WO2022126342A1 - 传输块大小的确定方法、装置及通信设备 - Google Patents

传输块大小的确定方法、装置及通信设备 Download PDF

Info

Publication number
WO2022126342A1
WO2022126342A1 PCT/CN2020/136257 CN2020136257W WO2022126342A1 WO 2022126342 A1 WO2022126342 A1 WO 2022126342A1 CN 2020136257 W CN2020136257 W CN 2020136257W WO 2022126342 A1 WO2022126342 A1 WO 2022126342A1
Authority
WO
WIPO (PCT)
Prior art keywords
res
transmission
resources
determining
logical
Prior art date
Application number
PCT/CN2020/136257
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080004035.6A priority Critical patent/CN112655264A/zh
Priority to PCT/CN2020/136257 priority patent/WO2022126342A1/zh
Publication of WO2022126342A1 publication Critical patent/WO2022126342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular, to a method, an apparatus, and a communication device for determining the size of a transport block.
  • the uplink and downlink data sharing channels of physical blocks use transport blocks (TB, Transport Block) as the basic unit to transmit data.
  • the UE needs to determine the Transport Block Size (TBS) before receiving and demodulating the Physical Downlink Share Channel (PDSCH) or transmitting the Physical Uplink Shared Channel (PUSCH).
  • TBS Transport Block Size
  • PDSCH Physical Downlink Share Channel
  • PUSCH Physical Uplink Shared Channel
  • the protocol supports PUSCH through repeated transmission to obtain a larger received signal-to-noise ratio (Signal Noise Radio, SNR).
  • SNR Signal-to-noise ratio
  • the transmission will be split into two actual transmissions, and then according to the actual The size of the transmitted resource determines the corresponding TBS respectively.
  • the TBS determined based on the resources corresponding to the actual transmission after splitting has the problem of reducing the code rate, so that the coverage cannot be increased.
  • the method, device and communication device for determining the size of the transport block proposed by the present disclosure are used to solve the technical problem that the determined transport block size will reduce the code rate and cannot enhance the coverage for the actual transmission obtained by logical splitting.
  • the transport block size is determined according to the actual number of resources that the logical transport can map to REs.
  • the determining the actual number of resources that the logical transmission can map to REs includes:
  • the number of resources of unavailable REs is deducted from the total number of REs to obtain the actual number of resources of REs that can be mapped by the logical transmission.
  • the unavailable REs include at least one of the following:
  • the repeated transmission is all or part of the transmission of each of the adjacent symbols.
  • the repeated transmission in the same adjacent symbol and the remaining partial transmissions are respectively subjected to time-frequency domain transformation.
  • the repeated transmission includes repeated data or repeated DM-RS.
  • determining the size of the transport block according to the actual number of resources that can be mapped to REs in the logical transmission including:
  • the transport block size is determined according to the number of intermediate information bits.
  • a first determining module configured to determine the actual number of resources that the logical transmission can map to the RE
  • the second determining module is configured to determine the size of the transport block according to the actual number of resources that the logical transport can map to the REs.
  • the first determining module is specifically configured as:
  • the number of resources of unavailable REs is deducted from the total number of REs to obtain the actual number of resources of REs that can be mapped by the logical transmission.
  • the unavailable REs include at least one of the following:
  • the repeated transmission is all or part of the transmission of each of the adjacent symbols.
  • the repeated transmission in the same adjacent symbol and the remaining partial transmissions are respectively subjected to time-frequency domain transformation.
  • the repeated transmission includes repeated data or repeated DM-RS.
  • the second determining module is specifically configured as:
  • the transport block size is determined according to the number of intermediate information bits.
  • the method for determining the size of the transport block determines the actual number of resources that can be mapped to REs in logical transmission, and determines the size of the transport block based on the actual number of resources that can map REs in logical transmission. In actual transmission, the size of the transmission block is determined to avoid the reduction of the code rate.
  • FIG. 1 is a schematic flowchart of a method for determining a transport block size according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of transmission provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another method for determining a transport block size according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an apparatus for determining a transport block size according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram of a UE 800 according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the execution subject in this embodiment may be the user equipment side, or may be the base station, which is not limited in this embodiment.
  • FIG. 1 is a schematic flowchart of a method for determining a transport block size according to an embodiment of the present disclosure.
  • Step 101 Determine the actual number of resources that the logical transmission can map to the RE.
  • the resource with the smallest granularity of the physical layer (Resource Element, RE)
  • the logical transmission is relative to the actual transmission.
  • the transmission process of the Physical Uplink Shared Channel (PUSCH) based on the Retransmission Type B (Repetition Type B)
  • Repetition Type B there may be a time-travel gap situation.
  • Repetition Type B introduces the concept of actual transmission of actual repetition.
  • a transfer is called a nominal transfer, and when a nominal repetition encounters the above situation, it will be divided into two actual transfers.
  • the two actual transmissions that are separated may belong to the same logical transmission.
  • Rel-16 supports the PUSCH repeated transmission scheme with mini-slot as the unit, and allows PUSCH transmission across time slots to further reduce the delay.
  • the S time slot and the U time slot respectively contain 14 symbols. If a transmission occupies 8 consecutive symbols, the starting position is the 12th symbol of the S time slot. Slots and U-slots are split into two actual transmissions with symbol lengths of 2 and 6, which correspond to actual transmission 1 and actual transmission 2 in Figure 2, respectively, and actual transmission 1 and actual transmission 2 belong to a logic transfer, denoted as logical transfer 1. In another scenario, within a time slot, a transmission occupies 4 symbols continuously.
  • the transmission is re-split into two actual transmissions due to the presence of unavailable symbols, as shown in Figure 2
  • the actual transmission 3 and the actual transmission 4 in , and the actual transmission 3 and the actual transmission 4 belong to one logical transmission, which is recorded as logical transmission 2.
  • the actual number of resources to which the logical transmission can be mapped is determined, rather than the number of resources 1 corresponding to the actual transmission 1 and the number of resources 2 corresponding to the actual transmission 2, respectively.
  • the corresponding transport block size is determined according to the number of resources 1
  • the corresponding transport block size is determined according to the number of resources 2, so that the determined transport block size reduces the code rate, and at the same time, the combining gain is lower than the coding gain, and the coverage cannot be improved.
  • the actual number of RE resources determined by mapping according to actual transmission 1 and actual transmission 2 belonging to one logical transmission increases the actual number of RE resources corresponding to the two actual transmissions belonging to one logical transmission.
  • Step 102 Determine the size of the transport block according to the actual number of resources that the logical transport can map to the REs.
  • the number of intermediate information bits is determined according to the actual number of resources and the MCS (Modulation and Coding Scheme, modulation and coding strategy) level, and the transport block size is determined according to the number of intermediate information bits.
  • the number of intermediate information bits N info is calculated according to the determined actual number of resources. Among them, the number of intermediate information bits N info is calculated according to the following formula:
  • N info N RE ⁇ R ⁇ Q m ⁇ v
  • R and Q m are the code rate and modulation order determined according to the MCS level.
  • the MCS level is configured by radio resource control (Radio Resource Control, RRC) signaling; in other cases, it is dynamically indicated by a downlink physical control channel (Downlink Control Information, DCI).
  • v is the number of layers. For data channels scheduled by DCI format 0_0 and DCI format 1_0, the default is single-layer transmission. For data channels scheduled by DCI format 0_1 and DCI format 1_1, the number of layers is determined according to the indication of DCI.
  • v is determined according to the RRC signaling configuration.
  • N RE is the actual number of resources that the logical transmission can map to REs.
  • N info is quantized to determine the final transport block size, where N info is quantized to determine the final transport block size, which needs to satisfy byte alignment and is an integer multiple of the number of code blocks.
  • the quantification of N info also takes into account both scheduling flexibility and overhead, where scheduling flexibility is measured by the MC of a specific transport block.
  • the actual number of RE resources that can be mapped in logical transmission is determined, and the size of the transport block is determined according to the actual number of RE resources that can be mapped in logical transmission.
  • Transmission determine the transport block size, to avoid code rate reduction.
  • FIG. 3 is a schematic flowchart of another method for determining a transport block size according to an embodiment of the present disclosure, which illustrates how to determine the actual number of resources that can map REs across logical transmissions of actual transmissions. As shown in Figure 3, the method includes the following steps:
  • Step 301 Determine the total number of REs according to the number of PRBs and time-domain symbols allocated to the logical transmission.
  • the execution subject in this embodiment may be the user equipment side, or may be the base station, which is not limited in this embodiment.
  • the execution subject is the user equipment as an example for description.
  • a Physical Resource Block (Physical Resource Block, PRB) is a PRB allocated by a network side device to the UE that can be used for logical transmission.
  • PRB Physical Resource Block
  • Step 302 Deduct the number of resources of unavailable REs from the total number of REs to obtain the actual number of resources of REs that can be mapped by logical transmission.
  • the total number of corresponding RE resources is determined according to the number of PRBs and the number of time-domain symbols allocated to the logical transmission, and then the number of unavailable RE resources is deducted from the determined total number of resources.
  • the unavailable REs include at least one of the following:
  • DM-RS Demodulation-Reference Signal
  • the unavailable RE may also include other parameters; this is not limited in the embodiments of the present disclosure.
  • the deducted number of unavailable RE resources is related to the scenario of logical transmission, so as to increase the actual number of RE resources that can be mapped by logical transmission.
  • the following two scenarios are used for description.
  • logical transmission 2 in which symbols 4 and 5 are preset unavailable symbols, when the transmission encounters unavailable symbols 4 and 5, the transmission is re-split into two actual symbols Transmission 3 and actual transmission 4, where actual transmission 3 and actual transmission 4 belong to a logical transmission 2, and logical transmission 2 contains symbols 4 and 5 that are not available.
  • the unavailable symbols may be preset symbols reserved for other purposes, for example, dynamic DL symbols or dynamic UL symbols corresponding to semi-static Flexible. Unavailable symbols can be identified by invalid patterns.
  • the actual number of resources that can be mapped to the RE in the logical transmission can be determined by the following formula, and then the size of the transport block is accurately determined according to the determined actual number of resources,
  • the method for determining the size of the transport block reference may be made to the explanation in the above-mentioned embodiment, which is not repeated in this embodiment.
  • N RE 12 ⁇ n PRB ⁇ Number of symbols - N DMRS - N Invalid formula (1)
  • n PRB is the number of PRBs allocated by the network side device for the UE that can be used for logical transmission, and the value of the number of symbols is the total number of symbols corresponding to the logical transmission.
  • the number of symbols is 6, which are carried by DCI or RRC signaling
  • N DMRS is the number of resources occupied by DM-RS in all PRBs that can be used, and the number of resources is a value determined according to the mapping type of DMRS time domain and frequency domain
  • N is invalid :
  • FIG. 2 is only an example, and does not constitute a limitation of the present disclosure.
  • the transmission after the transmission in the same time slot encounters one or more consecutive unavailable symbols, the transmission will be re-split into two actual transmissions.
  • determine For logical transmissions corresponding to two actual transmissions the total number of RE resources is determined according to the PRB allocated by the logical transmission, and then the number of RE resources occupied by DM-RS and the number of RE resources occupied by invalid symbols are deducted from the total number of resources to determine the number of RE resources occupied by DM-RS.
  • the total number of RE resources required for logical transmission, and then the size of the transport block is determined according to the number of RE resources, which improves the accuracy of determining the size of the transport block and avoids the reduction of the code rate.
  • the transmission occasion crosses the time slot boundary when the transmission occasion crosses the time slot boundary, the transmission is re-segmented, corresponding to two actual transmissions.
  • the repeated transmission in the same adjacent symbol and the remaining partial transmissions can be transformed in the time-frequency domain respectively, so as to realize the mapping of the same content or all of the same content in each adjacent symbol. Content.
  • the repeated transmission includes repeated data or repeated DM-RS.
  • the total number of REs determined by logical transmission also includes RE symbols corresponding to invalid symbols, and the actual number of resources that can map REs in logical transmission can be determined by the following formula.
  • N RE 12 ⁇ n PRB ⁇ number of symbols - N DMRS - N repetition - N is invalid ;
  • n PRB is the number of PRBs allocated by the network side device for the UE that can be used for logical transmission, and the value of the number of symbols is the total number of symbols corresponding to the logical transmission.
  • the number of symbols is 8 , carried by DCI or RRC signaling;
  • N DMRS is the number of resources occupied by DM-RS in all PRBs that can be used, and the number of resources is a value determined according to the mapping type of DMRS time domain and frequency domain;
  • N repetition is data The number of RE resources occupied by repeated transmissions; N is the number of RE resources corresponding to unavailable symbols.
  • the total number of REs determined by logical transmission does not include RE symbols corresponding to invalid symbols
  • the actual number of resources that can map REs in logical transmission can be determined by the following formula.
  • N RE 12 ⁇ n PRB ⁇ Number of symbols - N DMRS - N Repeat formula (3)
  • Step 303 Determine the size of the transport block according to the actual number of resources that the logical transport can map to the REs.
  • the total number of RE resources is determined according to the PRBs allocated by logical transmission, and the number of unavailable RE resources is deducted from the total number of resources, thereby improving the accuracy of determining the actual number of resources, and further according to The number of RE resources determines the size of the transport block, which improves the accuracy of determining the size of the transport block and avoids the reduction of the code rate.
  • the present disclosure also provides an apparatus for determining the size of transport blocks.
  • the method for determining the size of a transport block provided in any of the embodiments corresponds to the method for determining the size of a transport block. Therefore, the implementation of the method for determining the size of a transport block is also applicable to the apparatus for determining the size of a transport block provided in this embodiment, which will not be described in detail in this embodiment.
  • FIG. 4 is a schematic structural diagram of an apparatus for determining a transport block size according to an embodiment of the present disclosure.
  • the apparatus includes: a first determination module 41 and a second determination module 42 .
  • the first determining module 41 is configured to determine the actual number of resources that the logical transmission can map to the RE.
  • the second determining module 42 is configured to determine the size of the transport block according to the actual number of resources that the logical transport can map to the REs.
  • the above-mentioned first determining module 41 is specifically configured as:
  • the number of resources of unavailable REs is deducted from the total number of REs to obtain the actual number of resources of REs that can be mapped by the logical transmission.
  • the unavailable REs include at least one of the following:
  • the repeated transmission is all or part of the transmission of each of the adjacent symbols.
  • the repeated transmission in the same adjacent symbol and the remaining partial transmissions are respectively subjected to time-frequency domain transformation.
  • the repeated transmission includes repeated data or repeated DM-RS.
  • the above-mentioned second determination module 42 is specifically configured as:
  • the transport block size is determined according to the number of intermediate information bits.
  • the total number of RE resources is determined according to the PRBs allocated by the logical transmission, and the number of unavailable RE resources is deducted from the total number of resources, thereby improving the accuracy of determining the actual number of resources, and further according to The number of RE resources determines the size of the transport block, which improves the accuracy of determining the size of the transport block and avoids the reduction of the code rate.
  • the present disclosure also proposes a communication device.
  • the communication device includes a processor, a transceiver, a memory, and an executable program stored in the memory and capable of being executed by the processor, wherein the processor executes the foregoing method when the executable program is executed.
  • the communication device may be a network-side device or a user device.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the communication device includes a base station or a terminal.
  • the processor may be connected to the memory through a bus or the like, and is used to read the executable program stored in the memory, for example, as shown in FIG. 1 or FIG. 3 .
  • the present disclosure also proposes a computer storage medium.
  • the computer storage medium provided by the embodiment of the present disclosure stores an executable program; after the executable program is executed by a processor, the foregoing method can be implemented, for example, as shown in FIG. 1 or FIG. 3 .
  • FIG. 5 is a block diagram of a UE 800 provided by an embodiment of the present disclosure.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the UE 800 may include at least one of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and a communication component 816.
  • the processing component 802 generally controls the overall operations of the UE 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include at least one processor 820 to execute instructions to perform all or part of the steps of the above-described methods.
  • processing component 802 may include at least one module that facilitates interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at UE 800 . Examples of such data include instructions for any application or method operating on the UE 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 806 provides power to various components of UE 800 .
  • Power components 806 may include a power management system, at least one power source, and other components associated with generating, managing, and distributing power to UE 800 .
  • Multimedia component 808 includes screens that provide an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect wake-up time and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the UE 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the UE 800 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes at least one sensor for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the UE 800, the sensor component 814 can also detect the position change of the UE 800 or a component of the UE 800, the user and the UE 800. Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and UE800 temperature changes.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the UE 800 may be implemented by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components implemented for performing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components implemented for performing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the UE 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station 900 may be provided as a network device.
  • base station 900 includes a processing component 922, which further includes at least one processor, and a memory resource, represented by memory 932, for storing instructions executable by processing component 922, such as an application program.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station, eg, FIG. 1 or FIG. 3 .
  • Base station 900 may also include a power supply assembly 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Abstract

本公开提出一种传输块大小的确定方法、装置及通信设备,属于无线通信技术领域。其中,该方法包括:确定逻辑传输可映射RE的实际资源数,根据逻辑传输可映射RE的实际资源数,确定传输块大小,基于逻辑传输,也就是跨时隙的实际传输,确定传输块大小,避免了码率降低。

Description

传输块大小的确定方法、装置及通信设备 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输块大小的确定方法、装置及通信设备。
背景技术
物理块上行和下行数据共享通道是以传输块(TB,Transport Block)为基本单位进行传输数据的。用户设备UE在接收解调下行共享物理信道(Physical Downlink Share Channel,PDSCH)或者传输物理上行共享信道(Physical Uplink Shared Channel,PUSCH)之前需要先确定传输块大小(Transport Block Size,TBS),才能正确的设置信道编解码器的参数,进行编解码。
为了增加覆盖,协议支持PUSCH通过重复传输来获得更大的接收信噪比(Signal Noise Radio,SNR)。而实际重传的过程中,当实际重传的持续时间出现了跨时隙slot的情况,或者是一个时隙中存在不可用符号时,会将传输拆分为两个实际传输,进而根据实际传输的资源的大小分别确定对应的TBS。而基于分裂后的实际传输对应的资源确定的TBS,存在码率降低的问题,导致无法增加覆盖。
发明内容
本公开提出的传输块大小的确定方法、装置及通信设备,用于解决对于逻辑分裂得到的实际传输,确定的传输块大小,会导致码率降低,无法增强覆盖的技术问题。
本公开一方面实施例提出的一种传输块大小的确定方法,包括:
确定逻辑传输可映射RE的实际资源数;
根据所述逻辑传输可映射RE的实际资源数,确定传输块大小。
可选的,所述确定逻辑传输可映射RE的实际资源数,包括:
根据分配给所述逻辑传输的PRB,确定RE总数;
从RE总数中扣除不可用RE的资源数,以得到所述逻辑传输可映射RE的实际资源数。
可选地,所述不可用RE,包括下列至少一个:
所述逻辑传输的PRB中DM-RS占用的RE;
所述逻辑传输的PRB中不可用符号所占用的RE;
所述逻辑传输的PRB中重复传输所占用的RE,其中,所述重复传输是属于不同时隙的两相邻符号中重复的传输。
可选地,所述重复传输是各所述相邻符号的全部传输或部分传输。
可选地,同一所述相邻符号内的所述重复传输与其余的部分传输分别进行时频域变换。
可选地,所述重复传输包括重复的数据或重复的DM-RS。
可选地,所述根据所述逻辑传输可映射RE的实际资源数,确定传输块大小,包括:
根据所述实际资源数和所述MCS等级(包含了码率及调制方式等信息),确定中间信息比特数;
根据所述中间信息比特数,确定所述传输块大小。
本公开一方面实施例提出的一种传输块大小的确定装置,包括:
第一确定模块,被配置为确定逻辑传输可映射RE的实际资源数;
第二确定模块,被配置为根据所述逻辑传输可映射RE的实际资源数,确定传输块大小。
可选地,所述第一确定模块,具体被配置为:
根据分配给所述逻辑传输的PRB,确定RE总数;
从RE总数中扣除不可用RE的资源数,以得到所述逻辑传输可映射RE的实际资源数。
可选地,所述不可用RE,包括下列至少一个:
所述逻辑传输的PRB中DM-RS占用的RE;
所述逻辑传输的PRB中不可用符号所占用的RE;
所述逻辑传输的PRB中重复传输所占用的RE,其中,所述重复传输是属于不同时隙的两相邻符号中重复的传输。
可选地,所述重复传输是各所述相邻符号的全部传输或部分传输。
可选地,同一所述相邻符号内的所述重复传输与其余的部分传输分别进行时频域变换。
可选地,所述重复传输包括重复的数据或重复的DM-RS。
可选地,所述第二确定模块,具体被配置为:
根据所述实际资源数和所述MCS等级,确定中间信息比特数;
根据所述中间信息比特数,确定所述传输块大小。
本公开实施例提供的传输块大小的确定方法,确定逻辑传输可映射RE的实际资源数,根据逻辑传输可映射RE的实际资源数,确定传输块大小,基于逻辑传输,也就是跨时隙的实际传输,确定传输块大小,避免了码率降低。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种传输块大小的确定方法的流程示意图;
图2为本公开实施例提供的一种传输示意图;
图3为本公开实施例的另一种传输块大小的确定方法的流程示意图;
图4为本公开实施例提供的一种传输块大小的确定装置的结构示意图;
图5为本公开实施例所提供的一种UE800的框图;
图6为本公开实施例所提供的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图对本公开提供的传输块大小的确定方法、装置及通信设备进行详细描述。
本实施例中的执行主体可以为用户设备侧,也可以为基站,本实施例中不进行限定。
图1为本公开实施例所提供的一种传输块大小的确定方法的流程示意图。
如图1所示,包括以下步骤:
步骤101,确定逻辑传输可映射RE的实际资源数。
其中,物理层最小粒度的资源(Resource Element,RE)
本实施例中,逻辑传输是和实际传输相对的,比如,在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)基于重传类型B(Repetition Type B)的传输过程中,有可能会发生跨越时隙的情况。针对这种传输跨越时隙的或者传输过程中遇到不可用的符号的情况,Repetition Type B引入了实际传输actual repetition的概念。Repetition Type B中将一次传输称为一次名义上的传输nominal repetition,当一次nominal repetition遇到上述情况时就将分为两个实际传输actual repetition。其中,上述在跨时隙拆分时,分出的两个实际传输可以属于同一逻辑传输。
如图2所示,为了降低时延提高可靠性,Rel-16支持以小时隙Mini-slot为单位的PUSCH重复传输方案,且允许PUSCH传输跨时隙可以进一步降低时延。在PUSCH传输过程中,S时隙和U时隙中分别包含14个符号,若一个传输连续占用的符号为8个,起始位置为S时隙的第12个符号,在遇到跨S时隙和U时隙时,被裂分为两次符号长度分别为2和6 的实际传输,即分别对应图2中的实际传输1和实际传输2,而实际传输1和实际传输2属于一个逻辑传输,记为逻辑传输1。在另一种场景下,在一个时隙内部,一个传输连续占用的符号为4个,例如S时隙中,因存在不可用的符号,使得传输被重新分裂为两个实际传输,如图2中的实际传输3和实际传输4,而实际传输3和实际传输4属于一个逻辑传输,记为逻辑传输2。
进而,本实施例中确定逻辑传输可映射RE的实际资源数,而不是分别确定实际传输1对应的资源数1,和实际传输2对应的资源数2。进而,分别根据资源数1确定对应的传输块大小,和根据资源数2确定对应的传输块大小,从而导致确定的传输块大小使得码率降低,同时合并增益比编码增益低,无法提高覆盖。而本实施例中,是根据属于一个逻辑传输的实际传输1和实际传输2,映射确定的RE的实际资源数,提高了该属于一个逻辑传输的两个实际传输对应的RE实际资源数。
步骤102,根据逻辑传输可映射RE的实际资源数,确定传输块大小。
在本实施例中,根据实际资源数和MCS(Modulation and Coding Scheme,调制与编码策略)等级,确定中间信息比特数,根据中间信息比特数,确定传输块大小。作为一种实现方式,根据确定的实际资源数,计算中间信息比特数N info。其中,中间信息比特数N info根据下式计算得到:
N info=N RE×R×Q m×v
其中,R和Q m为根据MCS等级确定的码率和调制阶数。其中,对于Type1上行免调度传输,MCS等级由无线资源控制(Radio Resource Control,RRC)信令配置;其他情况下由下行物理控制信道(Downlink Control Information,DCI)动态指示。v为层数,对于由DCI格式0_0和DCI格式1_0调度的数据信道,默认为单层传输。对于DCI格式0_1和DCI格式1_1调度的数据信道,根据DCI的指示确定层数。而对于Type1上行免调度传输,根据RRC信令配置确定v。N RE为逻辑传输可映射RE的实际资源数。
进而,再对N info进行量化确定最终的传输块大小,其中,N info进行量化确定最终的传输块大小,需要满足字节对齐且为码块个数的整数倍。N info进行量化还同时考虑了调度灵活性和开销,其中,调度灵活性通过特定传输块的MC来衡量。
本实施例的传输块大小的确定方法中,确定逻辑传输可映射RE的实际资源数,根据逻辑传输可映射RE的实际资源数,确定传输块大小,基于逻辑传输,也就是跨时隙的实际传输,确定传输块大小,避免了码率降低。
图3为本公开实施例的另一种传输块大小的确定方法的流程示意图,说明了如何确定跨实际传输的逻辑传输可映射RE的实际资源数。如图3所示,该方法包含以下步骤:
步骤301,根据分配给逻辑传输的PRB和时域符号个数,确定RE总数。
本实施例中的执行主体可以为用户设备侧,也可以为基站,本实施例中不进行限定。本实施例中以执行主体为用户设备为例,进行说明。
在本实施例的一种实现方式中,物理资源块(Physical Resource Block,PRB)为网络侧设备为UE分配的进行逻辑传输可以使用的PRB。
步骤302,从RE总数中扣除不可用RE的资源数,以得到逻辑传输可映射RE的实际资源数。
本实施例中,根据分配给逻辑传输的使用的PRB个数和时域符号个数,确定对应的RE的资源总数,进而,从确定的资源总数中扣除不可用的RE资源数。
本实施例中,不可用RE,包括下列至少一个:
逻辑传输的PRB中解调参考信号(DeModulation-Reference Signal,DM-RS)占用的RE;
逻辑传输的PRB中不可用符号所占用的RE;
逻辑传输的PRB中重复传输所占用的RE,其中,重复传输是属于不同时隙的两相邻符号中重复的传输。
当然,不可用RE还可以包括其他参数;本公开实施例中并不对此做出限定。
需要说明的是,扣除的不可用的RE资源数,和逻辑传输的场景相关,以提高得到的逻辑传输可映射RE的实际资源数,下面分别采用两个场景进行说明。
在本实施例的一种场景下,在时隙的内部因遇到无效符号,传输被重新分割,形成了实际重传。如图2所示的,逻辑传输2,其中,符号4和符号5是预设的不可用的符号,当传输遇到不可用的符号4和5后,则该传输被重新分割为两个实际传输3和实际传输4,其中,实际传输3和实际传输4属于一个逻辑传输2,而逻辑传输2中包含了不可用的符号4和5。其中,不可用的符号,可以为预设的留作其它用途的符号,例如,半静态Flexible对应的动态DL符号或动态UL符号。不可用的符号可以通过无效图样标识。
因此,为了提高逻辑传输对应的传输块大小确定的准确性,本实施例中,逻辑传输可映射RE的实际资源数可通过以下公式确定,进而根据确定的实际资源数,准确确定传输块大小,其中,传输块大小确定的方法,可参照上述实施例中的解释说明,本实施例中不再赘述。
N RE=12·n PRB·符号数-N DMRS-N 无效    公式(1)
其中,n PRB为网络侧设备为UE分配的进行逻辑传输可以使用的PRB个数,符号数的取值为逻辑传输对应的符号总数,例如,图2所示的逻辑传输2,符号数则为6个,通过DCI或者是RRC信令携带;N DMRS为可使用的所有PRB内DM-RS占用的资源数,该资源数是根据DMRS时域和频域的映射类型确定的值;N 无效为不可用的符号所对应的RE资源数,例如,如图2中所示,无效符号为4和5,即不可用的符号数量为2,则对应的RE资源数N 无效=12*n PRB*2。在本公开实施例中的上述公式(1)中,可以只包括参数N DMRS和参数N 无效中的任一个,或是包括这两个参数中的任一个参数和其他参数,或是同时包括这两个参数,或是包括这两个参数和其他参数;本公开实施例并不对此做出限定。
需要说明的是,图2中示出的场景仅为一种示例,并不构成对本公开的限定。
本实施例中,在同一个时隙中的传输在遇到一个或连续的多个不可用符号后,该传输会被重新拆分为两个实际传输,为了提高传输块确定的准确性,确定两个实际传输对应的逻辑传输,根据逻辑传输分配的PRB,确定RE资源的总数,进而从资源总数中扣除DM-RS占用的RE资源的数量和无效符号占用的RE资源的数量,以确定该逻辑传输需要的总的RE资源的数量,进而根据RE资源的数量确定传输块的大小,提高了传输块大小确定的准确性,避免了码率降低。
在本实施例的另一种场景中,在传输时机出现跨时隙边界的情况下,传输被重新分割,对应两个实际传输。
本实施例中,在跨时隙传输时,存在相位畸变的问题,为了避免相位畸变,作为一种实现方式,在属于不同时隙的两相邻符号中设置重复的传输。其中,重复传输是各相邻符号的全部传输或部分传输,也就是说在各相邻符号中映射部分相同的内容或全部相同的内容。
在本实施例的一种实现方式中,可通过将同一相邻符号内的重复传输与其余的部分传输分别进行时频域变换,以实现将各相邻符号中映射部分相同的内容或全部相同的内容。
本实施例中,重复传输包括重复的数据或重复的DM-RS。
从而,由于跨时隙的相邻符号中映射了部分相同或全部相同的内容,因此,在确定属于同一逻辑传输的跨时隙的两个实际传输可映射RE的实际资源数时,需要去除重复传输对应的RE的资源数,以提高逻辑传输对应的实际资源数的准确性。
在本实施例的一种实现方式中,逻辑传输确定的RE总数,还包含了无效符号对应的RE符号,则逻辑传输可映射RE的实际资源数可通过以下公式确定。
N RE=12·n PRB·符号数-N DMRS-N 重复-N 无效;    公式(2)
其中,n PRB为网络侧设备为UE分配的进行逻辑传输可以使用的PRB个数,符号数的取值为逻辑传输对应的符号总数,例如,图2所示的逻辑传输,符号数则为8个,通过DCI或者是RRC信令携带;N DMRS为可使用的所有PRB内DM-RS占用的资源数,该资源数是根据DMRS时域和频域的映射类型确定的值;N 重复为数据重复传输占用的RE资源数;N 无效为不可用的符号所对应的RE资源数。
在本公开实施例中的上述公式(2)中,可以只包括参数N DMRS、N 重复和参数N 无效中的任一个,或是包括这三个参数中的任一个参数和其他参数;本公开实施例并不对此做出限定。
在本实施例的一种实现方式中,逻辑传输确定的RE总数,不包含无效符号对应的RE符号,则逻辑传输可映射RE的实际资源数可通过以下公式确定。
N RE=12·n PRB·符号数-N DMRS-N 重复    公式(3)
本实施例中,在跨时隙传输时,通过扣除DM-RS占用的RE资源的数量,以及进一步 扣除存在重复传输和/或无效符号对应的资源的数量,提高了逻辑传输可映射RE的实际资源数确定的准确性。
在本公开实施例中的上述公式(3)中,可以只包括参数N DMRS和N 重复参数中的任一个,或是包括这两个参数中的任一个参数和其他参数;本公开实施例并不对此做出限定。
步骤303,根据逻辑传输可映射RE的实际资源数,确定传输块大小。
具体地,本步骤可参照上述实施例中确定传输块大小的方法,原理相同,此处不再赘述。
本实施例的传输块大小确定方法中,根据逻辑传输分配的PRB,确定RE资源的总数,进而从资源总数中扣除不可用的RE资源的数量,提高了实际资源数确定的准确性,进而根据RE资源的数量确定传输块的大小,提高了传输块大小确定的准确性,避免了码率降低。
与上述几种实施例提供的传输块大小的确定方法相对应,本公开还提供一种传输块大小的确定装置,由于本公开实施例提供的传输块大小的确定装置与上述图1和图3任一实施例提供的传输块大小的确定方法相对应,因此传输块大小的确定方法的实施方式也适用于本实施例提供的传输块大小的确定装置,在本实施例中不再详细描述。
图4为本公开实施例提供的一种传输块大小的确定装置的结构示意图。
如图4所示,该装置包含:第一确定模块41和第二确定模块42。
第一确定模块41,被配置为确定逻辑传输可映射RE的实际资源数。
第二确定模块42,被配置为根据所述逻辑传输可映射RE的实际资源数,确定传输块大小。
进一步,在本公开实施的一种实现方式中,上述第一确定模块41,具体被配置为:
根据分配给所述逻辑传输的PRB,确定RE总数;
从RE总数中扣除不可用RE的资源数,以得到所述逻辑传输可映射RE的实际资源数。
在本公开实施的一种实现方式中,所述不可用RE,包括下列至少一个:
所述逻辑传输的PRB中DM-RS占用的RE;
所述逻辑传输的PRB中不可用符号所占用的RE;
所述逻辑传输的PRB中重复传输所占用的RE,其中,所述重复传输是属于不同时隙的两相邻符号中重复的传输。
在本公开实施的一种实现方式中,所述重复传输是各所述相邻符号的全部传输或部分传输。
在本公开实施的一种实现方式中,同一所述相邻符号内的所述重复传输与其余的部分传输分别进行时频域变换。
在本公开实施的一种实现方式中,所述重复传输包括重复的数据或重复的DM-RS。
在本公开实施的一种实现方式中,上述第二确定模块42,具体被配置为:
根据所述实际资源数和所述MCS等级,确定中间信息比特数;
根据所述中间信息比特数,确定所述传输块大小。
本实施例的传输块大小确定装置中,根据逻辑传输分配的PRB,确定RE资源的总数,进而从资源总数中扣除不可用的RE资源的数量,提高了实际资源数确定的准确性,进而根据RE资源的数量确定传输块的大小,提高了传输块大小确定的准确性,避免了码率降低。
为了实现上述实施例,本公开还提出一种通信设备。
本公开实施例提供的通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述方法。
该通信设备可为网络侧设备或者用户设备。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括基站或终端。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图1或图3。
为了实现上述实施例,本公开还提出一种计算机存储介质。
本公开实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述方法,例如,如图1或图3。
图5是本公开实施例所提供的一种UE800的框图。例如,UE800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图5,UE800可以包括以下至少一个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括至少一个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括至少一个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,至少一个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实 施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括至少一个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图6为本公开实施例所提供的一种基站的结构示意图。如图6所示,例如,基站900 可以被提供为一网络设备。参照图6,基站900包括处理组件922,其进一步包括至少一个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,图1或图3。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种传输块大小的确定方法,其特征在于,所述方法包括:
    确定逻辑传输可映射RE的实际资源数;
    根据所述逻辑传输可映射RE的实际资源数,确定传输块大小。
  2. 根据权利要求1所述的确定方法,其特征在于,所述确定逻辑传输可映射RE的实际资源数,包括:
    根据分配给所述逻辑传输的PRB,确定RE总数;
    从RE总数中扣除不可用RE的资源数,以得到所述逻辑传输可映射RE的实际资源数。
  3. 根据权利要求2所述的确定方法,其特征在于,所述不可用RE,包括下列至少一个:
    所述逻辑传输的PRB中DM-RS占用的RE;
    所述逻辑传输的PRB中不可用符号所占用的RE;
    所述逻辑传输的PRB中重复传输所占用的RE,其中,所述重复传输是属于不同时隙的两相邻符号中重复的传输。
  4. 根据权利要求3所述的确定方法,其特征在于,
    所述重复传输是各所述相邻符号的全部传输或部分传输。
  5. 根据权利要求4所述的确定方法,其特征在于,
    同一所述相邻符号内的所述重复传输与其余的部分传输分别进行时频域变换。
  6. 根据权利要求3所述的确定方法,其特征在于,
    所述重复传输包括重复的数据或重复的DM-RS。
  7. 根据权利要求1-6任一项所述的确定方法,其特征在于,所述根据所述逻辑传输可映射RE的实际资源数,确定传输块大小,包括:
    根据所述实际资源数和所述MCS等级,确定中间信息比特数;
    根据所述中间信息比特数,确定所述传输块大小。
  8. 一种传输块大小的确定装置,其特征在于,包括:
    第一确定模块,被配置为确定逻辑传输可映射RE的实际资源数;
    第二确定模块,被配置为根据所述逻辑传输可映射RE的实际资源数,确定传输块大小。
  9. 根据权利要求8所述的确定装置,其特征在于,所述第一确定模块,具体被配置为:
    根据分配给所述逻辑传输的PRB,确定RE总数;
    从RE总数中扣除不可用RE的资源数,以得到所述逻辑传输可映射RE的实际资源数。
  10. 根据权利要求9所述的确定装置,其特征在于,所述不可用RE,包括下列至少一个:
    所述逻辑传输的PRB中DM-RS占用的RE;
    所述逻辑传输的PRB中不可用符号所占用的RE;
    所述逻辑传输的PRB中重复传输所占用的RE,其中,所述重复传输是属于不同时隙的两相邻符号中重复的传输。
  11. 根据权利要求10所述的确定装置,其特征在于,
    所述重复传输是各所述相邻符号的全部传输或部分传输。
  12. 根据权利要求11所述的确定装置,其特征在于,
    同一所述相邻符号内的所述重复传输与其余的部分传输分别进行时频域变换。
  13. 根据权利要求10所述的确定装置,其特征在于,
    所述重复传输包括重复的数据或重复的DM-RS。
  14. 根据权利要求8-13任一项所述的确定装置,其特征在于,所述第二确定模块,具体被配置为:
    根据所述实际资源数和所述MCS等级,确定中间信息比特数;
    根据所述中间信息比特数,确定所述传输块大小。
  15. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-7任一项所述的方法。
  16. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-7任一项所述的方法。
PCT/CN2020/136257 2020-12-14 2020-12-14 传输块大小的确定方法、装置及通信设备 WO2022126342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004035.6A CN112655264A (zh) 2020-12-14 2020-12-14 传输块大小的确定方法、装置及通信设备
PCT/CN2020/136257 WO2022126342A1 (zh) 2020-12-14 2020-12-14 传输块大小的确定方法、装置及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136257 WO2022126342A1 (zh) 2020-12-14 2020-12-14 传输块大小的确定方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2022126342A1 true WO2022126342A1 (zh) 2022-06-23

Family

ID=75368452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136257 WO2022126342A1 (zh) 2020-12-14 2020-12-14 传输块大小的确定方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN112655264A (zh)
WO (1) WO2022126342A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784356B (zh) * 2021-10-27 2023-08-08 哲库科技(北京)有限公司 一种通信参数的确定方法、装置、设备以及存储介质
WO2024031620A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 一种信息确定方法及装置、通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137616A1 (en) * 2017-09-11 2020-04-30 Intel IP Corporation Power boosting and transport block size (tbs) design in a new radio (nr) system
CN111277361A (zh) * 2019-03-28 2020-06-12 维沃移动通信有限公司 传输块大小确定方法和通信设备
CN111757487A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166168B (zh) * 2018-02-14 2021-12-03 华为技术有限公司 确定传输块大小的方法、装置以及系统
WO2019193730A1 (ja) * 2018-04-05 2019-10-10 株式会社Nttドコモ ユーザ端末及び無線基地局

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137616A1 (en) * 2017-09-11 2020-04-30 Intel IP Corporation Power boosting and transport block size (tbs) design in a new radio (nr) system
CN111277361A (zh) * 2019-03-28 2020-06-12 维沃移动通信有限公司 传输块大小确定方法和通信设备
CN111757487A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及设备

Also Published As

Publication number Publication date
CN112655264A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
US11963208B2 (en) Resource allocation method and apparatus
US20230362739A1 (en) Communication method, communication apparatus and storage medium
WO2019169634A1 (zh) 信息传输方法、装置、系统及存储介质
WO2019134098A1 (zh) 数据传输方法、装置及用户设备
WO2019205137A1 (zh) 上行传输的方法及装置
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
JP7397098B2 (ja) 制御情報伝送方法及び装置
WO2022126342A1 (zh) 传输块大小的确定方法、装置及通信设备
WO2017197799A1 (zh) 一种通信方法及装置
WO2022193149A1 (zh) 波束确定方法、波束确定装置及存储介质
WO2019061306A1 (zh) 信号传输方法及装置
WO2018141164A1 (zh) 下行控制信息的传输方法及装置
EP4319421A1 (en) Default beam determination method and apparatus, and communication device
WO2022222144A1 (zh) 混合自动重传请求harq的传输方法、装置及通信设备
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
WO2019148465A1 (zh) 控制信令的传输方法、终端及基站
WO2018170845A1 (zh) 资源分配方法、装置及系统
US20220303063A1 (en) Method and device for determining resource multiplexing, method and device for information demodulation and medium thereof
WO2019119448A1 (zh) 在半静态调度方式下传输数据的方法、基站、终端和系统
WO2022151108A1 (zh) 下行控制信息的传输方法、装置及通信设备
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2022133665A1 (zh) 辅助资源集确定方法、装置及存储介质
KR20210126596A (ko) 포트 구성 방법 및 장치
WO2022141038A1 (zh) 数据的传输方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965360

Country of ref document: EP

Kind code of ref document: A1