WO2020088387A1 - 上行传输方法、用户设备和网络侧设备 - Google Patents

上行传输方法、用户设备和网络侧设备 Download PDF

Info

Publication number
WO2020088387A1
WO2020088387A1 PCT/CN2019/113591 CN2019113591W WO2020088387A1 WO 2020088387 A1 WO2020088387 A1 WO 2020088387A1 CN 2019113591 W CN2019113591 W CN 2019113591W WO 2020088387 A1 WO2020088387 A1 WO 2020088387A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
data
bandwidth
resource block
guard band
Prior art date
Application number
PCT/CN2019/113591
Other languages
English (en)
French (fr)
Inventor
潘学明
吴凯
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19879654.2A priority Critical patent/EP3876645A4/en
Priority to SG11202104392PA priority patent/SG11202104392PA/en
Priority to KR1020217016715A priority patent/KR20210084608A/ko
Priority to JP2021523168A priority patent/JP7271663B2/ja
Publication of WO2020088387A1 publication Critical patent/WO2020088387A1/zh
Priority to US17/241,634 priority patent/US20210251005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an uplink transmission method, user equipment, and network side equipment.
  • the uplink transmission is performed with the interleaved resource block as the allocation granularity.
  • the unlicensed communication system runs on a carrier with a bandwidth of 20 MHz. Since the guard band is unavailable, the guard band needs to be removed when designing the interleaved resource block.
  • an unlicensed communication system can operate on a carrier with a larger bandwidth, and there are cases where guard bands are available. Therefore, if the interleaved resource block design method in the related art is still used, the available guard band will be unusable, and the transmission resource utilization rate of the unlicensed band will be low.
  • Embodiments of the present disclosure provide an uplink transmission method, user equipment, and network-side equipment to solve the problem of low utilization of transmission resources in unlicensed frequency bands.
  • an embodiment of the present disclosure provides an uplink transmission method, which is applied to user equipment, and the method includes:
  • a scheduling instruction sent by a network side device where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth, where the interleaved resource block index indicated in the scheduling bandwidth includes a guard band physical resource block PRB;
  • the PRB for data transmission is used to transmit data.
  • an embodiment of the present disclosure provides an uplink transmission method, which is applied to a network-side device.
  • the method includes:
  • the scheduling instruction including an interleaved resource block index and a scheduling bandwidth, wherein the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band physical resource block PRB;
  • an embodiment of the present disclosure provides user equipment, including:
  • a receiving module configured to receive a scheduling instruction sent by a network-side device, where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth, where the interleaved resource block index indicated in the scheduling bandwidth includes the guard band physical Resource block PRB;
  • a detection module configured to perform channel idle detection on the scheduling bandwidth
  • a determining module configured to determine the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection
  • the transmission module is configured to use the PRB for data transmission to transmit data.
  • an embodiment of the present disclosure provides a network-side device, including:
  • a sending module for sending a scheduling instruction, the scheduling instruction including an interleaved resource block index and a scheduling bandwidth, wherein the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band physical resource block PRB;
  • a determining module configured to determine the PRB of the data transmitted in the interleaved resource block
  • the decoding module is used for decoding the PRB of the transmission data.
  • an embodiment of the present disclosure provides a user equipment, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, and the computer program is executed by the processor.
  • an embodiment of the present disclosure provides a network-side device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being used by the processor When executed, the steps in the uplink transmission method provided in the second aspect of the embodiments of the present disclosure are implemented.
  • an embodiment of the present disclosure provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the uplink provided in the first aspect of the embodiment of the present disclosure Steps of the transmission method, or, when the computer program is executed by the processor, implement the steps of the uplink transmission method provided in the second aspect of the embodiments of the present disclosure.
  • the guard band PRB may be used in data transmission, which can increase unauthorized Utilization of transmission resources in the frequency band.
  • FIG. 1 is a system diagram of an uplink transmission system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an interleaved resource block index design provided by an embodiment of the present disclosure
  • FIG. 5 is a structural diagram of a user equipment provided by an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of another user equipment provided by an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a hardware structure of user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a hardware structure of a network-side device provided by an embodiment of the present disclosure.
  • the words “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described in the embodiments of the present disclosure as “exemplary” or “for example” should not be construed as being more optional or advantageous than other embodiments or design. Rather, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner.
  • the uplink transmission method provided by the embodiments of the present disclosure may be applied to a wireless communication system.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolution communication system.
  • the communication device may be user equipment or a network-side device.
  • FIG. 1 is a structural diagram of an uplink transmission system provided by an embodiment of the present disclosure. As shown in FIG. 1, it includes a user equipment 11 and a network side device 12, where the user equipment 11 may be a mobile communication device, for example, it may be a mobile phone , Tablet (Personal Computer), Laptop (Laptop), Personal Digital Assistant (PDA), Mobile Internet Device (MID) or Wearable Device (Wearable Device), etc. It should be noted that, in the embodiment of the present disclosure, the specific type of the user equipment 11 is not limited.
  • the above network side device 12 may be a 5G network side device (for example: gNB, 5G NR), or may be a 4G network side device (for example: eNB), or may be a 3G network side device (for example: NB), or subsequent evolution
  • NR-U new air interface-unlicensed
  • the sender needs to do channel idle estimation (Clear Channel Assess (CCA) / extended channel idle estimation (eCCA) to monitor whether the channel is occupied (or idle) before sending the signal ), That is, energy detection (Energy Detection, ED), when the energy is below a certain threshold, the channel is judged to be empty before the transmission can start.
  • CCA Cylear Channel Assess
  • eCCA extended channel idle estimation
  • the above process of channel idle detection is the process of listening before talking (Listen Before Talk, LBT).
  • the maximum operating bandwidth of an unlicensed 4G communication system is 20Mhz. Since the guard band is unavailable, the available physical resource block (Physical Resource Block, PRB) does not include the guard band PRB. Therefore, when designing interleaved resource blocks, the guard band PRB needs to be removed.
  • Physical Resource Block Physical Resource Block
  • the maximum operating bandwidth of the 5G communication system in the authorized frequency band can reach 100MHz.
  • a large-bandwidth carrier such as 80MHz
  • LBT will be carried out on the 20MHz sub-band.
  • the subbands all indicate that the middle guard band can be used when the channel is idle. In this way, in the design of the interleaved resource block, if the guard band PRB is removed, the available guard band will become unusable, and the transmission resource utilization rate of the unlicensed band will be low.
  • an embodiment of the present disclosure provides an uplink transmission system as shown in FIG. 1, and provides an uplink transmission method applied to the uplink transmission system, as follows:
  • the network side device sends a scheduling instruction, where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth, where the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band physical resource block PRB;
  • the user equipment receives the dispatch instruction sent by the network side equipment
  • the user equipment performs channel idle detection on the scheduling bandwidth
  • the user equipment determines the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection;
  • User equipment uses the PRB for data transmission to transmit data
  • the network side device determines the PRB of the data transmitted in the interleaved resource block
  • the network side device decodes the PRB of the transmission data.
  • the guard band PRB may be used in data transmission, which can increase unauthorized Utilization of transmission resources in the frequency band.
  • FIG. 2 is a flowchart of an uplink transmission method provided by an embodiment of the present disclosure. As shown in FIG. 2, the uplink transmission method is applied to user equipment, and the method includes the following steps:
  • Step 201 Receive a scheduling instruction sent by a network side device, where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth.
  • the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band PRB.
  • Step 202 Perform channel idle detection on the scheduling bandwidth.
  • the user equipment performs channel idle detection of the scheduling bandwidth before the scheduling time.
  • channel idle detection by performing channel idle detection on the scheduling bandwidth, it is possible to know the situation of the free LBT bandwidth in the scheduling bandwidth, and thus it is possible to know whether the scheduling bandwidth includes an available guard band PRB.
  • Step 203 Determine the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection.
  • channel idle detection is performed on the scheduling bandwidth in step 202, it can be known whether the scheduling bandwidth contains an available guard band PRB. Therefore, in this step, the user equipment can determine the interleaved resource block according to the detection result of the channel idle detection PRB for data transmission.
  • the PRB used for data transmission in the interleaved resource block may contain the guard band PRB; if the guard bandwidth PRB is not included in the scheduling bandwidth, the interleaved resource block is used for data transmission PRB does not include the guard band PRB.
  • Step 204 Use the PRB for data transmission to transmit data.
  • the guard band PRB may be used in data transmission, which can increase unauthorized Utilization of transmission resources in the frequency band.
  • the PRB used for data transmission in the interleaved resource block may be determined as follows:
  • the PRB used for data transmission in the interleaved resource block includes a first PRB, where the first PRB is located at A guard band PRB in the middle of the adjacent LBT channel.
  • the middle guard band can be used when both adjacent sub-bands show that the channel is idle.
  • the guard band PRB in the middle of the adjacent LBT channel can be used as the PRB for data transmission in the interleaved resource block, so that the guard band PRB in the middle of the adjacent LBT channel can be used in data transmission, which can increase the unauthorized Utilization of transmission resources in the frequency band.
  • all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks
  • the determining the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection includes:
  • the PRB used for data transmission is determined from the candidate PRBs.
  • This embodiment provides a new way of designing interleaved resource blocks.
  • all PRBs are designed with interleaved resource blocks according to the size of the carrier bandwidth and including available guard bands. And assign a fixed number to each interleaved resource block. In other words, all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks.
  • the candidate PRB located in the scheduling bandwidth needs to be selected from the interleaved resource blocks indicated by the interleaved resource block index in the entire carrier bandwidth; then according to the detection result of the channel idle detection, the candidate PRB is selected from The PRB used for data transmission is determined in.
  • the design of interleaved resource blocks is performed according to the carrier bandwidth of 40 MHz, as shown in FIG. 3. It is assumed that the scheduling bandwidth allocated to the user equipment in the scheduling instruction sent by the network side device is 40 MHz, and the interleaved resource block index is interlace # 0.
  • the PRB represented by interlace # 0 is PRB # 0, PRB # 5, PRB # 10, ..., PRB # 105, a total of 22 PRBs; when the guard band PRB is not included
  • the PRB represented by interlace # 0 needs to remove the two PRBs PRB # 0 and PRB # 55 from the above 22 PRBs, that is, the number of PRBs represented by interlace # 0 is 20.
  • the scheduling bandwidth is just equal to the carrier bandwidth, and the carrier bandwidth may also be larger than the scheduling bandwidth, for example, the carrier bandwidth is 60 MHz, the scheduling bandwidth allocated to the user equipment in the scheduling command sent by the network-side device is 40 MHz, and so on.
  • the scheduling instruction sent by the network-side device may include indication information in addition to the above-mentioned interleaved resource block index and the above-mentioned scheduling bandwidth, where the indication information is used to indicate whether to enable the guard band PRB.
  • the above indication information may be used to indicate that the guard band PRB is completely disabled.
  • the above indication information may be used to indicate at least one of the following:
  • the first N transmission time domain resources disable the guard band PRB, and the use of the guard band PRB is allowed from N + 1 transmission time domain resources. That is, the above indication information may also be used to indicate that the guard band PRB is disabled on the first time domain resource, and the guard band PRB is allowed to be enabled on the second time domain resource;
  • the first time domain resource and the second time domain resource are consecutive time domain resources in the time domain.
  • the above-mentioned time domain resources may all contain at least one time slot.
  • the user equipment may also prepare data according to the scheduling instruction sent by the network-side device, so that the user equipment transmits data using the PRB for data transmission in step 204.
  • the data prepared by the user equipment includes the data finally transmitted by the user equipment.
  • the user equipment prepares data according to the scheduling instruction, and the following implementation manners may be adopted.
  • the guard band PRB is disabled, a transport block size (Transport Block Size, TBS for short), and data corresponding to the transport block size are prepared.
  • the scheduling bandwidth is less than or equal to the LBT bandwidth (for example, 20MHz)
  • the scheduling bandwidth includes at most one LBT channel that has been successfully monitored.
  • the guard band needs to be disabled.
  • the PRB used for data transmission in the interleaved resource block should remove the guard band PRB.
  • the user equipment calculates the transmission block size, and prepares data corresponding to the transmission block size according to the scheduling information.
  • the indication information is used to indicate that the guard band PRB is disabled on the first time domain resource, or the indication information is used to indicate If the guard band PRB is completely disabled, multiple candidate transmission block sizes are calculated according to the number of LBT bandwidths that may be successfully monitored in the scheduling bandwidth, and multiple versions corresponding to the multiple candidate transmission block sizes are prepared respectively Data; wherein, the transmitted data is one version of the data determined according to the detection result among the multiple versions of data.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth, and the indication information is used to indicate that the guard band PRB is allowed to be enabled on the second time domain resource
  • the second time After the domain resource or the second time domain resource, calculate multiple candidate transport block sizes according to the predicted PRB in the interleaved resource block, and prepare multiple versions of data corresponding to the multiple candidate transport block sizes, respectively ,
  • the predicted PRB is determined by the location and / or number of LBT bandwidths in the scheduling bandwidth that may be successfully monitored; wherein, the transmitted data is determined from the detection results in the data of the multiple versions Version of the data.
  • the predicted PRB is determined by the number of LBT bandwidths that may be successfully monitored in the scheduling bandwidth, for example, as follows:
  • uplink scheduling it is assumed that the network side device schedules user terminals and indicates that the scheduling bandwidth is 40 MHz and the LBT bandwidth is 20 MHz.
  • the scheduling bandwidth includes two LBT bandwidths. If the number of LBT bandwidths that may be successfully monitored is two, it may indicate that the two LBT bandwidths that may be successfully monitored are adjacent, so that it can be determined that the guard band PRB in the middle of the two LBT bandwidths is available. If the number of LBT bandwidths that may be successfully monitored is one, it can be determined that the guard band PRB in the middle of the two LBT bandwidths is not available.
  • the predicted PRB is determined by the location of the LBT bandwidth that may be successfully monitored in the scheduling bandwidth, for example, as follows: In uplink scheduling, assuming that the network-side device schedules user terminals and indicates that the scheduling bandwidth is 60 MHz and the LBT bandwidth is 20 MHz, then The bandwidth includes three LBT bandwidths. If the position of the LBT bandwidth that may be successfully monitored is the first LBT bandwidth and the second LBT bandwidth, it may indicate that the two LBT bandwidths that may be successfully monitored are adjacent, so that the first LBT bandwidth and the second LBT bandwidth can be determined The middle guard band PRB is available. If the positions of the LBT bandwidth that may be successfully monitored are the first LBT bandwidth and the third LBT bandwidth, it can be determined that the guard band PRB is unavailable.
  • the predicted PRB is determined by the location and number of LBT bandwidths that may be successfully monitored in the scheduling bandwidth, for example, as follows:
  • the scheduling bandwidth includes three LBT bandwidths. If the number of LBT bandwidths that may be successfully monitored is two, and the position is the first LBT bandwidth and the second LBT bandwidth, it may indicate that the two LBT bandwidths that may be successfully monitored are adjacent, so that the first LBT bandwidth can be determined
  • the guard band PRB in the middle of the second LBT bandwidth is available. If the number of LBT bandwidths that may be successfully monitored is two, and the positions are the first LBT bandwidth and the third LBT bandwidth, it can be determined that the guard band PRB is unavailable.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the above indication information is used to indicate that the guard band PRB is disabled on the first time domain resource and the second time domain resource Allows the guard band PRB to be enabled, then on the first time-domain resource, according to the number of LBT bandwidths that may be successfully monitored in the scheduling bandwidth, multiple candidate transport block sizes are calculated, and the Multiple versions of data corresponding to multiple candidate transport block sizes; after the second time domain resource or the second time domain resource, according to the situation that the LBT bandwidth succeeds in scheduling bandwidth on the first time domain resource To prepare the data.
  • the network-side device schedules the user terminal and indicates that the scheduling bandwidth is 40 MHz, and the interleaved resource block index is interlace # 0.
  • the guard band is not used, and the second transmission slot is transmitted. Start using guard band.
  • the user equipment After receiving the scheduling instruction, the user equipment starts preparing two candidate transport block sizes, corresponding to the successful LBT in one or two LBT channels (20 MHz), and corresponding to 10 PRBs or 20 PRBs without the guard band, respectively. At the same time, the user equipment starts to monitor the channel. Assuming that two carrier bandwidths are successfully monitored before the scheduled time, the user equipment transmits data corresponding to 20 PRBs. Starting from the second slot, the user equipment starts to use the guard band, and at this time, it starts to transmit data corresponding to 22 PRBs.
  • the determining the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection includes:
  • the punctured PRB in the interleaved resource block is determined according to the detection result of the channel idle detection, where the PRB used for data transmission in the interleaved resource block does not include the punctured PRB.
  • the user equipment calculates the transmission block size for the interleaved resource block index specified by the entire scheduling bandwidth (including the protection bandwidth that may be used), and then punctures the PRB that cannot be transmitted according to the channel idle condition.
  • the user terminal does not need to prepare multiple versions of the data, but the data transmission may fail due to the PRB that cannot be transmitted through puncturing, and the data needs to be retransmitted.
  • the guard band PRB may be used in data transmission, which can increase unauthorized Utilization of transmission resources in the frequency band.
  • FIG. 4 is a flowchart of an uplink transmission method provided by an embodiment of the present disclosure. As shown in FIG. 4, the uplink transmission method is applied to the network side device. The method includes the following steps:
  • Step 401 Send a scheduling instruction, where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth.
  • the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band physical resource block PRB.
  • Step 402 Determine the PRB of the data transmitted in the interleaved resource block.
  • the network-side device can receive uplink data on the scheduled resources, detect the actual transmission bandwidth of the transmitted data, and adaptively determine the number of PRBs of the transmitted data in the interleaved resource block, thereby determining the actual transmission block size.
  • the actual transmission bandwidth of the transmitted data can be detected through a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • Step 403 Decode the PRB of the transmission data.
  • the network-side device decodes the PRB of the transmitted data according to the determined transmission block size and scheduling information, thereby implementing data decoding.
  • all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks
  • the determining the PRB of the data transmitted in the interleaved resource block includes:
  • the PRB of the transmission data is determined from the candidate PRBs.
  • the determining the PRB of the data transmitted in the interleaved resource block includes:
  • the PRB for transmitting data in the interleaved resource block includes a first PRB, where the first PRB is a guard band located in the middle of the adjacent LBT channel PRB.
  • the scheduling instruction further includes indication information used to indicate whether to enable the guard band PRB.
  • the instruction information is used to indicate at least one of the following:
  • the indication information is used to indicate that the guard band PRB is completely disabled.
  • the indication information is used to indicate that the guard band PRB is disabled on the first time domain resource, and the guard band PRB is allowed to be enabled on the second time domain resource;
  • the first time domain resource and the second time domain resource are consecutive time domain resources in the time domain.
  • determining the actual transmission block size may include the following several implementation manners.
  • the PRB number of the data transmission is determined according to the actual transmission bandwidth and the interleaved resource block index to calculate the transmission block size.
  • the time domain resource for example, slot resource
  • the actual transmission bandwidth and whether the guard band is enabled determine the number of PRBs for the data transmission to calculate the transport block size.
  • the embodiment of the present disclosure is an embodiment of the network-side device corresponding to the embodiment shown in FIG. 2.
  • reference may be made to the related description of the embodiment shown in FIG. For the effect, in order to avoid duplication of description, it will not be repeated here.
  • FIG. 5 is a structural diagram of a user equipment provided by an embodiment of the present disclosure. As shown in FIG. 5, the user equipment 500 includes:
  • the receiving module 501 is configured to receive a scheduling instruction sent by a network-side device, where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth, where the interleaved resource block index indicated in the scheduling bandwidth includes a guard band Physical resource block PRB;
  • the detection module 502 is configured to perform channel idle detection on the scheduling bandwidth
  • the determining module 503 is configured to determine the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection;
  • the transmission module 504 is configured to use the PRB for data transmission to transmit data.
  • all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks
  • the determination module 503 is specifically used for:
  • the PRB used for data transmission is determined from the candidate PRBs.
  • the determination module 503 is specifically used for:
  • the PRB used for data transmission in the interleaved resource block includes the first PRB, where the A PRB is a guard band PRB located in the middle of the adjacent LBT channel.
  • the user equipment 500 further includes:
  • the data preparation module 505 is configured to prepare data according to a scheduling instruction, where the prepared data includes the transmitted data.
  • the data preparation module 505 is specifically used for:
  • the guard band PRB is disabled, the transport block size is calculated, and data corresponding to the transport block size is prepared.
  • the scheduling instruction further includes indication information used to indicate whether to enable the guard band PRB.
  • the instruction information is used to indicate at least one of the following:
  • the indication information is used to indicate that the guard band PRB is completely disabled.
  • the indication information is used to indicate that the guard band PRB is disabled on the first time domain resource, and the guard band PRB is allowed to be enabled on the second time domain resource;
  • the first time domain resource and the second time domain resource are consecutive time domain resources in the time domain.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the data preparation module 505 is specifically used for:
  • the monitoring may be successful according to the scheduling bandwidth
  • the number of LBT bandwidths calculate multiple candidate transmission block sizes, and prepare multiple versions of data corresponding to the multiple candidate transmission block sizes, respectively;
  • the transmitted data is one version of data determined according to the detection result among the multiple versions of data.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the data preparation module 505 is specifically used for:
  • the predicted PRB in is to calculate multiple candidate transport block sizes and prepare multiple versions of data corresponding to the multiple candidate transport block sizes respectively, where the predicted PRB is monitored by LBT that may be successfully monitored in the scheduling bandwidth The location and / or number of bandwidth is determined;
  • the transmitted data is one version of data determined according to the detection result among the multiple versions of data.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the data preparation module 505 is specifically used for:
  • the data is prepared according to the situation that the LBT bandwidth in the scheduling bandwidth on the first time domain resource succeeds.
  • the determination module 503 is specifically used for:
  • the punctured PRB in the interleaved resource block is determined according to the detection result of the channel idle detection, where the PRB used for data transmission in the interleaved resource block does not include the punctured PRB.
  • the above user equipment 500 may be user equipment of any implementation manner in the method embodiment, and any implementation of the user equipment in the method embodiment may be used by the above user equipment 500 in the embodiment of the present disclosure. To achieve and achieve the same beneficial effects, in order to avoid repetition, they will not be repeated here.
  • FIG. 7 is a structural diagram of a network-side device according to an embodiment of the present disclosure. As shown in FIG. 7, the network-side device 600 includes:
  • the sending module 601 is configured to send a scheduling instruction, the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth, wherein the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band physical resource block PRB;
  • the determining module 602 is used to determine the PRB of the data transmitted in the interleaved resource block
  • the decoding module 603 is configured to decode the PRB of the transmission data.
  • all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks
  • the determination module 602 is specifically used for:
  • the PRB of the transmission data is determined from the candidate PRBs.
  • the determination module 602 is specifically used to:
  • the PRB for transmitting data in the interleaved resource block includes a first PRB, where the first PRB is a guard band located in the middle of the adjacent LBT channel PRB.
  • the scheduling instruction further includes indication information used to indicate whether to enable the guard band PRB.
  • the instruction information is used to indicate at least one of the following:
  • the indication information is used to indicate that the guard band PRB is completely disabled.
  • the indication information is used to indicate that the guard band PRB is disabled on the first time domain resource, and the guard band PRB is allowed to be enabled on the second time domain resource;
  • the first time domain resource and the second time domain resource are consecutive time domain resources in the time domain.
  • the above-mentioned network-side device 600 in the embodiment of the present disclosure may be a network-side device in any implementation manner in the method embodiment, and any implementation of the network-side device in the method embodiment may be This is achieved by the network-side device 600 and achieves the same beneficial effects. To avoid repetition, it will not be repeated here.
  • FIG. 8 is a schematic diagram of a hardware structure of a user equipment implementing various embodiments of the present disclosure.
  • the user equipment 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, and a sensor 705, display unit 706, user input unit 707, interface unit 708, memory 709, processor 710, power supply 711 and other components.
  • a radio frequency unit 701 includes a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, and a sensor 705, display unit 706, user input unit 707, interface unit 708, memory 709, processor 710, power supply 711 and other components.
  • FIG. 8 does not constitute a limitation on the user equipment, and the user equipment may include more or fewer components than those illustrated, or combine certain components, or different components Layout.
  • user equipment includes, but is not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, in-vehicle user equipment, wearable devices, and ped
  • the processor 710 is used for:
  • a scheduling instruction sent by a network side device where the scheduling instruction includes an interleaved resource block index and a scheduling bandwidth, where the interleaved resource block index indicated in the scheduling bandwidth includes a guard band physical resource block PRB;
  • the PRB for data transmission is used to transmit data.
  • all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks
  • the method includes:
  • the PRB used for data transmission is determined from the candidate PRBs.
  • the processor 710 when performing the step of determining the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection, includes:
  • the PRB used for data transmission in the interleaved resource block includes the first PRB, where the A PRB is a guard band PRB located in the middle of the adjacent LBT channel.
  • processor 710 is also used for:
  • the data is prepared according to the scheduling instruction, wherein the prepared data includes the transmitted data.
  • processor 710 when the processor 710 performs the step of preparing data according to the scheduling instruction, it includes:
  • the guard band PRB is disabled, the transport block size is calculated, and data corresponding to the transport block size is prepared.
  • the scheduling instruction further includes indication information used to indicate whether to enable the guard band PRB.
  • the instruction information is used to indicate at least one of the following:
  • the indication information is used to indicate that the guard band PRB is completely disabled.
  • the indication information is used to indicate that the guard band PRB is disabled on the first time domain resource, and the guard band PRB is allowed to be enabled on the second time domain resource;
  • the first time domain resource and the second time domain resource are consecutive time domain resources in the time domain.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the processor 710 executes the step of preparing data according to the scheduling instruction, it includes:
  • the monitoring may be successful according to the scheduling bandwidth
  • the number of LBT bandwidths calculate multiple candidate transmission block sizes, and prepare multiple versions of data corresponding to the multiple candidate transmission block sizes, respectively;
  • the transmitted data is one version of data determined according to the detection result among the multiple versions of data.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the processor 710 executes the step of preparing data according to the scheduling instruction, it includes:
  • the predicted PRB in is to calculate multiple candidate transport block sizes and prepare multiple versions of data corresponding to the multiple candidate transport block sizes respectively, where the predicted PRB is monitored by LBT that may be successfully monitored in the scheduling bandwidth The location and / or number of bandwidth is determined;
  • the transmitted data is one version of data determined according to the detection result among the multiple versions of data.
  • the scheduling bandwidth is greater than or equal to the LBT bandwidth
  • the processor 710 executes the step of preparing data according to the scheduling instruction, it includes:
  • the data is prepared according to the situation that the LBT bandwidth in the scheduling bandwidth on the first time domain resource is successful.
  • the processor 710 when performing the step of determining the PRB used for data transmission in the interleaved resource block according to the detection result of the channel idle detection, includes:
  • the punctured PRB in the interleaved resource block is determined according to the detection result of the channel idle detection, where the PRB used for data transmission in the interleaved resource block does not include the punctured PRB.
  • the guard band PRB may be used in data transmission, which can increase unauthorized Utilization of transmission resources in the frequency band.
  • the radio frequency unit 701 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 710; The uplink data is sent to the base station.
  • the radio frequency unit 701 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the user equipment provides wireless broadband Internet access to the user through the network module 702, such as helping the user to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into an audio signal and output as sound. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the user equipment 700 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processor (Graphics, Processing, Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 in the case of a telephone call mode and output.
  • the user equipment 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 7061 when the user device 700 moves to the ear Backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify user device posture (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 705 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, Infrared sensors, etc. will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 707 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the user equipment.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also known as a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 7071 operating).
  • the touch panel 7071 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 7071 may be overlaid on the display panel 7071. After the touch panel 7071 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of touch event, and then the processor 710 according to the touch The type of event provides a corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are implemented as two independent components to implement input and output functions of the user device, in some embodiments, the touch panel 7071 and the display panel 7061 may be integrated
  • the input and output functions of the user equipment are not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device to the user equipment 700.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (input / output, I / O) port, video I / O port, headphone port, etc.
  • the interface unit 708 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the user equipment 700 or may be used between the user equipment 700 and the external Transfer data between devices.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required for at least one function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store Data created by the use of mobile phones (such as audio data, phone books, etc.), etc.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the user equipment, and uses various interfaces and lines to connect the various parts of the entire user equipment, by running or executing the software programs and modules stored in the memory 709, and calling the data stored in the memory 709 to execute Various functions and processing data of the user equipment, thereby performing overall monitoring on the user equipment.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the user equipment 700 may further include a power supply 711 (such as a battery) that supplies power to various components.
  • a power supply 711 (such as a battery) that supplies power to various components.
  • the power supply 711 may be logically connected to the processor 710 through a power management system, thereby managing charge, discharge, and power consumption through the power management system Management and other functions.
  • the user equipment 700 includes some function modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a user equipment, including a processor 710, a memory 709, and a computer program stored on the memory 709 and executable on the processor 710, and the computer program is executed by the processor 710
  • a user equipment including a processor 710, a memory 709, and a computer program stored on the memory 709 and executable on the processor 710, and the computer program is executed by the processor 710
  • FIG. 8 is a structural diagram of a network-side device provided by an embodiment of the present disclosure.
  • the network-side device 800 includes: a processor 801, a transceiver 802, a memory 803, and a bus interface, where:
  • the transceiver 802 is used to:
  • the scheduling instruction including an interleaved resource block index and a scheduling bandwidth, wherein the interleaved resource block indicated by the interleaved resource block index in the scheduling bandwidth includes a guard band physical resource block PRB;
  • the processor 801 is used to:
  • all PRBs of the entire carrier bandwidth are indexed as interleaved resource blocks
  • the processor 801 executes the step of determining the PRB of the data transmitted in the interleaved resource block, it includes:
  • the PRB of the transmission data is determined from the candidate PRBs.
  • the processor 801 executes the step of determining the PRB of the data transmitted in the interleaved resource block, it includes:
  • the PRB for transmitting data in the interleaved resource block includes a first PRB, where the first PRB is a guard band located in the middle of the adjacent LBT channel PRB.
  • the scheduling instruction further includes indication information used to indicate whether to enable the guard band PRB.
  • the instruction information is used to indicate at least one of the following:
  • the indication information is used to indicate that the guard band PRB is completely disabled.
  • the indication information is used to indicate that the guard band PRB is disabled on the first time domain resource, and the guard band PRB is allowed to be enabled on the second time domain resource;
  • the first time domain resource and the second time domain resource are consecutive time domain resources in the time domain.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 802 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the user interface 804 may also be an interface that can be externally connected to the required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 may store data used by the processor 801 in performing operations.
  • the above network side device 800 in this embodiment may be a network side device in any implementation manner in the method embodiment in the embodiment of the present disclosure. It can be implemented by the above-mentioned network side device 800 in this embodiment, and achieves the same beneficial effects, which will not be repeated here.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program When the computer program is executed by a processor, the foregoing uplink transmission method embodiment corresponding to a network-side device or user equipment is implemented. Each process can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the program may be stored in a computer-readable storage medium. When executed, it may include the processes of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processor, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), field programmable gate array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device digital signal processing device
  • DSPD programmable Logic device
  • PLD programmable Logic Device
  • FPGA field programmable gate array
  • general-purpose processor controller, microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • the technology described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种上行传输方法、用户设备和网络侧设备,其中用户设备的上行传输方法包括:接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;针对所述调度带宽进行信道空闲检测;根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;利用所述用于数据传输的PRB传输数据。

Description

上行传输方法、用户设备和网络侧设备
相关申请的交叉引用
本申请主张在2018年11月2日在中国提交的中国专利申请号No.201811303706.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行传输方法、用户设备和网络侧设备。
背景技术
在非授权频段上进行上行传输时,会以交织资源块为分配粒度进行上行传输。相关技术中,非授权通信系统运行在带宽为20M赫兹的载波上,由于保护频带不可用,在进行交织资源块设计时,需将保护频带除去。然而,在5G通信系统中,非授权通信系统可运行在较大带宽的载波上,存在保护频带可用的情况。因此,若仍然采用相关技术中交织资源块设计的方式,则会导致可用保护频带无法使用,从而使得非授权频段的传输资源利用率较低。
发明内容
本公开实施例提供一种上行传输方法、用户设备和网络侧设备,以解决非授权频段的传输资源利用率较低的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供一种上行传输方法,应用于用户设备,所述方法包括:
接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
针对所述调度带宽进行信道空闲检测;
根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传 输的PRB;
利用所述用于数据传输的PRB传输数据。
第二方面,本公开实施例提供一种上行传输方法,应用于网络侧设备,所述方法包括:
发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
确定所述交织资源块中传输数据的PRB;
对所述传输数据的PRB解码。
第三方面,本公开实施例提供一种用户设备,包括:
接收模块,用于接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
检测模块,用于针对所述调度带宽进行信道空闲检测;
确定模块,用于根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;
传输模块,用于利用所述用于数据传输的PRB传输数据。
第四方面,本公开实施例提供一种网络侧设备,包括:
发送模块,用于发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
确定模块,用于确定所述交织资源块中传输数据的PRB;
解码模块,用于对所述传输数据的PRB解码。
第五方面,本公开实施例提供一种用户设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现本公开实施例第一方面提供的上行传输方法中的步骤。
第六方面,本公开实施例提供一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机 程序被所述处理器执行时实现本公开实施例第二方面提供的上行传输方法中的步骤。
第七方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开实施例第一方面提供的上行传输方法的步骤,或者,所述计算机程序被处理器执行时实现本公开实施例第二方面提供的上行传输方法的步骤。
本公开实施例中,通过将保护频带PRB作为交织资源块,并根据调度带宽的信道空闲检测结果确定用于数据传输的PRB,从而使得保护频带PRB可能能够利用在数据传输中,能够提高非授权频段的传输资源利用率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种上行传输系统的系统图;
图2是本公开实施例提供的一种上行传输方法的流程图;
图3是本公开实施例提供的一种交织资源块索引设计示意图;
图4是本公开实施例提供的另一种上行传输方法的流程图;
图5是本公开实施例提供的一种用户设备的结构图;
图6是本公开实施例提供的另一种用户设备的结构图;
图7是本公开实施例提供的一种网络侧设备的结构图;
图8是本公开实施例提供的一种用户设备的硬件结构示意图;
图9是本公开实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的上行传输方法可以应用于无线通信系统中。该无线通信系统可以为采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。该通信设备可以为用户设备,也可以为网络侧设备。
图1是本公开实施例提供的一种上行传输系统的结构图,如图1所示,包括用户设备11和网络侧设备12,其中,用户设备11可以是移动通信设备,例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等,需要说明的是,在本公开实施例中并不限定用户设备11的具体类型。上述网络侧设备12可以是5G网络侧设备(例如:gNB、5G NR NB),或者可以是4G网络侧设备(例如:eNB),或者可以是3G网络侧设备(例如:NB),或者后续演进通信系统中的网络侧设备,等等,需要说明的是,在本公开实施例中并不限定网络侧设备12的具体类型。
在对本公开实施例进行具体说明之前,先对新空口-非授权(New RAT Un-licensed,NR-U)进行如下简单介绍。
5G系统运行在非授权的频段时,发送端在发送信号之前需要做信道空闲估计(Clear Channel Assess,CCA)/扩展信道空闲估计(extended Clear Channel  Assess,eCCA)来监听信道是否被占用(或空闲),即进行能量检测(Energy Detection,ED),当能量低于一定门限时,信道被判断为空,方可开始传输。上述信道空闲检测的过程即先听后说(Listen Before Talk,LBT)过程。
另外,关于非授权通信系统的交织(interlace)资源块设计进行如下简单介绍。
非授权4G通信系统最大运行带宽为20M赫兹,由于保护频带不可用,可用的物理资源块(Physical Resource Block,PRB)不包括保护频带PRB。因此,在进行交织资源块设计时,需将保护频带PRB除去。
5G通信系统在授权频段的最大运行带宽可以达到100MHz,自然地,在非授权频段也可以使用大带宽载波(例如80MHz),但是通常情况下LBT会在20MHz子带上进行,当两个相邻子带均显示信道空闲时可以使用中间的保护频带。这样,在进行交织资源块设计时,若将保护频带PRB除去,则会导致可用保护频带无法使用,从而使得非授权频段的传输资源利用率较低。
为了解决上述问题,本公开实施例提供一种如图1所示的上行传输系统,并提供一种应用于该上行传输系统的上行传输方法,如下:
网络侧设备发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
用户设备接收网络侧设备发送调度指令;
用户设备针对所述调度带宽进行信道空闲检测;
用户设备根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;
用户设备利用所述用于数据传输的PRB传输数据;
网络侧设备确定所述交织资源块中传输数据的PRB;
网络侧设备对所述传输数据的PRB解码。
本公开实施例中,通过将保护频带PRB作为交织资源块,并根据调度带宽的信道空闲检测结果确定用于数据传输的PRB,从而使得保护频带PRB可能能够利用在数据传输中,能够提高非授权频段的传输资源利用率。
图2是本公开实施例提供的一种上行传输方法的流程图。如图2所示, 上行传输方法,应用于用户设备,该方法包括以下步骤:
步骤201:接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽。
其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带PRB。
步骤202:针对所述调度带宽进行信道空闲检测。
该步骤中,用户设备在调度时间前进行调度带宽的信道空闲检测。该步骤中,通过对调度带宽进行信道空闲检测,能够得知调度带宽中空闲的LBT带宽的情况,从而能够得知调度带宽中是否包含可用的保护频带PRB。
步骤203:根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB。
由于步骤202中通过对调度带宽进行信道空闲检测,能够得知调度带宽中是否包含可用的保护频带PRB,因此,该步骤中,用户设备可以根据信道空闲检测的检测结果,确定交织资源块中用于数据传输的PRB。
假如调度带宽中包含可用的保护频带PRB,则交织资源块中用于数据传输的PRB可以包含该保护频带PRB;假如调度带宽中不包含可用的保护频带PRB,则交织资源块中用于数据传输的PRB不包含该保护频带PRB。
步骤204:利用所述用于数据传输的PRB传输数据。
本公开实施例中,通过将保护频带PRB作为交织资源块,并根据调度带宽的信道空闲检测结果确定用于数据传输的PRB,从而使得保护频带PRB可能能够利用在数据传输中,能够提高非授权频段的传输资源利用率。
本公开实施例中,上述步骤203中,确定交织资源块中用于数据传输的PRB可以采用如下方式:
若所述信道空闲检测的检测结果表示监听成功的LBT信道包括相邻的LBT信道,则确定所述交织资源块中用于数据传输的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
由于相邻连续载波间的保护频带可用,因此,当两个相邻子带均显示信道空闲时可以使用中间的保护频带。该情况下,相邻的LBT信道中间的保护频带PRB可以作为交织资源块中用于数据传输的PRB,从而使得相邻的LBT 信道中间的保护频带PRB能够利用在数据传输中,能够提高非授权频段的传输资源利用率。
可选的,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB,包括:
从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
根据所述信道空闲检测的检测结果,从所述候选PRB中确定所述用于数据传输的PRB。
该实施方式提供了一种新的交织资源块设计方式,在非授权5G通信系统的交织资源块设计时,首先按照载波带宽的大小在包含可用保护频带的情况下对所有PRB进行交织资源块设计并给每个交织资源块分配固定的编号。也就是说,整个载波带宽的全部PRB均作为交织资源块进行索引编排。
在采用上述交织资源块设计方式时,首先需要从交织资源块索引在整个载波带宽中指示的交织资源块中选择位于调度带宽中的候选PRB;然后再根据信道空闲检测的检测结果,从候选PRB中确定用于数据传输的PRB。
假设非授权5G通信系统的载波带宽为40MHz,子载波间隔为30kHz,则根据40MHz载波带宽进行交织资源块设计,如图3所示。假设网络侧设备发送的调度指令中给用户设备分配的调度带宽为40MHz,交织资源块索引为interlace#0。那么,在包含保护频带PRB的情况下,interlace#0代表的PRB为PRB#0、PRB#5、PRB#10、……、PRB#105共22个PRB;在不包含保护频带PRB的情况下,interlace#0代表的PRB需要从上述22个PRB中除去PRB#0和PRB#55这两个PRB,即interlace#0代表的PRB数目为20个。
上述示例中,调度带宽刚好等于载波带宽,载波带宽也可以比调度带宽大,例如,载波带宽为60MHz,网络侧设备发送的调度指令中给用户设备分配的调度带宽为40MHz,等等。
本公开实施例中,网络侧设备发送的调度指令除了上述交织资源块索引和上述调度带宽,还可以包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
其中,上述指示信息可以用于指示完全禁用所述保护频带PRB。
在多时域资源调度中,上述指示信息可用于指示如下至少一项:
在第一时域资源上禁用所述保护频带PRB;
在第二时域资源上允许启用所述保护频带PRB。
在多时域资源调度中,可以规定前N个传输时域资源禁用保护频带PRB,从N+1个传输时域资源起开始允许使用保护频带PRB。即,上述指示信息还可以用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
上述涉及的时域资源均可包含至少一个时隙slot。
本公开实施例中,在步骤204之前,用户设备还可以根据网络侧设备发送的调度指令准备数据,以使用户设备在步骤204利用用于数据传输的PRB传输数据。其中,用户设备准备的数据包括用户设备最终传输的数据。
用户设备根据调度指令准备数据,可以采用如下实施方式。
作为一种实施方式,若所述调度带宽小于或者等于LBT带宽,则禁用所述保护频带PRB,计算传输块大小(Transport Block Size,简称TBS),以及准备所述传输块大小对应的数据。
其中,如果调度带宽小于或者等于LBT带宽(例如20MHz),则调度带宽最多包括一个监听成功的LBT信道。为了不影响相邻载波的传输,保护频带需要被禁用,交织资源块中用于数据传输的PRB应将保护频带PRB除去。用户设备计算传输块大小,并根据调度信息准备与传输块大小对应的数据。
作为另一种实施方式,若所述调度带宽大于或者等于LBT带宽,且所述指示信息用于指示在所述第一时域资源上禁用所述保护频带PRB,或者所述指示信息用于指示完全禁用所述保护频带PRB,则根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
作为另一种实施方式,若所述调度带宽大于或者等于LBT带宽,且所述指示信息用于指示在所述第二时域资源上允许启用所述保护频带PRB,则在 所述第二时域资源或者所述第二时域资源之后,根据所述交织资源块中的预测PRB,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据,其中,所述预测PRB由所述调度带宽中可能监听成功的LBT带宽的位置和/或个数确定;其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
对于预测PRB由调度带宽中可能监听成功的LBT带宽的个数确定的情况,举例如下:在上行调度中,假设网络侧设备调度用户终端并指示调度带宽为40MHz,LBT带宽为20MHz,那么,该调度带宽包括两个LBT带宽。若可能监听成功的LBT带宽的个数为两个,则可表明可能监听成功的两个LBT带宽相邻,从而能够确定这两个LBT带宽中间的保护频带PRB可用。若可能监听成功的LBT带宽的个数为一个,则能够确定这两个LBT带宽中间的保护频带PRB不可用。
对于预测PRB由调度带宽中可能监听成功的LBT带宽的位置确定的情况,举例如下:在上行调度中,假设网络侧设备调度用户终端并指示调度带宽为60MHz,LBT带宽为20MHz,那么,该调度带宽包括三个LBT带宽。若可能监听成功的LBT带宽的位置为第一个LBT带宽和第二个LBT带宽,则可表明可能监听成功的两个LBT带宽相邻,从而能够确定第一个LBT带宽和第二个LBT带宽中间的保护频带PRB可用。若可能监听成功的LBT带宽的位置为第一个LBT带宽和第三个LBT带宽,则能够确定保护频带PRB不可用。
对于预测PRB由调度带宽中可能监听成功的LBT带宽的位置和个数确定的情况,举例如下:在上行调度中,假设网络侧设备调度用户终端并指示调度带宽为60MHz,LBT带宽为20MHz,那么,该调度带宽包括三个LBT带宽。若可能监听成功的LBT带宽的个数为两个,位置为第一个LBT带宽和第二个LBT带宽,则可表明可能监听成功的两个LBT带宽相邻,从而能够确定第一个LBT带宽和第二个LBT带宽中间的保护频带PRB可用。若可能监听成功的LBT带宽的个数为两个,位置为第一个LBT带宽和第三个LBT带宽,则能够确定保护频带PRB不可用。
作为另一种实施方式,若所述调度带宽大于或者等于LBT带宽,且上述 指示信息用于指示在所述第一时域资源上禁用所述保护频带PRB,且在所述第二时域资源上允许启用所述保护频带PRB,则在所述第一时域资源上,根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;在所述第二时域资源或者所述第二时域资源之后,根据在所述第一时域资源上调度带宽中LBT带宽成功的情况,准备数据。
以图3为例,在上行调度中,网络侧设备调度用户终端并指示调度带宽为40MHz,交织资源块索引为interlace#0,在第一个传输slot不使用保护频带,从第二个传输slot开始使用保护频带。用户设备接收到调度指令后开始准备两个候选传输块大小,对应LBT在一个或两个LBT信道(20MHz)成功,分别对应不包含保护频带情况下的10个PRB或20个PRB。同时,用户设备开始监听信道,假设在调度时间前有两个载波带宽监听成功,用户设备就传输20个PRB对应大小的数据。从第二个slot开始,用户设备开始使用保护频带,则此时开始传输22个PRB对应大小的数据。
可选的,所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB,包括:
根据所述信道空闲检测的检测结果,确定所述交织资源块中的打孔PRB,其中,所述交织资源块中用于数据传输的PRB不包括所述打孔PRB。
该实施方式中,用户设备对整个调度带宽(包含可能使用的保护带宽)指定的交织资源块索引进行传输块大小计算,再根据信道空闲情况打孔不能传输的PRB。该实施方式中,用户终端无需准备多个版本的数据,但可能因打孔不能传输的PRB导致数据传输失败而需要对数据进行重传。
本公开实施例中,通过将保护频带PRB作为交织资源块,并根据调度带宽的信道空闲检测结果确定用于数据传输的PRB,从而使得保护频带PRB可能能够利用在数据传输中,能够提高非授权频段的传输资源利用率。
图4是本公开实施例提供的一种上行传输方法的流程图。如图4所示,上行传输方法,应用于网络侧设备,该方法包括以下步骤:
步骤401:发送调度指令,所述调度指令包括交织资源块索引和调度带宽。
其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB。
步骤402:确定所述交织资源块中传输数据的PRB。
该步骤中,网络侧设备可以在调度资源上接收上行数据,检测传输数据的实际传输带宽,并自适应地确定交织资源块中传输数据的PRB数目,从而确定实际传输块大小。
其中,可以通过解调参考信号(Demodulation Reference Signal,DMRS)检测传输数据的实际传输带宽。
步骤403:对所述传输数据的PRB解码。
该步骤中,网络侧设备根据确定的传输块大小和调度信息,对传输数据的PRB解码,从而实现数据解码。
可选的,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
所述确定所述交织资源块中传输数据的PRB,包括:
从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
从所述候选PRB中确定所述传输数据的PRB。
可选的,所述确定所述交织资源块中传输数据的PRB,包括:
若传输数据的传输带宽包括相邻的LBT信道,则确定所述交织资源块中传输数据的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
可选的,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
可选的,所述指示信息用于指示如下至少一项:
在第一时域资源上禁用所述保护频带PRB;
在第二时域资源上允许启用所述保护频带PRB;
或者,
所述指示信息用于指示完全禁用所述保护频带PRB。
可选的,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
本公开实施例中,确定实际传输块大小可以包括如下几种实施方式。
作为一种实施方式,如果该时域资源未允许启用保护频带,根据实际传输带宽和交织资源块索引确定该数据传输的PRB数目从而计算传输块大小。
作为另一种实施方式,如果该时域资源(例如时隙slot资源)允许启用保护频带,需要根据实际传输带宽确定哪些保护频带可被启用,即相邻LBT信道都有数据传输则其中间的保护频带可用,根据调度的交织资源块索引,实际传输带宽和保护频带是否启用确定该数据传输的PRB数目从而计算传输块大小。
需要说明的是,本公开实施例作为图2所示的实施例对应的网络侧设备的实施例,其具体的实施方式可以参见图2所示的实施例的相关说明,并能够达到相同的有益效果,为了避免重复说明,此处不再赘述。
图5是本公开实施例提供的一种用户设备的结构图,如图5所示,用户设备500包括:
接收模块501,用于接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
检测模块502,用于针对所述调度带宽进行信道空闲检测;
确定模块503,用于根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;
传输模块504,用于利用所述用于数据传输的PRB传输数据。
可选的,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
确定模块503具体用于:
从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
根据所述信道空闲检测的检测结果,从所述候选PRB中确定所述用于数据传输的PRB。
可选的,确定模块503具体用于:
若所述信道空闲检测的检测结果表示监听成功的先听后说LBT信道包括 相邻的LBT信道,则确定所述交织资源块中用于数据传输的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
可选的,如图6所示,用户设备500还包括:
数据准备模块505,用于根据调度指令准备数据,其中,所述准备的数据包括所述传输的数据。
可选的,数据准备模块505具体用于:
若所述调度带宽小于或者等于LBT带宽,则禁用所述保护频带PRB,计算传输块大小,以及准备所述传输块大小对应的数据。
可选的,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
可选的,所述指示信息用于指示如下至少一项:
在第一时域资源上禁用所述保护频带PRB;
在第二时域资源上允许启用所述保护频带PRB;
或者,
所述指示信息用于指示完全禁用所述保护频带PRB。
可选的,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
可选的,所述调度带宽大于或者等于LBT带宽;
数据准备模块505具体用于:
若所述指示信息用于指示在所述第一时域资源上禁用所述保护频带PRB,或者所述指示信息用于指示完全禁用所述保护频带PRB,则根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;
其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
可选的,所述调度带宽大于或者等于LBT带宽;
数据准备模块505具体用于:
若所述指示信息用于指示在所述第二时域资源上允许启用所述保护频带 PRB,则在所述第二时域资源或者所述第二时域资源之后,根据所述交织资源块中的预测PRB,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据,其中,所述预测PRB由所述调度带宽中可能监听成功的LBT带宽的位置和/或个数确定;
其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
可选的,所述调度带宽大于或者等于LBT带宽;
数据准备模块505具体用于:
在所述第一时域资源上,根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;
在所述第二时域资源或者所述第二时域资源之后,根据在所述第一时域资源上调度带宽中LBT带宽成功的情况准备数据。
可选的,确定模块503具体用于:
根据所述信道空闲检测的检测结果,确定所述交织资源块中的打孔PRB,其中,所述交织资源块中用于数据传输的PRB不包括所述打孔PRB。
需要说明的是,本公开实施例中上述用户设备500可以是方法实施例中任意实施方式的用户设备,方法实施例中用户设备的任意实施方式都可以被本公开实施例中的上述用户设备500所实现,并达到相同的有益效果,为避免重复,此处不再赘述。
图7是本公开实施例提供的一种网络侧设备的结构图,如图7所示,网络侧设备600包括:
发送模块601,用于发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
确定模块602,用于确定所述交织资源块中传输数据的PRB;
解码模块603,用于对所述传输数据的PRB解码。
可选的,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
确定模块602具体用于:
从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
从所述候选PRB中确定所述传输数据的PRB。
可选的,确定模块602具体用于:
若传输数据的传输带宽包括相邻的LBT信道,则确定所述交织资源块中传输数据的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
可选的,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
可选的,所述指示信息用于指示如下至少一项:
在第一时域资源上禁用所述保护频带PRB;
在第二时域资源上允许启用所述保护频带PRB;
或者,
所述指示信息用于指示完全禁用所述保护频带PRB。
可选的,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
需要说明的是,本公开实施例中上述网络侧设备600可以是方法实施例中任意实施方式的网络侧设备,方法实施例中网络侧设备的任意实施方式都可以被本公开实施例中的上述网络侧设备600所实现,并达到相同的有益效果,为避免重复,此处不再赘述。
参见图8,图8为实现本公开各个实施例的一种用户设备的硬件结构示意图,该用户设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图8中示出的用户设备结构并不构成对用户设备的限定,用户设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,用户设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载用户设备、可穿戴设备、以及计步器等。
其中,处理器710用于:
接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
针对所述调度带宽进行信道空闲检测;
根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;
利用所述用于数据传输的PRB传输数据。
可选的,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
处理器710在执行所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB的步骤时,包括:
从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
根据所述信道空闲检测的检测结果,从所述候选PRB中确定所述用于数据传输的PRB。
可选的,处理器710在执行所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB的步骤时,包括:
若所述信道空闲检测的检测结果表示监听成功的先听后说LBT信道包括相邻的LBT信道,则确定所述交织资源块中用于数据传输的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
可选的,处理器710还用于:
根据调度指令准备数据,其中,所述准备的数据包括所述传输的数据。
可选的,处理器710在执行所述根据调度指令准备数据的步骤时,包括:
若所述调度带宽小于或者等于LBT带宽,则禁用所述保护频带PRB,计算传输块大小,以及准备所述传输块大小对应的数据。
可选的,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
可选的,所述指示信息用于指示如下至少一项:
在第一时域资源上禁用所述保护频带PRB;
在第二时域资源上允许启用所述保护频带PRB;
或者,
所述指示信息用于指示完全禁用所述保护频带PRB。
可选的,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
可选的,所述调度带宽大于或者等于LBT带宽;
处理器710在执行所述根据调度指令准备数据的步骤时,包括:
若所述指示信息用于指示在所述第一时域资源上禁用所述保护频带PRB,或者所述指示信息用于指示完全禁用所述保护频带PRB,则根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;
其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
可选的,所述调度带宽大于或者等于LBT带宽;
处理器710在执行所述根据调度指令准备数据的步骤时,包括:
若所述指示信息用于指示在所述第二时域资源上允许启用所述保护频带PRB,则在所述第二时域资源或者所述第二时域资源之后,根据所述交织资源块中的预测PRB,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据,其中,所述预测PRB由所述调度带宽中可能监听成功的LBT带宽的位置和/或个数确定;
其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
可选的,所述调度带宽大于或者等于LBT带宽;
处理器710在执行所述根据调度指令准备数据的步骤时,包括:
在所述第一时域资源上,根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;
在所述第二时域资源或者所述第二时域资源之后,根据在所述第一时域 资源上调度带宽中LBT带宽成功的情况准备数据。
可选的,处理器710在执行所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB的步骤时,包括:
根据所述信道空闲检测的检测结果,确定所述交织资源块中的打孔PRB,其中,所述交织资源块中用于数据传输的PRB不包括所述打孔PRB。
本公开实施例中,通过将保护频带PRB作为交织资源块,并根据调度带宽的信道空闲检测结果确定用于数据传输的PRB,从而使得保护频带PRB可能能够利用在数据传输中,能够提高非授权频段的传输资源利用率。
应理解的是,本公开实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
用户设备通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与用户设备700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
用户设备700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在用户设备700移动到耳边时,关闭显示面板7061以及背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别用户设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与用户设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7071上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类 型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图8中,触控面板7071与显示面板7061是作为两个独立的部件来实现用户设备的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现用户设备的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与用户设备700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(input/output,I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到用户设备700内的一个或多个元件或者可以用于在用户设备700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是用户设备的控制中心,利用各种接口和线路连接整个用户设备的各个部分,通过运行或执行存储在存储器709内的软件程序以及模块,以及调用存储在存储器709内的数据,执行用户设备的各种功能和处理数据,从而对用户设备进行整体监控。处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
用户设备700还可以包括给各个部件供电的电源711(比如电池),可选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,用户设备700包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种用户设备,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图8,图8是本公开实施例提供的一种网络侧设备的结构图。如图8所示,该网络侧设备800包括:处理器801、收发机802、存储器803和总线接口,其中:
收发机802用于:
发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
处理器801用于:
确定所述交织资源块中传输数据的PRB;
对所述传输数据的PRB解码。
可选的,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
处理器801在执行所述确定所述交织资源块中传输数据的PRB的步骤时,包括:
从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
从所述候选PRB中确定所述传输数据的PRB。
可选的,处理器801在执行所述确定所述交织资源块中传输数据的PRB地步骤时,包括:
若传输数据的传输带宽包括相邻的LBT信道,则确定所述交织资源块中传输数据的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
可选的,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
可选的,所述指示信息用于指示如下至少一项:
在第一时域资源上禁用所述保护频带PRB;
在第二时域资源上允许启用所述保护频带PRB;
或者,
所述指示信息用于指示完全禁用所述保护频带PRB。
可选的,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
需要说明的是,本实施例中上述网络侧设备800可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备800所实现,以及达到相同的有益效果,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述对应于网络侧设备或者用户设备的上行传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包 括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台用户设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护 范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种上行传输方法,应用于用户设备,包括:
    接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
    针对所述调度带宽进行信道空闲检测;
    根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;
    利用所述用于数据传输的PRB传输数据。
  2. 根据权利要求1所述的方法,其中,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
    所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB,包括:
    从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
    根据所述信道空闲检测的检测结果,从所述候选PRB中确定所述用于数据传输的PRB。
  3. 根据权利要求1所述的方法,其中,所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB,包括:
    若所述信道空闲检测的检测结果表示监听成功的先听后说LBT信道包括相邻的LBT信道,则确定所述交织资源块中用于数据传输的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
  4. 根据权利要求1所述的方法,其中,在所述利用所述用于数据传输的PRB传输数据之前,所述方法还包括:
    根据调度指令准备数据,其中,所述准备的数据包括所述传输的数据。
  5. 根据权利要求4所述的方法,其中,所述根据调度指令准备数据包括:
    若所述调度带宽小于或者等于LBT带宽,则禁用所述保护频带PRB,计算传输块大小,以及准备所述传输块大小对应的数据。
  6. 根据权利要求4所述的方法,其中,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
  7. 根据权利要求6所述的方法,其中,
    所述指示信息用于指示如下至少一项:
    在第一时域资源上禁用所述保护频带PRB;
    在第二时域资源上允许启用所述保护频带PRB;
    或者,
    所述指示信息用于指示完全禁用所述保护频带PRB。
  8. 根据权利要求6所述的方法,其中,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
    所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
  9. 根据权利要求7所述的方法,其中,所述调度带宽大于或者等于LBT带宽;
    所述根据调度指令准备数据包括:
    若所述指示信息用于指示在所述第一时域资源上禁用所述保护频带PRB,或者所述指示信息用于指示完全禁用所述保护频带PRB,则根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;
    其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
  10. 根据权利要求7所述的方法,其中,所述调度带宽大于或者等于LBT带宽;
    所述根据调度指令准备数据包括:
    若所述指示信息用于指示在所述第二时域资源上允许启用所述保护频带PRB,则在所述第二时域资源或者所述第二时域资源之后,根据所述交织资源块中的预测PRB,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据,其中,所述预测PRB由所述调度带宽中可能监听成功的LBT带宽的位置和/或个数确定;
    其中,所述传输的数据为所述多个版本的数据中根据所述检测结果确定的一个版本的数据。
  11. 根据权利要求8所述的方法,其中,所述调度带宽大于或者等于LBT带宽;
    所述根据调度指令准备数据包括:
    在所述第一时域资源上,根据所述调度带宽中可能监听成功的LBT带宽的个数,计算多个候选传输块大小,以及准备分别与所述多个候选传输块大小对应的多个版本的数据;
    在所述第二时域资源或者所述第二时域资源之后,根据在所述第一时域资源上调度带宽中LBT带宽成功的情况准备数据。
  12. 根据权利要求1所述的方法,其中,所述根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB,包括:
    根据所述信道空闲检测的检测结果,确定所述交织资源块中的打孔PRB,其中,所述交织资源块中用于数据传输的PRB不包括所述打孔PRB。
  13. 一种上行传输方法,应用于网络侧设备,包括:
    发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
    确定所述交织资源块中传输数据的PRB;
    对所述传输数据的PRB解码。
  14. 根据权利要求13所述的方法,其中,整个载波带宽的全部PRB均作为交织资源块进行索引编排;
    所述确定所述交织资源块中传输数据的PRB,包括:
    从所述交织资源块索引在所述整个载波带宽中指示的交织资源块中选择位于所述调度带宽中的候选PRB;
    从所述候选PRB中确定所述传输数据的PRB。
  15. 根据权利要求13所述的方法,其中,所述确定所述交织资源块中传输数据的PRB,包括:
    若传输数据的传输带宽包括相邻的先听后说LBT信道,则确定所述交织 资源块中传输数据的PRB包括第一PRB,其中,所述第一PRB为位于所述相邻的LBT信道中间的保护频带PRB。
  16. 根据权利要求13所述的方法,其中,所述调度指令还包括指示信息,所述指示信息用于指示是否允许启用所述保护频带PRB。
  17. 根据权利要求16所述的方法,其中,
    所述指示信息用于指示如下至少一项:
    在第一时域资源上禁用所述保护频带PRB;
    在第二时域资源上允许启用所述保护频带PRB;
    或者,
    所述指示信息用于指示完全禁用所述保护频带PRB。
  18. 根据权利要求16所述的方法,其中,所述指示信息用于指示:在第一时域资源上禁用所述保护频带PRB,且在第二时域资源上允许启用所述保护频带PRB;
    所述第一时域资源与所述第二时域资源为时域先后连续的时域资源。
  19. 一种用户设备,包括:
    接收模块,用于接收网络侧设备发送的调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
    检测模块,用于针对所述调度带宽进行信道空闲检测;
    确定模块,用于根据所述信道空闲检测的检测结果,确定所述交织资源块中用于数据传输的PRB;
    传输模块,用于利用所述用于数据传输的PRB传输数据。
  20. 一种网络侧设备,包括:
    发送模块,用于发送调度指令,所述调度指令包括交织资源块索引和调度带宽,其中,所述交织资源块索引在所述调度带宽中指示的交织资源块包括保护频带物理资源块PRB;
    确定模块,用于确定所述交织资源块中传输数据的PRB;
    解码模块,用于对所述传输数据的PRB解码。
  21. 一种用户设备,包括:存储器、处理器及存储在所述存储器上并可 在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的上行传输方法中的步骤。
  22. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求13至18中任一项所述的上行传输方法中的步骤。
  23. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的上行传输方法的步骤,或者,所述计算机程序被处理器执行时实现如权利要求13至18中任一项所述的上行传输方法的步骤。
PCT/CN2019/113591 2018-11-02 2019-10-28 上行传输方法、用户设备和网络侧设备 WO2020088387A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19879654.2A EP3876645A4 (en) 2019-10-28 Uplink transmission method, user equipment and network-side device
SG11202104392PA SG11202104392PA (en) 2018-11-02 2019-10-28 Uplink transmission method, user equipment and network-side device
KR1020217016715A KR20210084608A (ko) 2018-11-02 2019-10-28 업링크 전송 방법, 사용자 기기 및 네트워크측 기기
JP2021523168A JP7271663B2 (ja) 2018-11-02 2019-10-28 上りリンク伝送方法、ユーザ機器及びネットワーク側機器
US17/241,634 US20210251005A1 (en) 2018-11-02 2021-04-27 Uplink transmission method, user equipment, and network-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303706.XA CN111148261B (zh) 2018-11-02 2018-11-02 上行传输方法、用户设备和网络侧设备
CN201811303706.X 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/241,634 Continuation US20210251005A1 (en) 2018-11-02 2021-04-27 Uplink transmission method, user equipment, and network-side device

Publications (1)

Publication Number Publication Date
WO2020088387A1 true WO2020088387A1 (zh) 2020-05-07

Family

ID=70463003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113591 WO2020088387A1 (zh) 2018-11-02 2019-10-28 上行传输方法、用户设备和网络侧设备

Country Status (6)

Country Link
US (1) US20210251005A1 (zh)
JP (1) JP7271663B2 (zh)
KR (1) KR20210084608A (zh)
CN (1) CN111148261B (zh)
SG (1) SG11202104392PA (zh)
WO (1) WO2020088387A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475290B2 (ja) * 2019-02-14 2024-04-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置、通信方法及び集積回路
US11202305B2 (en) * 2019-05-02 2021-12-14 Samsung Electronics Co., Ltd Method and apparatus for transmission and reception of data channel in wireless communication system
US20230008259A1 (en) * 2021-07-09 2023-01-12 Qualcomm Incorporated Techniques for wideband operation of sidelink communications over unlicensed band
CN115987800A (zh) * 2022-07-22 2023-04-18 中兴通讯股份有限公司 传输块大小的确定方法、终端设备及存储介质
WO2024060088A1 (en) * 2022-09-21 2024-03-28 Nec Corporation Method, device, and medium for communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193971A1 (en) * 2016-05-13 2017-11-16 Huawei Technologies Co., Ltd. System and method for bandwidth utilization
WO2017196853A1 (en) * 2016-05-10 2017-11-16 Qualcomm Incorporated Internet-of-things design for unlicensed spectrum

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099659A1 (en) * 2015-12-08 2017-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Interlace pattern selection for low cm/papr transmission
CN111819876A (zh) 2018-01-10 2020-10-23 瑞典爱立信有限公司 用于有效使用非授权频谱的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196853A1 (en) * 2016-05-10 2017-11-16 Qualcomm Incorporated Internet-of-things design for unlicensed spectrum
WO2017193971A1 (en) * 2016-05-13 2017-11-16 Huawei Technologies Co., Ltd. System and method for bandwidth utilization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ET AL: "Considerations on NR spectrum utilization and guard band using fractional PRB", 3GPP DRAFT; R4-1700009, 19 January 2017 (2017-01-19), Spokane, Washington, USA, pages 1 - 11, XP051204584 *

Also Published As

Publication number Publication date
SG11202104392PA (en) 2021-05-28
EP3876645A1 (en) 2021-09-08
KR20210084608A (ko) 2021-07-07
US20210251005A1 (en) 2021-08-12
CN111148261A (zh) 2020-05-12
JP2022512835A (ja) 2022-02-07
CN111148261B (zh) 2021-08-24
JP7271663B2 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2020088387A1 (zh) 上行传输方法、用户设备和网络侧设备
CN110022197B (zh) 参考信号的处理方法、网络设备和终端
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
WO2020200167A1 (zh) 频域资源分配方法、终端和网络设备
WO2020192718A1 (zh) 传输块大小确定方法和通信设备
WO2020143658A1 (zh) Pdcch监测方法、装置、终端、基站和存储介质
CN110932829A (zh) 非授权频段的传输时间指示方法、网络设备和终端
WO2020135548A1 (zh) 信息的接收方法、发送方法、终端及网络侧设备
EP3952552A1 (en) Transmission method, terminal device, and network-side device
US20220210832A1 (en) Listen before talk lbt subband division method, apparatus, device, and medium
CN111615198B (zh) 资源确定方法、资源指示方法、终端及网络侧设备
US20210385866A1 (en) Transmission resource indication method, transmission method, network device, and terminal
CN111836266A (zh) Srs的发送方法、配置方法、终端及网络侧设备
CN111615197A (zh) 资源调整方法及设备
KR102591573B1 (ko) 수신 방법, 송신 방법, 단말 및 네트워크측 기기
CN111836307B (zh) 映射类型的确定方法及终端
EP3829240A1 (en) Resource allocation method, resource usage method, user equipment, and network side device
CN112769521B (zh) 传输块大小的确定方法及终端
CN113162738B (zh) 一种上行传输方法、装置、设备及存储介质
KR102390301B1 (ko) 통신 방법 및 관련 기기
CN111835487B (zh) 一种信息处理方法、设备及计算机可读存储介质
CN110972327B (zh) 基于非授权频段的信号传输方法和通信设备
US12004203B2 (en) Resource allocation method, resource usage method, user equipment, and network side device
CN111278147A (zh) 资源调度方法、终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217016715

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019879654

Country of ref document: EP

Effective date: 20210602