WO2020200167A1 - 频域资源分配方法、终端和网络设备 - Google Patents

频域资源分配方法、终端和网络设备 Download PDF

Info

Publication number
WO2020200167A1
WO2020200167A1 PCT/CN2020/082075 CN2020082075W WO2020200167A1 WO 2020200167 A1 WO2020200167 A1 WO 2020200167A1 CN 2020082075 W CN2020082075 W CN 2020082075W WO 2020200167 A1 WO2020200167 A1 WO 2020200167A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
listening
resource allocation
indication
frequency domain
Prior art date
Application number
PCT/CN2020/082075
Other languages
English (en)
French (fr)
Inventor
李娜
姜蕾
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021558870A priority Critical patent/JP7402250B2/ja
Priority to SG11202110967XA priority patent/SG11202110967XA/en
Priority to BR112021019698A priority patent/BR112021019698A2/pt
Priority to EP20783654.5A priority patent/EP3952529A4/en
Priority to KR1020217035944A priority patent/KR20210147035A/ko
Publication of WO2020200167A1 publication Critical patent/WO2020200167A1/zh
Priority to US17/491,674 priority patent/US11917685B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a frequency domain resource allocation method, terminal and network equipment.
  • unlicensed bands can be used as a supplement to licensed bands to help operators expand services.
  • the unlicensed frequency band network equipment or terminal also needs to perform channel sensing before transmitting on the configured bandwidth part (BWP).
  • BWP bandwidth part
  • how the network side allocates frequency domain resources in the BWP for the terminal has not yet been defined, resulting in poor resource allocation accuracy.
  • the embodiments of the present disclosure provide a frequency domain resource allocation method, terminal, and network device to solve the problem of poor resource allocation accuracy.
  • some embodiments of the present disclosure provide a frequency domain resource allocation method applied to a terminal, including:
  • some embodiments of the present disclosure provide a frequency domain resource allocation method, which is applied to network equipment, and includes:
  • the resource allocation instruction corresponding to a parameter of the BWP configured by the terminal, and the resource allocation instruction is used to indicate frequency domain resources in the BWP.
  • some embodiments of the present disclosure provide a terminal, including:
  • a receiving module configured to receive a resource allocation indication, where the resource allocation indication corresponds to the BWP parameter configured by the terminal;
  • the determining module is configured to determine the frequency domain resource indicated in the BWP by the resource allocation indication.
  • some embodiments of the present disclosure provide a network device, including:
  • the sending module is configured to send a resource allocation instruction, the resource allocation instruction corresponding to a parameter of the BWP configured by the terminal, and the resource allocation instruction is used to indicate frequency domain resources in the BWP.
  • some embodiments of the present disclosure provide a terminal, including a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • the program is executed by the processor, The steps in the frequency domain resource allocation method on the terminal side provided by some embodiments of the present disclosure are implemented.
  • some embodiments of the present disclosure provide a network device, which includes: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is processed by the The steps in the frequency domain resource allocation method on the network device side provided by some embodiments of the present disclosure are implemented when the device is executed.
  • some embodiments of the present disclosure provide a computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, some embodiments of the present disclosure are implemented
  • the steps in the frequency domain resource allocation method on the terminal side provided, or the steps in the frequency domain resource allocation method on the network device side provided by some embodiments of the present disclosure are implemented when the computer program is executed by a processor.
  • Figure 1 is a structural diagram of a network system to which some embodiments of the present disclosure are applicable;
  • Figure 2 is a flowchart of a frequency domain resource allocation method provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of interlace provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of the division of interception subband groups provided by some embodiments of the present disclosure.
  • FIG. 5 is another flowchart of a frequency domain resource allocation method provided by some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • Figure 7 is a structural diagram of a network device provided by some embodiments of the present disclosure.
  • FIG. 8 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • Fig. 9 is another structural diagram of a network device provided by some embodiments of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in some embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the frequency domain resource allocation method, terminal, and network device can be applied to a wireless communication system.
  • the wireless communication system can be an unlicensed frequency band New Radio Unlicensed (NRU) system, or an unlicensed frequency band of other systems, for example: an unlicensed frequency band or long-term evolution of an evolved Long Term Evolution (eLTE) system (Long Term Evolution, LTE) the unlicensed frequency band of the system, or the unlicensed frequency band of the subsequent evolution communication system, etc.
  • NRU New Radio Unlicensed
  • eLTE evolved Long Term Evolution
  • LTE Long Term Evolution
  • FIG. 1 is a structural diagram of a network system to which some embodiments of the present disclosure can be applied. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal (User Equipment). , UE) or other terminal-side devices, such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistant, PDA), mobile Internet devices (Mobile Internet Device, MID) ), a terminal-side device such as a wearable device (Wearable Device) or a robot.
  • UE User Equipment
  • PDA personal digital assistant
  • mobile Internet devices Mobile Internet Device, MID
  • a terminal-side device such as a wearable device (Wearable Device) or a robot.
  • the specific type of the terminal 11 is not limited in some embodiments of the present disclosure.
  • the above-mentioned network device 12 may be a 4G base station, or a 5G base station, or a base station of a later version, or a base station in other communication systems, or called Node B, Evolved Node B, or Transmission Reception Point (TRP), Or access point (Access Point, AP), or other vocabulary in the field, as long as the same technical effect is achieved, the network device is not limited to a specific technical vocabulary.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in some embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a frequency domain resource allocation method provided by some embodiments of the present disclosure. The method is applied to a terminal, as shown in FIG. 2, and includes the following steps:
  • Step 201 Receive a resource allocation instruction, where the resource allocation instruction corresponds to a BWP parameter configured by the terminal.
  • Step 201 may be receiving a resource allocation instruction sent by a network device, where the resource allocation instruction is used to allocate frequency domain resources to the foregoing terminal.
  • the foregoing resource allocation indication may be sent through signaling such as Downlink Control Information (DCI) or high-level signaling.
  • DCI Downlink Control Information
  • the BWP configured by the foregoing terminal may be a BWP configured by the network device for the terminal, and in addition, the BWP configured by the foregoing terminal may be a BWP activated by the terminal.
  • the resource allocation instruction corresponding to the BWP parameter configured by the terminal may be that the instruction mode of the resource allocation instruction corresponds to the BWP parameter, or it may be that the instruction content of the resource allocation instruction corresponds to the BWP parameter.
  • the foregoing resource allocation indication corresponding to the BWP parameter configured by the terminal can be understood as the resource allocation indication configured for the terminal by the network device according to the reference of the BWP configured by the terminal.
  • the parameter of the BWP may be the subcarrier spacing, or may be parameters such as bandwidth.
  • Step 202 Determine the frequency domain resource indicated in the BWP by the resource allocation indication.
  • the aforementioned frequency domain resources may include: interlace, resource block (Resource Block, RB), or resource block group (Resource Block Group, RBG), so that the interlace, RB, or RBG is used as the granularity for resource allocation. Improve the accuracy of resource allocation.
  • frequency domain resources are described as interlace, and for RB and RBG, refer to the corresponding description of interlace to avoid repetition.
  • an interlace may include multiple spaced apart RBs, such as multiple physical resource blocks (Physical Resource Block, PRB).
  • an interlace may include multiple, etc. Interval PRB.
  • BWP 20MHz bandwidth and 15kHz subcarrier spacing (SCS) as an example
  • SCS subcarrier spacing
  • the design of interlace can be shown in Figure 3, where interlace 0,1,2,3,4,5, each interlace contains 11 PRBs, interlace 6, 7, 8, 9, each interlace contains 10 PRBs.
  • Interlace 0 contains PRB 0,10,20...90,100.
  • Interlace 9 includes PRB 9,19,29...89,99.
  • the frequency domain resource indicated in the above resource allocation indication in the BWP may be one or more frequency domain resources, and in the case of multiple frequency domain resources, the indicated frequency domain resources may be continuous or non-contiguous frequency domain resources,
  • the interlace indicated by the above resource allocation instruction may be one or more interlaces, and in the case of multiple interlaces, the indicated interlace may be multiple consecutive interlaces or non-contiguous interlaces.
  • the frequency domain resources indicated above may be uplink frequency domain resources or downlink frequency domain resources.
  • the frequency domain resources in the BWP can be allocated to the terminal through the above steps, so as to improve the accuracy of resource allocation.
  • the resource allocation under the interlace structure can be realized.
  • resource allocation indication corresponding to the BWP parameter configured by the terminal is obtained, resource allocation is realized flexibly, so as to improve the flexibility of resource allocation.
  • the parameter when the frequency domain resource includes the interlace, the parameter includes a subcarrier interval.
  • the resource allocation indication can be implemented to correspond to the subcarrier interval of the BWP configured by the terminal, so as to improve the flexibility of resource allocation.
  • the indication method of the resource allocation indication corresponds to the subcarrier interval, which may be based on different subcarriers.
  • Carrier spacing indicates the interlace allocated to the terminal in different ways.
  • the resource allocation indication uses a resource indication value (RIV) manner to perform resource indication; or
  • the resource allocation indication is performed in the form of a bitmap for resource indication
  • the first subcarrier interval is smaller than the second subcarrier interval.
  • the first subcarrier interval may be 15kHz or other subcarrier intervals smaller than the second subcarrier interval, and the second subcarrier interval may be 30kHz, 60kHz, or the like.
  • the resource indication in the foregoing RIV manner may be the initial interlace number and the number of consecutive interlaces allocated to the terminal by the RIV indication.
  • the resource indication in the form of the above-mentioned bitmap may be that the length of the bitmap is equal to the number of interlaces, so that the interlace allocated to the terminal is indicated through the bitmap.
  • the RIV mode is used to indicate the interlace configured for the terminal, which can provide certain resource allocation flexibility and can save signaling overhead.
  • the network device adopts the form of RIV to indicate the initial interlace number and the number of consecutive interlaces allocated to the terminal.
  • RIV indicates the number of consecutive interlaces allocated by the joint coding starting interlace number. It can also be called interlace indicator value, or IIV, similar to the joint coding in related technologies
  • IIV interlace indicator value
  • the bitmap is used to indicate the interlace allocated to the terminal, thereby realizing continuous or discontinuous interlace allocation, so as to further improve the flexibility of resource allocation.
  • the interlace allocated to the terminal is indicated in the form of a bitmap.
  • the length of the bitmap is equal to the number of interlaces, that is, when the sub-carrier spacing is 30kHz, 5 interlaces are indicated by the 5-bit bitmap, or when the sub-carrier spacing is 60kHz, 2/3 interlaces, using 2/3-bit The bitmap instructions.
  • first subcarrier spacing being 15kHz and the second subcarrier spacing being 30kHz:
  • the number of bits in the Frequency Domain Resource Allocation (FDRA) field in DCI is different. For example, 5 or 6 bits are used in the frequency domain resource allocation field to provide the interleaving unit in the uplink time slot.
  • Resource allocation (Frequency domain resource assignment-5 or 6 bits provide the interlace allocation in the UL slot), where SCS is 15kHz, 6bit is used, and 30kHz is 5bit.
  • the network device uses the form of RIV to indicate the initial interlace number and the number of consecutive interlaces allocated to the terminal, specifically:
  • the interlace indicated by the RIV can be accurately determined, and the signaling overhead can be saved.
  • the network device allocates interlace 5 and interlace 6 to the terminal.
  • the RB indexes that can be allocated are 5, 6, 15, 16, 25,..., 95, 96, 105.
  • the interlace indicated by the RIV may be determined by referring to the manner in which the RIV indicates the RB, or, for another example, the interlace may be preset Determine the mapping relationship between the RIV value and the number of initial interlace and interlace, and determine the interlace indicated by the mapping relationship.
  • bitmap is used to indicate the interlace allocated to the terminal.
  • the length of bitmap is equal to the number of interlaces, namely:
  • 2/3 interlace is indicated by the 2/3-bit bitmap.
  • a 5-bit bitmap is needed to indicate the interlace allocated to the terminal.
  • 10100 means that interlace 0, 2 is allocated to the terminal, and the rest is not allocated to the terminal.
  • the aforementioned parameters include bandwidth.
  • the above frequency domain resources may be interlace, RB, or RBG. That is, in this embodiment, the terminal allocates the interlace in the BWP through the resource allocation indication corresponding to the bandwidth of the BWP configured by the terminal. , RB or RBG.
  • the resource allocation indication corresponds to the bandwidth of the BWP configured by the terminal to improve the flexibility of resource allocation.
  • the indication method of the resource allocation indication corresponds to the bandwidth. Specifically, different bandwidths can be used.
  • the mode indicates the interlace, RB or RBG allocated to the terminal.
  • the resource allocation indication is used to indicate the following:
  • the listening subband allocated to the terminal is the listening subband allocated to the terminal.
  • Frequency domain resources allocated to the terminal on the listening subband are allocated to the Frequency domain resources allocated to the terminal on the listening subband.
  • the foregoing first bandwidth value may be configured by the network device, or defined in the protocol, or preset by the terminal and the network device.
  • the foregoing first bandwidth value may be 20MHz, so that the BWP bandwidth configured on the terminal can be realized When it is greater than 20 MHz, the frequency domain resource allocated by the terminal is indicated in the above-mentioned manner.
  • the foregoing first bandwidth value may be greater than the bandwidth value of the listening subband.
  • the foregoing listening subband allocated to the terminal may be one or more listening subbands included in the BWP configured for the terminal, and the frequency domain resources allocated to the terminal on the foregoing listening subband may be: The same or different interlaces, RBs or RBGs allocated to the one or more listening subbands.
  • the listening subband may be a Listen Before Talk subband (Listen Before Talk subband, LBT subband).
  • the resource allocation indication is used to indicate the listening subband and the frequency domain resources allocated to the terminal on the listening subband, such as interlace, RB, or RBG, when the bandwidth is greater than the first bandwidth value.
  • the network side can indicate the listening subband with good channel conditions according to the channel condition of the listening subband, this can reduce the complexity of terminal listening and save the power consumption of the terminal.
  • the resource allocation indication may indicate the frequency domain resources allocated to the terminal, such as interlace, RB or RBG, There is no need to indicate the listening subband, so as to realize flexible resource allocation and reduce signaling overhead.
  • the indication of frequency domain resources in the foregoing implementation manners may indicate frequency domain resources in an indication manner of RIV or bitmap.
  • the frequency domain resource when the frequency domain resource is interlace, it can be implemented in combination with the subcarrier spacing provided above. For example, when the subcarrier spacing is the first subcarrier spacing, interlace is indicated in the RIV mode; or , When the sub-carrier interval is the second sub-carrier interval, interlace is indicated in the form of a bitmap.
  • the above-mentioned indication listening subband and interlace may be indicated through the same information field of signaling and may be jointly coded, or may be indicated through two different information fields of signaling.
  • the indication of frequency domain resources in the foregoing implementation manners may indicate frequency domain resources in an indication manner of RIV or bitmap.
  • the frequency domain resource is an RB or an RBG
  • the number of the RB or RBG may be the same number in the entire BWP or an offset value relative to the start RB or RBG of the LBT subband.
  • the bit opening size of the RIV or bitmap can be reduced.
  • the resource allocation indication can flexibly indicate the listening subbands and the listening subbands allocated to the terminal through multiple indication modes. Frequency domain resources.
  • Manner 1 The resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates that the M listening subbands are allocated for the terminal Frequency domain resources;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and the M indication contents are used to respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and the N indication contents are used to respectively indicate the frequency domain allocated for the terminal on each listening subband group Resources, each listening subband group includes at least one listening subband;
  • the M is an integer greater than or equal to 1
  • the N is an integer less than or equal to the M.
  • the above indication content may be in the form of RIV or bitmap value.
  • the same frequency domain resources can be allocated to the M listening subbands, and signaling overhead can be saved.
  • the network device indicates the LBT subband allocated to the terminal and an RIV/bitmap value, that is, when the terminal is allocated multiple LBT subbands, the interlace allocated on each LBT subband is the same.
  • the corresponding frequency domain resource can be indicated for each indicated listening subband, so as to improve the flexibility of resource allocation.
  • the network device indicates the LBT subband allocated to the terminal and the RIV/bitmap value of each LBT subband, that is, when the terminal is configured with multiple LBT subbands, the allocation on each LBT subband
  • the interlace can be different or the same.
  • the resource allocation is considered. Flexibility saves bits. For example: Taking the frequency domain resource as interlace as an example, when the BWP configured by the terminal is greater than or equal to a certain bandwidth value (which can be represented by X), the LBT subband contained in the BWP is divided into N LBT subband groups, and each LBT subband group Different RIV/bitmaps are used to indicate interlace.
  • different listening subbands can be allocated to the terminal and the corresponding frequency domain resources can be indicated for each listening subband.
  • different listening subbands can be allocated to the terminal and corresponding to each listening subband.
  • Interlace, RB or RBG That is, when the terminal is configured for broadband transmission, the network device can indicate continuous/non-continuously allocated interlace, RB or RBG for each listening subband through the above-mentioned method 1, method 2, or method 3.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands;
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each The listening subband group includes at least one listening subband;
  • the second bandwidth value is greater than the first bandwidth value.
  • the foregoing second bandwidth value may be configured by the network device, or defined in the protocol, or preset by the terminal and the network device.
  • the foregoing first bandwidth value may be 40 MHz, 60 MHz, or 80 MHz.
  • the same frequency domain resource indication is used for each listening subband, which saves the number of bits and reduces the signaling size.
  • the frequency domain resource usage of different subbands may be used. Different, respectively indicate frequency domain resources of different subbands to improve scheduling flexibility.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband group, Each listening subband group includes at least one listening subband;
  • the third bandwidth value is greater than the first bandwidth value.
  • the foregoing third bandwidth value may be configured by the network device, or defined in the protocol, or preset by the terminal and the network device.
  • the foregoing first bandwidth value may be 40 MHz, 60 MHz, or 80 MHz.
  • the third bandwidth value and the second bandwidth value may be the same or different bandwidth values.
  • each listening subband when the bandwidth is narrow, different frequency domain resource indications can be used for each listening subband. Since the number of listening subbands is small and the required number of bits is within an acceptable range, flexible scheduling can be achieved. When the bandwidth is large, each listening subband or each listening subband group uses the same frequency domain resource indication, which saves the number of bits and reduces the signaling size.
  • the frequency domain resources allocated by the terminal are indicated in the following manner:
  • Method 1 The network device indicates the listening subbands allocated to the terminal and a RIV/bitmap value, that is, when the terminal is allocated multiple listening subbands, the interlace allocated on each listening subband is the same;
  • Method 2 The network device indicates the listening subband allocated to the terminal and the RIV/bitmap value of each listening subband, that is, when the terminal is allocated multiple listening subbands, the value allocated on each listening subband interlace can be different;
  • the method 1 or the method 2 or the method 3 can be determined according to the bandwidth configured by the terminal. For example, when the BWP configured by the terminal is less than or equal to X (for example, the second bandwidth value or the third bandwidth value), the method 1 is adopted. Otherwise, use method two or method three;
  • the network equipment adopts mode one or mode two or mode three through high-level signaling configuration.
  • the BWP configured by the terminal is 40MHz, and the network device can indicate the LBT subband allocated to the terminal in the form of a bitmap.
  • the network device when the network device is scheduling the terminal, it indicates that it is allocated to 11, which means that the two LBT subbands in the 40MHz BWP are allocated to the terminal, and each LBT subband has a corresponding RIV/bitmap value.
  • Allocate interlace for example, interlace 0 is allocated to LBT subband 0, and interleace 0 and interleace 1 are allocated to LBT subband 1.
  • Method 3 When the BWP configured by the terminal is greater than or equal to X (for example: the second bandwidth value or the third bandwidth value), the LBT subbands contained in the BWP are divided into N LBT subband groups, and each LBT subband group is used Different RVI/bitmap.
  • X for example: the second bandwidth value or the third bandwidth value
  • the number of LBT subbands contained in the BWP configured by the terminal is large, such as 80 MHz and 120 MHz, if the RIV/bitmap of each LBT subband is given in the second method, more bits are required, which increases the size of the DCI.
  • multiple LBT subbands can be divided into different groups, that is, LBT subband groups, and each group uses an RIV/bitmap to indicate the interlace allocated.
  • 80MHz and 120MHz respectively include 4 and 6 LBT subands.
  • multiple LBT subbands are divided into 2 groups, and each group includes 2, 3 LBT subbands.
  • the indication manner of the resource allocation indication is configured through signaling.
  • the terminal can accurately analyze the indicated frequency domain resources and listen to subbands.
  • the network device configures the indication mode of the resource allocation indication through high-level signaling or physical layer signaling, for example: indicating the above-mentioned mode 1, mode 2, or mode 3, or indicating the above-mentioned RIV or bitmap form.
  • pre-arrangement or protocol definition determines the corresponding indication mode according to the bandwidth or subcarrier interval.
  • the frequency domain resource allocation method provided in some embodiments of the present disclosure can realize the acquisition of the resource allocation indication corresponding to the parameters of the BWP configured by the terminal to indicate the frequency domain resources in the BWP, thereby improving the accuracy of resource allocation, and also Flexible resource allocation, for example, in some cases, through continuous or non-connected interlace, or configuring the corresponding interlace for different listening subbands, etc.; and it can also save signaling, for example, through RIV indicating multiple One interlace is either to divide the listening subband into a listening subband group, or one indication content indicates interlaces on multiple listening subbands, etc.
  • the foregoing frequency domain resource allocation method provided by some embodiments of the present disclosure in the NRU system can be implemented as follows:
  • the network equipment adopts the form of RIV to indicate the initial interlace number and the number of consecutive interlaces allocated to the terminal
  • the interlace allocated to the terminal is indicated in the form of a bitmap.
  • the length of bitmap is equal to the number of interlaces, namely:
  • 2/3 interlace is indicated by the 2/3-bit bitmap.
  • the frequency domain resources allocated by the terminal are indicated in the following manner:
  • Solution 1 The network device indicates the LBT subband assigned to the terminal and an RIV/bitmap value, that is, when the terminal is assigned multiple LBT subbands, the interlace assigned on each LBT subband is the same;
  • Solution 2 The network device indicates the LBT subband allocated to the terminal and the RIV/bitmap value of each LBT subband, that is, when the terminal is allocated multiple LBT subbands, the interlace allocated on each LBT subband can be different;
  • Solution 3 Determine to adopt solution 1 or solution 2 according to the bandwidth of the terminal configuration, for example: when the BWP configured by the terminal is greater than or equal to X, solution 1 is adopted, otherwise solution 2 is adopted;
  • Scheme 4 Network equipment adopts scheme one or scheme two through high-level signaling configuration
  • Solution 5 When the BWP configured by the terminal is greater than or equal to X, the LBT subband contained in the BWP is divided into N LBT subband groups, and each LBT subband group uses a different RVI/bitmap.
  • Some embodiments of the present disclosure can provide methods for allocating uplink resources under the interlace channel structure in the NRU system, so as to use different indication modes under different subcarrier intervals and frequency domain resource indication modes under broadband conditions, that is, considering The flexibility of scheduling saves signaling overhead.
  • FIG. 5 is a flowchart of another frequency domain resource allocation method provided by some embodiments of the present disclosure. The method is applied to a network device, as shown in FIG. 5, and includes the following steps:
  • Step 501 Send a resource allocation instruction, where the resource allocation instruction corresponds to a parameter of the BWP configured by the terminal, and the resource allocation instruction is used to indicate frequency domain resources in the BWP.
  • the frequency domain resources include: interlace, RB or RBG.
  • the parameter includes a subcarrier interval.
  • the resource allocation indication uses RIV for resource indication
  • the resource allocation indication is in the form of a bitmap for resource indication
  • the first subcarrier interval is smaller than the second subcarrier interval.
  • the parameter includes bandwidth.
  • the resource allocation indication is used to indicate the following:
  • the listening subband allocated to the terminal is the listening subband allocated to the terminal.
  • Frequency domain resources allocated to the terminal on the listening subband are allocated to the Frequency domain resources allocated to the terminal on the listening subband.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency allocated for the terminal on the M listening subbands. Domain resources; or
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each A listening subband group includes at least one listening subband;
  • the M is an integer greater than or equal to 1
  • the N is an integer less than or equal to the M.
  • bandwidth is greater than the first bandwidth value and smaller than the second bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands;
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each The listening subband group includes at least one listening subband;
  • the second bandwidth value is greater than the first bandwidth value.
  • bandwidth is greater than the first bandwidth value and smaller than the third bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband group, Each listening subband group includes at least one listening subband;
  • the third bandwidth value is greater than the first bandwidth value.
  • the indication manner of the resource allocation indication is configured through signaling.
  • this embodiment is used as an implementation on the network device side corresponding to the embodiment shown in FIG. 2.
  • the accuracy of resource allocation can also be improved.
  • FIG. 6 is a structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 6, the terminal 600 includes:
  • the receiving module 601 is configured to receive a resource allocation instruction, where the resource allocation instruction corresponds to a parameter of the BWP configured by the terminal;
  • the determining module 602 is configured to determine the frequency domain resource indicated in the BWP by the resource allocation indication.
  • the frequency domain resources include: interlace, RB or RBG.
  • the parameter includes a subcarrier interval.
  • the resource allocation indication uses RIV for resource indication
  • the resource allocation indication is in the form of a bitmap for resource indication
  • the first subcarrier interval is smaller than the second subcarrier interval.
  • the parameter includes bandwidth.
  • the resource allocation indication is used to indicate the following:
  • the listening subband allocated to the terminal is the listening subband allocated to the terminal.
  • Frequency domain resources allocated to the terminal on the listening subband are allocated to the Frequency domain resources allocated to the terminal on the listening subband.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency allocated for the terminal on the M listening subbands. Domain resources; or
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each A listening subband group includes at least one listening subband;
  • the M is an integer greater than or equal to 1
  • the N is an integer less than or equal to the M.
  • bandwidth is greater than the first bandwidth value and smaller than the second bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands;
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each The listening subband group includes at least one listening subband;
  • the second bandwidth value is greater than the first bandwidth value.
  • bandwidth is greater than the first bandwidth value and smaller than the third bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband group, Each listening subband group includes at least one listening subband;
  • the third bandwidth value is greater than the first bandwidth value.
  • the indication manner of the resource allocation indication is configured through signaling.
  • the terminal provided by some embodiments of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described herein again, and the accuracy of resource allocation can be improved.
  • FIG. 7 is a structural diagram of a network device provided by some embodiments of the present disclosure. As shown in FIG. 7, the network device 700 includes:
  • the sending module 701 is configured to send a resource allocation instruction, the resource allocation instruction corresponding to a parameter of the BWP configured by the terminal, and the resource allocation instruction is used to indicate frequency domain resources in the BWP.
  • the frequency domain resources include: interlace, RB or RBG.
  • the parameter includes a subcarrier interval.
  • the resource allocation indication uses RIV for resource indication
  • the resource allocation indication is in the form of a bitmap for resource indication
  • the first subcarrier interval is smaller than the second subcarrier interval.
  • the parameter includes bandwidth.
  • the resource allocation indication is used to indicate the following:
  • the listening subband allocated to the terminal is the listening subband allocated to the terminal.
  • Frequency domain resources allocated to the terminal on the listening subband are allocated to the Frequency domain resources allocated to the terminal on the listening subband.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency allocated for the terminal on the M listening subbands. Domain resources; or
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each A listening subband group includes at least one listening subband;
  • the M is an integer greater than or equal to 1
  • the N is an integer less than or equal to the M.
  • bandwidth is greater than the first bandwidth value and smaller than the second bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands;
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each The listening subband group includes at least one listening subband;
  • the second bandwidth value is greater than the first bandwidth value.
  • bandwidth is greater than the first bandwidth value and smaller than the third bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband group, Each listening subband group includes at least one listening subband;
  • the third bandwidth value is greater than the first bandwidth value.
  • the indication manner of the resource allocation indication is configured through signaling.
  • the network device provided by some embodiments of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 5, and to avoid repetition, details are not repeated here, and the accuracy of resource allocation can be improved.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal implementing various embodiments of the present disclosure.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811 and other components.
  • a radio frequency unit 801 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811 and other components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a robot, a wearable device, and a pedometer.
  • the radio frequency unit 801 is configured to receive a resource allocation instruction, where the resource allocation instruction corresponds to the BWP parameter configured by the terminal;
  • the processor 810 is configured to determine the frequency domain resource indicated in the BWP by the resource allocation indication.
  • the frequency domain resources include: interlace, RB or RBG.
  • the parameter includes a subcarrier interval.
  • the resource allocation indication uses RIV for resource indication
  • the resource allocation indication is in the form of a bitmap for resource indication
  • the first subcarrier interval is smaller than the second subcarrier interval.
  • the parameter includes bandwidth.
  • the resource allocation indication is used to indicate the following:
  • the listening subband allocated to the terminal is the listening subband allocated to the terminal.
  • Frequency domain resources allocated to the terminal on the listening subband are allocated to the Frequency domain resources allocated to the terminal on the listening subband.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency allocated for the terminal on the M listening subbands. Domain resources; or
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each A listening subband group includes at least one listening subband;
  • the M is an integer greater than or equal to 1
  • the N is an integer less than or equal to the M.
  • bandwidth is greater than the first bandwidth value and smaller than the second bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands;
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each The listening subband group includes at least one listening subband;
  • the second bandwidth value is greater than the first bandwidth value.
  • bandwidth is greater than the first bandwidth value and smaller than the third bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband group, Each listening subband group includes at least one listening subband;
  • the third bandwidth value is greater than the first bandwidth value.
  • the indication manner of the resource allocation indication is configured through signaling.
  • the foregoing terminal can improve the accuracy of resource allocation.
  • the radio frequency unit 801 can be used for receiving and sending signals during the process of sending and receiving information or talking. Specifically, after receiving downlink data from the base station, it is processed by the processor 810; in addition, , Send the uplink data to the base station.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 802, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 803 can convert the audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into audio signals and output them as sounds. Moreover, the audio output unit 803 may also provide audio output related to a specific function performed by the terminal 800 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 804 is used to receive audio or video signals.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 806.
  • the image frame processed by the graphics processor 8041 may be stored in the memory 809 (or other storage medium) or sent via the radio frequency unit 801 or the network module 802.
  • the microphone 8042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 801 for output in the case of a telephone call mode.
  • the terminal 800 further includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 8061 and/or when the terminal 800 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 805 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 807 can be used to receive inputted number or character information and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 8071 or near the touch panel 8071. operating).
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 810, the command sent by the processor 810 is received and executed.
  • the touch panel 8071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 807 may also include other input devices 8072.
  • other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 8071 can cover the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it transmits it to the processor 810 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 8061.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 808 is an interface for connecting an external device with the terminal 800.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 808 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 800 or can be used to communicate between the terminal 800 and the external device. Transfer data between.
  • the memory 809 can be used to store software programs and various data.
  • the memory 809 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the terminal 800 may also include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 800 includes some functional modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure further provide a terminal, including a processor 810, a memory 809, and a program stored on the memory 809 and running on the processor 810.
  • a terminal including a processor 810, a memory 809, and a program stored on the memory 809 and running on the processor 810.
  • the program is executed by the processor 810,
  • Each process of the foregoing frequency domain resource allocation method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • Figure 9 is a structural diagram of another network device provided by some embodiments of the present disclosure.
  • the network device 900 includes a processor 901, a transceiver 902, a memory 903, and a bus interface. among them:
  • the transceiver 902 is configured to send a resource allocation indication corresponding to the BWP parameter configured by the terminal, and the resource allocation indication is used to indicate frequency domain resources in the BWP.
  • the frequency domain resources include: interlace, RB or RBG.
  • the parameter includes a subcarrier interval.
  • the resource allocation indication uses RIV for resource indication
  • the resource allocation indication is in the form of a bitmap for resource indication
  • the first subcarrier interval is smaller than the second subcarrier interval.
  • the parameter includes bandwidth.
  • the resource allocation indication is used to indicate the following:
  • the listening subband allocated to the terminal is the listening subband allocated to the terminal.
  • Frequency domain resources allocated to the terminal on the listening subband are allocated to the Frequency domain resources allocated to the terminal on the listening subband.
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency allocated for the terminal on the M listening subbands. Domain resources; or
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each A listening subband group includes at least one listening subband;
  • the M is an integer greater than or equal to 1
  • the N is an integer less than or equal to the M.
  • bandwidth is greater than the first bandwidth value and smaller than the second bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands;
  • the resource allocation indication is used to indicate the M listening subbands allocated to the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated for the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated to the terminal on each listening subband group, each The listening subband group includes at least one listening subband;
  • the second bandwidth value is greater than the first bandwidth value.
  • bandwidth is greater than the first bandwidth value and smaller than the third bandwidth value:
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and through the M indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband;
  • the resource allocation indication is used to indicate the M listening subbands allocated for the terminal, and one indication content indicates the frequency domain resources allocated for the terminal on the M listening subbands; or
  • the resource allocation indication is used to indicate the N listening subband groups allocated to the terminal, and through the N indication contents, respectively indicate the frequency domain resources allocated for the terminal on each listening subband group, Each listening subband group includes at least one listening subband;
  • the third bandwidth value is greater than the first bandwidth value.
  • the indication manner of the resource allocation indication is configured through signaling.
  • the aforementioned network equipment can improve the accuracy of resource allocation.
  • the transceiver 902 is configured to receive and send data under the control of the processor 901, and the transceiver 902 includes at least two antenna ports.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 901 and various circuits of the memory represented by the memory 903 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 902 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 904 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 903 can store data used by the processor 901 when performing operations.
  • some embodiments of the present disclosure also provide a network device, including a processor 901, a memory 903, a program stored in the memory 903 and running on the processor 901, and the program is executed by the processor 901
  • a network device including a processor 901, a memory 903, a program stored in the memory 903 and running on the processor 901, and the program is executed by the processor 901
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the terminal-side frequency domain resource provided by some embodiments of the present disclosure is implemented.
  • the allocation method, or when the computer program is executed by the processor, implements the frequency domain resource allocation method on the network device side provided by some embodiments of the present disclosure, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in some embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种频域资源分配方法、终端和网络设备,该方法包括:接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应;确定所述资源分配指示在所述BWP中所指示的频域资源。

Description

频域资源分配方法、终端和网络设备
相关申请的交叉引用
本申请主张在2019年4月3日在中国提交的中国专利申请号No.201910268119.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种频域资源分配方法、终端和网络设备。
背景技术
在一些通信通信系统(例如:5G系统)中非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。在非授权频段网络设备或者终端在配置的带宽部分(bandwidth part,BWP)上传输前也需要进行信道侦听。但网络侧如何为终端分配BWP中的频域资源尚未定义,使得资源分配精确度差。
发明内容
本公开实施例提供一种频域资源分配方法、终端和网络设备,以解决资源分配精确度差的问题。
第一方面,本公开的一些实施例提供一种频域资源分配方法,应用于终端,包括:
接收资源分配指示,所述资源分配指示与所述终端配置的带宽部分(bandwidth part,BWP)的参数对应;
确定所述资源分配指示在所述BWP中所指示的频域资源。
第二方面,本公开的一些实施例提供一种频域资源分配方法,应用于网络设备,包括:
发送资源分配指示,所述资源分配指示与终端配置的BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
第三方面,本公开的一些实施例提供一种终端,包括:
接收模块,用于接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应;
确定模块,用于确定所述资源分配指示在所述BWP中所指示的频域资源。
第四方面,本公开的一些实施例提供一种网络设备,包括:
发送模块,用于发送资源分配指示,所述资源分配指示与终端配置的BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
第五方面,本公开的一些实施例提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开的一些实施例提供的终端侧的频域资源分配方法中的步骤。
第六方面,本公开的一些实施例提供一种网络设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现本公开的一些实施例提供的网络设备侧的频域资源分配方法中的步骤。
第七方面,本公开的一些实施例提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本公开的一些实施例提供的终端侧的频域资源分配方法中的步骤,或者,所述计算机程序被处理器执行时实现本公开的一些实施例提供的网络设备侧的频域资源分配方法中的步骤。
本公开的一些实施例中,接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应;确定所述资源分配指示在所述BWP中所指示的频域资源。这样,可以实现为终端分配BWP中的频域资源,以提高资源分配的精确度。
附图说明
图1是本公开的一些实施例可应用的网络系统的结构图;
图2是本公开的一些实施例提供的频域资源分配方法的流程图;
图3是本公开的一些实施例提供的interlace的示意图;
图4是本公开的一些实施例提供的侦听子带组的划分的示意图;
图5是本公开的一些实施例提供的频域资源分配方法的另一流程图;
图6是本公开的一些实施例提供的终端的结构图;
图7是本公开的一些实施例提供的网络设备的结构图;
图8是本公开的一些实施例提供的终端的另一结构图;以及
图9是本公开的一些实施例提供的网络设备的另一结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开的一些实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开的一些实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开的一些实施例提供的频域资源分配方法、终端和网络设备可以应用于无线通信系统中。该无线通信系统可以为非授权频段新空口(New Radio unlicensed,NRU)系统,或者其他系统的非授权频段,例如:演进型长期演进(Evolved Long Term Evolution,eLTE)系统的非授权频段或者长期演进(Long Term Evolution,LTE)系统的非授权频段,或者后续演进通信系统的非授权频段等。
请参见图1,图1是本公开的一些实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或者机器人等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端11的具体类型。上述网络设备12可以是4G基站,或者5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开的一些实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开的一些实施例提供的一种频域资源分配方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201、接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应。
步骤201可以是接收网络设备发送的资源分配指示,该资源分配指示用于为上述终端分配频域资源。另外,上述资源分配指示可以是通过下行控制信息(Downlink Control Information,DCI)或者高层信令等信令发送的。
上述终端配置的BWP可以是网络设备为该终端配置的BWP,另外,上述终端配置的BWP可以是终端激活的BWP。
上述资源分配指示与所述终端配置的BWP的参数对应可以是,上述资源分配指示的指示方式与上述BWP的参数对应,或者可以是,上述资源分配指示的指示内容与上述BWP的参数对应。另外,上述资源分配指示与所述终端配置的BWP的参数对应可以理解为,网络设备根据该终端配置的BWP的参考为该终端配置的资源分配指示。
本公开的一些实施例中,BWP的参数可以是子载波间隔,或者可以是带 宽等参数。
步骤202、确定所述资源分配指示在所述BWP中所指示的频域资源。
其中,上述频域资源可以包括:交织单元(interlace)、资源块(Resource Block,RB)或者资源块组(Resource Block Group,RBG),从而以interlace、RB或者RBG为颗粒度进行资源分配,以提高资源分配的精确度。
需要说明的是,本公开的一些实施例中,在一些实施方式或者举例中以频域资源为interlace进行说明,而RB和RBG可以参见interlace的相应说明,以避免重复。
需要说明的是,本公开的一些实施例中,一个interlace可以包括间隔开的多个RB,例如:多个物理资源模块(Physical Resource Block,PRB),可选的,一个interlace可以包括多个等间隔的PRB。以BWP为20MHz带宽,15kHz子载波间隔(Sub carrier spacing,SCS)情况下为例,interlace的设计可以如图3所示,其中interlace 0,1,2,3,4,5,每个interlace包含11个PRB,interlace 6,7,8,9,每个interlace包含10个PRB。例如:Interlace 0包含PRB 0,10,20…90,100。Interlace 9包含PRB 9,19,29…89,99。
上述资源分配指示在所述BWP中所指示的频域资源可以是一个或者多个频域资源,且在多个的情况下,所指示的频域资源可以是连续或者非连续的频域资源,例如:以interlace为例,上述资源分配指示所指示的interlace可以是一个或者多个interlace,且在多个的情况下,所指示的interlace可以是连续的多个interlace,或者非连续的interlace。
另外,上述指示的频域资源可以是上行频域资源或者下行频域资源。
本公开的一些实施例中,通过上述步骤可以实现为终端分配BWP中的频域资源,以提高资源分配的精确度,例如:可以实现在interlace结构下的资源分配。且由于获取与终端配置的BWP的参数对应的资源分配指示,从而实现灵活地进行资源分配,以提高资源分配的灵活性。
作为一种可选的实施方式,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
该实施方式中,可以实现资源分配指示与终端配置的BWP的子载波间隔对应,以提高资源分配的灵活性,例如:资源分配指示的指示方式与子载波 间隔对应,具体可以是根据不同的子载波间隔,采用不同的方式指示分配给终端的interlace。
可选的,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以资源指示值(resource indication Value,RIV)方式进行资源指示;或者
在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以位图(bitmap)的形式进行资源指示;
其中,所述第一子载波间隔小于所述第二子载波间隔。
上述第一子载波间隔可以是15kHz或者其他小于第二子载波间隔的子载波间隔,上述第二子载波间隔可以是30kHz,或60kHz等。
其中,上述RIV方式进行资源指示可以是通过RIV指示分配给终端的起始interlace编号和连续的interlace个数。
而上述bitmap的形式进行资源指示可以是,bitmap的长度等于interlace的数目,从而通过bitmap指示分配给终端的interlace。
该实施方式中,可以实现在子载波间隔比较小的情况下:采用RIV方式指示为终端配置的interlace,这样可以提供一定的资源分配灵活性并可以节约信令开销。例如:当子载波间隔为15kHz时,网络设备采用RIV的形式,指示分配给终端的起始interlace编号和连续的interlace个数。
需要说明的是这里的RIV的形式指示通过联合编码起始interlace编号分配的连续interlace的数目的方式指示分配的interlace,也可以叫作interlace indicator value,即IIV,类似于相关技术中的通过联合编码起始RBG编号分配的连续RBG的数目的方式指示分配的RBG的方式。
另外,上述实施方式中,可以实现在子载波间隔比较大的情况下:采用bitmap指示配给终端的interlace,从而实现连续或者非连续的interlace分配,以进一步提高提高资源分配的灵活性。例如:当子载波间隔为30kHz,或60kHz时,采用bitmap的形式指示分配给终端的interlace。其中bitmap的长度等于interlace的数目,即子载波间隔为30kHz时,5个interlace,采用5-bit的bitmap指示,或者,子载波间隔为60kHz时,2/3个interlace,采用2/3-bit的bitmap指示。
下面以第一子载波间隔为15kHz,第二子载波间隔为30kHz进行举例说明:
根据BWP配置的载波间隔,DCI中的频域资源分配(Frequency Domain Resource Allocation,FDRA)域的比特数不同,例如:在频域资源分配域中使用5或6比特提供上行时隙中的交织单元资源分配(Frequency domain resource assignment–5 or 6 bits provide the interlace allocation in the UL slot),其中SCS为15kHz时,采用为6bit,30kHz时为5bit。
例如:当子载波间隔为15kHz时,网络设备采用RIV的形式,指示分配给终端的起始interlace编号和连续的interlace个数,具体的:
当子载波间隔为15kHz时,共有10个interlace。需要
Figure PCTCN2020082075-appb-000001
Figure PCTCN2020082075-appb-000002
RIV来指示分配给终端的interlace。终端先可以根据RIV确定分配的interlace,即根据RIV确定起始interlace编号Interlace start和分配的连续的interlace数L,确定分配的interlace编号为Interlace start+l,其中l=0,1,…,L-1,然后确定分配给终端的RB为
Interlace start+l+i·N,
其中
Figure PCTCN2020082075-appb-000003
且对于每个
Figure PCTCN2020082075-appb-000004
其中,
Figure PCTCN2020082075-appb-000005
表示分配的编号为Interlace start+l的interlace中包含的RB数。0≤RIV<N(N+1)/2,且RIV值对应起始interlace编号Interlace start和interlace个数L(L≥1).RIV值定义为
Figure PCTCN2020082075-appb-000006
通过上述方式可以准确地确定RIV指示的interlace,且可以节省信令开销。
又例如:当带宽为20MHz,子载波间隔为15kHz时,
Figure PCTCN2020082075-appb-000007
Figure PCTCN2020082075-appb-000008
当RIV值为10时,可确定Interlace start=0,L=1,即网络设备将interlace 0分配给终端,对应的RB索引为Interlace start+l+i·N,其中l=0,
Figure PCTCN2020082075-appb-000009
Figure PCTCN2020082075-appb-000010
(例如:按照图3所示interlace 0中包含11个PRB),即i=0,1,…,10,可得到分配的RB索引为0,10,20,…,100.
当RIV值为15,可确定Interlace start=5,L=2,即网络设备将interlace 5,interlace 6分配给终端,按照图3所示,interlace 5中包含11个RB,即
Figure PCTCN2020082075-appb-000011
interlace 6中包含10个RB,即
Figure PCTCN2020082075-appb-000012
对应的RB索引为Interlace start+l+i·N,其中l=0,1,当l=0时
Figure PCTCN2020082075-appb-000013
当l=1时
Figure PCTCN2020082075-appb-000014
可得到分配的RB索引为5,6,15,16,25,…,,95,96,105。
需要说明的是,本公开的一些实施例中并不限定通过上述方式RIV确定所指示的interlace,例如:可以参考RIV指示RB的方式来确定RIV所指示的interlace,或者,又例如:可以预先设定RIV值与起始interlace和interlace个数的映射关系,通过该映射关系确定其指示的interlace。
当子载波间隔为30kHz,或60kHz时,采用bitmap的形式指示分配给终端的interlace。其中bitmap的长度等于interlace的数目,即:
子载波间隔为30kHz时,5个interlace,采用5-bit的bitmap指示;
子载波间隔为60kHz时,2/3个interlace,采用2/3-bit的bitmap指示。
当子载波间隔为30kHz时,共有5个interlace。需要5-bit bitmap来指示分配给终端的interlace。资源分配域中的bitmap指示分配interlace编号l的bitmap,其中interlace编号l=0,1,2,3,4.Interlace集合映射到bitmap bit的顺序是l=0到l=4分别对应bitmap的最高有效位(Most Significant Bit,MSB)到最低有效位(Least Significant Bit,LSB),如果bitmap中对应的比特位1则表示相应的Interlace分配给该终端,否则表示没有分配给该终端。例如10100,则表示interlace 0,2分配给终端,其余没有分配给终端。
作为一种可选的实施方式,上述参数包括带宽。
需要说明的是,该实施方式中,上述频域资源可以是interlace、RB或者RBG,也就是说,该实施方式中,通过终端配置的BWP的带宽对应的资源分配指示为终端分配BWP中的interlace、RB或者RBG。
该实施方式中,可以实现资源分配指示与终端配置的BWP的带宽对应,以提高资源分配的灵活性,例如:资源分配指示的指示方式与带宽对应,具体可以是根据不同的带宽,采用不同的方式指示分配给终端的interlace、RB或者RBG。
可选的,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
为所述终端分配的侦听子带;
在所述侦听子带上为所述终端分配的频域资源。
另外,上述第一带宽值可以是网络设备配置的,或者协议中定义的,或者终端与网络设备预先设定的,例如:上述第一带宽值可为20MHz,这样可以实现在终端配置的BWP带宽大于20MHz时,通过上述方式指示终端分配的频域资源。进一步的,上述第一带宽值可以是大于侦听子带的带宽值。
其中,上述为所述终端分配的侦听子带可以是为终端配置的BWP包含的一个或者多个侦听子带,上述侦听子带上为所述终端分配的频域资源可以是,为这一个或者多个侦听子带分配的相同或者不同的interlace、RB或者RBG。
本公开的一些实施例中,侦听子带可以是先听后说侦听子带(Listen Before Talk subband,LBT subband)。
该实施方式中,由于在带宽大于第一带宽值的情况下,资源分配指示用于指示侦听子带和侦听子带上为所述终端分配的频域资源,如interlace、RB或者RBG,以实现灵活进行资源分配,且由于网络侧可以根据侦听子带的信道状况指示信道条件好的侦听子带,这样可以降低终端侦听的复杂度,以节约终端的功耗。
当然,本公开的一些实施例中,在所述带宽小于或者等于上述第一带宽值的情况下,所述资源分配指示可以指示为所述终端分配的频域资源,如interlace、RB或者RBG,而不需要指示侦听子带,以实现灵活进行资源分配,并降低信令开销。
需要说明的是,上述实施方式中指示频域资源可以通过RIV或者bitmap的指示方式指示频域资源。进一步的,在频域资源为interlace的情况下,可以与上述提供的子载波间隔的实施方式结合实现,例如:在子载波间隔为第 一子载波间隔的情况下,以RIV方式指示interlace;或者,在子载波间隔为第二子载波间隔的情况下,以bitmap的形式指示interlace。另外,上述指示侦听子带和interlace可以是通过信令的同一信息域进行指示并可以进行联合编码,或者通过信令的不同两个信息域进行指示。
需要说明的是,上述实施方式中指示频域资源可以通过RIV或者bitmap的指示方式指示频域资源。进一步的,在频域资源为RB或者RBG的情况下,可以RB或者RBG的编号可以是在整个BWP内同一编号或者是相对于LBTsubband起始RB或者RBG的偏移值。当通过RIV或者bitmap的指示方式指示的RB或者RBG是相对于LBT subband起始RB或者RBG的的偏移值时,可以减少RIV或者bitmap的比特开大小。
需要说明的是,在上述实施方式中,在带宽大于第一带宽值的情况下,资源分配指示可以通过多个指示方式灵活地指示侦听子带和侦听子带上为所述终端分配的频域资源。
例如:方式一:所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
方式二:所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
方式三:所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
上述指示内容可以是RIV或者bitmap值的形式。
在上述方式一中,可以实现为M个侦听子带分配相同的频域资源,且可以节约信令开销。例如:以频域资源为interlace为例,网络设备指示分配给终端的LBT subband和一个RIV/bitmap值,即当终端分配了多个LBT subband时,在每个LBT subband上分配的interlace相同。
在上述方式二,可以实现为每个指示的侦听子带指示对应的频域资源,以提高资源分配的灵活性。例如:以频域资源为interlace为例,网络设备指示分配给终端的LBT subband和每个LBT subband的RIV/bitmap值,即当终端配了多个LBT subband时,在每个LBT subband上分配的interlace可以不同或者相同。
在上述方式三中,可以实现指示N个侦听子带组,以及分别指示每个侦听子带组的频域资源,这样由于划分为不同的侦听子带组,既考虑了资源分配的灵活性又节省了比特数。例如:以频域资源为interlace为例,当终端配置的BWP大于等于某一带宽值(可以采用X表示)时,将BWP内包含的LBT subband划分为N个LBT subband group,每个LBT subband group内采用不同的RIV/bitmap指示interlace。
通过上述三种方式,可以为终端分配不同的侦听子带并为各侦听子带指示相应的频域资源,例如:为终端分配不同的侦听子带并为各侦听子带指示相应的interlace、RB或者RBG。即终端配置了宽带传输时,网络设备可以通过上述方式一、方式二或者方式三为每个侦听子带指示连续分配/非连续分配的interlace、RB或者RBG。
需要说明的是,上述三种方式可以根据终端配置BWP的带宽确定采用具体的方式。例如:在一种具体的实施方式中:
在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第二带宽值大于所述第一带宽值。
上述第二带宽值可以是网络设备配置的,或者协议中定义的,或者终端与网络设备预先设定的,例如:上述第一带宽值可为40MHz、60MHz或者80MHz。
该实施方式中,可以实现带宽较窄时,各侦听子带的采用相同的频域资源指示,节省比特数,降低信令大小,带宽较大时,不同子带的频域资源使用情况可能不同,分别指示不同子带的频域资源,以提高调度灵活。
例如:在另一种具体的实施方式中:
在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第三带宽值大于所述第一带宽值。
上述第三带宽值可以是网络设备配置的,或者协议中定义的,或者终端与网络设备预先设定的,例如:上述第一带宽值可为40MHz、60MHz或者80MHz。进一步的,上述第三带宽值与上述第二带宽值可以是同一个或者不同的带宽值。
该实施方式中,可以实现在带宽较窄时,各侦听子带的采用不同的频域资源指示,由于侦听子带个数不多,所需比特数在可接受范围内,灵活调度,在带宽较大时,各侦听子带或各侦听子带组采用相同的频域资源指示,节省比特数,降低信令大小。
下面以第一带宽值为20MHz,频域资源为interlace进行举例说明:
当终端配置的BWP带宽大于20MHz时,通过如下方式指示终端分配的频域资源:
方式一:网络设备指示分配给终端的各侦听子带和一个RIV/bitmap值,即当终端分配了多个侦听子带时,在每个侦听子带上分配的interlace相同;
方式二:网络设备指示分配给终端的侦听子带和每个侦听子带的RIV/bitmap值,即当终端分配了多个侦听子带时,在每个侦听子带上分配的interlace可以不同;
进一步的,可以根据终端配置的带宽确定采用方式一或者方式二或者方式三,例如:当终端配置的BWP小于等于X(例如:上述第二带宽值或者上述第三带宽值)时采用方式一,否则采用方式二或者方式三;
进一步的,网络设备通过高层信令配置采用方式一或者方式二或者方式三。
例如:终端配置的BWP为40MHz,网络设备可以通过bitmap的形式指示分配给终端的LBT subband。
这样,在方式一中:网络设备在调度终端时,指示分配给11,即表示40MHz BWP内的两个LBT subband都分配给了终端,一个RIV/bitmap值给出了分配interlace,如interlace 0,1,则表示在2个LBT subband上终端都使用相同
这样,在方式二中:网络设备在调度终端时,指示分配给11,即表示40MHz BWP内的两个LBT subband都分配给了终端,每个LBT subband都有对应的RIV/bitmap值给出了分配interlace,例如LBT subband 0上分配interlace 0,LBT subband 1上分配interleace 0和interleace1
方式三:当终端配置的BWP大于等于X(例如:上述第二带宽值或者上述第三带宽值)时,将BWP内包含的LBT subband划分为N个LBT subband group,每个LBT subband group内采用不同的RVI/bitmap。
当终端配置的BWP所含LBT subband的数较多时,如80MHz,120MHz,如果采用方式二给出每个LBT subband的RIV/bitmap则需要较多的比特数,增加了DCI的大小。则可以将多个LBT subband划分为不同的组,即LBT subband group,每个组采用一个RIV/bitmap指示分配的interlace。例如80MHz,120MHz分别包含4,6个LBT suband,如图4所示,将多个LBT subband划分为2组,每组分别包含2,3个LBT subband。
作为一种可选的实施方式,所述资源分配指示的指示方式通过信令配置。这样终端可以准确地解析所指示频域资源,以及侦听子带。例如:网络设备通过高层信令或者物理层信令配置资源分配指示的指示方式,例如:指示上述方式一、方式二或者方式三,或者指示上述RIV或者bitmap的形式。
当然,本公开的一些实施例中,并不限定通过信令来配置指示方式,例如:预先约定或者协议定义根据带宽或者子载波间隔确定相应的指示方式。
本公开的一些实施例中提供的频域资源分配方法可以实现获取与终端配置的BWP的参数对应的资源分配指示,以指示BWP中的频域资源,从而提高资源分配的精确度,且还可以灵活地进行资源分配,例如:在一些情况下,通过分别连续或者非连接的interlace,或者为不同的侦听子带配置各自对应的interlace等;以及还可以节约信令,例如:通过RIV指示多个interlace,或者为对侦听子带进行划分侦听子带组,或者通过1个指示内容指示多个侦听子带上的interlace等。具体的,以频域资源为interlace为例,在NRU系统本公开的一些实施例提供的上述频域资源分配方式可以实现如下:
一、根据不同的子载波间隔,采用不同的方式指示分配给终端的interlace
例如:当子载波间隔为15kHz时,网络设备采用RIV的形式,指示分配给终端的起始interlace编号和连续的interlace个数
例如:当子载波间隔为30kHz,或60kHz时,采用bitmap的形式指示分配给终端的interlace。其中bitmap的长度等于interlace的数目,即:
子载波间隔为30kHz时,5个interlace,采用5-bit的bitmap指示;
子载波间隔为60kHz时,2/3个interlace,采用2/3-bit的bitmap指示。
二、当终端配置的BWP带宽大于20MHz时,通过如下方式指示终端分配的频域资源:
方案一:网络设备指示分配给终端的LBT subband和一个RIV/bitmap值,即当终端分配了多个LBT subband是,在每个LBT subband上分配的interlace相同;
方案二:网络设备指示分配给终端的LBT subband和每个LBT subband的RIV/bitmap值,即当终端分配了多个LBT subband是,在每个LBT subband上分配的interlace可以不同;
方案三:根据终端配置的带宽确定采用方案一或方案二,例如:当终端配置的BWP大于等于X时采用方案一否则采用方案二;
方案四:网络设备通过高层信令配置采用方案一或方案二;
方案五:当终端配置的BWP大于等于X时,将BWP内包含的LBT subband划分为N个LBT subband group,每个LBT subband group内采用不同的RVI/bitmap。
本公开的一些实施例可以给出NRU系统中interlace信道结构下,上行资源分配的方法,以在不同的子载波间隔下使用不同的指示方式以及宽带情况下频域资源的指示方式,即考虑了调度的灵活性有节省了信令开销。
请参见图5,图5是本公开的一些实施例提供的另一种频域资源分配方法的流程图,该方法应用于网络设备,如图5所示,包括以下步骤:
步骤501、发送资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
可选的,所述频域资源包括:interlace、RB或者RBG。
可选的,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
可选的,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以RIV方式进行资源指示;或者
在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以bitmap的形式进行资源指示;
其中,所述第一子载波间隔小于所述第二子载波间隔。
可选的,所述参数包括带宽。
可选的,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
为所述终端分配的侦听子带;
在所述侦听子带上为所述终端分配的频域资源。
可选的,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
可选的,在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第二带宽值大于所述第一带宽值。
可选的,在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第三带宽值大于所述第一带宽值。
可选的,所述资源分配指示的指示方式通过信令配置。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备侧的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。本实施例中,同样可以提高资源分配的精确度。
请参见图6,图6是本公开的一些实施例提供的一种终端的结构图,如图6所示,终端600包括:
接收模块601,用于接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应;
确定模块602,用于确定所述资源分配指示在所述BWP中所指示的频域资源。
可选的,所述频域资源包括:interlace、RB或者RBG。
可选的,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
可选的,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以RIV方式进行资源指示;或者
在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以bitmap的形式进行资源指示;
其中,所述第一子载波间隔小于所述第二子载波间隔。
可选的,所述参数包括带宽。
可选的,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
为所述终端分配的侦听子带;
在所述侦听子带上为所述终端分配的频域资源。
可选的,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
可选的,在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第二带宽值大于所述第一带宽值。
可选的,在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第三带宽值大于所述第一带宽值。
可选的,所述资源分配指示的指示方式通过信令配置。
本公开的一些实施例提供的终端能够实现图2的方法实施例中终端实现 的各个过程,为避免重复,这里不再赘述,且可以提高资源分配的精确度。
请参见图7,图7是本公开的一些实施例提供的一种网络设备的结构图,如图7所示,网络设备700包括:
发送模块701,用于发送资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
可选的,所述频域资源包括:interlace、RB或者RBG。
可选的,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
可选的,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以RIV方式进行资源指示;或者
在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以bitmap的形式进行资源指示;
其中,所述第一子载波间隔小于所述第二子载波间隔。
可选的,所述参数包括带宽。
可选的,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
为所述终端分配的侦听子带;
在所述侦听子带上为所述终端分配的频域资源。
可选的,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
可选的,在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第二带宽值大于所述第一带宽值。
可选的,在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第三带宽值大于所述第一带宽值。
可选的,所述资源分配指示的指示方式通过信令配置。
本公开的一些实施例提供的网络设备能够实现图5的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述,且可以提高资源分配的精确度。
图8为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单 元808、存储器809、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、机器人、可穿戴设备、以及计步器等。
射频单元801,用于接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应;
处理器810,用于确定所述资源分配指示在所述BWP中所指示的频域资源。
可选的,所述频域资源包括:interlace、RB或者RBG。
可选的,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
可选的,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以RIV方式进行资源指示;或者
在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以bitmap的形式进行资源指示;
其中,所述第一子载波间隔小于所述第二子载波间隔。
可选的,所述参数包括带宽。
可选的,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
为所述终端分配的侦听子带;
在所述侦听子带上为所述终端分配的频域资源。
可选的,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每 个侦听子带组内包括至少一个侦听子带;
其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
可选的,在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第二带宽值大于所述第一带宽值。
可选的,在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第三带宽值大于所述第一带宽值。
可选的,所述资源分配指示的指示方式通过信令配置。
上述终端可以提高资源分配的精确度。
应理解的是,本公开的一些实施例中,射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后, 给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与终端800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
终端800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在终端800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图8中,触控面板8071与显示面板8061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与终端800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端800内的一个或多个元件或者可以用于在终端800和外部装置之间传 输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
终端800还可以包括给各个部件供电的电源811(比如电池),可选的,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端800包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器810,存储器809,存储在存储器809上并可在所述处理器810上运行的程序,该程序被处理器810执行时实现上述频域资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图9,图9是本公开的一些实施例提供的另一种网络设备的结构图,如图9所示,该网络设备900包括:处理器901、收发机902、存储器903和总线接口,其中:
收发机902,用于发送资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
可选的,所述频域资源包括:interlace、RB或者RBG。
可选的,在所述频域资源包括所述interlace的情况下,所述参数包括子 载波间隔。
可选的,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以RIV方式进行资源指示;或者
在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以bitmap的形式进行资源指示;
其中,所述第一子载波间隔小于所述第二子载波间隔。
可选的,所述参数包括带宽。
可选的,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
为所述终端分配的侦听子带;
在所述侦听子带上为所述终端分配的频域资源。
可选的,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
可选的,在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第二带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个 指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第二带宽值大于所述第一带宽值。
可选的,在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
或者,
在所述带宽大于或者等于所述第三带宽值的情况下:
所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
其中,所述第三带宽值大于所述第一带宽值。
可选的,所述资源分配指示的指示方式通过信令配置。
上述网络设备可以提高资源分配的精确度。
其中,收发机902,用于在处理器901的控制下接收和发送数据,所述收发机902包括至少两个天线端口。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器903代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机902可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口904还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器901负责管理总线架构和通常的处理,存储器903可以存储处理器901在执行操作时所使用的数据。
可选的,本公开的一些实施例还提供一种网络设备,包括处理器901, 存储器903,存储在存储器903上并可在所述处理器901上运行的程序,该程序被处理器901执行时实现上述频域资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开的一些实施例提供的终端侧的频域资源分配方法,或者,该计算机程序被处理器执行时实现本公开的一些实施例提供的网络设备侧的频域资源分配方法,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以 自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护范围之内。

Claims (25)

  1. 一种频域资源分配方法,应用于终端,包括:
    接收资源分配指示,所述资源分配指示与所述终端配置的带宽部分BWP的参数对应;
    确定所述资源分配指示在所述BWP中所指示的频域资源。
  2. 如权利要求1所述的方法,其中,所述频域资源包括:交织单元interlace、资源块RB或者资源块组RBG。
  3. 如权利要求2所述的方法,其中,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
  4. 如权利要求3所述的方法,其中,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以资源指示值RIV方式进行资源指示;或者
    在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以位图bitmap的形式进行资源指示;
    其中,所述第一子载波间隔小于所述第二子载波间隔。
  5. 如权利要求1或2所述的方法,其中,所述参数包括带宽。
  6. 如权利要求5所述的方法,其中,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
    为所述终端分配的侦听子带;
    在所述侦听子带上为所述终端分配的交织单元interlace、资源块RB或者资源块组RBG。
  7. 如权利要求6所述的方法,其中,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
    所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
    其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
  8. 如权利要求7所述的方法,其中,
    在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
    或者,
    在所述带宽大于或者等于所述第二带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
    其中,所述第二带宽值大于所述第一带宽值。
  9. 如权利要求7所述的方法,其中,
    在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
    或者,
    在所述带宽大于或者等于所述第三带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
    其中,所述第三带宽值大于所述第一带宽值。
  10. 如权利要求7所述的方法,其中,所述资源分配指示的指示方式通过信令配置。
  11. 一种频域资源分配方法,应用于网络设备,包括:
    发送资源分配指示,所述资源分配指示与终端配置的BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
  12. 如权利要求11所述的方法,其中,所述频域资源包括:interlace、RB或者RBG。
  13. 如权利要求12所述的方法,其中,在所述频域资源包括所述interlace的情况下,所述参数包括子载波间隔。
  14. 如权利要求13所述的方法,其中,在所述子载波间隔为第一子载波间隔的情况下,所述资源分配指示以RIV方式进行资源指示;或者
    在所述子载波间隔为第二子载波间隔的情况下,所述资源分配指示以bitmap的形式进行资源指示;
    其中,所述第一子载波间隔小于所述第二子载波间隔。
  15. 如权利要求11或12所述的方法,其中,所述参数包括带宽。
  16. 如权利要求15所述的方法,其中,在所述带宽大于第一带宽值的情况下,所述资源分配指示用于指示如下内容:
    为所述终端分配的侦听子带;
    在所述侦听子带上为所述终端分配的频域资源。
  17. 如权利要求16所述的方法,其中,所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者
    所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
    其中,所述M为大于或者等于1的整数,所述N为小于或者等于所述M的整数。
  18. 如权利要求17所述的方法,其中,
    在所述带宽大于所述第一带宽值,且小于第二带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1 个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;
    或者,
    在所述带宽大于或者等于所述第二带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
    其中,所述第二带宽值大于所述第一带宽值。
  19. 如权利要求17所述的方法,其中,
    在所述带宽大于所述第一带宽值,且小于第三带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过M个指示内容,分别指示每个侦听子带上为所述终端分配的频域资源;
    或者,
    在所述带宽大于或者等于所述第三带宽值的情况下:
    所述资源分配指示用于指示为所述终端分配的M个侦听子带,且通过1个指示内容,指示在所述M个侦听子带上为所述终端分配的频域资源;或者,所述资源分配指示用于指示为所述终端分配的N个侦听子带组,且通过N个指示内容,分别指示每个侦听子带组上为所述终端分配的频域资源,每个侦听子带组内包括至少一个侦听子带;
    其中,所述第三带宽值大于所述第一带宽值。
  20. 如权利要求17所述的方法,其中,所述资源分配指示的指示方式通过信令配置。
  21. 一种终端,包括:
    接收模块,用于接收资源分配指示,所述资源分配指示与所述终端配置的BWP的参数对应;
    确定模块,用于确定所述资源分配指示在所述BWP中所指示的频域资源。
  22. 一种网络设备,包括:
    发送模块,用于发送资源分配指示,所述资源分配指示与终端配置的 BWP的参数对应,所述资源分配指示用于指示所述BWP中的频域资源。
  23. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至10中任一项所述的频域资源分配方法中的步骤。
  24. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求11至20中任一项所述的频域资源分配方法中的步骤。
  25. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的频域资源分配方法中的步骤,或者,所述计算机程序被处理器执行时实现如权利要求11至20中任一项所述的频域资源分配方法中的步骤。
PCT/CN2020/082075 2019-04-03 2020-03-30 频域资源分配方法、终端和网络设备 WO2020200167A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021558870A JP7402250B2 (ja) 2019-04-03 2020-03-30 周波数領域リソース割り当て方法、端末及びネットワーク機器
SG11202110967XA SG11202110967XA (en) 2019-04-03 2020-03-30 Frequency domain resource allocation method, terminal, and network device
BR112021019698A BR112021019698A2 (pt) 2019-04-03 2020-03-30 Método de alocação de recursos de domínio de frequência, terminal e dispositivo de rede.
EP20783654.5A EP3952529A4 (en) 2019-04-03 2020-03-30 METHOD, TERMINAL AND NETWORK EQUIPMENT FOR FREQUENCY DOMAIN RESOURCE ALLOCATION
KR1020217035944A KR20210147035A (ko) 2019-04-03 2020-03-30 주파수 영역 자원 할당 방법, 단말 및 네트워크 장치
US17/491,674 US11917685B2 (en) 2019-04-03 2021-10-01 Frequency domain resource allocation method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910268119.XA CN111278127B (zh) 2019-04-03 2019-04-03 一种频域资源分配方法、终端和网络设备
CN201910268119.X 2019-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/491,674 Continuation US11917685B2 (en) 2019-04-03 2021-10-01 Frequency domain resource allocation method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020200167A1 true WO2020200167A1 (zh) 2020-10-08

Family

ID=71000034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082075 WO2020200167A1 (zh) 2019-04-03 2020-03-30 频域资源分配方法、终端和网络设备

Country Status (8)

Country Link
US (1) US11917685B2 (zh)
EP (1) EP3952529A4 (zh)
JP (1) JP7402250B2 (zh)
KR (1) KR20210147035A (zh)
CN (1) CN111278127B (zh)
BR (1) BR112021019698A2 (zh)
SG (1) SG11202110967XA (zh)
WO (1) WO2020200167A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277384B (zh) * 2019-02-27 2021-09-14 维沃移动通信有限公司 传输资源指示方法、传输方法、网络设备和终端
WO2020223667A1 (en) * 2019-05-02 2020-11-05 Apple Inc. Enhancements of frequency domain resource allocation schemes for physical uplink shared channel in nr-unlicensed
WO2021066546A1 (ko) * 2019-10-04 2021-04-08 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021258380A1 (en) * 2020-06-25 2021-12-30 Qualcomm Incorporated Allocating frequency domain resources for multiple component carrier communication
CN113972973B (zh) * 2020-07-24 2024-03-26 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN116530151A (zh) * 2020-10-14 2023-08-01 苹果公司 无线通信中的上行链路数据传输
CN117040706A (zh) * 2022-04-29 2023-11-10 大唐移动通信设备有限公司 一种dci确定方法、设备及装置
CN117397189A (zh) * 2022-05-12 2024-01-12 北京小米移动软件有限公司 资源分配方法/装置/设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置
CN107370580A (zh) * 2016-05-11 2017-11-21 中兴通讯股份有限公司 上行信道信息和/或信号的发送方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3934357B1 (en) * 2016-08-11 2024-05-15 Samsung Electronics Co., Ltd. Method and apparatus of data transmission in next generation cellular networks
CN112737753B (zh) * 2017-06-09 2022-02-15 华为技术有限公司 一种信号传输方法、相关设备及系统
CN109150374B (zh) * 2017-06-16 2021-08-06 中国移动通信有限公司研究院 一种控制信道的资源指示、检测方法、设备及存储介质
CN109428697B (zh) * 2017-08-25 2021-12-28 华为技术有限公司 数据传输方法、网络设备及终端设备
KR20230046757A (ko) * 2021-09-30 2023-04-06 삼성전자주식회사 통신 시스템에서 제어 정보 및 데이터를 송수신하기 위한 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置
CN107370580A (zh) * 2016-05-11 2017-11-21 中兴通讯股份有限公司 上行信道信息和/或信号的发送方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Feature lead summary for UL Signals and Channel", 3GPP DRAFT; R1-1903338, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 12, XP051601015 *
ERICSSON: "UL signals and channels for NR-U", 3GPP DRAFT; R1-1904334, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 9, XP051691434 *
HUAWEI; HISILICON: "UL channels and signals in NR unlicensed band", 3GPP DRAFT; R1-1903927, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 15, XP051691169 *
See also references of EP3952529A4 *

Also Published As

Publication number Publication date
US20220022256A1 (en) 2022-01-20
BR112021019698A2 (pt) 2021-12-14
SG11202110967XA (en) 2021-11-29
JP7402250B2 (ja) 2023-12-20
KR20210147035A (ko) 2021-12-06
US11917685B2 (en) 2024-02-27
JP2022527969A (ja) 2022-06-07
EP3952529A4 (en) 2022-06-08
CN111278127A (zh) 2020-06-12
CN111278127B (zh) 2022-08-02
EP3952529A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020200167A1 (zh) 频域资源分配方法、终端和网络设备
WO2021093754A1 (zh) 上行资源确定方法、指示方法、终端和网络设备
WO2021017948A1 (zh) Dci传输方法和通信设备
WO2021027483A1 (zh) 调度方法、网络设备及终端
CN111130728A (zh) 一种传输方法、终端及网络侧设备
CN111148261B (zh) 上行传输方法、用户设备和网络侧设备
WO2021088799A1 (zh) 资源分配方法、装置、用户设备、网络设备及介质
WO2020199993A1 (zh) 传输方法、终端设备及网络侧设备
JP7229364B2 (ja) 非許可スケジューリング配置の方法、端末及びネットワーク側機器
WO2021208879A1 (zh) 资源确定方法、指示方法及设备
JP7278397B2 (ja) 伝送リソース指示方法、伝送方法、ネットワーク機器及び端末
CN110972320B (zh) 接收方法、发送方法、终端及网络侧设备
US20220174701A1 (en) Information processing method, device, and computer-readable storage medium
WO2021208878A1 (zh) 资源确定方法、指示方法及设备
CN113162738B (zh) 一种上行传输方法、装置、设备及存储介质
WO2020238964A1 (zh) 资源映射方法及用户设备
WO2021143602A1 (zh) 定时确定方法及通信设备
CN113473604A (zh) 一种资源选择方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019698

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217035944

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020783654

Country of ref document: EP

Effective date: 20211103

ENP Entry into the national phase

Ref document number: 112021019698

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210930