法适用的应用场景过少的问题。
第一方面,本公开的一些实施例提供一种TBS确定方法,包括:
确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;
依据所述持续时间内的PRB确定TBS。
第二方面,本公开的一些实施例提供一种通信设备,包括:
第一确定模块,用于确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;
第二确定模块,用于依据所述持续时间内的PRB确定TBS。
第三方面,本公开的一些实施例提供一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开的一些实施例提供的TBS确定方法中的步骤。
第四方面,本公开的一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开的一些实施例提供的TBS确定方法中的步骤。
本公开的一些实施例,可以使得TBS确定方法适用于更多的应用场景。
附图说明
图1是本公开的一些实施例可应用的网络系统的结构图;
图2是本公开的一些实施例提供的TBS确定方法的流程图;
图3是本公开的一些实施例提供的传输的示意图;
图4是本公开的一些实施例提供的传输的另一示意图;
图5是本公开的一些实施例提供的传输的另一示意图;
图6是本公开的一些实施例提供的传输的另一示意图;
图7是本公开的一些实施例提供的传输的另一示意图;
图8是本公开的一些实施例提供的通信设备的结构图;
图9是本公开的一些实施例提供的通信设备的另一结构图;以及
图10是本公开的一些实施例提供的通信设备的另一结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的TBS确定方法和通信设备可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统或者长期演进(Long Term Evolution,LTE)系统,或者后续演进通信系统等。
请参见图1,图1是本公开的一些实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或者机器人等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端11的具体类型。上述网络设备12可以是4G基站,或者5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中 其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开的一些实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开的一些实施例提供的一种TBS确定方法的流程图,如图2所示,包括以下步骤:
步骤201、确定N个名义传输(nominal transmission)中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数。
本公开的一些实施例中,名义传输可以是指PUSCH或者PDSCH的名义传输,名义传输可以是初传或重传,为简便每次名义传输也可称为重复传输,例如:每次名义传输占用相同大小的时域资源(例如:由多个连续符号组成),可以称为时域持续时间(duration),这些时域资源用于PUSCH或者PDSCH传输。如图3所示,如果重复传输没有跨时隙边界、上下行切换点或者传输方向冲突的符号,则每一次重复传输可以称为一个名义传输。需要说明的是,本公开的一些实施例中,以PUSCH重复传输进行举例说明,PDSCH重复传输可以参见PUSCH重复传输。
另外,上述N个名义传输可以是根据第一消息确定,进一步的,上述N个名义传输可以为根据第一消息确定的N个传输机会。名义传输可以是根据第一消息确定的名义上的传输,该传输可以理解为一个传输机会,在传输过程中,并不是所有名义传输都为实际传输,例如:一些名义传输就是实际传输,而另一些名义传输被划分为多次实际传输。
而上述第一消息可以是网络设备发送的指示消息或者通知消息,例如由DCI指示或RRC指示。另外,上述第一消息可以用于通知名义传输的次数,从而可以根据第一次名义传输的时域资源以及该次数确定上述N个名义传输。由于可能会存在一些名义传输被划分为多个实际传输,从而网络指示或通知名义传输的次数可能并不等于实际传输的数目。
例如:对于图4中的(a),每个重复传输持续4个符号,名义传输数为2,所有名义传输不跨时隙边界、上下行切换点(UL-DL切换点)或者传输方向 冲突的符号,因此实际传输数为2。
而对于图4中的(b)每个重复传输持续4个符号,名义传输数为4。当有名义传输跨时隙边界、上下行切换点或者传输方向冲突的符号时,一个名义传输被划分为2个实际的传输,这样,实际传输数为5。
需要说明是的,本公开的一些实施例中,每次名义传输占用时域资源大小可以是预先配置,或者网络通知,或者协议定义的等等,对此不作限定。
另外,上述第一名义传输可以是上述N个名义传输中任意名义传输,这样可以实现按照名义传输的持续时间内的PRB确定TBS。可选的,上述第一名义传输为未被划分的名义传输,即该名义传输等于实际传输。而上述第二名义传输可以是被划分为多次实际传输的名义传输,或者多个被划分的名义传输的集合。
需要说明的是,本公开的一些实施例中,名义传输划分为多次实际传输可以是,将名义传输包括的时间资源划分多个可用的传输资源,从而在这多个可用的传输资源上进行实际传输。其中,可用的传输资源可以是,当可利用的连续时域资源的符号数大于或者等于x时,该连续时域资源为可用的传输资源,反之,当可利用的连续时域资源的符号数小于x时,该连续时域资源为不可用的传输资源。其中,上述x为正整数,例如:2。
下面以时域资源为符号进行举例:
假设对于一个待传输的PUSCH传输,假设允许其最小的传输长度为x符号(例如2符号),即小于x符号则不能进行传输。当一个待传输的PUSCH可利用的连续符号数小于x符号,则把这些符号称为不可用传输符号。当一个待传输的PUSCH可利用的连续符号数大于等于x符号,则把这些符号称为可用传输符号。
另外,上述第一传输的持续时间可以是第一传输的进行数据传输的持续时间,例如:上述第一传输包括4个符号,有一个符号用作解调参考信号(Demodulation Reference Signal,DMRS)传输,有3个符号用作数据传输,从而上述持续时间为4个符号。
为描述方便,本公开的一些实施例中,假设DMRS符号不传输数据,但本公开的一些实施例同样适用于DMRS符号传输数据的情况。例如:如果第 一传输包括4个符号,有一个符号用作DMRS传输,那么则有4个符号用作数据传输,其中,第一个符号既传输DMRS也传输数据符号,持续时间仍为4个符号。
步骤202、依据所述持续时间内的PRB确定TBS。
其中,步骤202可以是依据上述持续时间内的PRB计算TBS,若,计算TBS的方式,本公开的一些实施例不作限定,例如:可以参考协议中定义的依据PRB计算TBS的方式。
本公开的一些实施例中,由于上述持续时间是第一名义传输或者第二名义传输对应的实际传输的持续时间,从而依据上述持续时间内的PRB确定TBS,这样该TBS可以适用于存在持续时间不同的重复传输,以适用于更多的应用场景(例如:URLLC场景),且还可以提高传输的可靠性,使得通信系统可以支持存在持续时间不同的重复传输(例如:PUSCH重复传输或者PDSCH重复传输),进而提升通信系统的传输效果。
需要说明的是,本公开的一些实施例提供的TBS确定方法可以应用于终端或者网络设备等通信设备。
作为一种可选的实施方式,所述依据所述持续时间内的PRB确定TBS,所述方法还包括:
依据TBS进行重复传输。
其中,依据上述TBS进行传输可以是,在重复传输的每一个实际传输过程中每个传输块(Transport Block,TB)上传输的信息大小为上述TBS,如传输的信息比特数为上述TBS。
另外,上述依据TBS进行传输可以是PUSCH重复传输,或者PDSCH重复传输,另外,上述依据TBS进行传输可以是依据TBS进行数据接收,依据TBS进行数据发送。
例如:针对PUSCH重复传输,上述依据TBS进行传输可以是,终端依据该TBS向网络设备重复发送PUSCH;或者,针对PUSCH重复传输,上述依据TBS进行传输可以是,网络设备依据该TBS接收终端重复发送的PUSCH。
又例如:针对PDSCH重复传输,上述依据TBS进行传输可以是,网络设备依据该TBS向终端重复发送PDSCH;或者,针对PDSCH重复传输,上 述依据TBS进行传输可以是,终端依据该TBS接收网络设备重复发送的PDSCH。
该实施方式中,依据上述TBS进行重复传输,这样可以支持不同的实际传输的持续时间不相同,从而重复传输(例如:PUSCH重复传输或者PDSCH重复传输)更能适应时隙格式的灵活变化,进而提高重复传输(例如:PUSCH传输或者PDSCH传输)的可靠性。
需要说明的是,本公开的一些实施例中,实际传输可以是指依据上述TBS进行的实际传输。另外,步骤201第一传输的持续时间是在实际传输之前预先确定的持续时间,例如:在第二名义传输对应的实际传输之前,预先确定该实际传输的持续时间。
作为一种可选的实施方式,所述N个名义传输中:未跨时隙边界的名义传输为一次实际传输,跨所述时隙边界的名义传输被划分为多次实际传输;或者
所述N个名义传输中:未跨上下行切换点的名义传输为一次实际传输,跨所述上下行切换点的名义传输被划分为多次实际传输;或者
所述N个名义传输中:未跨传输方向冲突的符号的名义传输为一次实际传输,跨所述传输方向冲突的符号的名义传输被划分为多次实际传输。
其中,上述上下行切换点可以是下行符号和上行符号之间进行切换的时间点,而上述传输方向冲突的符号可以是与传输冲突的上行或下行符号。
上述名义传输为实际传输可以是,在实际传输过程中在名义传输的资源上进行一次重复传输,例如:某一名义传输占用4个符号,则在4个符号上进行一次重复传输。
而上述名义传输划分为多个实际传输可以是,将该名义传输占用的资源划分多个可用的传输资源,在这多个可用的传输资源分别进行多次传输,以实现名义传输对应的重复传输。
以图5所示,名义传输1和名义传输2未跨时隙边界(Slot boundary),从而名义传输1和名义传输2分别为实际传输1和实际传输2,而名义传输3跨时隙边界,包括3个待传输部分,其中部分1只有一个符号,为不可用的传输资源,部分2和部分3分别有两个符号,为可用的传输资源,从而在部 分2和部分3分别进行实际传输。
该实施方式中,可以根据名义传输占用资源,将未跨时隙边界、上下行切换点和传输方向冲突的符号的名义传输确定为实际传输,而将跨时隙边界、上下行切换点和传输方向冲突的符号的名义传输被划分为多次实际传输,从而提高传输的可靠性。另外,在将跨传输方向冲突的符号的名义传输划分为多次实际传输,可以跳过传输方向冲突的符号,从而减少时延。
作为一种可选的实施方式,所述第一名义传输为:
所述N个名义传输中首个进行传输的名义传输。
其中,上述首个进行传输的名义传输可以是,上述N个名义传输中,第一个进行传输的名义传输。且上述首个进行传输的名义传输也可以称作首次传输的名义传输。
该实施方式中,可以实现按照首次传输的名义传输的持续时间内的PRB确定TBS。如图5所示,名义传输数为3,名义传输1和名义传输2分别为实际传输1和实际传输2,其中名义传输3被划分成3个待传输部分,其中第一个部分为不可用传输,对于名义传输3,有两个实际传输(实际传输3和实际传输4)。TBS按照名义传输1确定,在该示例中名义传输1有一个符号用作DMRS,有3个符号用作数据。TBS确定是按照3个数据符号进行确定的。
该实施方式中,可以实现按照N个名义传输中首个进行传输的名义传输的持续时间内的PRB确定TBS,从而降低复杂度。
另外,该实施方式中,进一步的,所述N个名义传输可以包括第一实际传输,所述第一实际传输为被划分的名义传输的一个实际传输或者多个实际传输的集合。
其中,对于被划分的名义传输对应的每个实际传输,有两种传输方式。
一种是,对于每个实际传输,通过打孔名义传输方式进行传输。此时每个实际传输可以发送一个TB。例如:在图5的实际传输3和实际传输4,只有一个符号可供数据传输,此时可打孔名义传输的2个数据符号,然后传输剩余的部分,即一个数据符号。
另一种是,对于实际传输的集合,通过打孔名义传输方式进行传输。此 时被划分的多个实际传输发送一个TB。例如:在图5的实际传输3和实际传输4,一共有2个符号可供数据传输,此时可打孔名义传输的1个数据符号,然后剩余的部分分别在两个实际传输中发送,即2个数据符号。
作为一种可选的实施方式,所述第一名义传输为:
所述N个名义传输中首个指示第一冗余版本(Redundancy Version,RV)的名义传输。
其中,第一RV可以是预先配置的、协议中定义的或者网络指示的等等。可选的,上述第一RV为RV0,当然,对此不作限定。
该实施方式中,可以实现按照首个指示的RV版本(例如RV0)的名义传输的持续时间内的PRB确定TBS,如图6所示,由于URLLC业务到达可能随机的并可能出现在任何时刻,如果第一个名义传输跨时隙边界,第一个名义传输可能被划分成多个部分,实际传输或者名义传输可以使用不同的冗余版本,由于第一个名义传输被划分成多个实际传输,这些实际传输的时域符号数可能远小于未被划分的名义传输,从而导致码率较高,传输的可靠性较差,网络可以指示这些实际传输使用非自解码的冗余版本,从而减少对系统bit的丢弃。因此,TBS可以根据网络指示的RV版本(例如RV0)的名义传输确定,以提高传输的可靠性。在图6中名义传输2有一个符号用作DMRS,有3个符号用作数据,采用RV 0。TBS确定是名义传输2即按照3个数据符号进行确定的。
该实施方式中,进一步的,所述N个名义传输可以包括第一实际传输,所述第一实际传输为被划分的名义传输的一个实际传输或者多个实际传输的集合。
同样的,该实施方式中,对于被划分的名义传输对应的每个实际传输,有两种传输方式。
一种是,对于每个实际传输,其传输符号数小于名义传输,可通过打孔名义传输方式进行传输。此时每个实际传输发送一个TB。例如在图6中(a)的名义传输1被分成2个实际传输,即实际传输1和实际传输2,只有一个符号可供数据传输,此时可通过分别打孔名义传输的冗余版本3的2个符号和打孔名义传输的冗余版本1的2个符号,然后传输剩余的部分,即传输1 个数据符号。
另一种是,对于实际传输的集合,其数据传输符号数的和可能小于名义传输的数据符号,因此可通过打孔名义传输方式进行传输。此时被划分的多个实际传输发送一个TB。例如在图6中(b)的实际传输1和实际传输2采用相同的RV版本,一共有2个符号可供数据传输,此时可打孔名义传输rv1的1个符号,然后剩余的部分分别在两个实际传输中发送,即传输2个数据符号。
作为一种可选的实施方式,所述第一名义传输为:
所述N个名义传输中未被划分的名义传输。
其中,上述未被划分的名义传输可以是上述N个名义传输任一未被划分的N个名义传输。由于未被划分的名义传输等于实际传输,即一个完整的重复传输,从而该实施方式中,可以实现根据完整的重复传输的持续时间内的PRB确定TBS,使得按照该TBS进行重复传输时,重复传输的资源利用率更好。另外,该实施方式中,每个未被划分的名义传输占用的时频域资源可以是相同的,例如:符号数相同。
该实施方式中,TBS按照未划分的名义传输的持续时间内的PRB确定,如图5所示,未划分的名义传输是一个完整的重复传输。未划分的名义传输为名义传输1和2,有一个符号用作DMRS,有3个符号用作数据。TBS确定是按照3个数据符号进行确定的。
该实施方式中,进一步的,所述N个名义传输可以包括第一实际传输,所述第一实际传输为被划分的名义传输的一个实际传输或者多个实际传输的集合。
同样的,对于被划分的名义传输对应的每个实际传输,有两种传输方式。
一种是,对于每个实际传输,其传输符号数小于名义传输,因此可通过打孔名义传输方式进行传输。此时每个实际传输可以发送一个TB。
另一种是,对于实际传输的集合,其数据传输符号数的和可能小于名义传输的数据符号,因此可通过打孔名义传输方式进行传输。此时被划分的多个实际传输可以发送一个TB。
作为一种可选的实施方式,所述第二名义传输对应的实际传输为:
所述第二名义传输划分的多个实际传输的集合;或者
所述第二名义传输划分的多个实际传输中符号最多的实际传输;或者
所述第二名义传输划分的多个实际传输中符号最少的实际传输。
该实施方式中,可以实现上述持续时间为第二名义传输划分的多个实际传输的集合的持续时间,或者可以实现上述持续时间为第二名义传输划分的多个实际传输中符号最多或者最少的实际传输的持续时间,从而可以根据实际情况灵活选择相应的方法确定TBS,以提高PUSCH重复传输的可靠性。
可选的,在所述第二名义传输对应的实际传输为所述多个实际传输的集合的情况下,所述多个实际传输的集合传输一个TB;或者
在所述第二名义传输对应的实际传输为所述多个实际传输中符号最多的实际传输的情况下,每个实际传输分别传输一个TB;或者
在所述第二名义传输对应的实际传输为所述多个实际传输中符号最少的实际传输的情况下,每个实际传输分别传输一个TB。
该实施方式中,可以支持多种重复传输方案,以适应不同场景或者业务的需求。
一种方案中,所述第二名义传输可以为:
所述N个名义传输中被划分的实际传输次数最多的名义传输。
上述被划分的实际传输次数最多的名义传输可以是,在上述N个名义传输如果存在至少一个被划分的名义传输,则在至少一个被划分的名义传输中选择实际传输次数最多的名义传输。如果没有名义传输被划分,则被划分的名义传输中实际传输次数最多的为0次,选择任一名义传输确定TBS。
该方案中,一种可选的方案是,选择被划分为最多实际传输数的名义传输,TBS按照所有实际传输集合的持续时间的PRB确定,此时所述所有实际传输的集合可以发送一个TB。如图5所示,名义传输3被分成3个待传输部分。在重复传输中分段数最多的名义传输为名义传输3,有2个符号用作DMRS,有2个符号用作数据(还有一个待传输部分被丢弃)。TBS确定是按照2个数据符号的假设进行确定的。而对于未被划分的名义传输和其他被划分的实际传输,可以通过速率匹配的方式匹配相应的时域传输符号个数进行传输。
当然,在上述第二名义传输为实际传输次数最多的名义传输的情况下,第二名义传输对应的实际传输也可以为上述介绍的另外两种情况,即为上述介绍的符号最多或者最少的实际传输。
例如:选择被划分为最多实际传输的名义传输,TBS根据其中具有最少符号数的实际传输的持续时间内的PRB确定。或者,选择被划分为最多实际传输的名义传输,TBS根据其中具有最多符号数的实际传输的持续时间内的PRB确定。
类似地,如果一个实际传输或名义传输的符号数大于确定TBS的实际传输的符号数,可采用速率匹配方式进行传输。如果一个实际传输的符号数小于确定TBS的实际传输的符号数,可采用速率打孔方式进行传输。
另一种方案中,所述第二名义传输可以为:
所述N个名义传输中被划分的名义传输的集合。
该方案中,可以实现第二名义传输为被划分的名义传输的集合,例如:上述N个名义传输中存在M个被划分为多个实际传输的名义传输,则第二名义传输为这M个名义传输的集合。
该方案中,一种可选的方案是,选择名义传输被划分后的实际传输,TBS根据具有最多符号数的实际传输的持续时间内的PRB确定。此时每个实际传输可以发送一个TB。如图5所示,名义传输3被分成3部分,其被划分为两个实际传输(实际传输3和实际传输4),实际传输3和实际传输4都具有最多的符号数,TBS确定是按照实际传输3或实际传输4确定,即按照1个数据符号的假设进行确定。另外,对于未被划分的名义传输,可以通过把根据确定的TBS编码后速率匹配方式进行传输,而对于实际传输的符号数小于上述确定的实际传输,可通过打孔方式匹配相应符号进行传输。
当然,在上述第二名义传输为N个名义传输中被划分的名义传输的集合的情况下,第二名义传输对应的实际传输也可以为上述介绍的另外两种情况,即为上述介绍的多个实际传输的集合或者最少的实际传输的方案。
作为一种可选的实施方式,在所述N个名义传输跨时隙边界、上下行切换点或者传输方向冲突的符号的情况下,所述第二名义传输对应的实际传输为:
所述第二名义传输在一个时域资源内的实际传输;或者
所述第二名义传输在多个时域资源内的实际传输集合;
其中,所述第二名义传输为所述N个名义传输的集合。
其中,上述在所述N个名义传输跨时隙边界、上下行切换点或者传输方向冲突的符号可以是,N个名义传输占用的资源集合跨时隙边界、上下行切换点或者传输方向冲突的符号。
进一步的,在所述N个名义传输未跨时隙边界、上下行切换点或者传输方向冲突的符号的情况下,所述第一名义传输可以为所述N个名义传输中任一名义传输。也就是说,按照任一名义传输的持续时间内的PRB确定TBS。
需要说明的是,实施方式中,对于重复传输,可以采用不同的划分方式:
一种划分方式是,当根据时域资源分配(长度L)和重复次数(K)确定总的传输资源(L*K),当总资源跨时隙边界(例如:slot边界)或上下行切换点或者传输方向冲突的符号,实际传输可以在一个UL时间(例如:UL Period)内传输;
另一种划分方式是,当总资源不跨时隙边界(例如:slot边界)或上下行切换点或者传输方向冲突的符号时,按照名义传输数在一个UL时间(例如:UL Period)内传输。
如图7所示,当指示的每个重复持续4个符号,名义传输数为4时,当跨时隙边界时,总资源为16个符号,实际传输数为2,其中实际传输1的符号数为10,实际传输2的符号数为6。
如图7所示,当指示的每个重复持续4个符号,名义传输数为2时,当不跨时隙边界时实际传输数为2,其中实际传输1的符号数为4,实际传输2的符号数为4。
上述实施方式中,由于上述第二名义传输对应的实际传输为:所述第二名义传输在一个上行时间内的实际传输,从而可以实现将一个时隙内的传输作为一次实际传输。这样可以实现按照第二名义传输在符号数最少或者最多的一个上行时间内的实际传输持续时间内的PRB确定TBS。
例如:当总资源跨时隙边界(例如:slot边界)或上下行切换点或者传输方向冲突的符号时:按照最短的实际传输的符号数目确定TBS,其他实际传 输可以采用速率匹配方式传输;或者,按照最长的实际传输的符号数目确定TBS,其他实际传输可以可采用打孔方式传输。
当总资源不跨时隙边界(例如:slot边界)或上下行切换点或者传输方向冲突的符号时:按照每个名义传输确定TBS。进一步,对于这种方式,每一个实际传输可以传输一个完整TB。
另外,上述第二名义传输对应的实际传输为:第二名义传输在多个上行时间内的实际传输集合,可以实现当总资源跨时隙边界(例如:slot边界)或上下行切换点或者传输方向冲突的符号时:按照总的符号数确定TBS,此时一个TB在所有可用的上行时域资源上传输。
作为一种可选的实施方式,本公开的一些实施例采用如下方式确定TBS:
步骤1、根据步骤201确定参考时域持续时间长度,其中,该参考时域持续时间为上述步骤201确定的持续时间;
步骤2、计算的参考时域持续时间内一个资源块(Resource Block,RB)的可用资源单元(Resource Element,RE)数X,其中,
X=(一个RB可利用的RE数)—(一个RB的DMRS开销)—(其他开销),其中,这里的其他开销可以包括:信道状态指示参考信号(Channel state indication reference signal,CSI-RS)控制资源集(control resource set,CORESET)等开销;
步骤3、通过量化,确定一个中间值,可以是映射X到一个参考值Y(协议中Y值范围可以为{6,12,18,42,72,108,144,156})。
步骤4、计算总的可用RE数,其中,N_RE=Y*调度的PRB数,调度的PRB数为步骤201确定的持续时间内的PRB数;
步骤5、确定信息bit数,其中,N_info=N_RE·υ·Q_m·R,υ为层数,Q_m为调制阶数,R为码率;
步骤6、根据N_info计算TBS,其中,在计算需要考虑如下规则:
Byte对齐;
码块分割后,码块大小相同;
(TBS+循环冗余校验(Cyclic Redundancy Check,CRC)是分割后的码块数*码块大小的因子。
需要说明的是,上述仅是对确定TBS的一个举例,本公开的一些实施例中,并不限定依据持续时间内的PRB确定TBS的方式,例如:还可以采用协议中定义的其他依据PRB计算TBS的方式。
本公开的一些实施例中,可以使得TBS确定方法适用于更多的应用场景,以及还可以提高重复传输(例如:PUSCH传输或者PDSCH传输)的可靠性。
请参见图8,图8是本公开的一些实施例提供的一种通信设备的结构图,该通信设备可以为终端或者网络设备,如图8所示,通信设备800,包括:
第一确定模块801,用于确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;
第二确定模块802,用于依据所述持续时间内的PRB确定TBS。
可选的,如图9所示,通信设备800还包括:
传输模块803,用于依据TBS进行重复传输。
可选的,所述N个名义传输中:未跨时隙边界的名义传输为一次实际传输,跨所述时隙边界的名义传输被划分为多次实际传输;或者
所述N个名义传输中:未跨上下行切换点的名义传输为一次实际传输,跨所述上下行切换点的名义传输被划分为多次实际传输;或者
所述N个名义传输中:未跨传输方向冲突的符号的名义传输为一次实际传输,跨所述传输方向冲突的符号的名义传输被划分为多次实际传输。
可选的,所述N个名义传输为根据第一消息确定的N个传输机会。
可选的,所述第一名义传输为:
所述N个名义传输中首个进行传输的名义传输;或者
所述N个名义传输中首个指示第一冗余版本RV的名义传输;或者
所述N个名义传输中未被划分的名义传输。
可选的,所述N个名义传输包括第一实际传输,所述第一实际传输为被划分的名义传输的一个实际传输或者多个实际传输的集合。
可选的,所述第二名义传输对应的实际传输为:
所述第二名义传输划分的多个实际传输的集合;或者
所述第二名义传输划分的多个实际传输中符号最多的实际传输;或者
所述第二名义传输划分的多个实际传输中符号最少的实际传输。
可选的,所述第二名义传输为:
所述N个名义传输中被划分的实际传输次数最多的名义传输;或者
所述N个名义传输中被划分的名义传输的集合。
可选的,在所述第二名义传输对应的实际传输为所述多个实际传输的集合的情况下,所述多个实际传输的集合传输一个传输块TB;或者
在所述第二名义传输对应的实际传输为所述多个实际传输中符号最多的实际传输的情况下,每个实际传输分别传输一个TB;或者
在所述第二名义传输对应的实际传输为所述多个实际传输中符号最少的实际传输的情况下,每个实际传输分别传输一个TB。
可选的,在所述N个名义传输跨时隙边界、上下行切换点或者传输方向冲突的符号的情况下,所述第二名义传输对应的实际传输为:
所述第二名义传输在一个时域资源内的实际传输;或者
所述第二名义传输在多个时域资源内的实际传输集合;
其中,所述第二名义传输为所述N个名义传输的集合。
可选的,在所述N个名义传输未跨时隙边界、上下行切换点或者传输方向冲突的符号的情况下,所述第一名义传输为所述N个名义传输中任一名义传输。
本公开的一些实施例提供的通信设备能够实现图2的方法实施例中通信设备实现的各个过程,为避免重复,这里不再赘述,且可以使得TBS确定方法适用于更多的应用场景。
图10为实现本公开各个实施例的一种通信设备的硬件结构示意图,该通信设备可以为终端或者网络设备。
该通信设备1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、处理器1010、以及电源1011等部件。本领域技术人员可以理解,图10中示出的通信设备结构并不构成对通信设备的限定,通信设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
处理器1010,用于确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;
依据所述持续时间内的PRB确定TBS。
可选的,射频单元1001,用于依据TBS进行重复传输。
可选的,所述N个名义传输中:未跨时隙边界的名义传输为一次实际传输,跨所述时隙边界的名义传输被划分为多次实际传输;或者
所述N个名义传输中:未跨上下行切换点的名义传输为一次实际传输,跨所述上下行切换点的名义传输被划分为多次实际传输;或者
所述N个名义传输中:未跨传输方向冲突的符号的名义传输为一次实际传输,跨所述传输方向冲突的符号的名义传输被划分为多次实际传输。
可选的,所述N个名义传输为根据第一消息确定的N个传输机会。
可选的,所述第一名义传输为:
所述N个名义传输中首个进行传输的名义传输;或者
所述N个名义传输中首个指示第一冗余版本RV的名义传输;或者
所述N个名义传输中未被划分的名义传输。
可选的,所述N个名义传输包括第一实际传输,所述第一实际传输为被划分的名义传输的一个实际传输或者多个实际传输的集合。
可选的,所述第二名义传输对应的实际传输为:
所述第二名义传输划分的多个实际传输的集合;或者
所述第二名义传输划分的多个实际传输中符号最多的实际传输;或者
所述第二名义传输划分的多个实际传输中符号最少的实际传输。
可选的,所述第二名义传输为:
所述N个名义传输中被划分的实际传输次数最多的名义传输;或者
所述N个名义传输中被划分的名义传输的集合。
可选的,在所述第二名义传输对应的实际传输为所述多个实际传输的集合的情况下,所述多个实际传输的集合传输一个传输块TB;或者
在所述第二名义传输对应的实际传输为所述多个实际传输中符号最多的实际传输的情况下,每个实际传输分别传输一个TB;或者
在所述第二名义传输对应的实际传输为所述多个实际传输中符号最少的实际传输的情况下,每个实际传输分别传输一个TB。
可选的,在所述N个名义传输跨时隙边界、上下行切换点或者传输方向冲突的符号的情况下,所述第二名义传输对应的实际传输为:
所述第二名义传输在一个时域资源内的实际传输;或者
所述第二名义传输在多个时域资源内的实际传输集合;
其中,所述第二名义传输为所述N个名义传输的集合。
可选的,在所述N个名义传输未跨时隙边界、上下行切换点或者传输方向冲突的符号的情况下,所述第一名义传输为所述N个名义传输中任一名义传输。
上述通信设备可以使得TBS确定方法适用于更多的应用场景。
应理解的是,本公开的一些实施例中,射频单元1001可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给基站。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1001还可以通过无线通信系统与网络和其他设备通信。
通信设备通过网络模块1002为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1003可以将射频单元1001或网络模块1002接收的或者在存储器1009中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1003还可以提供与通信设备1000执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1003包括扬声器、蜂鸣器以及受话器等。
输入单元1004用于接收音频或视频信号。输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1006上。经图形处理器10041处理后的图像帧可以存储在存储器1009 (或其它存储介质)中或者经由射频单元1001或网络模块1002进行发送。麦克风10042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1001发送到移动通信基站的格式输出。
通信设备1000还包括至少一种传感器1005,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板10061的亮度,接近传感器可在通信设备1000移动到耳边时,关闭显示面板10061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别通信设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1005还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1006用于显示由用户输入的信息或提供给用户的信息。显示单元1006可包括显示面板10061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板10061。
用户输入单元1007可用于接收输入的数字或字符信息,以及产生与通信设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板10071上或在触控面板10071附近的操作)。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1010,接收处理器1010发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板10071。除了触控面板10071,用户输入单元1007还可以包括其他输入设备 10072。具体地,其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板10071可覆盖在显示面板10061上,当触控面板10071检测到在其上或附近的触摸操作后,传送给处理器1010以确定触摸事件的类型,随后处理器1010根据触摸事件的类型在显示面板10061上提供相应的视觉输出。虽然在图10中,触控面板10071与显示面板10061是作为两个独立的部件来实现通信设备的输入和输出功能,但是在某些实施例中,可以将触控面板10071与显示面板10061集成而实现通信设备的输入和输出功能,具体此处不做限定。
接口单元1008为外部装置与通信设备1000连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1008可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到通信设备1000内的一个或多个元件或者可以用于在通信设备1000和外部装置之间传输数据。
存储器1009可用于存储软件程序以及各种数据。存储器1009可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1010是通信设备的控制中心,利用各种接口和线路连接整个通信设备的各个部分,通过运行或执行存储在存储器1009内的软件程序和/或模块,以及调用存储在存储器1009内的数据,执行通信设备的各种功能和处理数据,从而对通信设备进行整体监控。处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010 中。
通信设备1000还可以包括给各个部件供电的电源1011(比如电池),可选的,电源1011可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,通信设备1000包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种通信设备,包括处理器1010,存储器1009,存储在存储器1009上并可在所述处理器1010上运行的计算机程序,该计算机程序被处理器1010执行时实现上述TBS确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开的一些实施例提供的TBS确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来 实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (15)

  1. 一种传输块大小TBS确定方法,包括:
    确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;
    依据所述持续时间内的物理资源块PRB确定TBS。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    依据TBS进行重复传输。
  3. 如权利要求1所述的方法,其中,所述N个名义传输中:未跨时隙边界的名义传输为一次实际传输,跨所述时隙边界的名义传输被划分为多次实际传输;或者
    所述N个名义传输中:未跨上下行切换点的名义传输为一次实际传输,跨所述上下行切换点的名义传输被划分为多次实际传输;或者
    所述N个名义传输中:未跨传输方向冲突的符号的名义传输为一次实际传输,跨所述传输方向冲突的符号的名义传输被划分为多次实际传输。
  4. 如权利要求1所述的方法,其中,所述N个名义传输为根据第一消息确定的N个传输机会。
  5. 如权利要求1所述的方法,其中,所述第一名义传输为:
    所述N个名义传输中首个进行传输的名义传输;或者
    所述N个名义传输中首个指示第一冗余版本RV的名义传输;或者
    所述N个名义传输中未被划分的名义传输。
  6. 如权利要求5所述的方法,其中,所述N个名义传输包括第一实际传输,所述第一实际传输为被划分的名义传输的一个实际传输或者多个实际传输的集合。
  7. 如权利要求1所述的方法,其中,所述第二名义传输对应的实际传输为:
    所述第二名义传输划分的多个实际传输的集合;或者
    所述第二名义传输划分的多个实际传输中符号最多的实际传输;或者
    所述第二名义传输划分的多个实际传输中符号最少的实际传输。
  8. 如权利要求7所述的方法,其中,所述第二名义传输为:
    所述N个名义传输中被划分的实际传输次数最多的名义传输;或者
    所述N个名义传输中被划分的名义传输的集合。
  9. 如权利要求7所述的方法,其中,在所述第二名义传输对应的实际传输为所述多个实际传输的集合的情况下,所述多个实际传输的集合传输一个传输块TB;或者
    在所述第二名义传输对应的实际传输为所述多个实际传输中符号最多的实际传输的情况下,每个实际传输分别传输一个TB;或者
    在所述第二名义传输对应的实际传输为所述多个实际传输中符号最少的实际传输的情况下,每个实际传输分别传输一个TB。
  10. 如权利要求1所述的方法,其中,在所述N个名义传输跨时隙边界、跨上下行切换点或者跨传输方向冲突的符号的情况下,所述第二名义传输对应的实际传输为:
    所述第二名义传输在一个时域资源内的实际传输;或者
    所述第二名义传输在多个时域资源内的实际传输集合;
    其中,所述第二名义传输为所述N个名义传输的集合。
  11. 如权利要求10所述的方法,其中,在所述N个名义传输未跨时隙边界、未跨上下行切换点或者未跨传输方向冲突的符号的情况下,所述第一名义传输为所述N个名义传输中任一名义传输。
  12. 一种通信设备,所述通信设备为终端或网络设备,包括:
    第一确定模块,用于确定N个名义传输中第一传输的持续时间,所述第一传输为:第一名义传输或者第二名义传输对应的实际传输,N为大于等于1的整数;
    第二确定模块,用于依据所述持续时间内的PRB确定TBS。
  13. 一种通信设备,所述通信设备为终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的TBS确定方法中的步骤。
  14. 一种通信设备,所述通信设备为网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处 理器执行时实现如权利要求1至11中任一项所述的TBS确定方法中的步骤。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的TBS确定方法中的步骤。
PCT/CN2020/081307 2019-03-28 2020-03-26 传输块大小确定方法和通信设备 WO2020192718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20779579.0A EP3952155A4 (en) 2019-03-28 2020-03-26 METHOD OF TRANSPORT BLOCK SIZING AND COMMUNICATION DEVICE
US17/487,242 US20220022184A1 (en) 2019-03-28 2021-09-28 Transport block size determining method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245826.7 2019-03-28
CN201910245826.7A CN111277361B (zh) 2019-03-28 2019-03-28 传输块大小确定方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,242 Continuation US20220022184A1 (en) 2019-03-28 2021-09-28 Transport block size determining method and communications device

Publications (1)

Publication Number Publication Date
WO2020192718A1 true WO2020192718A1 (zh) 2020-10-01

Family

ID=70999999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081307 WO2020192718A1 (zh) 2019-03-28 2020-03-26 传输块大小确定方法和通信设备

Country Status (4)

Country Link
US (1) US20220022184A1 (zh)
EP (1) EP3952155A4 (zh)
CN (1) CN111277361B (zh)
WO (1) WO2020192718A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220356A1 (zh) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 一种dmrs配置方法、用户设备
EP4222895A4 (en) * 2020-09-29 2024-04-24 Qualcomm Inc TRANSPORT BLOCK SCALING TO REPEAT A SHARED PHYSICAL UPLINK CHANNEL
WO2022126342A1 (zh) * 2020-12-14 2022-06-23 北京小米移动软件有限公司 传输块大小的确定方法、装置及通信设备
CN116508379A (zh) * 2020-12-14 2023-07-28 Oppo广东移动通信有限公司 确定传输块大小的方法和装置
CN114765495A (zh) * 2021-01-14 2022-07-19 维沃移动通信有限公司 上行传输的方法、终端及网络侧设备
CN115087118A (zh) * 2021-03-12 2022-09-20 维沃移动通信有限公司 上行传输方法、装置及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019843A1 (en) * 2016-07-18 2018-01-18 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN108135028A (zh) * 2018-02-27 2018-06-08 中兴通讯股份有限公司 一种功率控制方法、装置及通信节点
CN108811142A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 资源分配方法、相关装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014097B2 (en) * 2010-10-08 2015-04-21 Lg Electronics Inc. Method for transmitting control information and device therefor
CN106559898B (zh) * 2015-09-28 2020-08-11 中兴通讯股份有限公司 数据传输方法及装置
US10939321B2 (en) * 2017-09-11 2021-03-02 Apple Inc. Power boosting and transport block size (TBS) design in a new radio (NR) system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019843A1 (en) * 2016-07-18 2018-01-18 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN108811142A (zh) * 2017-05-04 2018-11-13 华为技术有限公司 资源分配方法、相关装置及系统
CN108135028A (zh) * 2018-02-27 2018-06-08 中兴通讯股份有限公司 一种功率控制方法、装置及通信节点

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
NOKIA; NOKIA SHANGHAI BELL: "Summary of Friday offline discussion on potential enhancements for PUSCH for NR URLLC (AI 7.2.6.1.3)", 3GPP DRAFT; R1-1903797, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 39, XP051691042 *
NOKIA; NOKIA SHANGHAI BELL: "Summary of Tuesday offline discussion on potential enhancements for PUSCH for NR URLLC (AI 7.2.6.1.3)", 3GPP DRAFT; R1-1903480, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 30, XP051601145 *
See also references of EP3952155A4 *
VIVO: "PUSCH enhancements for URLLC", 3GPP DRAFT; R1-1812314, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 4, XP051478503 *
VIVO: "PUSCH enhancements for URLLC", 3GPP DRAFT; R1-1904083, 12 April 2019 (2019-04-12), Xi’an , China, pages 1 - 6, XP051707106 *
VIVO: "Views on Rel-16 NR eURLLC WID scope", 3GPP DRAFT; RP-190276, 21 March 2019 (2019-03-21), Shenzhen, China, pages 1 - 3, XP051690130 *

Also Published As

Publication number Publication date
EP3952155A1 (en) 2022-02-09
US20220022184A1 (en) 2022-01-20
CN111277361B (zh) 2021-06-18
CN111277361A (zh) 2020-06-12
EP3952155A4 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
JP7225405B2 (ja) 上りリンク制御情報uciの伝送方法及び端末
WO2021004316A1 (zh) Uci传输方法、接收方法、终端和网络设备
WO2020192718A1 (zh) 传输块大小确定方法和通信设备
JP7258041B2 (ja) サイドリンクの伝送方法及び端末
WO2021088750A1 (zh) Harq-ack码本生成方法、信息发送方法及设备
CN110166206B (zh) 一种harq-ack码本的确定方法和终端
WO2021088751A1 (zh) 混合自动重传请求应答harq-ack反馈位置的确定方法及通信设备
CN112492647B (zh) 一种dci调度方法、设备及系统
WO2021032001A1 (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
CN111447686B (zh) 一种harq-ack反馈方法、终端和网络设备
WO2020182124A1 (zh) 传输方法、网络设备和终端
WO2021228132A1 (zh) 信息发送方法、资源处理方法、装置及电子设备
WO2020088387A1 (zh) 上行传输方法、用户设备和网络侧设备
WO2021018227A1 (zh) 上行控制信息的传输方法、终端设备及存储介质
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
US20220015091A1 (en) Resource configuration method, resource determining method, network side device and terminal
JP7125431B2 (ja) フィードバック応答情報の長さ確定方法及び関連製品
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
WO2021018130A1 (zh) 物理上行链路控制信道传输方法、装置、设备及介质
JP2023515836A (ja) リソース決定方法、リソース指示方法及び通信機器
WO2020063271A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
WO2021204150A1 (zh) Dmrs开销参考值确定方法和终端
EP4090112A1 (en) Pdcch configuration method and terminal
WO2020192516A1 (zh) 下行分配索引确定方法、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779579

Country of ref document: EP

Effective date: 20211028