WO2021088750A1 - Harq-ack码本生成方法、信息发送方法及设备 - Google Patents

Harq-ack码本生成方法、信息发送方法及设备 Download PDF

Info

Publication number
WO2021088750A1
WO2021088750A1 PCT/CN2020/125771 CN2020125771W WO2021088750A1 WO 2021088750 A1 WO2021088750 A1 WO 2021088750A1 CN 2020125771 W CN2020125771 W CN 2020125771W WO 2021088750 A1 WO2021088750 A1 WO 2021088750A1
Authority
WO
WIPO (PCT)
Prior art keywords
dai
pdsch
group
groups
dci
Prior art date
Application number
PCT/CN2020/125771
Other languages
English (en)
French (fr)
Inventor
曾超君
李娜
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20885427.3A priority Critical patent/EP4057558A4/en
Priority to BR112022008026A priority patent/BR112022008026A2/pt
Priority to JP2022524653A priority patent/JP2022553991A/ja
Priority to KR1020227016700A priority patent/KR20220079991A/ko
Publication of WO2021088750A1 publication Critical patent/WO2021088750A1/zh
Priority to US17/732,356 priority patent/US20220256586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a HARQ-ACK codebook generation method, an information transmission method, a terminal, and a network side device.
  • the UE When the UE organizes the HARQ-ACK bit sequence that needs to be reported at a certain feedback moment, the UE is based on the predefined rules and the physical downlink shared channel (Physical Downlink Shared Channel) on a single or multiple carriers that needs to report HARQ-ACK at this feedback moment.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • Channel, PDSCH Physical Downlink Shared Channel
  • HARQ-ACK Codebook includes: semi-static codebook and dynamic codebook.
  • the HARQ-ACK Codebook is generally transmitted on the PUCCH, but when the PUCCH transmission and a certain PUSCH transmission overlap in the time domain, part or all of the UCI carried on the PUCCH will be multiplexed onto the PUSCH for transmission.
  • the DAI corresponding to the HARQ-ACK Codebook for multiplexed transmission can be indicated in the DCI format 0_1 of the scheduling PUSCH, which can be called UL DAI.
  • the terminal can be configured to perform HARQ-ACK feedback of up to two PDSCH groups through a dynamic codebook, and when there is only a single or single group of UL DAI in the uplink DCI format 0_1, how this UL DAI is used to generate the dynamic codebook , There is currently no corresponding solution.
  • the embodiments of this application provide a HARQ-ACK codebook generation method, an information transmission method, a terminal, and a network side device to solve how to generate a dynamic codebook for HARQ-ACK feedback of up to two PDSCH groups based on UL DAI problem.
  • an embodiment of the present application provides a HARQ-ACK codebook generation method, and the method includes:
  • the second DAI determine the second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups
  • the dynamic codebook includes HARQ-ACK bit sequences of the N PDSCH groups, and N is a positive integer.
  • an embodiment of the present application provides an information sending method, and the method includes:
  • the dynamic codebook contains HARQ-ACK bit sequences of N physical downlink shared channel PDSCH groups, and N is a positive integer.
  • an embodiment of the present application also provides a terminal, and the terminal includes:
  • a receiving module configured to receive first downlink control information DCI used to schedule a first physical uplink shared channel PUSCH, where the first DCI includes the first DAI;
  • a determining module configured to determine a second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups according to the first DAI;
  • a generating module configured to generate a dynamic codebook transmitted on the first PUSCH according to the determined N second DAIs
  • the dynamic codebook includes HARQ-ACK bit sequences of the N PDSCH groups, and N is a positive integer.
  • an embodiment of the present application also provides a network-side device, and the network-side device includes:
  • a sending module configured to send first downlink control information DCI used to schedule a first physical uplink shared channel PUSCH, where the first DCI includes a first DAI, and the first DAI is used for transmission on the first PUSCH.
  • the dynamic codebook contains HARQ-ACK bit sequences of N physical downlink shared channel PDSCH groups, and N is a positive integer.
  • an embodiment of the present application also provides a terminal.
  • the terminal includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor, and the computer program is executed by the processor. When executed, the steps of the HARQ-ACK codebook generation method as described above are realized.
  • the embodiments of the present application also provide a network-side device.
  • the network-side device includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is The processor implements the steps of the information sending method as described above when executed.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the above-mentioned HARQ-application to the terminal is realized.
  • the first DCI used to schedule the first physical uplink shared channel PUSCH, where the first DCI includes the first DAI
  • it may determine N according to the first DAI.
  • the embodiment of the present application provides a solution for generating a dynamic codebook containing the HARQ-ACK bit sequence of the N PDSCH groups based on the first DAI, thereby ensuring the reliability of the transmission of the dynamic codebook and avoiding Or reduce the impact on the decoding of other information multiplexed and transmitted on the PUSCH.
  • Fig. 1 is a structural diagram of a network system applicable to an embodiment of the present application
  • Fig. 2 is a flowchart of a HARQ-ACK codebook generation method provided by an embodiment of the present application
  • FIG. 3 is a flowchart of an information sending method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of transmission of a dynamic codebook provided by an embodiment of the present application.
  • FIG. 5 is one of the structural diagrams of a terminal provided by an embodiment of the present application.
  • FIG. 6 is one of the structural diagrams of the network side device provided by the embodiment of the present application.
  • FIG. 7 is the second structural diagram of the terminal provided by the embodiment of the present application.
  • FIG. 8 is the second structural diagram of the network side device provided by the embodiment of the present application.
  • FIG. 1 is a structural diagram of a network system applicable to the embodiment of the present application. As shown in FIG. 1, it includes a terminal 11 and a network-side device 12, where the terminal 11 and the network-side device 12 can To communicate.
  • the terminal 11 may also be referred to as User Equipment (UE).
  • UE User Equipment
  • the terminal 11 can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), a personal digital assistant (PDA), a mobile Internet device (Mobile Internet Device, MID), Wearable devices (Wearable Device) or in-vehicle devices, etc.
  • the network side device 12 may be a base station, a relay, or an access point. Further, the base station may be a 5G base station (gNB), or a base station in other communication systems (such as an evolved base station (Evolutional Node B, eNB)), etc.
  • gNB 5G base station
  • eNB evolved base station
  • New Radio (NR) hybrid automatic repeat request response Hybrid Automatic Repeat reQuest Acknowledgement, HARQ-ACK dynamic codebook.
  • the UE When the UE organizes the HARQ-ACK bit sequence that needs to be reported at a certain feedback moment, the UE is based on the predefined rules and the physical downlink shared channel (Physical Downlink Shared Channel) on a single or multiple carriers that needs to report HARQ-ACK at this feedback moment.
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • Channel, PDSCH Physical Downlink Shared Channel
  • DCI Downlink Control Information
  • SPS Semi-Persistent Scheduling
  • HARQ-ACK Codebook includes: semi-static codebook (Type-1) and dynamic codebook (Type-2). Among them, the former provides feedback for all possible DCI indications and PDSCH transmission, which is mainly used to ensure transmission reliability and has a large feedback overhead; the latter only provides feedback for actual DCI indications and PDSCH transmission, and the feedback overhead is small. The transmission reliability will be affected to a certain extent when the missed detection is more common.
  • the dynamic codebook counts the downlink assignment index (Downlink Assignment Index, DAI) of actually scheduled PDSCH transmission or SPS PDSCH release indication, and reserves HARQ-ACK feedback bits for each actual DAI value.
  • DAI Downlink Assignment Index
  • the corresponding feedback bit is set to NACK; otherwise, the PDSCH transmission corresponding to each PDSCH allocation instruction is decoded As a result, the corresponding HARQ-ACK feedback bit is set, and for the detected SPS PDSCH release indication, the corresponding feedback bit is set to ACK.
  • DAI uses a limited number of bits (a single DAI generally occupies 2 bits) to indicate.
  • a modulo operation is introduced, that is, the sequential counting starts from 1, and then the modulo is used to obtain the DAI value corresponding to a certain count value. .
  • DAI downlink scheduling
  • the most significant bit (Most Significant Bit, MSB); the least significant bit (Least Significant Bit, LSB); counter DAI (Counter DAI, C-DAI); total DAI (Total DAI, T-DAI).
  • Y is the number of ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs (Number of ⁇ serving cell, PDCCH monitoring occasion ⁇ -pair(s) in which PDSCH transmission exists that corresponds to the PDSCH transmission of the PDCCH, or the PDCCH indicating the release of the SPS PDSCH exists (s)associated with PDCCH or PDCCH indicating SPS PDSCH release is present, denoted as Y), Y ⁇ 1.
  • the aforementioned DAI is only for a single carrier, and is counted one by one according to the time sequence indicated by the DCI, which can be called C-DAI.
  • T-DAI is newly introduced to indicate the number of all DCI indications received up to the current time domain detection position, including the current time domain detection position in each service All DCI indications received on the cell, therefore, the value of T-DAI will be updated only when the location of the current domain changes.
  • T-DAI and C-DAI can effectively avoid the loss of DCI indications on one or some serving cells at a certain time domain detection position (as long as the DCI indications on all serving cells are not lost), the UE and gNB will respond to DCI An inconsistency in the indicated transmission understanding
  • the network side device configures the parameter PDSCH-Code BlockGroupTransmission for a certain serving cell of the UE to enable HARQ transmission based on Code Block Group (CBG):
  • CBG Code Block Group
  • Method 1 The PDSCH transmission scheduled by DCI format (format) 1_1 supports CBG-based HARQ transmission, and a single DAI corresponds to HARQ-ACK feedback bits.
  • For Of a serving cell configured with the parameter PDSCH-CodeBlockGroupTransmission The maximum value of the value; Is the value of the parameter maxNrofCodeWordsScheduledByDCI of the serving cell c, indicating the maximum number of transmission blocks that can be scheduled by a single DCI at the same time; It is the value of the parameter maxCodeBlockGroupsPerTransportBlock of the serving cell c, indicating the maximum number of CBGs that can be split in a single transport block.
  • the UE will The last of the bits The bits are set to NACK.
  • the bits are set based on the decoding situation of each CBG corresponding to the actually received transport block.
  • Method 2 PDSCH transmission scheduled by DCI format 1_0 only supports HARQ transmission based on Transport Block (TB), which is the same as SPS PDSCH release indication and SPS PDSCH reception, and only a single HARQ-ACK bit is fed back for a single transport block ; These situations all belong to the situation that a single DCI indication or PDSCH transmission corresponds to only a single transport block.
  • Transport Block TB
  • the network does not configure the parameter PDSCH-CodeBlockGroupTransmission for a certain serving cell of the UE, that is, the CBG-based HARQ transmission is not enabled:
  • Method 1 If the harq-ACK-SpatialBundlingPUCCH or harq-ACK-SpatialBundlingPUSCH parameter is not configured for the UE (that is, the Spatial Bundling for HARQ-ACK is not enabled, Spatial Bundling can be understood as the difference between two codewords corresponding to the same PDSCH transmission HARQ-ACK feedback compression and merging; the harq-ACK-SpatialBundlingPUCCH parameter is applied to HARQ-ACK transmission carried on PUCCH, and the harq-ACK-SpatialBundlingPUSCH parameter is applied to HARQ-ACK transmission carried on PUSCH), and it is the UE’s At least a certain downlink (DownLink, DL) bandwidth part (BWP) of at least a certain serving cell is configured through the maxNrofCodeWordsScheduledByDCI parameter.
  • DownLink, DL downlink bandwidth part
  • a single PDSCH reception corresponds to at most two transmission blocks, and a single DAI corresponds to 2 HARQ-ACK bits.
  • the first bit indicates the HARQ-ACK of the first transport block, and the second bit indicates the HARQ-ACK of the second transport block.
  • Method 2 If the harq-ACK-SpatialBundlingPUCCH or harq-ACK-SpatialBundlingPUSCH parameters have been configured for the UE, and at least one DL BWP of at least a certain serving cell of the UE is configured through the maxNrofCodeWordsScheduledByDCI parameter, a single PDSCH reception corresponds to at most two transmissions Block, a single DAI corresponds to a single HARQ-ACK bit, and the value is set to the logical AND of the HARQ-ACK of the first transport block and the HARQ-ACK of the second transport block.
  • a single DAI corresponds to a single HARQ-ACK bit, and the value is set to the HARQ-ACK of the unique transport block. Among them, otherwise, it means the remaining conditions except those listed in the first and second modes, that is, neither the configuration corresponding to at most two transmission blocks nor the Spatial Bundling related parameters are configured. At this time, a single downlink DCI will only schedule a single Transport block, so a single DAI corresponds to a single HARQ-ACK bit.
  • the HARQ-ACK Codebook contains two HARQ-ACK sub-codebooks.
  • the first sub-codebook contains HARQ-ACK bits of all TB granularities, involving SPS PDSCH release indication, SPS PDSCH reception, and PDSCH transmission scheduled by DCI format 1_0 on the serving cell where CBG-based HARQ transmission is enabled (these PDSCH The transmission only supports HARQ-ACK feedback with TB granularity), and the PDSCH transmission scheduled by DCI format 1_0/1_1 on serving cells where CBG-based HARQ transmission is not enabled (these PDSCH transmissions must only support HARQ-ACK feedback with TB granularity).
  • the second sub-codebook contains all HARQ-ACK bits of CBG granularity, and involves the HARQ-ACK corresponding to the PDSCH transmission scheduled by DCI format 1_1 on the serving cell where CBG-based HARQ transmission is turned on.
  • the HARQ-ACK Codebook is formed by cascading the first sub-codebook and the second sub-codebook in sequence.
  • the HARQ-ACK Codebook is generally transmitted on the PUCCH, and the time domain and frequency domain information of the PUCCH is indicated in the DCI (with one exception: the HARQ-ACK feedback of the SPS PDSCH and the frequency domain information of the PUCCH can be configured by higher layers).
  • the HARQ-ACK feedback of the SPS PDSCH and the frequency domain information of the PUCCH can be configured by higher layers.
  • the DAI corresponding to the HARQ-ACK Codebook for multiplex transmission can be indicated in the DCI format 0_1 of the scheduling PUSCH, which can be called UL DAI.
  • UL DAI is mainly used by the UE to determine the number of HARQ-ACK bits in the HARQ-ACK Codebook, and can be used to determine the missed detection of the DCI corresponding to the HARQ-ACK bits at the end of the HARQ-ACK Codebook.
  • DCI format 0_1 (indicated by the DCI field "1st downlink assignment index"), which corresponds to For a single HARQ-ACK Codebook, when the HARQ-ACK Codebook involves both the TB-granular HARQ-ACK feedback and the CBG-granular HARQ-ACK feedback (that is, the sequential concatenation of two sub-codebooks), the DCI format 0_1 is simultaneously Indicate two UL DAIs, where the first UL DAI (indicated by the DCI field "1st downlink assignment index”) is applied to the first sub-codebook, and the second UL DAI (indicated by the DCI field "2nd downlink assignment index”) Apply to the second sub-codebook.
  • the enhancements introduced for the dynamic codebook mainly include the following:
  • the HARQ-ACK feedback corresponding to the same PDSCH group is carried on the same PUCCH;
  • Each PDSCH group maintains a new feedback indicator (New Feedback Indicator, NFI), which indicates whether only new feedback is to be transmitted or the previous feedback needs to be retransmitted by way of inversion; if the NFI is inverted, the DCI indicating that the NFI is inverted is targeted for this All feedback of the PDSCH packet will be discarded, and only the DCI and the HARQ-ACK feedback of the PDSCH scheduled for this PDSCH packet will be transmitted.
  • NFI New Feedback Indicator
  • a single DCI can request the HARQ-ACK feedback of one or more PDSCH groups to be transmitted on the same PUCCH.
  • a single downlink scheduling DCI requests the HARQ-ACK feedback of the PDSCH group corresponding to the PDSCH scheduled by itself by default. This DCI can also be additional The HARQ-ACK feedback that triggers other PDSCH groups is transmitted together on the PUCCH indicated;
  • the maximum number of PDSCH groups currently supported is 2;
  • the UE can indicate whether to support the enhanced dynamic codebook through the capability information.
  • the enhanced dynamic codebook is configured for the UE, in the uplink non-fallback DCI, that is, DCI format 0_1, whether there is UL DAI for an additional single PDSCH group can be configured by Radio Resource Control (RRC) signaling .
  • RRC Radio Resource Control
  • Fig. 2 is a flowchart of a HARQ-ACK codebook generation method provided by an embodiment of the present application.
  • the HARQ-ACK codebook generation method of the embodiment of the present application can be applied to a terminal.
  • the HARQ-ACK codebook generation method may include the following steps:
  • Step 201 Receive first downlink control information DCI for scheduling a first physical uplink shared channel PUSCH, where the first DCI includes the first DAI.
  • Step 202 Determine a second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups according to the first DAI, where N is a positive integer.
  • the second DAI corresponding to each PDSCH group is used to determine the HARQ-ACK bit sequence of the PDSCH group.
  • Step 203 Generate a dynamic codebook for transmission on the first PUSCH according to the determined N second DAIs; wherein, the dynamic codebook includes the HARQ-ACK bit sequence of the N PDSCH groups.
  • the generating of the dynamic codebook transmitted on the first PUSCH according to the determined N second DAIs may specifically include:
  • the dynamic codebook is generated according to the HARQ-ACK sequence of each PDSCH group in the N PDSCH groups.
  • the HARQ-ACK sequence of each PDSCH group in the N PDSCH groups can be cascaded in sequence according to the order of the size of the group numbers of the N PDSCH groups to generate the dynamic codebook , But not limited to this.
  • the terminal may perform according to the first downlink control information DCI.
  • a DAI determining the second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups, and then generating the dynamic codebook transmitted on the first PUSCH according to the determined N second DAIs; where
  • the dynamic codebook includes the HARQ-ACK bit sequence of the N PDSCH groups, and N is a positive integer.
  • the determining the second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups according to the first DAI includes:
  • the second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • the determination of the first relationship between the first DAI and the N PDSCH groups may include the following two implementation manners.
  • Embodiment 1 The first relationship satisfies: the first DAI corresponds to at least one PDSCH group among the N PDSCH groups.
  • the first DAI must have a corresponding relationship with at least one PDSCH group among the N PDSCH groups.
  • the N PDSCH groups include only one PDSCH group
  • the first DAI corresponds to the PDSCH group.
  • the first relationship satisfies any one of the following:
  • the first DAI corresponds to the N PDSCH groups
  • the first DAI corresponds to the first PDSCH group among the N PDSCH groups.
  • the first PDSCH group is one PDSCH group among the N PDSCH groups.
  • the first PDSCH group may be any PDSCH group among the N PDSCH groups. Further, the first PDSCH group may satisfy any one of the following:
  • the first PDSCH group is a PDSCH group in which a PDSCH scheduled by a target DCI is located, and the target DCI is a DCI that is used to schedule PDSCHs in the N PDSCH groups that is last detected by the terminal;
  • the first PDSCH group is agreed upon by agreement
  • the first PDSCH group is configured by the network side device.
  • the first PDSCH group satisfies: the first PDSCH group is the PDSCH group where the PDSCH scheduled by the target DCI is located, and the target DCI is the last detected by the terminal for scheduling the N PDSCH groups The DCI of PDSCH.
  • the first PDSCH group is independently determined by the terminal based on the scheduling time of each PDSCH group.
  • the specific description is as follows.
  • Each PDSCH group includes at least one PDSCH, and each PDSCH corresponds to a DCI for scheduling its transmission, and the PDSCH scheduling time for each DCI to schedule the PDSCH may be different.
  • the N PDSCH groups include PDSCH group 1, PDSCH group 2, and PDSCH group 3.
  • the terminal detects that the DCI used to schedule the PDSCH in the N PDSCH groups is the DCI for scheduling PDSCH in the PDSCH group 3. . Therefore, the PDSCH group 3 may be determined as the first PDSCH group.
  • Case 2 The first PDSCH group satisfies the condition stipulated by the protocol for the first PDSCH group.
  • the first PDSCH group is one of the N PDSCH groups agreed by the protocol.
  • the first PDSCH group is the first PDSCH group or the last PDSCH group of the N PDSCH groups, or the PDSCH group with the smallest or largest group number, or the corresponding HARQ when generating the dynamic codebook.
  • the ACK bit sequence is placed in the PDSCH group at the beginning or the end of the bit sequence corresponding to the dynamic codebook, or the PDSCH group whose group number is the specified value.
  • Case 3 The first PDSCH group satisfies that the first PDSCH group is configured by the network side device.
  • the first PDSCH group is one PDSCH group among the N PDSCH groups configured by the network side device.
  • the network side device may configure the first PDSCH group to be the first PDSCH group or the last PDSCH group of the N PDSCH groups, or the PDSCH group with the smallest or largest group number, or the corresponding PDSCH group when generating dynamic codebooks.
  • the HARQ-ACK bit sequence is placed in the PDSCH group at the beginning or the end of the bit sequence corresponding to the dynamic codebook, or the PDSCH group whose group number is a specified value.
  • the terminal does not need to determine the first PDSCH group autonomously, so that the burden on the terminal can be reduced.
  • the flexibility of determining the first PDSCH group is higher.
  • the terminal does not need to interact with the network side device to determine the first PDSCH group, so that the signaling overhead can be reduced.
  • Embodiment 2 The determining the first relationship between the first DAI and N PDSCH groups includes:
  • the preset rule includes at least one of the following:
  • the target DCI is the DCI that is used to schedule the PDSCH in the N PDSCH groups last detected by the terminal;
  • the first relationship satisfies any one of the following:
  • the first DAI corresponds to a fifth PDSCH group in the N PDSCH groups, and the fifth PDSCH group is any PDSCH group in the N PDSCH groups;
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the fifth PDSCH group is similar to the aforementioned first PDSCH group.
  • the first DAI may not be related to any PDSCH in the N PDSCH groups.
  • Group correspondence that is, the first DAI has nothing to do with the N PDSCH groups. Therefore, in the second embodiment, the first DAI does not necessarily have a corresponding relationship with the N PDSCH groups.
  • the first relationship between the first DAI and the N PDSCH groups includes the following expressions.
  • the first DAI corresponds to the first PDSCH group of the N PDSCH groups; or, the first DAI corresponds to the fifth PDSCH group of the N PDSCH groups.
  • the first DAI corresponds to the N PDSCH groups.
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the specific implementation manner of the second DAI corresponding to each PDSCH group in the N PDSCH groups is determined according to the first relationship, and the specific implementation manner of the second DAI corresponding to the first DAI and the N PDSCH groups is determined.
  • the specific expression of the relationship is related. Therefore, the following describes the specific implementation manner of determining the second DAI corresponding to each PDSCH group in the N PDSCH groups for the first relationship in the above three expression manners.
  • the determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the first relationship includes :
  • the third DAI is the DAI in the DCI corresponding to the second PDSCH group last detected by the terminal;
  • the second PDSCH group is the N PDSCH groups other than the first PDSCH group Any of the PDSCH groups.
  • the N PDSCH groups include PDSCH group 0 and PDSCH group 1
  • PDSCH group 0 is the first PDSCH group
  • PDSCH group 1 is the second PDSCH group.
  • the corresponding second DAI is the first DAI; for PDSCH group 1, the corresponding second DAI is: the DAI in the DCI corresponding to the PDSCH group last detected by the terminal .
  • the DCI corresponding to the PDSCH group means that the PDSCH scheduled by this DCI belongs to this PDSCH group.
  • the second DAI includes:
  • the eighth DAI is the DAI in the DCI corresponding to the sixth PDSCH group last detected by the terminal; the sixth PDSCH group is the N PDSCH groups except the fifth PDSCH group Any of the PDSCH groups.
  • the implementation principle of determining the second DAI corresponding to each of the N PDSCH groups according to the first relationship is the same as that corresponding to the first DAI and the first PDSCH group. In this case, the implementation principle of determining the second DAI corresponding to each of the N PDSCH groups according to the first relationship is the same. For details, reference may be made to the foregoing description, and details are not repeated here.
  • the determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the first relationship includes:
  • the second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • the first value may be the sum of the acquired values of N fourth DAIs.
  • the first value may be a value obtained by performing a modulo operation on the sum of the obtained N fourth DAI values.
  • the fourth DAI corresponding to each PDSCH group in the N PDSCHs is DAI1, DAI2, ... DAIN
  • the first value DAI_Sum can be calculated by the following formula:
  • Round_Size is the modulus of the modulo operation, which is related to the number of bits L occupied by a single DAI.
  • Round_Size 2L.
  • the first DAI corresponds to the N PDSCH groups. Therefore, the first DAI corresponds to the sum of the acquired values of the N fourth DAIs, and the terminal may associate the first DAI with the sum of the acquired values of the N fourth DAIs. A DAI is compared with the first value to obtain a comparison result. Then, according to the comparison result, the second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • the comparison result may be used to determine whether the terminal has missed detection of the DCI used to schedule the PDSCH of the N PDSCH groups.
  • the terminal may determine that there is no missed detection of the DCI used to schedule the PDSCH of the N PDSCH groups. For the case where there is no missed detection, the terminal may determine the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups as the second DAI corresponding to the PDSCH group.
  • the terminal may determine that the terminal has missed detection of the DCI used to schedule the PDSCH of the N PDSCH groups. In the case of missing detection, the terminal may determine the second DAI corresponding to each PDSCH group in the N PDSCH groups in the following manner.
  • the determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the comparison result includes:
  • a second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • the fifth DAI may be determined according to the first value and the value of the first DAI.
  • the first value is DAI_Sum
  • the value of the first DAI is UL_DAI
  • the fifth DAI is DAI_Diff.
  • DAI_Diff can be calculated by the following formula:
  • DAI_Diff (UL_DAI–DAI_Sum-1)mod Round_Size+1
  • X mod Y means that X modulo Y
  • Round_Size is the modulus of the modulo operation, which is related to the number of bits L occupied by a single DAI.
  • Round_Size 2L.
  • DAI uses 2 bits to indicate
  • Round_Size 4.
  • the specific implementation manner of determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the fifth DAI is related to whether the terminal starts CBG-based HARQ transmission. In this embodiment, if some serving cells of the terminal are configured with the parameter PDSCH-CodeBlockGroupTransmission, it can be deemed that the terminal has started CBG-based HARQ transmission.
  • scenario 1 where the terminal does not enable CBG-based HARQ transmission
  • scenario 2 where the terminal starts CBG-based HARQ transmission.
  • the determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the fifth DAI includes any one of the following:
  • the second DAI corresponding to the third PDSCH group is determined according to the fifth DAI and the sixth DAI
  • the second DAI corresponding to the third PDSCH group is determined according to the fifth DAI and the sixth DAI
  • the Seven DAI is determined as the second DAI corresponding to the fourth PDSCH group
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as the The second DAI corresponding to the PDSCH group;
  • the sixth DAI is the DAI in the DCI corresponding to the third PDSCH group last detected by the terminal
  • the seventh DAI is the last detected DAI corresponding to the fourth PDSCH group by the terminal
  • the third PDSCH group is any one of the N PDSCH groups, and
  • the fourth PDSCH group is the N PDSCH groups excluding the third PDSCH group Any PDSCH group.
  • the terminal needs to further determine the corresponding PDSCH group in each of the N PDSCH groups according to the second relationship between the fifth DAI and the N PDSCH groups The second DAI.
  • the second DAI corresponding to the third PDSCH group is determined according to the fifth DAI and the sixth DCI, Specifically, the second DAI corresponding to the third PDSCH group may be obtained by adding the fifth DAI and the sixth DCI. Optionally, the sum obtained by the addition may be further modulated to obtain the first DAI.
  • the second DAI corresponding to the fourth PDSCH group may be the DAI in the DCI corresponding to the fourth PDSCH group last detected by the terminal.
  • the HARQ-ACK bit sequence of the third PDSCH group includes a first bit sequence and a second bit sequence that are sequentially concatenated
  • the first bit sequence is determined based on the sixth DAI
  • the second bit sequence is determined based on the fifth DAI.
  • the second bit sequence may be located after the first bit sequence.
  • the method of determining the bit sequence based on DAI is the same as the "method for determining the HARQ-ACK bit sequence corresponding to each DAI" in the previous section. For details, please refer to the foregoing description, and will not be repeated here. . It should be noted that since the dynamic codebook in this embodiment is transmitted on the PUSCH, it is necessary to replace the parameter harq-ACK-SpatialBundlingPUCCH with harq-ACK-SpatialBundlingPUSCH.
  • the HARQ-ACK codebook of each PDSCH group is determined by the above method, which can make the size of the dynamic codebook understood by the terminal and the network-side device, and thus enable the network-side device to successfully acquire the dynamic codebook. Codebook to improve the reliability of data transmission.
  • the second bit sequence satisfies any one of the following:
  • the number of bits included in the second bit sequence is twice the value of the fifth DAI, and the bits of the second bit sequence are set to NACK;
  • the number of bits included in the second bit sequence is equal to the value of the fifth DAI, and the bits of the second bit sequence are set to NACK;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the terminal can be regarded as enabling the HARQ-ACK spatial bundling indication.
  • the maxNrofCodeWordsScheduledByDCI parameter can be used to configure at least one DL and BWP of at least a certain serving cell of the terminal for a single PDSCH reception corresponding to at most two transmission blocks.
  • NACK Negative Acknowledgement
  • the fifth DAI does not correspond to any one of the N PDSCH groups, for each PDSCH group in the N PDSCH groups, its corresponding second
  • the DAI may be: the DAI in the DCI corresponding to the PDSCH group last detected by the terminal.
  • the determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the fifth DAI includes any one of the following:
  • the third PDSCH is determined according to the first sub-DAI, the second sub-DAI, the third sub-DAI, and the fourth sub-DAI The second DAI corresponding to the group, and determining the seventh DAI as the second DAI corresponding to the fourth PDSCH group;
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as the The second DAI corresponding to the PDSCH group;
  • the fifth DAI includes the first sub-DAI corresponding to the granularity of the transmission block TB and the second sub-DAI corresponding to the granularity of CBG; the third sub-DAI is the last detected by the terminal and the second sub-DAI.
  • the DAI in the first type of DCI corresponding to the three PDSCH groups, the fourth sub-DAI is the DAI in the second type of DCI that is last detected by the terminal and corresponding to the third PDSCH group, and the seventh DAI is The DAI in the DCI corresponding to the fourth PDSCH group last detected by the terminal; the first type of DCI scheduled PDSCH feedback HARQ-ACK based on TB granularity, and the second type of DCI scheduled PDSCH based on CBG granularity Feedback HARQ-ACK;
  • the third PDSCH group is any one of the N PDSCH groups, and the fourth PDSCH group is any of the N PDSCH groups except the third PDSCH group One PDSCH group.
  • the terminal starts CBG-based HARQ transmission. Therefore, the DCI used to schedule the PDSCHs of the N PDSCH groups may include the first type of DCI and the second type of DCI. Wherein, for the first type of DCI scheduled PDSCH, it feeds back HARQ-ACK based on TB granularity; for the second type of DCI scheduled PDSCH, it feeds back HARQ-ACK based on TB granularity.
  • the fifth DAI is used to indicate the number of missed DCIs used to schedule the PDSCHs of the N PDSCH groups. Therefore, the fifth DAI includes the first sub-DAI corresponding to the granularity of the transport block TB and the second sub-DAI corresponding to the granularity of the CBG, where the first sub-DAI may be used to indicate missed detections and used to schedule the N The number of the first type of DCI of the PDSCH of the PDSCH group; the second sub-DAI may be used to indicate the number of missed detection of the second type of DCI for scheduling the PDSCH of the N PDSCH groups.
  • the terminal further needs to determine the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the second relationship between the fifth DAI and the N PDSCH groups.
  • the second DAI corresponding to the third PDSCH group is based on the first sub-DAI, the second sub-DAI, and the third sub-DAI.
  • the DAI and the fourth sub-DAI are determined.
  • the second DAI corresponding to the third PDSCH group may be formed by cascading the first sub-DAI, the second sub-DAI, the third sub-DAI, and the fourth sub-DAI.
  • the second DAI corresponding to the fourth PDSCH group may be the DAI in the DCI corresponding to the fourth PDSCH group that is last detected by the terminal.
  • the HARQ-ACK bit sequence of the third PDSCH group includes a third bit sequence, a fourth bit sequence, a fifth bit sequence, and a sixth bit sequence that are sequentially concatenated;
  • the third bit sequence is determined based on the third sub-DAI
  • the fourth bit sequence is determined based on the first sub-DAI
  • the fifth bit sequence is determined based on the fourth sub-DAI
  • the fourth bit sequence is determined based on the fourth sub-DAI.
  • the six-bit sequence is determined based on the second sub-DAI.
  • the third bit sequence and the fourth bit sequence are consecutive, and the fourth bit sequence may be located after the third bit sequence ;
  • the fifth bit sequence and the sixth bit sequence are continuous, and the sixth bit sequence may be located after the fifth bit sequence.
  • the second combined bit sequence of the fifth bit sequence and the sixth bit sequence is in the third PDSCH group
  • the first combined bit sequence may be located after the second combined bit sequence or before the second combined bit sequence, which can be specifically set according to actual needs, which is not limited in the embodiment of the present application.
  • the HARQ-ACK codebook of each PDSCH group is determined by the above method, which can make the size of the dynamic codebook understood by the terminal and the network-side device, and thereby enable the network-side device to successfully obtain the dynamic Codebook to improve the reliability of data transmission.
  • the fourth bit sequence satisfies any one of the following:
  • the number of bits included in the fourth bit sequence is twice the value of the first sub-DAI, and the bits of the fourth bit sequence are set to NACK;
  • the number of bits included in the fourth bit sequence is equal to the value of the first sub-DAI, and the bits of the fourth bit sequence are set to NACK;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the sixth bit sequence satisfies:
  • the number of bits included in the sixth bit sequence is equal to the product of the value of the second sub-DAI and the fourth value, and the bits of the sixth bit sequence are set to NACK;
  • the fourth value is determined based on the maximum number of schedulable transmission blocks of a single DCI and the maximum number of CBGs that can be split into a single transmission block.
  • the fourth value may be For the specific meaning, please refer to the foregoing description, which will not be repeated here.
  • the fifth DAI does not correspond to any one of the N PDSCH groups, for each PDSCH group in the N PDSCH groups, its corresponding second
  • the DAI may be: the DAI in the DCI corresponding to the PDSCH group last detected by the terminal.
  • the determined N second DAIs are generated in The dynamic codebook transmitted on the first PUSCH includes:
  • a dynamic codebook to be transmitted on the first PUSCH is generated.
  • the generating a dynamic codebook for transmission on the first PUSCH according to the fifth DAI and the determined N second DAIs includes:
  • a target bit sequence is generated.
  • the terminal may add the target bit sequence to the dynamic codebook. That is, in this case, the dynamic codebook includes the HARQ-ACK bit sequence of the N PDSCH groups and the target bit sequence.
  • the size of the dynamic codebook can be understood by the terminal and the network-side device, and the network-side device can successfully obtain the dynamic codebook, thereby improving the reliability of data transmission.
  • the target bit sequence may satisfy any one of the following:
  • the number of bits included in the target bit sequence is equal to the product of the value of the fifth DAI and the second value, and the bits in the target bit sequence Set to NACK;
  • the fifth DAI includes a third sub-DAI corresponding to a TB granularity and a fourth sub-DAI corresponding to a CBG granularity; the number of bits included in the target bit sequence is equal to the first The sum of a target value and a second target value, where the first target value is equal to the product of the value of the third sub-DAI and a second value, and the second target value is equal to the value of the fourth sub-DAI And the third value, and the bit in the target bit sequence is set to NACK.
  • the second value satisfies any one of the following:
  • the value of the second value is 2;
  • the value of the second value is 1;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the third value is determined based on the maximum number of schedulable transmission blocks of a single DCI and the maximum number of CBGs that can be split into a single transmission block.
  • the third value can be For the specific meaning, please refer to the foregoing description, which will not be repeated here.
  • the third PDSCH group satisfies any one of the following:
  • the third PDSCH group is the PDSCH group in which the PDSCH scheduled by the target DCI is located, and the target DCI is the DCI that is used to schedule the PDSCH in the N PDSCH groups that is last detected by the terminal;
  • the third PDSCH group is agreed upon by agreement
  • the third PDSCH group is configured by the network side device.
  • the determining the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the first relationship includes:
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as the second DAI corresponding to the PDSCH group.
  • the terminal is determining N After the second DAI corresponding to each PDSCH group in a physical downlink shared channel PDSCH group, according to the determined N second DAIs, the method of determining the HARQ-ACK sequence of each PDSCH group in the N PDSCH groups is the same as the foregoing part.
  • the "determining manner of the HARQ-ACK bit sequence corresponding to each DAI" is the same. For details, please refer to the foregoing description, which will not be repeated here. It should be noted that since the dynamic codebook in this embodiment is transmitted on the PUSCH, it is necessary to replace the parameter harq-ACK-Spatial Bundling PUCCH with harq-ACK-Spatial Bundling PUSCH.
  • the terminal when the terminal is configured with only a single serving cell, the DAI in the DCI corresponding to a certain PDSCH group last detected by the terminal is C-DAI; the terminal is configured with In the case of two or more serving cells, the DAI in the DCI corresponding to a certain PDSCH group that is last detected by the terminal is T-DAI.
  • FIG. 3 is a flowchart of a HARQ-ACK codebook generation method provided by an embodiment of the present application.
  • the information sending method in the embodiment of this application is applied to a network side device.
  • the information sending method may include the following steps:
  • Step 301 Send first downlink control information DCI for scheduling a first physical uplink shared channel PUSCH, where the first DCI includes a first DAI, and the first DAI is used for dynamic transmission on the first PUSCH Codebook generation; wherein, the dynamic codebook contains the HARQ-ACK bit sequence of the N physical downlink shared channel PDSCH groups, and N is a positive integer.
  • the first DAI corresponds to at least one PDSCH group among the N PDSCH groups.
  • the first DAI corresponds to the N PDSCH groups; or, the first DAI corresponds to the first PDSCH group of the N PDSCH groups.
  • the first DAI is determined based on the sum of the values of the N ninth DAIs;
  • each PDSCH group in the N PDSCH groups corresponds to one of the ninth DAI
  • each ninth DAI is carried in the third DCI corresponding to its corresponding PDSCH group
  • each PDSCH group corresponds to the third DCI
  • the third DCI is the DCI corresponding to the PDSCH group last sent by the network side device.
  • the value of the first DAI may be the sum of the values of N ninth DAI; in another implementation manner, the value of the first DAI may be obtained by comparing N The sum of the values of the ninth DAI is obtained by modulo operation.
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the first DAI can be set to any value, or set to a default value, such as 4.
  • the network side device sends the first downlink control information DCI used to schedule the first physical uplink shared channel PUSCH, where the first DCI includes the first DAI, and the first DAI is used in all locations.
  • the terminal can generate a dynamic codebook based on the first DAI, thereby improving the reliability of dynamic codebook transmission.
  • this embodiment is used as an implementation manner of a network side device corresponding to the foregoing method embodiment. Therefore, reference may be made to the relevant description in the foregoing method embodiment, and the same beneficial effects can be achieved. In order to avoid repeating the description, it will not be repeated here.
  • the meaning and application of UL DAI can adopt one of the following schemes:
  • Solution 1 Determine the UL DAI value in this DCI format 0_1 based on the number of triggered PDSCH groups that overlap with the PUSCH scheduled by DCI format 0_1 in the time domain and need to be carried on the enhanced dynamic codebook.
  • the following operations can be used:
  • the UL DAI value corresponds to this triggered single PDSCH group, and the corresponding HARQ-ACK bit can be determined by operation 2, see the following description.
  • the enhanced dynamic codebook corresponds to more than one triggered PDSCH group
  • one of the following methods is used:
  • the UL DAI value corresponds to the sum of the DAI of all triggered PDSCH packets (and considering the modulo operation), or the number of dynamically scheduled PDSCH reception/SPS PDSCH release indications corresponding to the enhanced dynamic codebook carried on the PUSCH (and considering the modulo operation) ).
  • the DAI value or the corresponding HARQ-ACK bit applied to each PDSCH group may be determined by operation 1.
  • the UL DAI value corresponds to the PDSCH group recently scheduled before the enhanced dynamic codebook transmission, and the corresponding HARQ-ACK bit can be determined by operation 2, see the description below.
  • the UL DAI value corresponds to a certain PDSCH group specified in the protocol or configured by high-level parameters, such as the first group or the second group, and the corresponding HARQ-ACK bit can be determined by operation 2.
  • Solution 2 UL DAI in DCI format 0_1 is fixedly applied to a single PDSCH group, regardless of whether the number of PDSCH groups carried on the scheduled PUSCH is greater than 1, one of the following methods can be used:
  • the UL DAI value corresponds to a certain PDSCH group specified in the protocol or configured by high-level parameters, such as the first group or the second group, and the corresponding HARQ-ACK bit can be determined by operation 2.
  • the UL DAI value corresponds to the PDSCH group recently scheduled before the enhanced dynamic codebook transmission, and the corresponding HARQ-ACK bit can be determined by operation 2.
  • Operation 1 When the UL DAI in DCI format 0_1 indicates the sum of more than one DAI that triggers the PDSCH group, or indicates the number of dynamic scheduling PDSCH reception/SPS PDSCH release indications corresponding to the enhanced dynamic codebook, the following methods can be used to determine each PDSCH DAI value of packet application or corresponding HARQ-ACK bit:
  • Step 1 Take the latest downlink schedule I of each triggering PDSCH group as DCI format 1_0, then this is the C-DAI in DCI format 1_0; if the latest downlink schedule DCI is DCI format 1_1, then this is the value in DCI format 1_1 T-DAI), and calculate the relationship between the sum of C-DAI/T-DAI of each PDSCH group (and consider modulo operation) and UL DAI. If they are equal, it is considered that there is no DCI missed detection. Step two, otherwise, it is considered that a certain PDSCH packet has DCI missed detection, and the third step is executed at this time.
  • DAI_Sum the sum of C-DAI/T-DAI of each PDSCH group (and consider the modulo operation )DAI_Sum can be expressed as:
  • Round_Size is the modulus of the modulo operation.
  • Step 2 Determine the number and value of the HARQ-ACK bit sequence corresponding to the PDSCH group based on the C-DAI/T-DAI in the latest downlink scheduling DCI format 1_0/1_1 of each triggered PDSCH group, which can be used when carrying on PUCCH
  • the operation flow of constructing HARQ-ACK Codebook (not involving the use of UL DAI), but the parameter harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • Method 1 DAI_Diff is applied to a certain PDSCH group specified by the protocol or configured by high-level parameters, such as the first group or the second group.
  • Method 2 DAI_Diff is applied to the PDSCH packet with the HARQ-ACK bit sequence placed at the end of the enhanced dynamic codebook, so that at least the HARQ-ACK bit sequence is placed at the beginning of the PDSCH packet in the enhanced dynamic codebook except for the tail Other HARQ-ACK bits will not be affected by DCI missed detection.
  • Method 4 DAI_Diff is not applied to any PDSCH grouping, and is only used to align the size of the HARQ-ACK Codebook on both sides of the UE and the eNB to avoid the impact on the RE demapping and decoding of the UL-SCH.
  • the HARQ-ACK bit sequence of this PDSCH group is determined based on the NR Rel-15 process (in this case, each PDSCH group is determined in the HARQ-ACK bit sequence). In the sequence, only the DAI value indicated in the DCI is used, and the UL DAI value is not used), and then DAI_Diff is applied at the end of the determined HARQ-ACK bit sequence.
  • DAI_Diff is applied at the end of the determined HARQ-ACK bit sequence.
  • the harq-ACK-SpatialBundlingPUSCH parameter is not configured for the UE, and at least one DL BWP of at least a certain serving cell of the UE is configured through the maxNrofCodeWordsScheduledByCI parameter, a single PDSCH reception corresponds to two transmission blocks at most, then each missing DAI corresponds 2 HARQ-ACK bits.
  • DAI_Diff ⁇ 2 bits with a value of '0' are added to the end of the above-determined HARQ-ACK bit sequence, corresponding to DAI_Diff ⁇ 2 NACKs.
  • each missing DAI corresponds to a single HARQ-ACK bit.
  • DAI_Diff bits with a value of '0' are added to the end of the aforementioned determined HARQ-ACK bit sequence, corresponding to DAI_Diff NACKs.
  • the above DAI_Diff application operation is applicable when the CBG-based HARQ transmission is not enabled in any serving cell of the UE.
  • the HARQ-ACK Codebook of a single PDSCH group is formed by cascading two HARQ-ACK sub-codebooks, the first of which is The sub-codebook performs HARQ-ACK feedback for TB, and the second sub-codebook performs HARQ-ACK feedback for CBG.
  • DAI_Diff for the TB-level sub-codebook, apply DAI_Diff according to the above operation, and for the CBG-level sub-codebook, the following operations can be used when applying DAI_Diff:
  • each PDSCH group determines the HARQ-ACK bit sequence that triggers each PDSCH group (at this time, when each PDSCH group determines the HARQ-ACK bit sequence, only the DAI value indicated in the DCI is used, and the UL DAI value is not used), and then based on Each HARQ-ACK bit sequence that triggers the PDSCH group determines the complete HARQ-ACK Codebook (for example, the HARQ-ACK bit sequence that triggers the PDSCH group is concatenated from small to large in order to obtain a complete HARQ-ACK Codebook), Finally, use one of the following operations to add alignment bits at the end of the HARQ-ACK Codebook:
  • DAI_DiffTB is DAI_Diff calculated based on UL DAI in DCI format 0_1
  • Bit_Num_Per_DAITB is the number of HARQ-ACK bits corresponding to each DAI
  • Bit_Num_Per_DAITB is the granularity of TB.
  • a single triggered PDSCH group involves CBG-level feedback (that is, at least one serving cell of the UE is configured with the parameter PDSCH-CodeBlockGroupTransmission to enable CBG-based HARQ transmission)
  • each bit corresponds to a single NACK
  • DAI_DiffTB is the DAI_Diff calculated based on the first UL DAI in DCI format 0_1 (indicated by the "1st downlink assignment index” field)
  • Bit_Num_Per_DAITB is the HARQ corresponding to each DAI -The number of ACK bits is TB granularity
  • DAI_DiffCBG ⁇ Bit_Num_Per_DAICBG bits with the value of '0' are added at the end of HARQ-ACK Codebook
  • each bit corresponds to a single NACK, where DAI_DiffCBG is the second based on DCI format 0_1 DAI_Diff calculated by UL DAI (indicated by the "2nd downlink assignment index” field),
  • Bit_Num_Per_DAICBG is the number of HARQ-ACK bits corresponding to each DAI, which is the CBG granularity.
  • Bit_Num_Per_DAITB can be determined based on the following methods:
  • the harq-ACK-SpatialBundlingPUSCH parameter is not configured for the UE, and at least one DL BWP of at least a certain serving cell of the UE is configured with max Nr of Code Words Scheduled ByDCI parameters, a single PDSCH reception corresponds to at most two transport blocks, then The value of Bit_Num_Per_DAITB is 2, otherwise the value of Bit_Num_Per_DAITB is 1.
  • Bit_Num_Per_DAICBG can be determined based on the following methods:
  • Bit_Num_Per_DAICBG is See the previous description for the meaning.
  • Operation 2 When the UL DAI value corresponds to a single PDSCH group, the operation procedure of constructing the HARQ-ACK Codebook when carried on the PUCCH can be used to determine the HARQ-ACK bit sequence corresponding to this PDSCH group.
  • the DCI format 0_1 contains two UL DAI values, which correspond to the first sub-codebook and the second sub-codebook, respectively.
  • the above solutions and related methods can be applied separately.
  • the N PDSCH groups include PDSCH group 0 and PDSCH group 1.
  • PDSCH group 0 includes two PDSCHs, namely D1 and D2, and the UE only detects D1, but not D2.
  • PDSCH group 1 includes four PDSCHs, namely D3, D4, D5, and D6, and the UE only detects D3, D4, and D5, but not D6.
  • UCI1 transmission fails; PUCCH and PUSCH transmitting UCI2 overlap in the time domain, and UCI2 is multiplexed and transmitted on PUSCH.
  • the DCI located after D6 is used to schedule the PUSCH, and the DCI may indicate UL DAI.
  • the terminal can UL DAI to determine the second DAI corresponding to D1, D2, D3, D4, D5, and D6, and then determine the second DAI corresponding to D1, D2, D3, D4, D5, and D6 according to the second DAI.
  • the HARQ-ACK sequence is then generated to generate a dynamic codebook, and the dynamic codebook is transmitted on the PUSCH.
  • FIG. 5 is one of the structural diagrams of the terminal provided by the embodiment of the present application. As shown in FIG. 5, the terminal 500 includes:
  • the receiving module 501 is configured to receive first downlink control information DCI used to schedule a first physical uplink shared channel PUSCH, where the first DCI includes the first DAI;
  • the determining module 502 is configured to determine the second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups according to the first DAI;
  • a generating module 503, configured to generate a dynamic codebook transmitted on the first PUSCH according to the determined N second DAIs;
  • the dynamic codebook includes HARQ-ACK bit sequences of the N PDSCH groups, and N is a positive integer.
  • the determining module includes:
  • the first determining submodule is configured to determine the first relationship between the first DAI and the N PDSCH groups;
  • the second determining submodule is configured to determine the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the first relationship.
  • the first relationship satisfies: the first DAI corresponds to at least one PDSCH group among the N PDSCH groups.
  • the first relationship satisfies any one of the following:
  • the first DAI corresponds to the N PDSCH groups
  • the first DAI corresponds to the first PDSCH group in the N PDSCH groups, and the first PDSCH group satisfies any one of the following:
  • the first PDSCH group is a PDSCH group in which a PDSCH scheduled by a target DCI is located, and the target DCI is a DCI that is used to schedule PDSCHs in the N PDSCH groups that is last detected by the terminal;
  • the first PDSCH group is agreed upon by agreement
  • the first PDSCH group is configured by the network side device.
  • the second determining submodule is specifically configured to:
  • the third DAI is the DAI in the DCI corresponding to the second PDSCH group last detected by the terminal;
  • the second PDSCH group is the N PDSCH groups other than the first PDSCH group Any of the PDSCH groups.
  • the second determining submodule is specifically configured to:
  • the obtaining subunit is used to obtain the fourth DAI in the second DCI corresponding to each PDSCH group in the N PDSCH groups, and the second DCI corresponding to each PDSCH group is the last detected by the terminal and the PDSCH group Corresponding DCI;
  • the comparison unit is configured to compare the first value with the value of the first DAI to obtain a corresponding comparison result; wherein the first value is determined based on the sum of the acquired values of the N fourth DAI;
  • the determining unit is configured to determine the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the comparison result.
  • the determining unit includes:
  • the first determining subunit is configured to determine a fifth DAI when the first value is not equal to the value of the first DAI, and the fifth DAI is used to indicate missed detection and is used to schedule the The number of DCIs of the PDSCHs of the N PDSCH groups;
  • the second determining subunit is configured to determine the second DAI corresponding to each PDSCH group in the N PDSCH groups according to the fifth DAI.
  • the second determining subunit is specifically used for any one of the following:
  • the second DAI corresponding to the third PDSCH group is determined according to the fifth DAI and the sixth DAI, and The seventh DAI is determined to be the second DAI corresponding to the fourth PDSCH group;
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as The second DAI corresponding to the PDSCH group;
  • the sixth DAI is the DAI in the DCI corresponding to the third PDSCH group last detected by the terminal
  • the seventh DAI is the last detected DAI corresponding to the fourth PDSCH group by the terminal
  • the third PDSCH group is any one of the N PDSCH groups, and
  • the fourth PDSCH group is the N PDSCH groups excluding the third PDSCH group Any PDSCH group.
  • the HARQ-ACK bit sequence of the third PDSCH group includes a first bit sequence and a second bit sequence that are sequentially concatenated;
  • the first bit sequence is determined based on the sixth DAI
  • the second bit sequence is determined based on the fifth DAI.
  • the second bit sequence satisfies any one of the following:
  • the number of bits included in the second bit sequence is twice the value of the fifth DAI, and the bits of the second bit sequence are set to NACK;
  • the number of bits included in the second bit sequence is equal to the value of the fifth DAI, and the bits of the second bit sequence are set to NACK;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the second determining subunit is specifically used for any one of the following:
  • the third sub-DAI is determined according to the first sub-DAI, the second sub-DAI, the third sub-DAI, and the fourth sub-DAI.
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as the The second DAI corresponding to the PDSCH group;
  • the fifth DAI includes the first sub-DAI corresponding to the granularity of the transport block TB and the second sub-DAI corresponding to the granularity of CBG; the third sub-DAI is the last detected by the terminal and the second sub-DAI corresponding to the granularity of the CBG.
  • the DAI in the first type of DCI corresponding to the three PDSCH groups, the fourth sub-DAI is the DAI in the second type of DCI that is last detected by the terminal and corresponding to the third PDSCH group, and the seventh DAI is The DAI in the DCI corresponding to the fourth PDSCH group last detected by the terminal; the first type of DCI scheduled PDSCH feedback HARQ-ACK based on TB granularity, and the second type of DCI scheduled PDSCH based on CBG granularity Feedback HARQ-ACK;
  • the third PDSCH group is any one of the N PDSCH groups, and the fourth PDSCH group is any of the N PDSCH groups except the third PDSCH group One PDSCH group.
  • the HARQ-ACK bit sequence of the third PDSCH group includes a third bit sequence, a fourth bit sequence, a fifth bit sequence, and a sixth bit sequence that are sequentially concatenated;
  • the third bit sequence is determined based on the third sub-DAI
  • the fourth bit sequence is determined based on the first sub-DAI
  • the fifth bit sequence is determined based on the fourth sub-DAI
  • the fourth bit sequence is determined based on the fourth sub-DAI.
  • the six-bit sequence is determined based on the second sub-DAI.
  • the fourth bit sequence satisfies any one of the following:
  • the number of bits included in the fourth bit sequence is twice the value of the first sub-DAI, and the bits of the fourth bit sequence are set to NACK;
  • the number of bits included in the fourth bit sequence is equal to the value of the first sub-DAI, and the bits of the fourth bit sequence are set to NACK;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the sixth bit sequence satisfies:
  • the number of bits included in the sixth bit sequence is equal to the product of the value of the second sub-DAI and the fourth value, and the bits of the sixth bit sequence are set to NACK;
  • the fourth value is determined based on the maximum number of schedulable transmission blocks of a single DCI and the maximum number of CBGs that can be split into a single transmission block.
  • the third PDSCH group satisfies any one of the following:
  • the third PDSCH group is the PDSCH group in which the PDSCH scheduled by the target DCI is located, and the target DCI is the DCI that is used to schedule the PDSCH in the N PDSCH groups that is last detected by the terminal;
  • the third PDSCH group is agreed upon by agreement
  • the third PDSCH group is configured by the network side device.
  • the generating module is specifically configured to:
  • a dynamic codebook to be transmitted on the first PUSCH is generated.
  • the generating module is specifically used for:
  • the target bit sequence satisfies any one of the following:
  • the number of bits included in the target bit sequence is equal to the product of the value of the fifth DAI and the second value, and the bits in the target bit sequence Set to NACK;
  • the fifth DAI includes a third sub-DAI corresponding to a TB granularity and a fourth sub-DAI corresponding to a CBG granularity; the number of bits included in the target bit sequence is equal to the first The sum of a target value and a second target value, where the first target value is equal to the product of the value of the third sub-DAI and a second value, and the second target value is equal to the value of the fourth sub-DAI And the third value, and the bit in the target bit sequence is set to NACK.
  • the second value satisfies any one of the following:
  • the value of the second value is 2;
  • the value of the second value is 1;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the third value is determined based on the maximum number of schedulable transmission blocks of a single DCI and the maximum number of CBGs that can be split into a single transmission block.
  • the determining the first relationship between the first DAI and the N PDSCH groups includes:
  • the preset rule includes at least one of the following:
  • the target DCI is the DCI that is used to schedule the PDSCH in the N PDSCH groups last detected by the terminal;
  • the first relationship satisfies any one of the following:
  • the first DAI corresponds to a fifth PDSCH group in the N PDSCH groups, and the fifth PDSCH group is any PDSCH group in the N PDSCH groups;
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the second determining submodule is specifically configured to:
  • the eighth DAI is the DAI in the DCI corresponding to the sixth PDSCH group last detected by the terminal; the sixth PDSCH group is the N PDSCH groups except the fifth PDSCH group Any of the PDSCH groups.
  • the terminal 500 can implement various processes that can be implemented by the terminal in the method embodiments of the present application and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • the network side device 300 includes:
  • the sending module 601 is configured to send the first downlink control information DCI used to schedule the first physical uplink shared channel PUSCH, where the first DCI includes a first DAI, and the first DAI is used on the first PUSCH Generation of transmitted dynamic codebook;
  • the dynamic codebook contains HARQ-ACK bit sequences of N physical downlink shared channel PDSCH groups, and N is a positive integer.
  • the first DAI corresponds to at least one PDSCH group among the N PDSCH groups.
  • the first DAI corresponds to the N PDSCH groups; or, the first DAI corresponds to the first PDSCH group of the N PDSCH groups.
  • the first DAI is determined based on the sum of the values of the N ninth DAIs;
  • each PDSCH group in the N PDSCH groups corresponds to one of the ninth DAI
  • each ninth DAI is carried in the third DCI corresponding to its corresponding PDSCH group
  • each PDSCH group corresponds to the third DCI
  • the third DCI is the DCI corresponding to the PDSCH group last sent by the network side device.
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the network side device 600 can implement various processes that can be implemented by the network side device in the method embodiment of the present application and achieve the same beneficial effects. To avoid repetition, details are not described herein again.
  • FIG. 7 is a second structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal may be a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, processing 710, and power supply 711 and other components.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the radio frequency unit 701 is configured to receive first downlink control information DCI used to schedule the first physical uplink shared channel PUSCH, where the first DCI includes the first DAI;
  • the processor 710 is used for:
  • the second DAI determine the second DAI corresponding to each PDSCH group in the N physical downlink shared channel PDSCH groups
  • the dynamic codebook includes HARQ-ACK bit sequences of the N PDSCH groups, and N is a positive integer.
  • processor 710 is further configured to:
  • the second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • the first relationship satisfies: the first DAI corresponds to at least one PDSCH group among the N PDSCH groups.
  • the first relationship satisfies any one of the following:
  • the first DAI corresponds to the N PDSCH groups
  • the first DAI corresponds to the first PDSCH group in the N PDSCH groups, and the first PDSCH group satisfies any one of the following:
  • the first PDSCH group is a PDSCH group in which a PDSCH scheduled by a target DCI is located, and the target DCI is a DCI that is used to schedule PDSCHs in the N PDSCH groups that is last detected by the terminal;
  • the first PDSCH group is agreed upon by agreement
  • the first PDSCH group is configured by the network side device.
  • the processor 710 is further configured to:
  • the third DAI is the DAI in the DCI corresponding to the second PDSCH group last detected by the terminal;
  • the second PDSCH group is the N PDSCH groups other than the first PDSCH group Any of the PDSCH groups.
  • the processor 710 is further configured to:
  • the second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • processor 710 is further configured to:
  • a fifth DAI is determined, and the fifth DAI is used to indicate the missed DCI for scheduling the PDSCH of the N PDSCH groups.
  • a second DAI corresponding to each PDSCH group in the N PDSCH groups is determined.
  • the processor 710 is further configured to: any one of the following:
  • the second DAI corresponding to the third PDSCH group is determined according to the fifth DAI and the sixth DAI, and The seventh DAI is determined to be the second DAI corresponding to the fourth PDSCH group;
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as The second DAI corresponding to the PDSCH group;
  • the sixth DAI is the DAI in the DCI corresponding to the third PDSCH group last detected by the terminal
  • the seventh DAI is the last detected DAI corresponding to the fourth PDSCH group by the terminal
  • the third PDSCH group is any one of the N PDSCH groups, and
  • the fourth PDSCH group is the N PDSCH groups excluding the third PDSCH group Any PDSCH group.
  • the HARQ-ACK bit sequence of the third PDSCH group includes a first bit sequence and a second bit sequence that are sequentially concatenated;
  • the first bit sequence is determined based on the sixth DAI
  • the second bit sequence is determined based on the fifth DAI.
  • the second bit sequence satisfies any one of the following:
  • the number of bits included in the second bit sequence is twice the value of the fifth DAI, and the bits of the second bit sequence are set to NACK;
  • the number of bits included in the second bit sequence is equal to the value of the fifth DAI, and the bits of the second bit sequence are set to NACK;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the processor 710 is further configured to: any one of the following:
  • the third sub-DAI is determined according to the first sub-DAI, the second sub-DAI, the third sub-DAI, and the fourth sub-DAI.
  • the DAI in the last detected DCI corresponding to each PDSCH group in the N PDSCH groups is determined as the The second DAI corresponding to the PDSCH group;
  • the fifth DAI includes the first sub-DAI corresponding to the granularity of the transmission block TB and the second sub-DAI corresponding to the granularity of CBG; the third sub-DAI is the last detected by the terminal and the second sub-DAI.
  • the DAI in the first type of DCI corresponding to the three PDSCH groups, the fourth sub-DAI is the DAI in the second type of DCI that is last detected by the terminal and corresponding to the third PDSCH group, and the seventh DAI is The DAI in the DCI corresponding to the fourth PDSCH group last detected by the terminal; the first type of DCI scheduled PDSCH feedback HARQ-ACK based on TB granularity, and the second type of DCI scheduled PDSCH based on CBG granularity Feedback HARQ-ACK;
  • the third PDSCH group is any one of the N PDSCH groups, and the fourth PDSCH group is any of the N PDSCH groups except the third PDSCH group One PDSCH group.
  • the HARQ-ACK bit sequence of the third PDSCH group includes a third bit sequence, a fourth bit sequence, a fifth bit sequence, and a sixth bit sequence that are sequentially concatenated;
  • the third bit sequence is determined based on the third sub-DAI
  • the fourth bit sequence is determined based on the first sub-DAI
  • the fifth bit sequence is determined based on the fourth sub-DAI
  • the fourth bit sequence is determined based on the fourth sub-DAI.
  • the six-bit sequence is determined based on the second sub-DAI.
  • the fourth bit sequence satisfies any one of the following:
  • the number of bits included in the fourth bit sequence is twice the value of the first sub-DAI, and the bits of the fourth bit sequence are set to NACK;
  • the number of bits included in the fourth bit sequence is equal to the value of the first sub-DAI, and the bits of the fourth bit sequence are set to NACK;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the sixth bit sequence satisfies:
  • the number of bits included in the sixth bit sequence is equal to the product of the value of the second sub-DAI and the fourth value, and the bits of the sixth bit sequence are set to NACK;
  • the fourth value is determined based on the maximum number of schedulable transmission blocks of a single DCI and the maximum number of CBGs that can be split into a single transmission block.
  • the third PDSCH group satisfies any one of the following:
  • the third PDSCH group is the PDSCH group in which the PDSCH scheduled by the target DCI is located, and the target DCI is the DCI that is used to schedule the PDSCHs in the N PDSCH groups last detected by the terminal;
  • the third PDSCH group is agreed upon by agreement
  • the third PDSCH group is configured by the network side device.
  • the processor 710 is further configured to:
  • a dynamic codebook to be transmitted on the first PUSCH is generated.
  • processor 710 is further configured to:
  • the target bit sequence satisfies any one of the following:
  • the number of bits included in the target bit sequence is equal to the product of the value of the fifth DAI and the second value, and the bits in the target bit sequence Set to NACK;
  • the fifth DAI includes a third sub-DAI corresponding to a TB granularity and a fourth sub-DAI corresponding to a CBG granularity; the number of bits included in the target bit sequence is equal to the first The sum of a target value and a second target value, where the first target value is equal to the product of the value of the third sub-DAI and a second value, and the second target value is equal to the value of the fourth sub-DAI And the third value, and the bit in the target bit sequence is set to NACK.
  • the second value satisfies any one of the following:
  • the value of the second value is 2;
  • the value of the second value is 1;
  • the first condition includes: the terminal turns on the HARQ-ACK space bundling indication, and a single PDSCH reception corresponds to at most two transport blocks.
  • the third value is determined based on the maximum number of schedulable transmission blocks of a single DCI and the maximum number of CBGs that can be split into a single transmission block.
  • processor 710 is further configured to:
  • the preset rule includes at least one of the following:
  • the target DCI is the DCI that is used to schedule the PDSCH in the N PDSCH groups last detected by the terminal;
  • the first relationship satisfies any one of the following:
  • the first DAI corresponds to a fifth PDSCH group in the N PDSCH groups, and the fifth PDSCH group is any PDSCH group in the N PDSCH groups;
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the determining that each PDSCH group in the N PDSCH groups corresponds to each of the N PDSCH groups according to the first relationship includes:
  • the eighth DAI is the DAI in the DCI corresponding to the sixth PDSCH group last detected by the terminal; the sixth PDSCH group is the N PDSCH groups except the fifth PDSCH group Any of the PDSCH groups.
  • the radio frequency unit 701 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 710; Uplink data is sent to the base station.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into an audio signal and output it as sound. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the terminal 700 (e.g., call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the terminal 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and/or when the terminal 700 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operating).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of the touch event, and then the processor 710 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 708 is an interface for connecting an external device and the terminal 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 700 or may be used to communicate between the terminal 700 and the external device. Transfer data between.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 709 and calling data stored in the memory 709. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the terminal 700 may also include a power source 711 (such as a battery) for supplying power to various components.
  • a power source 711 such as a battery
  • the power source 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 700 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present application further provides a terminal, including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, when the computer program is executed by the processor 710
  • a terminal including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, when the computer program is executed by the processor 710
  • FIG. 8 is the second structural diagram of the network side device provided by the embodiment of the present application.
  • the network side device 800 includes: a processor 801, a memory 802, a user interface 803, a transceiver 804, and a bus interface.
  • the network side device 800 further includes: a computer program stored in the memory 802 and capable of running on the processor 801, and when the computer program is executed by the processor 801, the following steps are implemented:
  • the dynamic codebook contains HARQ-ACK bit sequences of N physical downlink shared channel PDSCH groups, and N is a positive integer.
  • the first DAI corresponds to at least one PDSCH group among the N PDSCH groups.
  • the first DAI corresponds to the N PDSCH groups; or, the first DAI corresponds to the first PDSCH group of the N PDSCH groups.
  • the first DAI is determined based on the sum of the values of the N ninth DAIs;
  • each PDSCH group in the N PDSCH groups corresponds to one of the ninth DAI
  • each ninth DAI is carried in the third DCI corresponding to its corresponding PDSCH group
  • each PDSCH group corresponds to the third DCI
  • the third DCI is the DCI corresponding to the PDSCH group last sent by the network side device.
  • the first DAI does not correspond to any one of the N PDSCH groups.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 802 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 804 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 803 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 802 can store data used by the processor 2601 when performing operations.
  • the network-side device 800 can implement the various processes implemented by the network-side device in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the foregoing HARQ-ACK codebook generation method embodiment or information transmission method embodiment is implemented Each process can achieve the same technical effect. To avoid repetition, I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供一种HARQ-ACK码本生成方法、信息发送方法、终端及网络侧设备,该方法包括:接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。

Description

HARQ-ACK码本生成方法、信息发送方法及设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种HARQ-ACK码本生成方法、信息发送方法、终端及网络侧设备。
背景技术
当UE组织在某个反馈时刻需要上报的HARQ-ACK比特序列时,UE基于预定义的规则,以及需要在此反馈时刻上报HARQ-ACK的单个/多个载波上物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的调度情况,确定各PDSCH传输与组织的HARQ-ACK比特序列中某个/某些比特的对应关系,这种操作称之为构造HARQ-ACK码本(Codebook)。HARQ-ACK Codebook包括:半静态码本和动态码本。
HARQ-ACK Codebook一般在PUCCH上传输,但当PUCCH传输与某个PUSCH传输在时域交叠时,PUCCH上承载的部分或全部UCI将复用到PUSCH上传输。在调度PUSCH的DCI format 0_1中可以指示复用传输的HARQ-ACK Codebook对应的DAI,可以称之为UL DAI。
目前,可以配置终端通过一个动态码本进行最多两个PDSCH组的HARQ-ACK反馈,而当上行DCI format 0_1中只存在单个或单组UL DAI时,此UL DAI如何用于生成该动态码本,目前还没有相应的解决方案。
发明内容
本申请实施例提供一种HARQ-ACK码本生成方法、信息发送方法、终端及网络侧设备,以解决如何基于UL DAI生成用于进行最多两个PDSCH组的HARQ-ACK反馈的动态码本的问题。
第一方面,本申请实施例提供了一种HARQ-ACK码本生成方法,所述方法包括:
接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;
根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;
根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;
其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。
第二方面,本申请实施例提供了一种信息发送方法,所述方法包括:
发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;
其中,所述动态码本包含N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
第三方面,本申请实施例还提供一种终端,所述终端包括:
接收模块,用于接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;
确定模块,用于根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;
生成模块,用于根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;
其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。
第四方面,本申请实施例还提供一种网络侧设备,所述网络侧设备包括:
发送模块,用于发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;
其中,所述动态码本包含N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
第五方面,本申请实施例还提供一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的HARQ-ACK码本生成方法的步骤。
第六方面,本申请实施例还提供一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的信息发送方法的步骤。
第七方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的应用于终端的HARQ-ACK码本生成方法的步骤,或应用于网络侧设备的信息发送方法的步骤。
在本申请实施例中,终端在接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI之后,可以根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI,进而根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。可见,本申请实施例提供了一种基于第一DAI生成包含所述N个PDSCH组的HARQ-ACK比特序列的动态码本的解决方案,进而可以保证动态码本的传输的可靠性,并避免或减轻对PUSCH上复用传输的其它信息的解码造成的影响。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例可应用的一种网络系统的结构图;
图2是本申请实施例提供的HARQ-ACK码本生成方法的流程图;
图3是本申请实施例提供的信息发送方法的流程图;
图4是本申请实施例提供的动态码本的传输示意图;
图5是本申请实施例提供的终端的结构图之一;
图6是本申请实施例提供的网络侧设备的结构图之一;
图7是本申请实施例提供的终端的结构图之二;
图8是本申请实施例提供的网络侧设备的结构图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,本申请中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
请参见图1,图1是本申请实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络侧设备12,其中,终端11和网络侧设备12之间可以进行通信。
在本申请实施例中,终端11也可以称作用户设备(User Equipment,UE)。在实际应用中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。网络侧设备12可以是基站、中继或接入点等。进一步地,基站可以是5G基站(gNB),或者其他通信系统中的基站(如演进型基站(Evolutional Node B,eNB))等。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、新空口(New Radio,NR)的混合自动重传请求应答(Hybrid Automatic Repeat reQuest Acknowledgement,HARQ-ACK)动态码本。
当UE组织在某个反馈时刻需要上报的HARQ-ACK比特序列时,UE基 于预定义的规则,以及需要在此反馈时刻上报HARQ-ACK的单个/多个载波上物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的调度情况,确定各PDSCH传输与组织的HARQ-ACK比特序列中某个/某些比特的对应关系,这种操作称之为构造HARQ-ACK码本(Codebook)。
当通过下行控制信息(Downlink Control Information,DCI)指示半持续调度(Semi-Persistent Scheduling,SPS)PDSCH释放时,也需要UE使用HARQ-ACK比特确认其接收,以保证两侧对于SPS PDSCH是否处于激活状态的理解保持一致。
HARQ-ACK Codebook包括:半静态码本(Type-1)和动态码本(Type-2)。其中,前者针对所有可能的DCI指示和PDSCH传输都进行反馈,主要用于保证传输可靠性,反馈开销较大;后者只针对实际的DCI指示和PDSCH传输进行反馈,反馈开销较小,在DCI漏检情况较为常见时传输可靠性会受到一定的影响。
动态码本通过对实际调度的PDSCH传输或SPS PDSCH释放指示进行下行分配索引(Downlink Assignment Index,DAI)计数的方式,为每个实际使用的DAI值都预留了HARQ-ACK反馈比特。
如果UE通过检测到的其它DAI推测出有些DAI对应的PDSCH分配指示或SPS PDSCH释放指示并未收到,则将对应的反馈比特设置为NACK;否则,按照各PDSCH分配指示对应的PDSCH传输的解码结果,设置其对应的HARQ-ACK反馈比特,对于检测到的SPS PDSCH释放指示,将其对应的反馈比特设置为ACK。
DAI采用有限的比特数(单个DAI一般占用2比特)来指示,为了扩展其指示范围,引入了取模操作,即先从1开始顺序计数,然后再取模得到某个计数值对应的DAI值。下行调度中DAI的处理可参考下表。
DCI格式1_0中计数器DAI的值,以及DAI DCI格式1_1中计数器DAI或总数DAI的值
Figure PCTCN2020125771-appb-000001
Figure PCTCN2020125771-appb-000002
在上表中,最高有效位(Most Significant Bit,MSB);最低有效位(Least Significant Bit,LSB);计数器DAI(Counter DAI,C-DAI);总数DAI(Total DAI,T-DAI)。
Y为存在与PDCCH对应的PDSCH传输,或者存在指示SPS PDSCH释放的PDCCH的{服务小区、PDCCH监测机会}对的数量(Number of{serving cell,PDCCH monitoring occasion}-pair(s)in which PDSCH transmission(s)associated with PDCCH or PDCCH indicating SPS PDSCH release is present,denoted asY),Y≥1。
当UE只配置了单个服务小区时,前述DAI只针对单个载波,按DCI指示的时间先后顺序逐一计数,可以称之为C-DAI。
当UE配置了多个服务小区时,为了进一步增加可靠性,新引入了T-DAI,用于指示截至当前时域检测位置接收到的所有DCI指示的数目,包括当前时域检测位置在各个服务小区上收到的所有DCI指示,因此仅当时域检测位置变化时,才会更新T-DAI的取值。
T-DAI与C-DAI结合使用,可以有效避免某个时域检测位置某个或某些服务小区上DCI指示丢失(只要不是所有服务小区上的DCI指示都丢失)时,UE和gNB对于DCI指示的传输理解不一致的情况。
在本申请实施例中,以下对每个DAI对应的HARQ-ACK比特序列的确定方式进行说明:
第一情况、当网络侧设备为UE的某个服务小区配置了参数PDSCH-Code BlockGroupTransmission,以开启基于码块组(Code Block Group,CBG)的HARQ传输时:
方式一、由DCI格式(format)1_1调度的PDSCH传输支持基于CBG的HARQ传输,单个DAI对应
Figure PCTCN2020125771-appb-000003
个HARQ-ACK反馈比特。
其中,
Figure PCTCN2020125771-appb-000004
为针对
Figure PCTCN2020125771-appb-000005
个配置了参数PDSCH-CodeBlockGroupTransmission的服务小区的
Figure PCTCN2020125771-appb-000006
值的最大值;
Figure PCTCN2020125771-appb-000007
为 服务小区c的参数maxNrofCodeWordsScheduledByDCI的取值,指示单个DCI可同时调度的传输块最大数目;
Figure PCTCN2020125771-appb-000008
为服务小区c的参数maxCodeBlockGroupsPerTransportBlock的取值,指示单个传输块可拆分的CBG最大数目。
如果针对某个服务小区c,
Figure PCTCN2020125771-appb-000009
则UE将
Figure PCTCN2020125771-appb-000010
比特中的最后
Figure PCTCN2020125771-appb-000011
个比特设置为NACK。
Figure PCTCN2020125771-appb-000012
个比特基于实际接收的传输块对应的各个CBG的解码情况进行设置。
方式二、由DCI format 1_0调度的PDSCH传输只支持基于传输块(Transport Block,TB)的HARQ传输,其与SPS PDSCH释放指示,SPS PDSCH接收一样,针对单个传输块都仅反馈单个HARQ-ACK比特;这些情况都属于单个DCI指示或PDSCH传输只对应单个传输块的情况。
第二情况、当网络没有为UE的某个服务小区配置参数PDSCH-CodeBlockGroupTransmission,即未开启基于CBG的HARQ传输时:
方式一、如果harq-ACK-SpatialBundlingPUCCH或harq-ACK-Spatial BundlingPUSCH参数没有为UE配置(即没有开启针对HARQ-ACK的Spatial Bundling,Spatial Bundling可以理解为同一个PDSCH传输对应的两个码字之间的HARQ-ACK反馈压缩合并;其中harq-ACK-SpatialBundlingPUCCH参数应用于在PUCCH上承载的HARQ-ACK传输,harq-ACK-SpatialBundlingPUSCH参数应用于在PUSCH上承载的HARQ-ACK传输),并且为UE的至少某个服务小区的至少某个下行(DownLink,DL)带宽部分(Bandwidth Part,BWP)通过maxNrofCodeWordsScheduledByDCI参数配置了单次PDSCH接收最多对应两个传输块,则单个DAI对应2个HARQ-ACK比特,其中第一比特指示第一个传输块的HARQ-ACK,第二比特指示第二个传输块的HARQ-ACK。
方式二、如果harq-ACK-SpatialBundlingPUCCH或harq-ACK-SpatialBundlingPUSCH参数已为UE配置,并且为UE的至少某个服务小区的至少某个DL BWP通过maxNrofCodeWordsScheduledByDCI参数配置了单次PDSCH接收最多对应两个传输块,则单个DAI对应单个HARQ-ACK比 特,取值设置为第一个传输块的HARQ-ACK与第二个传输块的HARQ-ACK的逻辑与。
方式三、否则,单个DAI对应单个HARQ-ACK比特,取值设置为唯一传输块的HARQ-ACK。其中,否则即表示除方式一和方式二中所列情况之外的其它剩余情况,即既没有配置最多对应两个传输块,也没有配置Spatial Bundling相关参数,此时单个下行DCI只会调度单个传输块,因此单个DAI对应单个HARQ-ACK比特。
当网络侧设备为UE的某个或某些服务小区配置了参数PDSCH-Code BlockGroupTransmission以开启基于CBG的HARQ传输时,HARQ-ACK Codebook包含两个HARQ-ACK子码本(sub-codebook)。其中,第一个sub-codebook包含所有TB粒度的HARQ-ACK比特,涉及SPS PDSCH释放指示、SPS PDSCH接收,开启了基于CBG的HARQ传输的服务小区上由DCI format 1_0调度的PDSCH传输(这些PDSCH传输仅支持TB粒度的HARQ-ACK反馈),以及没有开启基于CBG的HARQ传输的服务小区上由DCI format 1_0/1_1调度的PDSCH传输(这些PDSCH传输必然只支持TB粒度的HARQ-ACK反馈)对应的HARQ-ACK;第二个sub-codebook包含所有CBG粒度的HARQ-ACK比特,涉及开启了基于CBG的HARQ传输的服务小区上由DCI format 1_1调度的PDSCH传输对应的HARQ-ACK。HARQ-ACK Codebook由第一个sub-codebook和第二个sub-codebook顺序级联而成。
HARQ-ACK Codebook一般在PUCCH上传输,PUCCH的时域和频域信息在DCI中指示(有一个例外:SPS PDSCH的HARQ-ACK反馈PUCCH的频域信息可以由高层配置)。当PUCCH传输与某个PUSCH传输在时域交叠时,PUCCH上承载的部分或全部UCI将复用到PUSCH上传输。
对于HARQ-ACK动态码本,因为DCI漏检会影响HARQ-ACK Codebook的构建(包括Codebook中包含的HARQ-ACK比特数),而HARQ-ACK比特数会影响其在PUSCH上复用传输时占用的时频资源,从而影响PUSCH上其它数据传输(例如,UL-SCH)的时频解映射和解码。为了避免上述HARQ-ACK比特数在UE和网络侧理解不一致导致的影响,在调度PUSCH的DCI format 0_1中可以指示复用传输的HARQ-ACK Codebook对应的DAI,可以 称之为UL DAI。UL DAI主要用于UE确定HARQ-ACK Codebook的HARQ-ACK比特数,并可以用来确定HARQ-ACK Codebook尾部HARQ-ACK比特对应的DCI的漏检情况。当HARQ-ACK Codebook只涉及TB粒度的HARQ-ACK反馈(即不涉及两个sub-codebook)时,DCI format 0_1中只指示单个UL DAI(由DCI域“1st downlink assignment index”指示),对应于单一的HARQ-ACK Codebook,当HARQ-ACK Codebook同时涉及TB粒度的HARQ-ACK反馈和CBG粒度的HARQ-ACK反馈(即由两个sub-codebook顺序级联而成)时,DCI format 0_1中同时指示两个UL DAI,其中第一个UL DAI(由DCI域“1st downlink assignment index”指示)应用于第一个sub-codebook,第二个UL DAI(由DCI域“2nd downlink assignment index”指示)应用于第二个sub-codebook。
二、NR-U的HARQ-ACK动态码本增强。
对于动态码本引入的增强主要包括以下几点:
对动态调度的PDSCH进行显式分组,在调度DCI中指示调度的PDSCH对应的分组;同一个PDSCH分组对应的HARQ-ACK反馈都在同一个PUCCH上承载;
在单个PDSCH分组内进行C-DAI或T-DAI计数;
每个PDSCH分组维护一个新反馈指示(New Feedback Indicator,NFI),通过翻转的方式指示是只传输新反馈,还是也需要重传之前的反馈;如果NFI翻转,则指示NFI翻转的DCI之前针对此PDSCH分组的所有反馈将被丢弃,仅传输此DCI及之后针对此PDSCH分组调度的PDSCH的HARQ-ACK反馈,如果NFI未翻转,则自从上一次NFI翻转之后针对此PDSCH分组的所有HARQ-ACK反馈都需要传输,即NFI取值相同的HARQ-ACK反馈都有效;由此,针对同一PDSCH分组的两次反馈请求,实际需要传输的HARQ-ACK比特数可能发生变化;
单个DCI可以请求一到多个PDSCH分组的HARQ-ACK反馈在同一个PUCCH上传输,典型地,单个下行调度DCI默认请求自身调度的PDSCH对应的PDSCH分组的HARQ-ACK反馈,此DCI还可以额外触发其它PDSCH分组的HARQ-ACK反馈在其指示的PUCCH上一并传输;
目前支持的PDSCH分组最大数目为2;
UE可以通过能力信息指示是否支持增强的动态码本。
当为UE配置了增强动态码本时,在上行non-fallback DCI,即DCI format 0_1中,是否存在针对额外的单个PDSCH分组的UL DAI可以由无线资源控制(Radio Resource Control,RRC)信令配置。然而,当DCI format 0_1中只存在单个PDSCH分组的UL DAI时,此UL DAI应用于哪个PDSCH分组,目前还没有相应的解决方案。
以下对本申请实施例的HARQ-ACK码本生成方法进行说明。
参见图2,图2是本申请实施例提供的HARQ-ACK码本生成方法的流程图。本申请实施例的HARQ-ACK码本生成方法可以应用于终端。
如图2所示,HARQ-ACK码本生成方法可以包括以下步骤:
步骤201、接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI。
步骤202、根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI,N为正整数。
每个PDSCH组对应的第二DAI用于确定该PDSCH组的HARQ-ACK比特序列。
步骤203、根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列。
具体实现时,所述根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本,具体可以包括:
根据确定的N个第二DAI,确定所述N个PDSCH组中每个PDSCH组的HARQ-ACK序列;
根据所述N个PDSCH组中每个PDSCH组的HARQ-ACK序列,生成所述动态码本。
具体实现时,可选地,可以按照所述N个PDSCH组的组号的大小排列顺序,依次级联所述N个PDSCH组中每个PDSCH组的HARQ-ACK序列,生成所述动态码本,但不仅限于此。
本实施例的HARQ-ACK码本生成方法,终端在接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI之后,可以根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI,进而根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。可见,本申请实施例提供了一种基于第一DAI生成包含所述N个PDSCH组的HARQ-ACK比特序列的动态码本的解决方案,进而可以保证动态码本的传输的可靠性。
在本实施例中,可选地,所述根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI,包括:
确定所述第一DAI与N个PDSCH组的第一关系;
根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
具体实现时,对于所述第一DAI与N个PDSCH组的第一关系的确定,可以包括以下两种实施方式。
实施方式一、所述第一关系满足:所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
也就是说,在实施方式一中,所述第一DAI必定与所述N个PDSCH组中的至少一个PDSCH组具有对应关系。
在N等于1,即所述N个PDSCH组仅包括一个PDSCH组的情况下,第一DAI与该PDSCH组对应。
在N大于1的情况下,可选地,所述第一关系满足以下任意一项:
所述第一DAI与所述N个PDSCH组对应;
所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应。
需要说明的是,第一PDSCH组为所述N个PDSCH组中的一个PDSCH组。
具体实现时,所述第一PDSCH组可以为所述N个PDSCH组中的任一PDSCH组。进一步地,所述第一PDSCH组可以满足以下任意一项:
所述第一PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述 目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
所述第一PDSCH组由协议约定;
所述第一PDSCH组由网络侧设备配置。
为方便理解,以下对各情况分别进行说明:
情况一、所述第一PDSCH组满足:所述第一PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI。
在情况一中,所述第一PDSCH组由终端自主基于每个PDSCH组的调度时间确定。具体说明如下。
每个PDSCH组包括至少一个PDSCH,每个PDSCH对应一个用于调度其传输的DCI,每个DCI调度PDSCH的PDSCH调度时间可能不同。
示例性地,假设所述N个PDSCH组包括PDSCH组1、PDSCH组2和PDSCH组3,终端最后检测到用于调度所述N个PDSCH组中PDSCH的DCI为调度PDSCH组3中PDSCH的DCI。因此,可以将的PDSCH组3确定为所述第一PDSCH组。
情况二、所述第一PDSCH组满足所述第一PDSCH组由协议约定的情况。
在情况二中,所述第一PDSCH组为协议约定的所述N个PDSCH组中的一个PDSCH组。
例如,可以由协议约定第一PDSCH组为N个PDSCH组中的第一个PDSCH组或最后一个PDSCH组,或者为组号最小或最大的PDSCH组,或者为在生成动态码本时对应的HARQ-ACK比特序列放在动态码本对应的比特序列的最开始或最尾部的PDSCH组,或者组号为指定取值的PDSCH组。
情况三、所述第一PDSCH组满足所述第一PDSCH组由网络侧设备配置。
在情况三中,所述第一PDSCH组为网络侧设备配置的所述N个PDSCH组中的一个PDSCH组。
例如,可以由网络侧设备配置第一PDSCH组为N个PDSCH组中的第 一个PDSCH组或最后一个PDSCH组,或者为组号最小或最大的PDSCH组,或者为在生成动态码本时对应的HARQ-ACK比特序列放在动态码本对应的比特序列的最开始或最尾部的PDSCH组,或者组号为指定取值的PDSCH组。
可见,相比于情况一,在情况二和情况三中,终端无需自主确定所述第一PDSCH组,从而可以降低终端负担。相比于情况二,在情况一和情况三中,所述第一PDSCH组的确定的灵活度更高。相比于情况三,在情况一和情况二中,终端无需与网络侧设备交互以确定所述第一PDSCH组,从而可以降低信令开销。
实施方式二、所述确定所述第一DAI与N个PDSCH组的第一关系,包括:
根据预设规则,确定所述第一DAI与N个PDSCH组的第一关系;
其中,所述预设规则包括以下至少一项:
根据目标DCI调度的所在的PDSCH组确定所述第一DAI对应的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
根据协议约定确定所述第一DAI对应的PDSCH组;
根据网络侧设备的配置信息确定所述第一DAI对应的PDSCH组。
对于实施方式二,可选地,所述第一关系满足以下任意一项:
所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应,所述第五PDSCH组为所述N个PDSCH组中的任一个PDSCH组;
所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
需要说明的是,所述第五PDSCH组与前述第一PDSCH组类似,具体可参照前述关于第一PDSCH组的描述,此处不再赘述。
可见,对于实施方式二,在所述第一DAI与N个PDSCH组的第一关系基于预设规则确定的情况下,所述第一DAI可以不与所述N个PDSCH组中的任意一个PDSCH组对应,也就是说,所述第一DAI与所述N个PDSCH组无关。因此,在实施方式二中,所述第一DAI不一定与所述N个PDSCH组具有对应关系。
由前述内容可知,在本实施例中,所述第一DAI与N个PDSCH组的第 一关系包括以下表现方式。
第一表现方式、所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应;或,所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应。
第二表现方式、所述第一DAI与所述N个PDSCH组对应。
第三表现方式、所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
在本实施例中,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI的具体实施方式,与所述第一DAI与N个PDSCH组的第一关系的具体表现方式相关。因此,以下针对上述三种表现方式,对所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI的具体实施方式进行说明。
对于上述第一表现方式
在所述第一DAI与所述第一PDSCH组对应的情况下,可选地,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
将所述第一DAI确定为所述第一PDSCH组对应的第二DAI;
将第三DAI确定为第二PDSCH组对应的第二DAI;
其中,所述第三DAI为所述终端最后检测到的与第二PDSCH组对应的DCI中的DAI;所述第二PDSCH组为所述N个PDSCH组中除所述第一PDSCH组之外的任一PDSCH组。
为方便理解,示例说明如下:
假设所述N个PDSCH组包括PDSCH组0和PDSCH组1,PDSCH组0为所述第一PDSCH组,PDSCH组1为所述第二PDSCH组。
则对于PDSCH组0,其对应的第二DAI即为所述第一DAI;对于PDSCH组1,其对应的第二DAI即为:所述终端最后检测到的与PDSCH组对应的DCI中的DAI。这里与PDSCH组对应的DCI,是指此DCI调度的PDSCH归属于此PDSCH组。
在所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应的情况下,可选地,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH 组对应的第二DAI,包括:
将所述第一DAI确定为所述第五PDSCH组对应的第二DAI;
将第八DAI确定为第六PDSCH组对应的第二DAI;
其中,所述第八DAI为所述终端最后检测到的与第六PDSCH组对应的DCI中的DAI;所述第六PDSCH组为所述N个PDSCH组中除所述第五PDSCH组之外的任一PDSCH组。
该情况中,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI的实施原理,与上述所述第一DAI与所述第一PDSCH组对应的情况中,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI的实施原理相同,具体可参考前述描述,此处不再赘述。
对于上述第二表现方式
可选地,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
获取所述N个PDSCH组中每个PDSCH组对应的第二DCI中的第四DAI,每个PDSCH组对应的第二DCI为所述终端最后检测到的与该PDSCH组对应的DCI;
将第一值与所述第一DAI的取值进行比较,得到相应的比较结果;其中,所述第一值基于获取到的N个第四DAI的取值的和确定;
根据所述比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
具体实现时,第一实现方式中,所述第一值可以为获取到的N个第四DAI的取值的和。
第二实现方式中,所述第一值可以为通过对获取到的N个第四DAI的取值的和进行取模运算后得到的值。假设所述N个PDSCH中各个PDSCH分组对应的第四DAI分别为DAI1,DAI2,…DAIN,则所述第一值DAI_Sum可以通过以下公式计算:
Figure PCTCN2020125771-appb-000013
其中,Round_Size为取模运算的模数,其与单个DAI占用的比特数L相 关。可选地,Round_Size=2L。如:当DAI使用2比特指示时,Round_Size=4。
在第二表现方式中,所述第一DAI与所述N个PDSCH组对应,因此,所述第一DAI与获取到的N个第四DAI的取值的和对应,终端可以将所述第一DAI与所述第一值进行比较,得到比较结果。之后,根据比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
所述比较结果可以用于确定终端是否存在用于调度所述N个PDSCH组的PDSCH的DCI的漏检。
具体地,若所述比较结果为所述第一值与所述第一DAI的取值相等,则终端可以确定终端不存在用于调度所述N个PDSCH组的PDSCH的DCI的漏检。对于不存在漏检的情况,终端可以将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI确定为该PDSCH组对应的第二DAI。
若所述比较结果为所述第一值与所述第一DAI的取值不相等,终端可以确定终端存在用于调度所述N个PDSCH组的PDSCH的DCI的漏检。对于存在漏检的情况,终端可以通过以下方式,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,所述根据比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
确定第五DAI,所述第五DAI用于指示漏检的用于调度所述N个PDSCH组的PDSCH的DCI的个数;
根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
具体实现时,所述第五DAI可以根据所述第一值与所述第一DAI的取值确定。记所述第一值为DAI_Sum,所述第一DAI的取值为UL_DAI,所述第五DAI为DAI_Diff,可选地,DAI_Diff可以通过以下公式计算得到:
DAI_Diff=(UL_DAI–DAI_Sum-1)mod Round_Size+1
其中,X mod Y表示将X对Y进行取模,Round_Size为取模运算的模数,其与单个DAI占用的比特数L相关。可选地,Round_Size=2L。如:当DAI使用2比特指示时,Round_Size=4。例如,当UL_DAI=3,DAI_Sum =4时,DAI_Diff=(3–4–1)mod 4+1=3。
在本实施例中,所述根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI的具体实现方式,与所述终端是否开启基于CBG的HARQ传输相关。在本实施例中,若所述终端的某些服务小区配置了参数PDSCH-CodeBlockGroupTransmission,即可视为所述终端开启了基于CBG的HARQ传输。
以下分别针对所述终端未开启基于CBG的HARQ传输的场景一,所述终端开启了基于CBG的HARQ传输的场景二进行说明。
对于场景一,可选地,所述根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括以下任意一项:
在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据所述第五DAI和第六DAI确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI确定为该PDSCH组对应的第二DAI;
其中,所述第六DAI为所述终端最后检测到的与所述第三PDSCH组对应的DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
可见,在本实施例中,对于场景一,终端还需要进一步根据所述第五DAI与所述N个PDSCH组之间的第二关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
在所述第二关系为:所述第五DAI与所述第三PDSCH组对应的情况下,所述第三PDSCH组对应的第二DAI根据所述第五DAI和所述第六DCI确定,具体地,所述第三PDSCH组对应的第二DAI可以由所述第五DAI和所述第六DCI相加而成,可选地,可以对相加得到的和进一步取模得到所述第三PDSCH组对应的第二DAI。所述第四PDSCH组对应的第二DAI可以为 所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI。
进一步地,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第一比特序列和第二比特序列;
其中,所述第一比特序列基于所述第六DAI确定,所述第二比特序列基于所述第五DAI确定。
具体实现时,在所述第三PDSCH组的HARQ-ACK比特序列中,所述第二比特序列可以位于所述第一比特序列之后。
需要说明的是,在本实施例中,基于DAI确定比特序列的方式与前述部分中“每个DAI对应的HARQ-ACK比特序列的确定方式”相同,具体可以参见前述描述,此处不再赘述。需要说明的是,由于本实施例的动态码本在PUSCH上传输,因此,需要用harq-ACK-SpatialBundlingPUSCH替换参数harq-ACK-SpatialBundlingPUCCH。
在终端存在漏检的情况下,通过上述方式确定各PDSCH组的HARQ-ACK码本,可以使得在终端和网络侧设备理解的动态码本的大小,进而可以使得网络侧设备成功获取所述动态码本,提高数据传输的可靠性。
可选地,所述第二比特序列满足以下任意一项:
在第一条件满足的情况下,所述第二比特序列包括的比特个数为所述第五DAI的取值的两倍,且所述第二比特序列的比特设置为否定确认NACK;
在第一条件不满足的情况下,所述第二比特序列包括的比特个数等于所述第五DAI的取值,且所述第二比特序列的比特设置为NACK;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
具体实现时,若终端未配置有harq-ACK-SpatialBundlingPUSCH参数,则可以视所述终端开启HARQ-ACK空间捆绑指示。
可以通过maxNrofCodeWordsScheduledByDCI参数为所述终端的至少某个服务小区的至少某个DL BWP配置单次PDSCH接收最多对应两个传输块。
在本实施例中,在某比特设置为否定确认(Negative Acknowledgement,NACK)的情况下,可以将该比特的取值设置为‘0’。
在所述第二关系为:所述第五DAI不与所述N个PDSCH组中的任意一 个PDSCH组对应的情况下,对于所述N个PDSCH组中每个PDSCH组,其对应的第二DAI可以为:所述终端最后检测到的该PDSCH组对应的DCI中的DAI。
对于场景二,可选地,所述根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括以下任意一项:
在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据第一子DAI、第二子DAI、第三子DAI和第四子DAI确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI确定为该PDSCH组对应的第二DAI;
其中,所述第五DAI包括传输块TB粒度对应的所述第一子DAI和CBG粒度对应的所述第二子DAI;所述第三子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第一类型DCI中的DAI,所述第四子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第二类型DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第一类型DCI调度的PDSCH基于TB粒度反馈HARQ-ACK,所述第二类型DCI调度的PDSCH基于CBG粒度反馈HARQ-ACK;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
在场景二中,终端开启基于CBG的HARQ传输,因此,用于调度所述N个PDSCH组的PDSCH的DCI可以包括第一类型DCI和第二类型DCI。其中,对于所述第一类型DCI调度的PDSCH,其基于TB粒度反馈HARQ-ACK;对于所述第二类型DCI调度的PDSCH,其基于TB粒度反馈HARQ-ACK。
由前述内容可知,所述第五DAI用于指示漏检的用于调度所述N个PDSCH组的PDSCH的DCI的个数。因此,所述第五DAI包括传输块TB粒度对应的第一子DAI和CBG粒度对应的第二子DAI,其中,所述第一子DAI 可以用于指示漏检的用于调度所述N个PDSCH组的PDSCH的第一类型DCI的个数;所述第二子DAI可以用于指示漏检的用于调度所述N个PDSCH组的PDSCH的第二类型DCI的个数。
对于场景二,终端还需要进一步根据所述第五DAI与所述N个PDSCH组之间的第二关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
在所述第二关系为:所述第五DAI与所述第三PDSCH组对应的情况下,所述第三PDSCH组对应的第二DAI根据第一子DAI、第二子DAI、第三子DAI和第四子DAI确定,具体地,所述第三PDSCH组对应的第二DAI可以由第一子DAI、第二子DAI、第三子DAI和第四子DAI级联而成。所述第四PDSCH组对应的第二DAI可以为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI。
进一步地,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第三比特序列、第四比特序列、第五比特序列和第六比特序列;
其中,所述第三比特序列基于所述第三子DAI确定,所述第四比特序列基于所述第一子DAI确定,所述第五比特序列基于所述第四子DAI确定,所述第六比特序列基于所述第二子DAI确定。
具体实现时,在所述第三PDSCH组的HARQ-ACK比特序列中,所述第三比特序列和所述第四比特序列连续,且所述第四比特序列可以位于所述第三比特序列之后;所述第五比特序列和所述第六比特序列连续,且所述第六比特序列可以位于所述第五比特序列之后。另外,对于所述第三比特序列和所述第四比特序列的第一组合比特序列,所述第五比特序列和所述第六比特序列的第二组合比特序列,在所述第三PDSCH组的HARQ-ACK比特序列中,第一组合比特序列可以位于第二组合比特序列之后,也可以位于第二组合比特序列之前,具体可根据实际需要设定,本申请实施例对此不作限定。
在终端存在漏检的情况下,通过上述方式确定各PDSCH组的HARQ-ACK码本,可以使得在终端和网络侧设备理解的动态码本的大小,进而可以使得网络侧设备成功获取所述动态码本,提高数据传输的可靠性。
可选地,所述第四比特序列满足以下任意一项:
在第一条件满足的情况下,所述第四比特序列包括的比特个数为所述第一子DAI的取值的两倍,且所述第四比特序列的比特设置为否定确认NACK;
在第一条件不满足的情况下,所述第四比特序列包括的比特个数等于所述第一子DAI的取值,且所述第四比特序列的比特设置为NACK;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,所述第六比特序列满足:
所述第六比特序列包括的比特个数等于所述第二子DAI的取值和第四值的乘积,且所述第六比特序列的比特设置为NACK;
其中,所述第四值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
具体实现时,所述第四值可以为
Figure PCTCN2020125771-appb-000014
的含义具体可参考前述描述,此处不再赘述。
在所述第二关系为:所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,对于所述N个PDSCH组中每个PDSCH组,其对应的第二DAI可以为:所述终端最后检测到的该PDSCH组对应的DCI中的DAI。
对于上述场景一和场景二,在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,可选地,所述根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本,包括:
根据所述第五DAI和确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本。
可选地,所述根据所述第五DAI和确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本,包括:
根据所述第五DAI,生成目标比特序列。
具体实现时,终端在根据所述第五DAI生成目标比特序列后,可以将所述目标比特序列添加至所述动态码本中。也就是说,在该情况下,所述动态码本包括所述N个PDSCH组的HARQ-ACK比特序列,以及所述目标比特序列。
这样,可以使得在终端和网络侧设备理解的动态码本的大小,进而可以使得网络侧设备成功获取所述动态码本,提高数据传输的可靠性。
具体实现时,可选地,所述目标比特序列可以满足以下任意一项:
在所述终端未开启基于CBG的HARQ传输的情况下,所述目标比特序列包括的比特个数等于所述第五DAI的取值和第二值的乘积,且所述目标比特序列中的比特设置为NACK;
在所述终端开启基于CBG的HARQ传输的情况下,所述第五DAI包括TB粒度对应的第三子DAI和CBG粒度对应的第四子DAI;所述目标比特序列包括的比特个数等于第一目标值和第二目标值的和,所述第一目标值等于所述第三子DAI的取值和第二值的乘积,所述第二目标值等于所述第四子DAI的取值和第三值的乘积,且所述目标比特序列中的比特设置为NACK。
进一步地,所述第二值满足以下任意一项:
在第一条件满足的情况下,所述第二值的取值为2;
在第一条件不满足的情况下,所述第二值的取值为1;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
进一步地,所述第三值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
具体实现时,第三值可以为
Figure PCTCN2020125771-appb-000015
的含义具体可参考前述描述,此处不再赘述。
对于上述场景一和场景二,可选地,所述第三PDSCH组满足以下任意一项:
所述第三PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
所述第三PDSCH组由协议约定;
所述第三PDSCH组由网络侧设备配置。
对于上述第三实现方式
可选地,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH 组对应的第二DAI,包括:
将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI确定为该PDSCH组对应的第二DAI。
需要说明的是,在本实施例中,对于上述第一实现方式、第三实现方式以及第二实现方式中所述第一值与所述第一DAI的取值相等的情况,终端在确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI之后,根据确定的N个第二DAI,确定所述N个PDSCH组中每个PDSCH组的HARQ-ACK序列的方式与前述部分中“每个DAI对应的HARQ-ACK比特序列的确定方式”相同,具体可以参见前述描述,此处不再赘述。需要说明的是,由于本实施例的动态码本在PUSCH上传输,因此,需要用harq-ACK-Spatial Bundling PUSCH替换参数harq-ACK-Spatial Bundling PUCCH。
另外,在本实施例中,在所述终端只配置了单个服务小区的情况下,所述终端最后检测到的与某PDSCH组对应的DCI中的DAI为C-DAI;在所述终端配置了两个或两个以上的服务小区的情况下,所述终端最后检测到的与某PDSCH组对应的DCI中的DAI为T-DAI。
参见图3,图3是本申请实施例提供的HARQ-ACK码本生成方法的流程图。本申请实施例的信息发送方法应用于网络侧设备。
如图3所示,信息发送方法可以包括以下步骤:
步骤301、发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;其中,所述动态码本包含所述N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
可选地,所述第一DAI与N个PDSCH组中的至少一个PDSCH组对应。
可选地,在N大于1的情况下,所述第一DAI与所述N个PDSCH组对应;或,所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应。
可选地,在所述第一DAI与所述N个PDSCH组对应的情况下,所述第一DAI基于N个第九DAI的取值的和确定;
其中,所述N个PDSCH组中每个PDSCH组对应一个所述第九DAI,每个所述第九DAI携带于其对应的PDSCH组所对应的第三DCI中,每个 PDSCH组对应的第三DCI为所述网络侧设备最后发送的与该PDSCH组对应的DCI。
具体实现时,一种实现方式中,所述第一DAI的取值可以为N个第九DAI的取值的和;另一种实现方式中,所述第一DAI的取值可以通过对N个第九DAI的取值的和进行取模运算得到。
可选地,所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
在该情况下,第一DAI可以设置为任意值,或者设置为默认值,如4。
本实施例的信息发送方法,网络侧设备发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;其中,所述动态码本包含所述N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。这样,终端在接收到第一DAI后,可以基于第一DAI生成动态码本,从而可以提高动态码本传输的可靠性。
需要说明的是,本实施例作为与上述方法实施例对应的网络侧设备的实施方式,因此,可以参见上述方法实施例中的相关说明,且可以达到相同的有益效果。为了避免重复说明,在此不再赘述。
另外,本申请实施例中介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本申请实施例不作限定。
为方便理解,示例说明如下:
在本申请实施例中,当为UE配置了下行增强动态码本,并且上行DCI format 0_1中只存在单个或单组UL DAI时,UL DAI的含义及应用可以采用如下某种方案:
方案一:基于与由DCI format 0_1调度的PUSCH在时域交叠并需要在其上承载的增强动态码本对应的触发PDSCH分组数目来确定此DCI format 0_1中的UL DAI值(即DCI format 0_1中“1st downlink assignment index”域和/或“2nd downlink assignment index”域的取值)的含义,可以采用如下操作:
当增强动态码本只对应单个触发PDSCH分组时,UL DAI值对应于此触发的单个PDSCH分组,对应的HARQ-ACK比特的确定可以采用操作2,参 见下文中的描述。
当增强动态码本对应多于一个触发PDSCH分组时,采用如下某种方式:
UL DAI值对应于所有触发的PDSCH分组的DAI之和(并考虑取模运算),或者在PUSCH上承载的增强动态码本对应的动态调度PDSCH接收/SPS PDSCH释放指示数目(并考虑取模运算)。
其中,各个PDSCH分组应用的DAI值或对应的HARQ-ACK比特的确定可以采用操作1。
UL DAI值对应于在增强动态码本传输之前最近调度的PDSCH分组,对应的HARQ-ACK比特的确定可以采用操作2,参见下文中的描述。
UL DAI值对应于协议规定,或高层参数配置的某个PDSCH分组,例如第一组或第二组,对应的HARQ-ACK比特的确定可以采用操作2。
方案二:DCI format 0_1中的UL DAI固定应用于单个PDSCH分组,无论其调度的PUSCH上承载的PDSCH分组数目是否大于1,可以采用如下某种方式:
UL DAI值对应于协议规定,或高层参数配置的某个PDSCH分组,例如第一组或第二组,对应的HARQ-ACK比特的确定可以采用操作2。
UL DAI值对应于在增强动态码本传输之前最近调度的PDSCH分组,对应的HARQ-ACK比特的确定可以采用操作2。
上述方案一和方案二在一些情况下的实际操作完全一致,仅前提假设不同,一个是区分增强动态码本对应的PDSCH分组数目分别处理,一个是不作PDSCH分组数目的区分。
以下对上述操作1和操作2进行说明。
操作1:当DCI format 0_1中的UL DAI指示多于一个触发PDSCH分组的DAI之和,或者指示增强动态码本对应的动态调度PDSCH接收/SPS PDSCH释放指示数目时,可以采用如下方式确定各个PDSCH分组应用的DAI值或对应的HARQ-ACK比特:
第一步:取各个触发PDSCH分组最近的下行调度I为DCI format 1_0,则为此DCI format 1_0中的C-DAI;如果最近的下行调度DCI为DCI format 1_1,则为此DCI format 1_1中的T-DAI),并计算各个PDSCH分组的C- DAI/T-DAI之和(并考虑取模运算)与UL DAI之间的关系,如果相等,则认为不存在DCI漏检,此时执行第二步,否则,认为某个PDSCH分组存在DCI漏检,此时执行第三步。当增强动态码本对应于N个PDSCH分组时,假设各个PDSCH分组的DAI分别为DAI1,DAI2,…DAIN,则上述计算各个PDSCH分组的C-DAI/T-DAI之和(并考虑取模运算)DAI_Sum可以表示为:
Figure PCTCN2020125771-appb-000016
这里Round_Size为取模运算的模数,当DAI使用2比特指示时,Round_Size=4。
第二步:基于各个触发PDSCH分组最近的下行调度DCI format 1_0/1_1中的C-DAI/T-DAI确定此PDSCH分组对应的HARQ-ACK比特序列数目及取值,可沿用在PUCCH上承载时构造HARQ-ACK Codebook的操作流程(不涉及UL DAI的使用),但参数harq-ACK-SpatialBundlingPUCCH由harq-ACK-SpatialBundlingPUSCH替换。
第三步:计算DAI差异,假设各个PDSCH分组的C-DAI/T-DAI之和(并考虑取模运算)为DAI_Sum,DCI format 0_1中的UL DAI值为UL_DAI,则DAI差异DAI_Diff=(UL_DAI–DAI_Sum-1)mod Round_Size+1。DAI_Diff可以理解为漏检的DCI数目,针对其应用的目标的不同可以采用如下某种方式:
方式1:DAI_Diff应用于协议规定,或高层参数配置的某个PDSCH分组,例如第一组或第二组。
方式2:DAI_Diff应用于HARQ-ACK比特序列放在增强动态码本中最尾部的PDSCH分组,这样至少HARQ-ACK比特序列放在增强动态码本中最开始处的PDSCH分组的除了尾部之外的其它HARQ-ACK比特不会受到DCI漏检的影响。
方式3:DAI_Diff应用于在增强动态码本传输之前最近调度的PDSCH分组。
方式4:DAI_Diff不应用于任何PDSCH分组,仅用于在UE和eNB两侧对齐HARQ-ACK Codebook的大小,避免对于UL-SCH的RE解映射和解码造成影响。
对于上述方式1、方式2和方式3,在确定DAI_Diff应用的PDSCH分组 之后,在基于NR Rel-15流程确定了此PDSCH分组的HARQ-ACK比特序列(此时各个PDSCH分组在确定HARQ-ACK比特序列时,只使用DCI中指示的DAI值,不使用UL DAI值)之后,再在确定的HARQ-ACK比特序列的尾部应用DAI_Diff,在应用DAI_Diff时可以采用如下操作:
如果harq-ACK-SpatialBundlingPUSCH参数没有为UE配置,并且为UE的至少某个服务小区的至少某个DL BWP通过maxNrofCodeWordsScheduledByCI参数配置了单次PDSCH接收最多对应两个传输块,则每个缺失的DAI对应2个HARQ-ACK比特,此时在上述确定的HARQ-ACK比特序列的尾部添加DAI_Diff×2个取值为’0’的比特,对应DAI_Diff×2个NACK。
否则,每个缺失的DAI对应单个HARQ-ACK比特,此时在上述确定的HARQ-ACK比特序列的尾部添加DAI_Diff个取值为’0’的比特,对应DAI_Diff个NACK。
上述DAI_Diff应用操作适用于当UE的任何服务小区都没有开启基于CBG的HARQ传输时。
当UE的某些服务小区配置了参数PDSCH-CodeBlockGroupTransmission,即开启了基于CBG的HARQ传输时,单个PDSCH分组的HARQ-ACK Codebook由两个HARQ-ACK sub-codebook级联而成,其中第一个sub-codebook针对TB进行HARQ-ACK反馈,第二个sub-codebook针对CBG进行HARQ-ACK反馈。此时对于TB级的sub-codebook,按照上述操作应用DAI_Diff,对于CBG级的sub-codebook,在应用DAI_Diff时可以采用如下操作:
在上述确定的HARQ-ACK比特序列的尾部添加
Figure PCTCN2020125771-appb-000017
个取值为’0’的比特,对应
Figure PCTCN2020125771-appb-000018
个NACK,其中
Figure PCTCN2020125771-appb-000019
为针对
Figure PCTCN2020125771-appb-000020
个配置了参数PDSCH-CodeBlockGroupTransmission的服务小区的
Figure PCTCN2020125771-appb-000021
值的最大值,
Figure PCTCN2020125771-appb-000022
为服务小区c的参数maxNrofCodeWordsScheduledByDCI的取值,指示单个DCI可同时调度的传输块最大数目,
Figure PCTCN2020125771-appb-000023
为服务小区c的参数maxCodeBlockGroupsPerTransportBlock的取值,指示单个传输块可拆分的 CBG最大数目。
对于上述方式4,先确定各个触发PDSCH分组的HARQ-ACK比特序列(此时各个PDSCH分组在确定HARQ-ACK比特序列时,只使用DCI中指示的DAI值,不使用UL DAI值),然后基于各个触发PDSCH分组的HARQ-ACK比特序列确定完整的HARQ-ACK Codebook(例如,将各个触发PDSCH分组的HARQ-ACK比特序列按组号从小到大依次级联,得到完整的HARQ-ACK Codebook),最后,采用如下操作之一,在HARQ-ACK Codebook尾部添加对齐比特:
当单个触发PDSCH分组只涉及TB级的反馈(即UE的所有服务小区都没有配置参数PDSCH-CodeBlockGroupTransmission以开启基于CBG的HARQ传输)时,在HARQ-ACK Codebook尾部添加DAI_DiffTB×Bit_Num_Per_DAITB个取值为’0’的比特,每个比特对应单个NACK,其中DAI_DiffTB为基于DCI format 0_1中的UL DAI计算出来的DAI_Diff,Bit_Num_Per_DAITB为每个DAI对应的HARQ-ACK比特数,此时Bit_Num_Per_DAITB为TB粒度。
当单个触发PDSCH分组涉及CBG级的反馈(即UE的至少一个服务小区配置了参数PDSCH-CodeBlockGroupTransmission以开启基于CBG的HARQ传输)时,首先在HARQ-ACK Codebook尾部添加DAI_DiffTB×Bit_Num_Per_DAITB个取值为’0’的比特,每个比特对应单个NACK,其中DAI_DiffTB为基于DCI format 0_1中的第一个UL DAI(由“1st downlink assignment index”域指示)计算出来的DAI_Diff,Bit_Num_Per_DAITB为每个DAI对应的HARQ-ACK比特数,为TB粒度;其次在HARQ-ACK Codebook尾部进一步添加DAI_DiffCBG×Bit_Num_Per_DAICBG个取值为’0’的比特,每个比特对应单个NACK,其中DAI_DiffCBG为基于DCI format 0_1中的第二个UL DAI(由“2nd downlink assignment index”域指示)计算出来的DAI_Diff,Bit_Num_Per_DAICBG为每个DAI对应的HARQ-ACK比特数,为CBG粒度。
上述Bit_Num_Per_DAITB可基于如下方式确定:
如果harq-ACK-SpatialBundlingPUSCH参数没有为UE配置,并且为UE 的至少某个服务小区的至少某个DL BWP通过max Nr of Code Words Scheduled ByDCI参数配置了单次PDSCH接收最多对应两个传输块,则Bit_Num_Per_DAITB取值为2,否则Bit_Num_Per_DAITB取值为1。
上述Bit_Num_Per_DAICBG可基于如下方式确定:
Bit_Num_Per_DAICBG取值为
Figure PCTCN2020125771-appb-000024
的含义参见前面的描述。
操作2:当UL DAI值对应单个PDSCH分组时,可沿用在PUCCH上承载时构造HARQ-ACK Codebook的操作流程,确定此PDSCH分组对应的HARQ-ACK比特序列。
当每个触发PDSCH分组的码本对应两个sub-codebook时,基于NR Rel-15在DCI format 0_1中包含两个UL DAI值,分别对应第一个sub-codebook和第二个sub-codebook。对于每个sub-codebook可以分别应用上述方案及涉及的方式。
如图4所示,N个PDSCH组包括PDSCH组0和PDSCH组1。PDSCH组0包括两个PDSCH,分别为D1和D2,且UE仅检测到D1,未检测到D2。PDSCH组1包括四个PDSCH,分别为D3、D4、D5和D6,且UE仅检测到D3、D4和D5,未检测到D6。
在图4中,UCI1传输失败;传输UCI2的PUCCH与PUSCH在时域交叠,UCI2复用在PUSCH上传输。位于D6之后的DCI用于调度PUSCH,该DCI可以指示UL DAI。
在本申请实施例中,终端可以UL DAI,确定D1、D2、D3、D4、D5和D6分别对应的第二DAI,进而根据第二DAI,确定D1、D2、D3、D4、D5和D6的HARQ-ACK序列,进而生成动态码本,并在PUSCH上传输所述动态码本。
在本申请实施例中,当为UE配置了下行增强动态码本,并且上行DCI format 0_1中只存在单个或单组UL DAI时,对于UL DAI的应用提出了对应的解决方案,保证HARQ-ACK Codebook的可靠传输,以及对于PUSCH上承载的其它数据传输不造成影响。
参见图5,图5是本申请实施例提供的终端的结构图之一。如图5所示, 终端500包括:
接收模块501,用于接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;
确定模块502,用于根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;
生成模块503,用于根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;
其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。
可选地,所述确定模块,包括:
第一确定子模块,用于确定所述第一DAI与N个PDSCH组的第一关系;
第二确定子模块,用于根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,所述第一关系满足:所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
可选地,在N大于1的情况下,所述第一关系满足以下任意一项:
所述第一DAI与所述N个PDSCH组对应;
所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应,所述第一PDSCH组满足以下任意一项:
所述第一PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
所述第一PDSCH组由协议约定;
所述第一PDSCH组由网络侧设备配置。
可选地,在所述第一DAI与所述第一PDSCH组对应的情况下,所述第二确定子模块,具体用于:
将所述第一DAI确定为所述第一PDSCH组对应的第二DAI;
将第三DAI确定为第二PDSCH组对应的第二DAI;
其中,所述第三DAI为所述终端最后检测到的与第二PDSCH组对应的 DCI中的DAI;所述第二PDSCH组为所述N个PDSCH组中除所述第一PDSCH组之外的任一PDSCH组。
可选地,在所述第一DAI与所述N个PDSCH组对应的情况下,所述第二确定子模块,具体用于:
获取子单元,用于获取所述N个PDSCH组中每个PDSCH组对应的第二DCI中的第四DAI,每个PDSCH组对应的第二DCI为所述终端最后检测到的与该PDSCH组对应的DCI;
比较单元,用于将第一值与所述第一DAI的取值进行比较,得到相应的比较结果;其中,所述第一值基于获取到的N个第四DAI的取值的和确定;
确定单元,用于根据所述比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,所述确定单元,包括:
第一确定子单元,用于在所述第一值与所述第一DAI的取值不相等的情况下,确定第五DAI,所述第五DAI用于指示漏检的用于调度所述N个PDSCH组的PDSCH的DCI的个数;
第二确定子单元,用于根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,在所述终端未开启基于码块组CBG的HARQ传输的情况下;所述第二确定子单元,具体用于以下任意一项:
在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据所述第五DAI和第六DAI,确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI,确定为该PDSCH组对应的第二DAI;
其中,所述第六DAI为所述终端最后检测到的与所述第三PDSCH组对应的DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述 第三PDSCH组之外的任一PDSCH组。
可选地,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第一比特序列和第二比特序列;
其中,所述第一比特序列基于所述第六DAI确定,所述第二比特序列基于所述第五DAI确定。
可选地,所述第二比特序列满足以下任意一项:
在第一条件满足的情况下,所述第二比特序列包括的比特个数为所述第五DAI的取值的两倍,且所述第二比特序列的比特设置为否定确认NACK;
在第一条件不满足的情况下,所述第二比特序列包括的比特个数等于所述第五DAI的取值,且所述第二比特序列的比特设置为NACK;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,在所述终端开启基于码块组CBG的HARQ传输的情况下;所述第二确定子单元,具体用于以下任意一项:
在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据第一子DAI、第二子DAI、第三子DAI和第四子DAI,确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI确定为该PDSCH组对应的第二DAI;
其中,所述第五DAI包括传输块TB粒度对应的所述第一子DAI和CBG粒度对应的所述第二子DAI;所述第三子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第一类型DCI中的DAI,所述第四子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第二类型DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第一类型DCI调度的PDSCH基于TB粒度反馈HARQ-ACK,所述第二类型DCI调度的PDSCH基于CBG粒度反馈HARQ-ACK;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH 组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
可选地,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第三比特序列、第四比特序列、第五比特序列和第六比特序列;
其中,所述第三比特序列基于所述第三子DAI确定,所述第四比特序列基于所述第一子DAI确定,所述第五比特序列基于所述第四子DAI确定,所述第六比特序列基于所述第二子DAI确定。
可选地,所述第四比特序列满足以下任意一项:
在第一条件满足的情况下,所述第四比特序列包括的比特个数为所述第一子DAI的取值的两倍,且所述第四比特序列的比特设置为否定确认NACK;
在第一条件不满足的情况下,所述第四比特序列包括的比特个数等于所述第一子DAI的取值,且所述第四比特序列的比特设置为NACK;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,所述第六比特序列满足:
所述第六比特序列包括的比特个数等于所述第二子DAI的取值和第四值的乘积,且所述第六比特序列的比特设置为NACK;
其中,所述第四值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
可选地,所述第三PDSCH组满足以下任意一项:
所述第三PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
所述第三PDSCH组由协议约定;
所述第三PDSCH组由网络侧设备配置。
可选地,在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,所述生成模块,具体用于:
根据所述第五DAI和确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本。
可选地,所述生成模块,具体用于:
根据所述第五DAI,生成目标比特序列;
其中,所述目标比特序列满足以下任意一项:
在所述终端未开启基于CBG的HARQ传输的情况下,所述目标比特序列包括的比特个数等于所述第五DAI的取值和第二值的乘积,且所述目标比特序列中的比特设置为NACK;
在所述终端开启基于CBG的HARQ传输的情况下,所述第五DAI包括TB粒度对应的第三子DAI和CBG粒度对应的第四子DAI;所述目标比特序列包括的比特个数等于第一目标值和第二目标值的和,所述第一目标值等于所述第三子DAI的取值和第二值的乘积,所述第二目标值等于所述第四子DAI的取值和第三值的乘积,且所述目标比特序列中的比特设置为NACK。
可选地,所述第二值满足以下任意一项:
在第一条件满足的情况下,所述第二值的取值为2;
在第一条件不满足的情况下,所述第二值的取值为1;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,所述第三值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
可选地,所述确定所述第一DAI与N个PDSCH组的第一关系,包括:
根据预设规则,确定所述第一DAI与N个PDSCH组的第一关系;
其中,所述预设规则包括以下至少一项:
根据目标DCI调度的所在的PDSCH组确定所述第一DAI对应的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
根据协议约定确定所述第一DAI对应的PDSCH组;
根据网络侧设备的配置信息确定所述第一DAI对应的PDSCH组。
可选地,所述第一关系满足以下任意一项:
所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应,所述第五PDSCH组为所述N个PDSCH组中的任一个PDSCH组;
所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
可选地,在所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应的情况下,所述第二确定子模块,具体用于:
将所述第一DAI确定为所述第五PDSCH组对应的第二DAI;
将第八DAI确定为第六PDSCH组对应的第二DAI;
其中,所述第八DAI为所述终端最后检测到的与第六PDSCH组对应的DCI中的DAI;所述第六PDSCH组为所述N个PDSCH组中除所述第五PDSCH组之外的任一PDSCH组。
终端500能够实现本申请方法实施例中终端能够实现的各个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
参见图6,图6是本申请实施例提供的网络侧设备的结构图之一。如图6所示,网络侧设备300包括:
发送模块601,用于发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;
其中,所述动态码本包含N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
可选地,所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
可选地,在N大于1的情况下,所述第一DAI与所述N个PDSCH组对应;或,所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应。
可选地,在所述第一DAI与所述N个PDSCH组对应的情况下,所述第一DAI基于N个第九DAI的取值的和确定;
其中,所述N个PDSCH组中每个PDSCH组对应一个所述第九DAI,每个所述第九DAI携带于其对应的PDSCH组所对应的第三DCI中,每个PDSCH组对应的第三DCI为所述网络侧设备最后发送的与该PDSCH组对应的DCI。
可选地,所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
网络侧设备600能够实现本申请方法实施例中网络侧设备能够实现的各 个过程,以及达到相同的有益效果,为避免重复,这里不再赘述。
请参考图7,图7是本申请实施例提供的终端的结构图之二,该终端可以为实现本申请各个实施例的一种终端的硬件结构示意图。如图7所示,终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元701,用于:接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;
处理器710,用于:
根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;
根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;
其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。
可选地,处理器710,还用于:
确定所述第一DAI与N个PDSCH组的第一关系;
根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,所述第一关系满足:所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
可选地,在N大于1的情况下,所述第一关系满足以下任意一项:
所述第一DAI与所述N个PDSCH组对应;
所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应,所述第一PDSCH组满足以下任意一项:
所述第一PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述 目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
所述第一PDSCH组由协议约定;
所述第一PDSCH组由网络侧设备配置。
可选地,在所述第一DAI与所述第一PDSCH组对应的情况下,处理器710,还用于:
将所述第一DAI确定为所述第一PDSCH组对应的第二DAI;
将第三DAI确定为第二PDSCH组对应的第二DAI;
其中,所述第三DAI为所述终端最后检测到的与第二PDSCH组对应的DCI中的DAI;所述第二PDSCH组为所述N个PDSCH组中除所述第一PDSCH组之外的任一PDSCH组。
可选地,在所述第一DAI与所述N个PDSCH组对应的情况下,处理器710,还用于:
获取所述N个PDSCH组中每个PDSCH组对应的第二DCI中的第四DAI,每个PDSCH组对应的第二DCI为所述终端最后检测到的与该PDSCH组对应的DCI;
将第一值与所述第一DAI的取值进行比较,得到相应的比较结果;其中,所述第一值基于获取到的N个第四DAI的取值的和确定;
根据所述比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,处理器710,还用于:
在所述第一值与所述第一DAI的取值不相等的情况下,确定第五DAI,所述第五DAI用于指示漏检的用于调度所述N个PDSCH组的PDSCH的DCI的个数;
根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
可选地,在所述终端未开启基于码块组CBG的HARQ传输的情况下;处理器710,还用于:以下任意一项:
在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况 下,根据所述第五DAI和第六DAI,确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI,确定为该PDSCH组对应的第二DAI;
其中,所述第六DAI为所述终端最后检测到的与所述第三PDSCH组对应的DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
可选地,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第一比特序列和第二比特序列;
其中,所述第一比特序列基于所述第六DAI确定,所述第二比特序列基于所述第五DAI确定。
可选地,所述第二比特序列满足以下任意一项:
在第一条件满足的情况下,所述第二比特序列包括的比特个数为所述第五DAI的取值的两倍,且所述第二比特序列的比特设置为否定确认NACK;
在第一条件不满足的情况下,所述第二比特序列包括的比特个数等于所述第五DAI的取值,且所述第二比特序列的比特设置为NACK;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,在所述终端开启基于码块组CBG的HARQ传输的情况下;所述处理器710,还用于:以下任意一项:
在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据第一子DAI、第二子DAI、第三子DAI和第四子DAI,确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI 中的DAI确定为该PDSCH组对应的第二DAI;
其中,所述第五DAI包括传输块TB粒度对应的所述第一子DAI和CBG粒度对应的所述第二子DAI;所述第三子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第一类型DCI中的DAI,所述第四子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第二类型DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第一类型DCI调度的PDSCH基于TB粒度反馈HARQ-ACK,所述第二类型DCI调度的PDSCH基于CBG粒度反馈HARQ-ACK;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
可选地,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第三比特序列、第四比特序列、第五比特序列和第六比特序列;
其中,所述第三比特序列基于所述第三子DAI确定,所述第四比特序列基于所述第一子DAI确定,所述第五比特序列基于所述第四子DAI确定,所述第六比特序列基于所述第二子DAI确定。
可选地,所述第四比特序列满足以下任意一项:
在第一条件满足的情况下,所述第四比特序列包括的比特个数为所述第一子DAI的取值的两倍,且所述第四比特序列的比特设置为否定确认NACK;
在第一条件不满足的情况下,所述第四比特序列包括的比特个数等于所述第一子DAI的取值,且所述第四比特序列的比特设置为NACK;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,所述第六比特序列满足:
所述第六比特序列包括的比特个数等于所述第二子DAI的取值和第四值的乘积,且所述第六比特序列的比特设置为NACK;
其中,所述第四值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
可选地,所述第三PDSCH组满足以下任意一项:
所述第三PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述 目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
所述第三PDSCH组由协议约定;
所述第三PDSCH组由网络侧设备配置。
可选地,在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,处理器710,还用于::
根据所述第五DAI和确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本。
可选地,处理器710,还用于:
根据所述第五DAI,生成目标比特序列;
其中,所述目标比特序列满足以下任意一项:
在所述终端未开启基于CBG的HARQ传输的情况下,所述目标比特序列包括的比特个数等于所述第五DAI的取值和第二值的乘积,且所述目标比特序列中的比特设置为NACK;
在所述终端开启基于CBG的HARQ传输的情况下,所述第五DAI包括TB粒度对应的第三子DAI和CBG粒度对应的第四子DAI;所述目标比特序列包括的比特个数等于第一目标值和第二目标值的和,所述第一目标值等于所述第三子DAI的取值和第二值的乘积,所述第二目标值等于所述第四子DAI的取值和第三值的乘积,且所述目标比特序列中的比特设置为NACK。
可选地,所述第二值满足以下任意一项:
在第一条件满足的情况下,所述第二值的取值为2;
在第一条件不满足的情况下,所述第二值的取值为1;
其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
可选地,所述第三值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
可选地,处理器710,还用于:
根据预设规则,确定所述第一DAI与N个PDSCH组的第一关系;
其中,所述预设规则包括以下至少一项:
根据目标DCI调度的所在的PDSCH组确定所述第一DAI对应的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
根据协议约定确定所述第一DAI对应的PDSCH组;
根据网络侧设备的配置信息确定所述第一DAI对应的PDSCH组。
可选地,所述第一关系满足以下任意一项:
所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应,所述第五PDSCH组为所述N个PDSCH组中的任一个PDSCH组;
所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
可选地,在所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应的情况下,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
将所述第一DAI确定为所述第五PDSCH组对应的第二DAI;
将第八DAI确定为第六PDSCH组对应的第二DAI;
其中,所述第八DAI为所述终端最后检测到的与第六PDSCH组对应的DCI中的DAI;所述第六PDSCH组为所述N个PDSCH组中除所述第五PDSCH组之外的任一PDSCH组。
需要说明的是,本实施例中上述终端700可以实现本申请实施例中方法实施例中的各个过程,以及达到相同的有益效果,为避免重复,此处不再赘述。
应理解的是,本申请实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输 出单元703还可以提供与终端700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
终端700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在终端700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合 的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与终端700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端700内的一个或多个元件或者可以用于在终端700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是终端的控制中心,利用各种接口和线路连接整个终端的各 个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器710可包括一个或多个处理单元;可选地,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
终端700还可以包括给各个部件供电的电源711(比如电池),可选地,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端700包括一些未示出的功能模块,在此不再赘述。
可选地,本申请实施例还提供一种终端,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述HARQ-ACK码本生成方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图8,图8是本申请实施例提供的网络侧设备的结构图之二,如图8所示,网络侧设备800包括:处理器801、存储器802、用户接口803、收发机804和总线接口。
其中,在本申请实施例中,网络侧设备800还包括:存储在存储器802上并可在处理器801上运行的计算机程序,计算机程序被处理器801执行时实现如下步骤:
发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;
其中,所述动态码本包含N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
可选地,所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
可选地,所述第一DAI与所述N个PDSCH组对应;或,所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应。
可选地,在所述第一DAI与所述N个PDSCH组对应的情况下,所述第一DAI基于N个第九DAI的取值的和确定;
其中,所述N个PDSCH组中每个PDSCH组对应一个所述第九DAI,每个所述第九DAI携带于其对应的PDSCH组所对应的第三DCI中,每个PDSCH组对应的第三DCI为所述网络侧设备最后发送的与该PDSCH组对应的DCI。可选地,所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机804可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口803还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器802可以存储处理器2601在执行操作时所使用的数据。
可选地,计算机程序被处理器801执行时还可实现如下步骤:
网络侧设备800能够实现上述方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述HARQ-ACK码本生成方法实施例或信息发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包 括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (34)

  1. 一种混合自动重传请求应答HARQ-ACK码本生成方法,应用于终端,其特征在于,所述方法包括:
    接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;
    根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;
    根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;
    其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI,包括:
    确定所述第一DAI与N个PDSCH组的第一关系;
    根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
  3. 根据权利要求2所述的方法,其特征在于,所述第一关系满足:所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
  4. 根据权利要求3所述的方法,其特征在于,在N等于1的情况下,所述第一关系满足:所述第一DAI的值对应于触发的单个PDSCH分组。
  5. 根据权利要求3所述的方法,其特征在于,在N大于1的情况下,所述第一关系满足以下任意一项:
    所述第一DAI与所述N个PDSCH组对应;
    所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应,所述第一PDSCH组满足以下任意一项:
    所述第一PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
    所述第一PDSCH组由协议约定;
    所述第一PDSCH组由网络侧设备配置。
  6. 根据权利要求5所述的方法,其特征在于,在所述第一DAI与所述第一PDSCH组对应的情况下,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
    将所述第一DAI确定为所述第一PDSCH组对应的第二DAI;
    将第三DAI确定为第二PDSCH组对应的第二DAI;
    其中,所述第三DAI为所述终端最后检测到的与第二PDSCH组对应的DCI中的DAI;所述第二PDSCH组为所述N个PDSCH组中除所述第一PDSCH组之外的任一PDSCH组。
  7. 根据权利要求5所述的方法,其特征在于,在所述第一DAI与所述N个PDSCH组对应的情况下,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
    获取所述N个PDSCH组中每个PDSCH组对应的第二DCI中的第四DAI,每个PDSCH组对应的第二DCI为所述终端最后检测到的与该PDSCH组对应的DCI;
    将第一值与所述第一DAI的取值进行比较,得到相应的比较结果;其中,所述第一值基于获取到的N个第四DAI的取值的和确定;
    根据所述比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
  8. 根据权利要求7所述的方法,其特征在于,所述根据比较结果,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
    在所述第一值与所述第一DAI的取值不相等的情况下,确定第五DAI,所述第五DAI用于指示漏检的用于调度所述N个PDSCH组的PDSCH的DCI的个数;
    根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI。
  9. 根据权利要求8所述的方法,其特征在于,在所述终端未开启基于码块组CBG的HARQ传输的情况下;所述根据所述第五DAI,确定所述N个 PDSCH组中每个PDSCH组对应的第二DAI,包括以下任意一项:
    在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据所述第五DAI和第六DAI,确定所述第三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
    在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI,确定为该PDSCH组对应的第二DAI;
    其中,所述第六DAI为所述终端最后检测到的与所述第三PDSCH组对应的DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
  10. 根据权利要求9所述的方法,其特征在于,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第一比特序列和第二比特序列;
    其中,所述第一比特序列基于所述第六DAI确定,所述第二比特序列基于所述第五DAI确定。
  11. 根据权利要求10所述的方法,其特征在于,所述第二比特序列满足以下任意一项:
    在第一条件满足的情况下,所述第二比特序列包括的比特个数为所述第五DAI的取值的两倍,且所述第二比特序列的比特设置为否定确认NACK;
    在第一条件不满足的情况下,所述第二比特序列包括的比特个数等于所述第五DAI的取值,且所述第二比特序列的比特设置为NACK;
    其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
  12. 根据权利要求8所述的方法,其特征在于,在所述终端开启基于码块组CBG的HARQ传输的情况下;所述根据所述第五DAI,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括以下任意一项:
    在所述第五DAI与所述N个PDSCH组中的第三PDSCH组对应的情况下,根据第一子DAI、第二子DAI、第三子DAI和第四子DAI,确定所述第 三PDSCH组对应的第二DAI,并将第七DAI确定为第四PDSCH组对应的第二DAI;
    在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,将所述N个PDSCH组中每个PDSCH组对应的最后检测到的DCI中的DAI确定为该PDSCH组对应的第二DAI;
    其中,所述第五DAI包括传输块TB粒度对应的所述第一子DAI和CBG粒度对应的所述第二子DAI;所述第三子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第一类型DCI中的DAI,所述第四子DAI为所述终端最后检测到的与所述第三PDSCH组对应的第二类型DCI中的DAI,所述第七DAI为所述终端最后检测到的与所述第四PDSCH组对应的DCI中的DAI;所述第一类型DCI调度的PDSCH基于TB粒度反馈HARQ-ACK,所述第二类型DCI调度的PDSCH基于CBG粒度反馈HARQ-ACK;所述第三PDSCH组为所述N个PDSCH组中的任一个PDSCH组,所述第四PDSCH组为所述N个PDSCH组中除所述第三PDSCH组之外的任一PDSCH组。
  13. 根据权利要求12所述的方法,其特征在于,所述第三PDSCH组的HARQ-ACK比特序列包括顺序级联的第三比特序列、第四比特序列、第五比特序列和第六比特序列;
    其中,所述第三比特序列基于所述第三子DAI确定,所述第四比特序列基于所述第一子DAI确定,所述第五比特序列基于所述第四子DAI确定,所述第六比特序列基于所述第二子DAI确定。
  14. 根据权利要求13所述的方法,其特征在于,所述第四比特序列满足以下任意一项:
    在第一条件满足的情况下,所述第四比特序列包括的比特个数为所述第一子DAI的取值的两倍,且所述第四比特序列的比特设置为否定确认NACK;
    在第一条件不满足的情况下,所述第四比特序列包括的比特个数等于所述第一子DAI的取值,且所述第四比特序列的比特设置为NACK;
    其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
  15. 根据权利要求13所述的方法,其特征在于,所述第六比特序列满足:
    所述第六比特序列包括的比特个数等于所述第二子DAI的取值和第四值的乘积,且所述第六比特序列的比特设置为NACK;
    其中,所述第四值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
  16. 根据权利要求9或12所述的方法,其特征在于,所述第三PDSCH组满足以下任意一项:
    所述第三PDSCH组为目标DCI调度的PDSCH所在的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
    所述第三PDSCH组由协议约定;
    所述第三PDSCH组由网络侧设备配置。
  17. 根据权利要求9或12所述的方法,其特征在于,在所述第五DAI不与所述N个PDSCH组中的任意一个PDSCH组对应的情况下,所述根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本,包括:
    根据所述第五DAI和确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本。
  18. 根据权利要求17所述的方法,其特征在于,所述根据所述第五DAI和确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本,包括:
    根据所述第五DAI,生成目标比特序列;
    其中,所述目标比特序列满足以下任意一项:
    在所述终端未开启基于CBG的HARQ传输的情况下,所述目标比特序列包括的比特个数等于所述第五DAI的取值和第二值的乘积,且所述目标比特序列中的比特设置为NACK;
    在所述终端开启基于CBG的HARQ传输的情况下,所述第五DAI包括TB粒度对应的第三子DAI和CBG粒度对应的第四子DAI;所述目标比特序列包括的比特个数等于第一目标值和第二目标值的和,所述第一目标值等于所述第三子DAI的取值和第二值的乘积,所述第二目标值等于所述第四子DAI的取值和第三值的乘积,且所述目标比特序列中的比特设置为NACK。
  19. 根据权利要求18所述的方法,其特征在于,所述第二值满足以下任 意一项:
    在第一条件满足的情况下,所述第二值的取值为2;
    在第一条件不满足的情况下,所述第二值的取值为1;
    其中,所述第一条件包括:所述终端开启HARQ-ACK空间捆绑指示,且单次PDSCH接收最多对应两个传输块。
  20. 根据权利要求18所述的方法,其特征在于,所述第三值基于单个DCI可调度的传输块的最大数目和单个传输块可拆分的CBG的最大数目确定。
  21. 根据权利要求2所述的方法,其特征在于,所述确定所述第一DAI与N个PDSCH组的第一关系,包括:
    根据预设规则,确定所述第一DAI与N个PDSCH组的第一关系;
    其中,所述预设规则包括以下至少一项:
    根据目标DCI调度的所在的PDSCH组确定所述第一DAI对应的PDSCH组,所述目标DCI为所述终端最后检测到的用于调度所述N个PDSCH组中PDSCH的DCI;
    根据协议约定确定所述第一DAI对应的PDSCH组;
    根据网络侧设备的配置信息确定所述第一DAI对应的PDSCH组。
  22. 根据权利要求21所述的方法,其特征在于,所述第一关系满足以下任意一项:
    所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应,所述第五PDSCH组为所述N个PDSCH组中的任一个PDSCH组;
    所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
  23. 根据权利要求22所述的方法,其特征在于,在所述第一DAI与所述N个PDSCH组中的第五PDSCH组对应的情况下,所述根据所述第一关系,确定所述N个PDSCH组中每个PDSCH组对应的第二DAI,包括:
    将所述第一DAI确定为所述第五PDSCH组对应的第二DAI;
    将第八DAI确定为第六PDSCH组对应的第二DAI;
    其中,所述第八DAI为所述终端最后检测到的与第六PDSCH组对应的DCI中的DAI;所述第六PDSCH组为所述N个PDSCH组中除所述第五PDSCH组之外的任一PDSCH组。
  24. 一种信息发送方法,应用于网络侧设备,其特征在于,所述方法包括:
    发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;
    其中,所述动态码本包含N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
  25. 根据权利要求24所述的方法,其特征在于,所述第一DAI与所述N个PDSCH组中的至少一个PDSCH组对应。
  26. 根据权利要求25所述的方法,其特征在于,在N大于1的情况下,所述第一DAI的值对应于触发的单个PDSCH分组。
  27. 根据权利要求25所述的方法,其特征在于,在N大于1的情况下;所述第一DAI与所述N个PDSCH组对应;或,所述第一DAI与所述N个PDSCH组中的第一PDSCH组对应,所述第一PDSCH组为所述N个PDSCH组中的任一个PDSCH组。
  28. 根据权利要求27所述的方法,其特征在于,在所述第一DAI与所述N个PDSCH组对应的情况下,所述第一DAI基于N个第九DAI的取值的和确定;
    其中,所述N个PDSCH组中每个PDSCH组对应一个所述第九DAI,每个所述第九DAI携带于其对应的PDSCH组所对应的第三DCI中,每个PDSCH组对应的第三DCI为所述网络侧设备最后发送的与该PDSCH组对应的DCI。
  29. 根据权利要求24所述的方法,其特征在于,所述第一DAI不与所述N个PDSCH组中的任意一个PDSCH组对应。
  30. 一种终端,其特征在于,所述终端包括:
    接收模块,用于接收用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI;
    确定模块,用于根据所述第一DAI,确定N个物理下行共享信道PDSCH组中每个PDSCH组对应的第二DAI;
    生成模块,用于根据确定的N个第二DAI,生成在所述第一PUSCH上传输的动态码本;
    其中,所述动态码本包含所述N个PDSCH组的HARQ-ACK比特序列,N为正整数。
  31. 一种网络侧设备,其特征在于,所述网络侧设备包括:
    发送模块,用于发送用于调度第一物理上行共享信道PUSCH的第一下行控制信息DCI,所述第一DCI包括第一DAI,所述第一DAI用于在所述第一PUSCH上传输的动态码本的生成;
    其中,所述动态码本包含N个物理下行共享信道PDSCH组的HARQ-ACK比特序列,N为正整数。
  32. 一种终端,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至23中任一项所述的HARQ-ACK码本生成方法的步骤。
  33. 一种网络侧设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求24至29中任一项所述的HARQ-ACK码本生成方法的步骤。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至23中任一项所述的HARQ-ACK码本生成方法的步骤,或,如权利要求24至29中任一项所述的HARQ-ACK码本生成方法的步骤。
PCT/CN2020/125771 2019-11-07 2020-11-02 Harq-ack码本生成方法、信息发送方法及设备 WO2021088750A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20885427.3A EP4057558A4 (en) 2019-11-07 2020-11-02 METHOD FOR GENERATION OF HARQ-ACK CODEBOOK, INFORMATION TRANSFER METHOD AND APPARATUS
BR112022008026A BR112022008026A2 (pt) 2019-11-07 2020-11-02 Método de geração de livro de códigos de harq-ack, método de transmissão de informações e dispositivo.
JP2022524653A JP2022553991A (ja) 2019-11-07 2020-11-02 Harq-ackコードブック生成方法、情報送信方法及び機器
KR1020227016700A KR20220079991A (ko) 2019-11-07 2020-11-02 Harq-ack 코드북 생성 방법, 정보 송신 방법 및 장비
US17/732,356 US20220256586A1 (en) 2019-11-07 2022-04-28 Harq-ack codebook generation method, information transmitting method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911083905.9 2019-11-07
CN201911083905.9A CN111277388B (zh) 2019-11-07 2019-11-07 Harq-ack码本生成方法、信息发送方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,356 Continuation US20220256586A1 (en) 2019-11-07 2022-04-28 Harq-ack codebook generation method, information transmitting method, and device

Publications (1)

Publication Number Publication Date
WO2021088750A1 true WO2021088750A1 (zh) 2021-05-14

Family

ID=71001460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125771 WO2021088750A1 (zh) 2019-11-07 2020-11-02 Harq-ack码本生成方法、信息发送方法及设备

Country Status (7)

Country Link
US (1) US20220256586A1 (zh)
EP (1) EP4057558A4 (zh)
JP (1) JP2022553991A (zh)
KR (1) KR20220079991A (zh)
CN (1) CN111277388B (zh)
BR (1) BR112022008026A2 (zh)
WO (1) WO2021088750A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010103A (ja) * 2019-07-01 2021-01-28 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN111277388B (zh) * 2019-11-07 2022-01-28 维沃移动通信有限公司 Harq-ack码本生成方法、信息发送方法及设备
CN113949491B (zh) * 2020-07-17 2023-07-04 大唐移动通信设备有限公司 一种harq-ack信息的传输方法和装置
CN114070505B (zh) * 2020-07-31 2023-04-07 展讯通信(上海)有限公司 Harq码本的确定方法及装置、harq码本的配置方法及装置、存储介质、终端、基站
WO2022027641A1 (en) * 2020-08-07 2022-02-10 Zte Corporation Systems and methods for providing feedback information
CN114070477A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种harq-ack信息比特总数的确定方法及装置
EP4231753A4 (en) * 2020-10-15 2023-11-29 Fujitsu Limited METHOD AND APPARATUS FOR SENDING FEEDBACK INFORMATION AND METHOD AND APPARATUS FOR RECEIVING FEEDBACK INFORMATION
EP4231743A4 (en) * 2020-10-15 2023-12-20 Fujitsu Limited METHOD AND APPARATUS FOR RECEIVING DATA
CN115053611A (zh) * 2021-01-08 2022-09-13 北京小米移动软件有限公司 Harq-ack反馈方法及装置、存储介质
EP4304260A4 (en) * 2021-03-04 2024-04-17 Beijing Xiaomi Mobile Software Co Ltd METHOD AND DEVICE FOR SENDING HARQ-ACK, METHOD AND DEVICE FOR RECEIVING HARQ-ACK, DEVICE AND STORAGE MEDIUM
US20220321266A1 (en) * 2021-04-05 2022-10-06 Qualcomm Incorporated Hybrid automatic repeat request (harq) feedback for dynamic multi-slot physical downlink shared channel (pdsch)
WO2022236534A1 (en) * 2021-05-10 2022-11-17 Zte Corporation Hybrid automatic repeat request acknowledgement codebook generation techniques
CN115333670B (zh) * 2021-05-11 2024-03-26 维沃移动通信有限公司 动态harq-ack码本处理方法、装置、设备及可读存储介质
CN115334678A (zh) * 2021-05-11 2022-11-11 维沃移动通信有限公司 共享信道调度方法、装置、终端及网络侧设备
WO2023115519A1 (en) * 2021-12-24 2023-06-29 Lenovo (Beijing) Limited Method and apparatus for harq-ack codebook determination
WO2024031588A1 (zh) * 2022-08-11 2024-02-15 Oppo广东移动通信有限公司 Harq码本构建方法、装置、设备及存储介质
WO2024072156A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 Harq-ack 정보를 전송하는 방법, 사용자기기, 프로세싱 장치, 및 저장 매체, 그리고 harq-ack 정보를 수신하는 방법 및 기지국

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586877A (zh) * 2017-09-29 2019-04-05 北京三星通信技术研究有限公司 上行传输方法和相应设备
CN111277388A (zh) * 2019-11-07 2020-06-12 维沃移动通信有限公司 Harq-ack码本生成方法、信息发送方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023146A1 (en) * 2015-08-06 2017-02-09 Innovative Technology Lab Co., Ltd. Apparatus and method for transmitting uplink control information through a physical uplink control channel
ES2794399T3 (es) * 2015-08-14 2020-11-18 Huawei Tech Co Ltd Método de transmisión y recepción de información, y dispositivo
US10541785B2 (en) * 2016-07-18 2020-01-21 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
WO2019050368A1 (ko) * 2017-09-08 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2019066630A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. UPLINK TRANSMISSION METHOD AND CORRESPONDING EQUIPMENT
CN109905210B (zh) * 2017-12-08 2020-10-20 电信科学技术研究院 一种ack/nack传输方法及对应装置
CN110086583B (zh) * 2018-01-26 2021-05-07 电信科学技术研究院有限公司 一种dai的指示方法、用户终端和网络侧设备
ES2895455T3 (es) * 2018-03-28 2022-02-21 Asustek Comp Inc Procedimiento y aparato para determinar el tamaño del libro de códigos en un sistema de comunicación inalámbrica
CN110351022A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 动态harq-ack码本的长度确定方法及装置、存储介质、终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586877A (zh) * 2017-09-29 2019-04-05 北京三星通信技术研究有限公司 上行传输方法和相应设备
CN111277388A (zh) * 2019-11-07 2020-06-12 维沃移动通信有限公司 Harq-ack码本生成方法、信息发送方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Feature lead summary of HARQ enhancements for NR-U", 3GPP DRAFT; R1-1907652 FEATURE LEAD SUMMARY FOR 7.2.2.2.3 NRU HARQ RAN97V3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno, USA, XP051739941 *
NOKIA, NOKIA SHANGHAI BELL: "Remaining issues on NR-U HARQ scheduling and feedback", 3GPP DRAFT; R1-1910596_HARQ, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 7 October 2019 (2019-10-07), Chongqing, China, XP051808950 *
See also references of EP4057558A4 *

Also Published As

Publication number Publication date
EP4057558A4 (en) 2022-12-28
CN111277388B (zh) 2022-01-28
EP4057558A1 (en) 2022-09-14
JP2022553991A (ja) 2022-12-27
US20220256586A1 (en) 2022-08-11
BR112022008026A2 (pt) 2022-07-12
KR20220079991A (ko) 2022-06-14
CN111277388A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021088750A1 (zh) Harq-ack码本生成方法、信息发送方法及设备
US11968676B2 (en) Uplink control information transmission method and terminal
JP7258041B2 (ja) サイドリンクの伝送方法及び端末
WO2021004316A1 (zh) Uci传输方法、接收方法、终端和网络设备
CN110166206B (zh) 一种harq-ack码本的确定方法和终端
WO2021218742A1 (zh) 信息反馈、资源调度方法、终端及网络设备
US20220255706A1 (en) Hybrid automatic repeat request-acknowledgement (harq-ack) feedback position determining method and communications device
US20220022184A1 (en) Transport block size determining method and communications device
CN111447686B (zh) 一种harq-ack反馈方法、终端和网络设备
CN112492647B (zh) 一种dci调度方法、设备及系统
US11881947B2 (en) Hybrid automatic repeat request acknowledgement sending method and terminal
WO2021057779A1 (zh) 混合自动重传请求应答反馈的获取、发送、终端及网络侧设备
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
CN112929138B (zh) 码本发送方法、接收方法、终端及网络设备
CN111277380B (zh) 重复传输方法、终端及网络侧设备
WO2021147764A1 (zh) 信道状态信息csi上报方法、终端及计算机可读存储介质
CN112804033B (zh) 一种harq-ack处理方法及相关设备
WO2020192516A1 (zh) 下行分配索引确定方法、终端和网络设备
WO2019154358A1 (zh) Harq-ack码本的确定方法和终端
WO2021098629A1 (zh) Harq-ack处理方法及相关设备
WO2021228080A1 (zh) 信息传输、harq-ack码本的生成、传输方法及设备
WO2020147812A1 (zh) 数据反馈信息处理方法、装置、移动终端及存储介质
JP2023522877A (ja) 情報伝送方法及び機器
KR20230004830A (ko) Dai 카운팅 방법, dai 카운팅 제어 방법, 단말 및 네트워크 장비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524653

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008026

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227016700

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885427

Country of ref document: EP

Effective date: 20220607

ENP Entry into the national phase

Ref document number: 112022008026

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220427