WO2021196809A1 - 反射式光栅尺 - Google Patents

反射式光栅尺 Download PDF

Info

Publication number
WO2021196809A1
WO2021196809A1 PCT/CN2021/000029 CN2021000029W WO2021196809A1 WO 2021196809 A1 WO2021196809 A1 WO 2021196809A1 CN 2021000029 W CN2021000029 W CN 2021000029W WO 2021196809 A1 WO2021196809 A1 WO 2021196809A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
reflective
grating ruler
grating
code channel
Prior art date
Application number
PCT/CN2021/000029
Other languages
English (en)
French (fr)
Inventor
巫孟良
李力强
李康辉
吴海明
Original Assignee
广东万濠精密仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东万濠精密仪器股份有限公司 filed Critical 广东万濠精密仪器股份有限公司
Publication of WO2021196809A1 publication Critical patent/WO2021196809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the invention relates to a grating ruler, in particular to a reflective grating ruler.
  • the grating ruler also called the grating ruler displacement sensor (grating ruler sensor) is a measurement feedback device that uses the optical principle of the grating.
  • the grating ruler is often used in the position closed-loop servo system of CNC machine tools to detect linear displacement. This servo system needs to obtain the absolute coordinates of the machine, and generally needs the reference position of RI (Reference Index).
  • Reflective grating ruler is a kind of grating ruler, which is often used in workbenches with limited installation or high-speed movement.
  • the distance between the secondary grating and the main grating must be within 45 microns due to the optical signal of the general grating ruler.
  • bearings are required to maintain the distance; therefore, the relative movement of the worktable is limited, and the return stroke will be caused by the rolling friction of the bearing. Poor problem.
  • the solution is to use the principle of Moiré fringe imaging to put a secondary grating on the Fennel focal plane, but because the secondary grating is placed on the Fennel focal plane, the RI signal on the secondary grating will change due to the increase in distance. Weak; if the RI detection area is increased, it will cause the problem of unstable RI trigger position.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and provide a reflective grating ruler with a long distance between the main grating and the auxiliary grating to the Fischer focal plane, the RI signal is still strong, and the RI trigger position is accurate.
  • a reflective grating ruler comprising a light source, a lens, a main grating ruler, a secondary grating ruler, and a receiving unit.
  • the primary grating ruler is provided with first grating stripes
  • the secondary grating is provided with the first grating
  • the second grating stripe corresponding to the stripe, the receiving unit and the secondary grating ruler are arranged at relatively parallel intervals
  • the light source is arranged on the lens
  • the first grating stripe includes an RI code channel and an incremental code channel.
  • the code track sequentially includes a first non-reflective area, an incremental code track area, a first reflective area, an incremental code track area, a first non-reflective area, an incremental code track area, a second reflective area, and a second non-reflective area
  • the receiving unit is provided with a receiving area corresponding to the position of the RI code channel, and the receiving area sequentially includes a Z+ signal area, A+ signal area, B+ signal area, A-signal area, B-signal area, and Z-signal area.
  • the length of the first reflection area and the first non-reflection area of the RI code track on the main grating ruler are the same.
  • the receiving unit and the secondary grating ruler are manufactured separately or integrated.
  • the light source is an LED light source.
  • the lens is an aspheric lens
  • the light source outputs parallel light through the aspheric lens.
  • the length of the second reflection area of the RI code channel is greater than or equal to the sum of the length of the incremental code channel area of the RI code channel.
  • the first non-reflective area, the second non-reflective area, the first reflective area, the first non-reflective area, and the second reflective area are arranged in opposite directions.
  • the three incremental code channel areas of the RI code channel are combined into one.
  • the beneficial effects of the present invention are: the present invention solves the RI problem when the secondary grating is far away from the main grating; using the present invention, the distance between the main grating and the secondary grating of the grating ruler can be extended to Finnel The focal plane, while the RI signal can still reach a strong and precise position; the present invention also considers that when the grating ruler is contaminated, it prevents false triggering of the RI situation; it is beneficial to use in high-speed, high-reliability, high-precision, and limited installation space motion control superior.
  • FIG. 1 is a schematic diagram of the structure of a reflective grating ruler provided by the present invention
  • Fig. 2 is a schematic diagram of the structure of the RI code channel according to the present invention.
  • Fig. 3 is a schematic diagram of the structure of the incremental code channel according to the present invention.
  • FIG. 4 is a schematic diagram of the structure of the receiving area provided by the present invention.
  • Fig. 5 is a schematic diagram of solving the RI signal according to the present invention.
  • Fig. 6 is a schematic diagram of solving the Z 2 signal according to the present invention.
  • the present invention provides a reflective grating ruler, including a light source 1, a lens 2, a main grating ruler 3, a secondary grating ruler 4 and a receiving unit 5, the main grating ruler 3 is provided with The first grating stripe 31, the secondary grating 4 is provided with a second grating stripe 41 corresponding to the first grating stripe 31, the receiving unit 5 and the secondary grating ruler 4 are arranged relatively parallel and spaced apart, and the light source 1 is set on the lens 2, the first grating stripe 31 includes an RI code track 311 and an incremental code track 312.
  • the RI code track 311 in turn includes a first non-reflective area 3111, an incremental code track area 3112, a first Reflective area 3113, incremental code track area 3114, first non-reflective area 3115, incremental code track area 3116, second reflective area 3117, second non-reflective area 3118, the receiving unit 5 is provided at the position corresponding to RI code track 311
  • the receiving area 51 includes a Z+ signal area, A+ signal area, B+ signal area, A-signal area, B-signal area, and Z-signal area in sequence.
  • the incremental code track area 3112, the incremental code track area 3114, and the incremental code track area 3116 can be combined into one or several.
  • RI Z 2 &(A ⁇ 1 &A ⁇ 1 + ⁇ )&(B ⁇ 2 &B ⁇ 2 + ⁇ ).
  • is the information width
  • the light source 1 emits LED light
  • the length of the first reflection area and the first non-reflection area of the RI code track on the main grating ruler are the same.
  • the receiving unit and the auxiliary grating ruler are manufactured separately or integrated.
  • the light source is an LED light source.
  • the lens is an aspherical lens
  • the light source outputs parallel light through the aspherical lens.
  • the parallel light is approximately parallel light.
  • there are several incremental code channel areas of the RI code channel that is, there can be one incremental code channel area of the RI code channel, that is, the incremental code channel area 3112, the incremental code channel area 3114, and the incremental code channel area.
  • the quantity code track area 3116 is combined into one, or several, at least one group is required.
  • the number of incremental code channel areas of the RI code channel 1, 2, 3.... Three are shown in Figure 2.
  • the length of the second reflection area of the RI code channel is greater than or equal to the sum of the length of the incremental code channel area of the RI code channel.
  • the length of the second reflection area 3117 is greater than or equal to the length of the incremental code track area 3112, the incremental code track area 3114, and the incremental code track area 3116.
  • the first non-reflective area, the second non-reflective area, the first reflective area, the first non-reflective area, and the second reflective area are arranged in opposite directions. That is to say, reflective and non-reflective can be completely opposite, reflective becomes non-reflective, and non-reflective is reflective, but the signal is reversed. The reflection is the same. The opposite is also true for left and right.
  • Moiré fringe is the basis of precision measurement of grating displacement.
  • the optical fringe formed by the superposition of two periodic grating patterns with similar spatial frequencies is the moiré fringe, which can be caused by shading effects, diffraction effects, and interference effects.
  • the scientific meaning of Moiré fringe refers to the difference frequency or beat frequency pattern produced when two periodic structure patterns overlap.
  • moiré fringe The most widely used field of moiré fringe is grating displacement measurement. According to the principle of moiré fringe, it can realize the static and dynamic measurement of linear displacement and angular displacement. Measurement and control feedback for various needs such as contact, small range, large range, one-dimensional, multi-dimensional, etc., widely used in program control, CNC machine tools and three-coordinate measuring machines, precision measurement and positioning, ultra-precision machining, microelectronics IC manufacturing, seismic Forecasting, quality inspection, nanomaterials, robotics, MEMS, vibration inspection and many other fields.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Transform (AREA)

Abstract

一种反射式光栅尺,包括有光源(1)、镜头(2)、主光栅尺(3)、副光栅尺(4)和接收单元(5),主光栅尺(3)上设有第一光栅条纹(31),副光栅尺(4)上设有与第一光栅条纹(31)相对应的第二光栅条纹(41),接收单元(5)与副光栅尺(4)为相对平行间隔设置,光源(1)设置于镜头(2)上,第一光栅条纹(31)包括RI码道(311)和增量码道(312),RI码道(311)依次包括第一不反光区(3111)、增量码道区(3112)、第一反射区(3113)、增量码道区(3114)、第一不反射区(3115)、增量码道区(3116)、第二反射区(3117)、第二不反光区(3118),接收单元(5)上对应RI码道(311)位置设有接收区(51),接收区(51)依次包括Z+信号区、A+信号区、B+信号区、A-信号区、B-信号区、Z-信号区。主光栅尺(3)与副光栅尺(4)距离拉远至菲涅尔焦面,RI信号依然强且RI触发位置精准。

Description

反射式光栅尺 技术领域
本发明涉及一种光栅尺,具体涉及一种反射式光栅尺。
背景技术
光栅尺也称为光栅尺位移传感器(光栅尺传感器),是利用光栅的光学原理工作的测量反馈装置。光栅尺经常应用于数控机床的位置闭环伺服系统中,做直线位移的检测。此伺服系统需得到机械的绝对座标,一般需有RI(Reference Index)的参考位置。
反射式光栅尺是光栅尺的其中一种,常用于安装受限或需要高速移动的工作台间。一般光栅尺因为光信号的关系,副光栅与主光栅间距需在45微米以内,此时需用轴承来保持间距;因此工作台的相对运动就受到限制,且会因轴承滚动磨擦力带来回程差问题。解决方法是,利用莫尔条纹成像原理,在菲捏尔焦面处放上副光栅,但是因为在菲捏尔焦面上放上副光栅,此时副光栅上的RI信号因距离增常会变弱;若加大RI侦测面积,又会引发RI触发位置不稳定的问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种主光栅与副光栅距离拉远至菲捏尔焦面,RI信号依然强且RI触发位置精准的反射式光栅尺。
本发明的技术方案如下:
一种反射式光栅尺,包括有光源、镜头、主光栅尺、副光栅尺和接收单元,所述主光栅尺上设有第一光栅条纹,所述副光栅上设有与所述第一光栅条纹相对应的第二光栅条纹,所述接收单元与副光栅尺为相对平行间隔设置,所述光源设置于所述镜头上,所述第一光栅条纹包括RI码道和增量码道,RI码道依次包括第一不反光区、增量码道区、第一反射区、增量 码道区、第一不反射区、增量码道区、第二反射区、第二不反光区,接收单元上对应RI码道位置设有接收区,所述接收区依次包括Z+信号区、A+信号区、B+信号区、A-信号区、B-信号区、Z-信号区。
作为本发明的进一步选择:所述增量码道和增量码道区为等间距的光栅条纹,间距为P=1个透光条纹长度+1个不透光条纹长度。
作为本发明的进一步选择:主光栅尺上RI码道的第一反射区和第一不反射区长度相同。
作为本发明的进一步选择:主光栅尺与副光栅尺之间的距离
Figure PCTCN2021000029-appb-000001
其中n=1,2,3...;P为增量码道光栅条纹间距pitch,λ为LED灯光波长。
作为本发明的进一步选择:所述接收单元与所述副光栅尺分开制作或制作合为一体。
作为本发明的进一步选择:所述光源为LED光源。
作为本发明的进一步选择:所述镜头为非球面镜,所述光源经过所述非球面镜输出平行光。
作为本发明的进一步选择:所述RI码道的增量码道区为若干个。
作为本发明的进一步选择:所述RI码道的第二反射区长度大于或等于RI码道的增量码道区长度之和。
作为本发明的进一步选择:所述第一不反光区、所述第二不反光区、所述第一反射区、所述第一不反射区、所述第二反射区反向设置。
作为本发明的进一步选择:所述RI码道的三个增量码道区合成为一个。
相对于现有技术,本发明的有益效果在于:本发明解决副光栅距离主光栅很远距离时的RI问题;使用本发明,可以使得光栅尺的主光栅与副光栅距离拉远至菲捏尔焦面,同时RI信号依然能达到强且精准位置;本发明也同时考虑光栅尺受污染时,防止误触发RI情形;有利于用在高速、高可 靠、高精度、安装空间受限的运动控制上。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种反射式光栅尺的结构示意图;
图2为本发明所述RI码道的结构示意图;
图3为本发明所述增量码道的结构示意图;
图4为本发明提供的接收区结构示意图;
图5为本发明所述RI信号求解示意图。
图6为本发明所述Z 2信号求解示意图。
附图标记说明:
1--光源                      2--镜头
3--主光栅尺                  311--RI码道
3111--第一不反光区           3112--增量码道区
3113--第一反射区             3114--增量码道区
3115--第一不反光区           3116--增量码道区
3117--第二反射区             3118--第二不反光区
312--增量码道                4--副光栅尺
41--第二光栅条纹             5--接收单元
51--接收区
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例
请参阅图1-图6,本发明提供了一种反射式光栅尺,包括有光源1、镜头2、主光栅尺3、副光栅尺4和接收单元5,所述主光栅尺3上设有第一光栅条纹31,所述副光栅4上设有与所述第一光栅条纹31相对应的第二光栅条纹41,所述接收单元5与副光栅尺4为相对平行间隔设置,所述光源1设置于所述镜头2上,所述第一光栅条纹31包括RI码道311和增量码道312,RI码道311依次包括第一不反光区3111、增量码道区3112、第一反射区3113、增量码道区3114、第一不反射区3115、增量码道区3116、第二反射区3117、第二不反光区3118,接收单元5上对应RI码道311位置设有接收区51,所述接收区51依次包括Z+信号区、A+信号区、B+信号区、A-信号区、B-信号区、Z-信号区。增量码道区3112、增量码道区3114、增量码道区3116可以合成为一个,或者是若干个。
Z+信号区、A+信号区、B+信号区、A-信号区、B-信号区、Z-信号区对应Z+、A+、B+、A-、B-、Z-;A=(A+)-(A-);B=(B+)-(B-);Z 1=(Z+)-(Z-)。
Z 2=1(if Z 1>V th);Z2=0(if Z 2<V th)。
RI=Z 2&(A≥θ 1&A≤θ 1+δ)&(B≥θ 2&B≤θ 2+δ)。
θ2=θ1+90°。
δ为信息宽度。
工作原理:如图4所示,所述光源1发出LED光,接收区接收到Z+、A+、B+、A-、B-、Z-信号,由于A=(A+)-(A-);B=(B+)-(B-);Z1=(Z+)-(Z-);Z 2=1(if Z 1>V th);Z2=0(if Z 2<V th);θ2=θ1+90°;δ为信息宽度,通过RI=Z 2&(A≥θ 1&A≤θ 1+δ)&(B≥θ 2&B≤θ 2+δ)可以得到RI信号。
本发明中:所述增量码道和增量码道区为等间距的光栅条纹,间距为P=1个透光条纹长度+1个不透光条纹长度。
本发明中:主光栅尺上RI码道的第一反射区和第一不反射区长度相同。
本发明中:主光栅尺与副光栅尺之间的距离
Figure PCTCN2021000029-appb-000002
其中n=1,2,3...;P为增量码道光栅条纹间距pitch,λ为LED灯光波长。
本发明中:所述接收单元与所述副光栅尺分开制作或制作合为一体。
本发明中:所述光源为LED光源。
本发明中:所述镜头为非球面镜,所述光源经过所述非球面镜输出平行光。该平行光根据实际情况,为近似平行光。
本发明中:所述RI码道的增量码道区为若干个,即RI码道的增量码道区可以为一个,也就是增量码道区3112、增量码道区3114、增量码道区3116合成为一个,也可以是若干个,至少需要一组。RI码道的增量码道区数量=1、2、3......。图2中所示为3个。
本发明中:所述RI码道的第二反射区长度大于或等于RI码道的增量码道区长度之和。对于本实施例,即第二反射区3117长度大于或等于增量码道区3112、增量码道区3114、增量码道区3116三者长度之后。
本发明中:所述第一不反光区、所述第二不反光区、所述第一反射区、所述第一不反射区、所述第二反射区反向设置。即反光和不反光可以完全相反,反光变成不反光,不反光为反光,只是信号反向而已。反射亦同。左右相反亦同。
莫尔条纹是光栅位移精密测量的基础,在实际应用中由两个空间频率相近的周期性光栅图形叠加而形成的光学条纹就是莫尔条纹,可以由遮光效应、衍射效应和干涉效应等多种原理产生。莫尔条纹的科学含义是指两个周期性结构图案重叠时所产生的差频或拍频图案。
莫尔条纹应用最广泛的领域是光栅位移测量,根据莫尔条纹原理可以实现直线位移和角位移的静态、动态测量,基于莫尔条纹数量与位移的关系实现精密位移测量,能够满足接触、非接触、小量程、大量程、一维、 多维等各种需求的测量与控制反馈,广泛应用在程控、数控机床和三坐标测量机、精密测量与定位、超精密加工、微电子IC制造、地震预测、质量检测、纳米材料、机器人、MEMS、振动检测等众多领域。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种反射式光栅尺,其特征在于:包括有光源、镜头、主光栅尺、副光栅尺和接收单元,所述主光栅尺上设有第一光栅条纹,所述副光栅上设有与所述第一光栅条纹相对应的第二光栅条纹,所述接收单元与副光栅尺为相对平行间隔设置,所述光源设置于所述镜头上,所述第一光栅条纹包括RI码道和增量码道,RI码道依次包括第一不反光区、增量码道区、第一反射区、增量码道区、第一不反射区、增量码道区、第二反射区、第二不反光区,接收单元上对应RI码道位置设有接收区,所述接收区依次包括Z+信号区、A+信号区、B+信号区、A-信号区、B-信号区、Z-信号区。
  2. 根据权利要求1所述的反射式光栅尺,其特征在于:所述增量码道和增量码道区为等间距的光栅条纹,间距为P=1个透光条纹长度+1个不透光条纹长度。
  3. 根据权利要求1所述的反射式光栅尺,其特征在于:主光栅尺上RI码道的第一反射区和第一不反射区长度相同。
  4. 根据权利要求1所述的反射式光栅尺,其特征在于:主光栅尺与副光栅尺之间的距离
    Figure PCTCN2021000029-appb-100001
    其中n=1,2,3...;P为增量码道光栅条纹间距pitch,λ为LED灯光波长。
  5. 根据权利要求1所述的反射式光栅尺,其特征在于:所述接收单元与所述副光栅尺分开制作或制作合为一体。
  6. 根据权利要求1所述的反射式光栅尺,其特征在于:所述光源为LED光源。
  7. 根据权利要求1所述的反射式光栅尺,其特征在于:所述镜头为非球面镜,所述光源经过所述非球面镜输出平行光。
  8. 根据权利要求1所述的反射式光栅尺,其特征在于:所述RI码道的增量码道区为若干个。
  9. 根据权利要求1所述的反射式光栅尺,其特征在于:所述RI码道的第二反射区长度大于或等于RI码道的增量码道区长度之和。
  10. 根据权利要求1所述的反射式光栅尺,其特征在于:所述第一不反光区、所述第二不反光区、所述第一反射区、所述第一不反射区、所述第二反射区反向设置。
  11. 根据权利要求1所述的反射式光栅尺,其特征在于:所述RI码道的三个增量码道区合成为一个。
PCT/CN2021/000029 2019-12-30 2021-02-23 反射式光栅尺 WO2021196809A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911388342 2019-12-30
CN202010259720.5 2020-04-03
CN202010259720.5A CN113124760B (zh) 2019-12-30 2020-04-03 反射式光栅尺

Publications (1)

Publication Number Publication Date
WO2021196809A1 true WO2021196809A1 (zh) 2021-10-07

Family

ID=76772151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000029 WO2021196809A1 (zh) 2019-12-30 2021-02-23 反射式光栅尺

Country Status (2)

Country Link
CN (1) CN113124760B (zh)
WO (1) WO2021196809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111587A (zh) * 2021-11-01 2022-03-01 中国科学院上海光学精密机械研究所 一种三轴高光学细分光栅尺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202362000U (zh) * 2011-11-30 2012-08-01 广东万濠精密仪器股份有限公司 光学式编码器
CN102788602A (zh) * 2012-08-09 2012-11-21 上海微泓自动化设备有限公司 一种准绝对式光学编码器
DE102013203713A1 (de) * 2013-03-05 2014-02-13 Carl Zeiss Smt Gmbh Inkrementalgeber und Lithographievorrichtung
CN105758435A (zh) * 2016-04-14 2016-07-13 清华大学深圳研究生院 一种绝对式光栅尺
CN105890634A (zh) * 2016-04-07 2016-08-24 广东工业大学 一种绝对式编码器及其解码测量方法
CN108362208A (zh) * 2018-04-02 2018-08-03 广州数控设备有限公司 一种伪随机码道光栅尺及其读取方法
CN109724519A (zh) * 2019-01-21 2019-05-07 重庆理工大学 一种基于十进制移位编码的绝对式直线位移传感器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303161C2 (de) * 1993-02-04 1997-03-06 Zeiss Carl Fa Photoelektrisches Längen- bzw. Winkelmeßsystem mit einer Einrichtung zur Erfassung von Führungsfehlern
DE19507613C2 (de) * 1995-03-04 1997-01-23 Heidenhain Gmbh Dr Johannes Längen- oder Winkelmeßeinrichtung
JP3631551B2 (ja) * 1996-01-23 2005-03-23 株式会社ミツトヨ 光学式エンコーダ
JP2007248302A (ja) * 2006-03-16 2007-09-27 Mitsutoyo Corp 光電式インクリメンタル型エンコーダ
JP5147368B2 (ja) * 2006-11-20 2013-02-20 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング エンコーダ
TW200842312A (en) * 2007-04-27 2008-11-01 Chih-Liang Chu Duolaser focusing read head optical ruler
CN101303222A (zh) * 2007-05-09 2008-11-12 鸿富锦精密工业(深圳)有限公司 光学尺
CN102192761B (zh) * 2010-04-22 2013-06-05 廊坊开发区莱格光电仪器有限公司 敞开式激光限束扫描标尺光栅传感器
CN102128642A (zh) * 2010-12-31 2011-07-20 广东万濠精密仪器股份有限公司 自我对准之光学式编码器
CN201993117U (zh) * 2010-12-31 2011-09-28 广东万濠精密仪器股份有限公司 自我对准之光学式编码器
CN102645167A (zh) * 2012-05-04 2012-08-22 中国科学院长春光学精密机械与物理研究所 绝对位移测量装置
CN103411540B (zh) * 2013-07-26 2016-01-20 广东工业大学 一种高精密的光栅位移测量装置
JP6157392B2 (ja) * 2014-03-24 2017-07-05 三菱電機株式会社 光学式エンコーダ
CN103983181A (zh) * 2014-05-15 2014-08-13 中国科学院长春光学精密机械与物理研究所 高精度快速检测光栅副间隙的装置及方法
CN105606033B (zh) * 2016-03-18 2018-04-20 清华大学深圳研究生院 绝对式光栅尺、其主光栅及其测量方法
US10295378B2 (en) * 2017-06-29 2019-05-21 Mitutoyo Corporation Contamination and defect resistant optical encoder configuration outputting structured illumination to a scale plane for providing displacement signals
CN108007363A (zh) * 2017-12-31 2018-05-08 杜金昌 反射式激光光栅位移传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202362000U (zh) * 2011-11-30 2012-08-01 广东万濠精密仪器股份有限公司 光学式编码器
CN102788602A (zh) * 2012-08-09 2012-11-21 上海微泓自动化设备有限公司 一种准绝对式光学编码器
DE102013203713A1 (de) * 2013-03-05 2014-02-13 Carl Zeiss Smt Gmbh Inkrementalgeber und Lithographievorrichtung
CN105890634A (zh) * 2016-04-07 2016-08-24 广东工业大学 一种绝对式编码器及其解码测量方法
CN105758435A (zh) * 2016-04-14 2016-07-13 清华大学深圳研究生院 一种绝对式光栅尺
CN108362208A (zh) * 2018-04-02 2018-08-03 广州数控设备有限公司 一种伪随机码道光栅尺及其读取方法
CN109724519A (zh) * 2019-01-21 2019-05-07 重庆理工大学 一种基于十进制移位编码的绝对式直线位移传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING HONGCHANG: "The Principle and Realization of an Absolute Grating Linear Encoder Based on The Single-track", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, CN, no. 2, 15 February 2017 (2017-02-15), CN, XP055853976, ISSN: 1674-022X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111587A (zh) * 2021-11-01 2022-03-01 中国科学院上海光学精密机械研究所 一种三轴高光学细分光栅尺
CN114111587B (zh) * 2021-11-01 2024-03-01 中国科学院上海光学精密机械研究所 一种三轴高光学细分光栅尺

Also Published As

Publication number Publication date
CN113124760A (zh) 2021-07-16
CN113124760B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
Qibo et al. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide
CN100541137C (zh) 与移动和指向检测系统一同使用的刻度
CN103644849B (zh) 一种可测竖直位移的三维光栅位移测量系统
US10120196B2 (en) Optical device
US8822907B2 (en) Optical position-measuring device having two crossed scales
US10317253B2 (en) Optical encoder
CN108908337A (zh) 基于数字散斑干涉的机械手重复定位精度测量装置和方法
JP2001082984A (ja) 光学的位置測定装置
CN106052631B (zh) 一种基于自准直原理测量三维小角度的方法
CN109318059A (zh) 数控机床平动轴几何误差的检定装置和方法
CN103673899B (zh) 一种可测竖直位移的两轴光栅位移测量系统
WO2021196809A1 (zh) 反射式光栅尺
CN103630077A (zh) 一种使用双频激光的两轴光栅位移测量系统
CN110440688A (zh) 一种绝对式光栅尺参考位置测量方法及系统
JP6248236B2 (ja) 位置測定部を備えた部品及び測定方法
US10571310B2 (en) Position-measuring device
CN102865835A (zh) 游标狭缝式光电自准直仪
JP2017133892A (ja) 回転角度検出装置および回転角度検出方法
US4115008A (en) Displacement measuring apparatus
Ohrt et al. Holistic measurement in the sheet-bulk metal forming process with fringe projection
US20210173080A1 (en) Optical position-measurement device
CN111197959B (zh) 一种光栅测量系统及光刻机
EP0486050A2 (en) Method and apparatus for measuring displacement
US11125548B2 (en) Position-measuring device
CN216115868U (zh) 一种反射式光栅传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779720

Country of ref document: EP

Kind code of ref document: A1