WO2021196408A1 - 一种基于变公差带约束的航空叶片型面检测方法和系统 - Google Patents

一种基于变公差带约束的航空叶片型面检测方法和系统 Download PDF

Info

Publication number
WO2021196408A1
WO2021196408A1 PCT/CN2020/095990 CN2020095990W WO2021196408A1 WO 2021196408 A1 WO2021196408 A1 WO 2021196408A1 CN 2020095990 W CN2020095990 W CN 2020095990W WO 2021196408 A1 WO2021196408 A1 WO 2021196408A1
Authority
WO
WIPO (PCT)
Prior art keywords
point set
leaf
blade
points
profile
Prior art date
Application number
PCT/CN2020/095990
Other languages
English (en)
French (fr)
Inventor
李文龙
金福权
蒋诚
冯胜
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to EP20904298.5A priority Critical patent/EP3910504A4/en
Publication of WO2021196408A1 publication Critical patent/WO2021196408A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/10Basic functions
    • F05D2200/14Division
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/21Root
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Definitions

  • the invention belongs to the field of aviation blade inspection, and more specifically, relates to a method and system for aviation blade profile inspection based on variable tolerance zone constraints.
  • aero-engines As the world’s recognized industrial product with the most complex structure and the highest technical threshold, aero-engines have been hailed as the jewel in the crown of the industry. As the core component of aero-engines, aviation blades directly affect the aerodynamic performance of aero-engines. Accurate surface quality control is particularly important. At present, in the airfoil detection of aviation blades, most of the matching methods are based on equal tolerance zone constraints, that is, the measurement points of the airfoil profile are matched with the airfoil profile design model, and then it is judged whether the error value of each point is out of tolerance. The aviation blade profile is unqualified, otherwise it is qualified.
  • the present invention provides a method and system for detecting aero blade profile based on variable tolerance zone constraints, thereby solving the problem of distortion of matching results and false alarms of unqualified blade profile in the prior art. technical problem.
  • an aeronautical blade profile detection method based on variable tolerance zone constraints includes the following steps:
  • the rigid body transformation of the aviation blade is carried out using the optimal pose, and the aviation blade after the rigid body transformation is compared with the designed blade to judge whether the aviation blade shape is qualified.
  • curvature estimation is as follows:
  • step (2) includes:
  • (21) Set the maximum number of fitting times kmax , randomly select 3 points from the sampled leaf profile measurement points to the least squares fitting circle, and then substitute the remaining points to determine whether they are located in the circle, and record the number on the circle
  • the number of points n i , the k max fitting is repeated, and the two largest circles are selected, that is, the leading edge and the trailing edge obtained by fitting, and the center of the leading edge (x l , y l ) and the radius r l are obtained , The center (x t , y t ) and radius r t of the trailing edge;
  • (22) Use the center and radius of the leading edge to search for the leading edge point set at the leaf profile measurement points, and use the center and radius of the trailing edge to search for the trailing edge point set at the leaf profile measurement points to obtain the leaf basin point set and Leaf back point set.
  • the search methods for the leading edge point set and the trailing edge point set are the same.
  • the search method is based on the center of the leading edge (x l , y l ), the radius r l and the given radius error threshold ⁇ r, and
  • the profile measurement points are intensively searched for all points satisfying r l - ⁇ r ⁇
  • d is the distance between the center of the leading edge and the concentrated point of the leaf profile measurement point.
  • an aviation blade profile inspection system based on variable tolerance zone constraints which includes:
  • the preprocessing module is used to estimate the curvature of all the points in the profile measurement point set of the aviation blade to obtain the curvature distribution, and perform down-sampling in the profile measurement point set based on the curvature distribution to obtain the sampled leaf profile measurement points;
  • the segmentation module is used to randomly fit the circle using the sampled leaf profile measurement points to achieve leaf profile segmentation, and obtain the leading edge point set, trailing edge point set, leaf pot point set and leaf back point set;
  • the function building module is used to search for the closest point of each point in the leaf profile measurement point set in the design blade profile measurement point set to form the closest point set, and use the leaf profile measurement point set and the closest point set for unconstrained matching to obtain Initial pose, set the tolerance zone and linear constraints for the leading edge point set, trailing edge point set, leaf basin point set and leaf back point set, construct the target matching function, and use the initial pose as the initial value to solve the target matching function , Get the optimal pose;
  • the detection module is used to perform rigid body transformation on the aviation blade by using the optimal pose, compare the aviation blade after the rigid body transformation with the designed blade, and judge whether the aviation blade shape is qualified.
  • the preprocessing module includes:
  • the curvature estimation module is used to concentrate the measurement points p i of the blade profile of the aviation blade, use p i and its adjacent two points p i-1 and p i+1 to fit the quadratic curve, and calculate the quadratic curve at p i at the first derivative of y 'and the second derivative y ", then obtain the curvature p i
  • the down-sampling module is used to calculate the sum of curvatures between discrete points in the profile measurement points, so that the adjacent sampling intervals k1 and k2 satisfy the relationship K i represents the curvature of the i-th point in the leaf profile measurement point set.
  • the segmentation module includes:
  • Fitting module used to set the maximum number of fitting times kmax , randomly select 3 points from the sampled leaf profile measurement points to the least squares fitting circle, and then substitute the remaining points to determine whether they are within the circle, and record it in the circle
  • the number of points on the circle n i , the k max fitting is repeated, and the two largest circles are selected, which are the leading and trailing edges obtained by fitting, and the center of the leading edge (x l , y l ) and The radius r l , the center (x t , y t ) and the radius r t of the trailing edge;
  • the search module is used to use the center and radius of the leading edge to intensively search for the leading edge point set at the leaf profile measurement points, and to use the center and radius of the trailing edge to intensively search the trailing edge point set at the leaf profile measurement points to obtain leaf pot points Set and leaf back point set.
  • the specific construction method of the target matching function in the function construction module is:
  • the present invention estimates the curvature of the leaf profile measurement points, performs curvature sampling on the leaf profile, combines the curvature of the leading edge and the trailing edge of the leaf to perform a random consistent fitting circle, obtains the leading edge and the trailing edge, and divides them Leaf profile contour, the result of this segmentation is more accurate, establish the closest point set of leaf profile measurement points, perform unconstrained matching of leaf profile measurement points and design contour measurement points, obtain initial pose, and construct based on variable tolerance zone constraints
  • the objective matching function of the target matching function using the pose obtained in the unconstrained matching as the initial value, the optimal pose of the blade shape matching with the variable tolerance zone constraint is solved, and the optimal pose thus solved is more accurate, making the subsequent aviation blades and the design blades
  • the matching result is more real, thereby improving the accuracy of blade detection.
  • the present invention sets the tolerance zone range and linear constraints for the leading edge point set, trailing edge point set, leaf basin point set and leaf back point set respectively, and constructs the objective matching function.
  • the leaf shape matching method based on variable tolerance constraints can be According to the different requirements of the leading edge, trailing edge, leaf pot and leaf back of the blade, it can be accurately controlled, and at the same time, it can effectively improve the distortion problems such as slippage in the matching of tolerance constraints and improve the accuracy of blade detection.
  • the present invention calculates the sum of curvatures between discrete points in the profile measurement points, so that adjacent sampling intervals k1 and k2 meet a certain relationship, thereby achieving more sampling in high curvature areas and less sampling in low curvature areas.
  • FIG. 1 is a flow chart of an aviation blade profile detection method based on variable tolerance zone constraints provided by an embodiment of the present invention
  • Fig. 2 is an aeronautical blade profile curvature distribution diagram provided by an embodiment of the present invention.
  • Figure 3 is a schematic diagram of curvature sampling provided by an embodiment of the present invention.
  • Fig. 4 is a circle fitted to the trailing edge provided by an embodiment of the present invention.
  • an aeronautical blade profile detection method based on variable tolerance zone constraints includes the following steps:
  • the rigid body transformation of the aviation blade is carried out using the optimal pose, and the aviation blade after the rigid body transformation is compared with the designed blade to judge whether the aviation blade shape is qualified.
  • the profile measurement points of the aviation blade profile are collected by including but not limited to three-coordinate measuring machine, point laser displacement sensor and area scanner, and the profile measurement points of the design blade are composed of points, line segments, arcs and spline curves.
  • the coordinate information or control parameters are given.
  • curvature estimation is as follows:
  • K i represents the curvature of the i-th point in the leaf profile measurement point set.
  • p i is equal to the curvature and the curvature between p i + between k1 and k1 to the p i + p i + k2.
  • step (2) includes:
  • n is the scale of the profile measurement points after sampling.
  • three points are randomly selected from the sampling leaf profile measurement points, and the least squares fitting circle is randomly selected, and then the remaining points are substituted to determine whether they are located in the circle ,
  • record the number of points n i on the circle repeat the k max fitting, select the two largest circles among them, that is, the leading edge and trailing edge obtained by fitting, and get the center of the leading edge (x l , y l ) and radius r l , the center (x t , y t ) and radius r t of the trailing edge;
  • (22) Use the center and radius of the leading edge to search for the leading edge point set at the leaf profile measurement points, and use the center and radius of the trailing edge to search for the trailing edge point set at the leaf profile measurement points to obtain the leaf basin point set and Leaf back point set.
  • n is the total number of points in the profile of the leaf profile
  • ⁇ 1 is the Lagrangian multiplier of the first linear constraint g 1 (R, t)
  • ⁇ 2 is the second linear constraint g 2 (R, t) Lagrange multiplier.
  • the initial pose is taken as the initial value of the unconstrained objective matching function, and the final solution can be used to obtain the optimal pose, that is, the optimal rigid body translation matrix R * and t * .
  • the method of the invention is suitable for contour matching of various forms of aviation blades.

Abstract

一种基于变公差带约束的航空叶片型面检测方法,包括:对航空叶片的叶型轮廓测点集中所有点进行曲率估计,基于曲率分布在叶型轮廓测点集中进行降采样,利用采样叶型轮廓测点随机进行拟合圆,实现叶型轮廓分割,得到前缘点集、后缘点集、叶盆点集和叶背点集;分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,求解目标匹配函数,得到最优位姿;利用最优位姿对航空叶片进行刚体变换,将刚体变换后的航空叶片与设计叶片进行比较,判断航空叶片叶型是否合格。还涉及一种基于变公差带约束的航空叶片型面检测系统。航空叶片与设计叶片的匹配结果更真实,进而提高叶片检测的准确率。

Description

一种基于变公差带约束的航空叶片型面检测方法和系统 【技术领域】
本发明属于航空叶片检测领域,更具体地,涉及一种基于变公差带约束的航空叶片型面检测方法和系统。
【背景技术】
航空发动机作为世界公认的结构最复杂,技术门槛最高的工业产品,一直被誉为工业皇冠上的明珠,而航空叶片作为航空发动机的核心部件,其直接影响航空发动机的气动性能,因此对其进行精确的型面质量控制尤为重要。目前,在航空叶片的叶型检测中,多是基于等公差带约束的匹配方法,即叶型轮廓测点与叶型轮廓设计模型进行匹配,然后判断各点误差值是否超差,超差则航空叶片叶型不合格,否则合格。这种方法难以对叶片叶型前缘、后缘、叶盆及叶背进行不同的精度控制,且由于叶型前缘、后缘、叶盆及叶背的测点密度不均,在等公差约束下的匹配常常会导致匹配结果失真,即向叶盆及叶背方向滑移,进而导致叶型前缘后缘超过公差,误报叶型不合格。
由此可见,现有技术存在匹配结果失真、误报叶型不合格的技术问题。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于变公差带约束的航空叶片型面检测方法和系统,由此解决现有技术存在匹配结果失真、误报叶型不合格的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种基于变公差带约束的航空叶片型面检测方法,包括如下步骤:
(1)对航空叶片的叶型轮廓测点集中所有点进行曲率估计,得到曲率分布,基于曲率分布在叶型轮廓测点集中进行降采样,得到采样叶型轮廓 测点;
(2)利用采样叶型轮廓测点随机进行拟合圆,实现叶型轮廓分割,得到前缘点集、后缘点集、叶盆点集和叶背点集;
(3)在设计叶片的轮廓测点集中搜索叶型轮廓测点集中每个点的最近点,组成最近点集,利用叶型轮廓测点集和最近点集进行无约束匹配,得到初始位姿,分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,将初始位姿作为初始值,求解目标匹配函数,得到最优位姿;
(4)利用最优位姿对航空叶片进行刚体变换,将刚体变换后的航空叶片与设计叶片进行比较,判断航空叶片叶型是否合格。
进一步地,曲率估计的具体实现方式为:
对航空叶片的叶型轮廓测点集中点p i,利用p i及其相邻两点p i-1、p i+1拟合二次曲线,计算二次曲线在p i处的一阶导数y′及二阶导数y″,进而求得p i的曲率
Figure PCTCN2020095990-appb-000001
进一步地,降采样的具体实现方式为:
计算叶型轮廓测点集中离散点间的曲率和,使得相邻采样间隔k1和k2满足关系
Figure PCTCN2020095990-appb-000002
K i表示叶型轮廓测点集中第i个点的曲率。
进一步地,步骤(2)包括:
(21)设置最大拟合次数k max,从采样叶型轮廓测点中随机抽取3个点最小二乘拟合圆,随后将其余点代入判断是否位于该圆内,并记录在该圆上的点数量n i,重复进行k max次拟合,选择其中规模最大的两个圆,即为拟合得到的前缘和后缘,得到前缘的圆心(x l,y l)及半径r l,后缘的圆心(x t,y t)及半径r t
(22)利用前缘的圆心及半径在叶型轮廓测点集中搜索前缘点集,利用后缘的圆心及半径在叶型轮廓测点集中搜索后缘点集,进而得到叶盆点 集和叶背点集。
进一步地,前缘点集和后缘点集的搜索方法相同,所述搜索方法为:基于前缘的圆心(x l,y l)、半径r l及给定半径误差阈值δr,在叶型轮廓测点集中搜索所有满足r l-δr≤|d|≤r l+δr的点,得到前缘点集,d为前缘的圆心与叶型轮廓测点集中点的距离。
进一步地,目标匹配函数的具体构建方式为:
分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带上限
Figure PCTCN2020095990-appb-000003
与下限
Figure PCTCN2020095990-appb-000004
1代表前缘点集,2代表后缘点集,3代表叶盆点集,4代表叶背点集,引入4个范围取值在0-1的变量η 1,η 2,η 3,η 4将分段约束转换为线性约束,即
Figure PCTCN2020095990-appb-000005
Figure PCTCN2020095990-appb-000006
s j为分割叶型轮廓的四个分界点的序号,对于序号为(s 1,s 2)之间的点,i=η 1s 12s 2,且η 12=1,其他分界点之间i的计算方法与之一致,R是旋转矩阵,t是平移矩阵,p i是叶型轮廓测点,q i是p i在设计叶片的轮廓测点集中的最近点,进而构建目标匹配函数
Figure PCTCN2020095990-appb-000007
其中,n为叶型轮廓测点集中点的总数,λ 1为第一线性约束g 1(R,t)的拉格朗日乘子,λ 2是第二线性约束g 2(R,t)的拉格朗日乘子。
按照本发明的另一方面,提供了一种基于变公差带约束的航空叶片型面检测系统,包括:
预处理模块,用于对航空叶片的叶型轮廓测点集中所有点进行曲率估计,得到曲率分布,基于曲率分布在叶型轮廓测点集中进行降采样,得到采样叶型轮廓测点;
分割模块,用于利用采样叶型轮廓测点随机进行拟合圆,实现叶型轮廓分割,得到前缘点集、后缘点集、叶盆点集和叶背点集;
函数构建模块,用于在设计叶片的轮廓测点集中搜索叶型轮廓测点集 中每个点的最近点,组成最近点集,利用叶型轮廓测点集和最近点集进行无约束匹配,得到初始位姿,分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,将初始位姿作为初始值,求解目标匹配函数,得到最优位姿;
检测模块,用于利用最优位姿对航空叶片进行刚体变换,将刚体变换后的航空叶片与设计叶片进行比较,判断航空叶片叶型是否合格。
进一步地,预处理模块包括:
曲率估计模块,用于对航空叶片的叶型轮廓测点集中点p i,利用p i及其相邻两点p i-1、p i+1拟合二次曲线,计算二次曲线在p i处的一阶导数y′及二阶导数y″,进而求得p i的曲率
Figure PCTCN2020095990-appb-000008
降采样模块,用于计算叶型轮廓测点集中离散点间的曲率和,使得相邻采样间隔k1和k2满足关系
Figure PCTCN2020095990-appb-000009
K i表示叶型轮廓测点集中第i个点的曲率。
进一步地,分割模块包括:
拟合模块,用于设置最大拟合次数k max,从采样叶型轮廓测点中随机抽取3个点最小二乘拟合圆,随后将其余点代入判断是否位于该圆内,并记录在该圆上的点数量n i,重复进行k max次拟合,选择其中规模最大的两个圆,即为拟合得到的前缘和后缘,得到前缘的圆心(x l,y l)及半径r l,后缘的圆心(x t,y t)及半径r t
搜索模块,用于利用前缘的圆心及半径在叶型轮廓测点集中搜索前缘点集,利用后缘的圆心及半径在叶型轮廓测点集中搜索后缘点集,进而得到叶盆点集和叶背点集。
进一步地,函数构建模块中目标匹配函数的具体构建方式为:
分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带上限
Figure PCTCN2020095990-appb-000010
与下限
Figure PCTCN2020095990-appb-000011
1代表前缘点集,2代表后缘点集,3代表叶 盆点集,4代表叶背点集,引入4个范围取值在0-1的变量η 1,η 2,η 3,η 4将分段约束转换为线性约束,即
Figure PCTCN2020095990-appb-000012
Figure PCTCN2020095990-appb-000013
s j为分割叶型轮廓的四个分界点的序号,对于序号为(s 1,s 2)之间的点,i=η 1s 12s 2,且η 12=1,其他分界点之间i的计算方法与之一致,R是旋转矩阵,t是平移矩阵,p i是叶型轮廓测点,q i是p i在设计叶片的轮廓测点集中的最近点,进而构建目标匹配函数
Figure PCTCN2020095990-appb-000014
其中,n为叶型轮廓测点集中点的总数,λ 1为第一线性约束g 1(R,t)的拉格朗日乘子,λ 2是第二线性约束g 2(R,t)的拉格朗日乘子。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明对叶型轮廓测点进行曲率估计,对叶型轮廓进行曲率采样,结合叶片叶型前缘及后缘曲率进行随机一致性拟合圆,得到前缘、后缘,并分割叶型轮廓,由此分割的结果较为准确,建立叶型轮廓测点的最近点集,对叶型轮廓测点与设计轮廓测点进行无约束匹配,获得初始位姿,构建基于变公差带约束的目标匹配函数;以无约束匹配中获取的位姿作为初值,求解变公差带约束的叶型匹配最优位姿,由此求解的最优位姿较准确,使得后续航空叶片与设计叶片的匹配结果更真实,进而提高叶片检测的准确率。
(2)本发明分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,基于变公差约束的叶型匹配方法,可以针对叶片叶型前缘、后缘、叶盆及叶背的不同要求,进行精确控制,同时也能有效改善等公差约束匹配中存在的滑移等失真问题,提高叶片检测的准确率。
(3)本发明在采样时,计算叶型轮廓测点集中离散点间的曲率和,使 得相邻采样间隔k1和k2满足一定关系,进而实现在高曲率区域多采样,低曲率区少采样。
附图说明
图1是本发明实施例提供的一种基于变公差带约束的航空叶片型面检测方法的流程图;
图2是本发明实施例提供的航空叶片叶型曲率分布图;
图3是本发明实施例提供的曲率采样示意图;
图4是本发明实施例提供的拟合后缘的圆。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种基于变公差带约束的航空叶片型面检测方法,包括如下步骤:
(1)对航空叶片的叶型轮廓测点集中所有点进行曲率估计,得到曲率分布,基于曲率分布在叶型轮廓测点集中进行降采样,得到采样叶型轮廓测点;
(2)利用采样叶型轮廓测点随机进行拟合圆,实现叶型轮廓分割,得到前缘点集、后缘点集、叶盆点集和叶背点集;
(3)在设计叶片的轮廓测点集中搜索叶型轮廓测点集中每个点的最近点,组成最近点集,利用叶型轮廓测点集和最近点集进行无约束匹配,得到初始位姿,分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,将初始位姿作为初始值,求解目标匹配函数,得到最优位姿;
(4)利用最优位姿对航空叶片进行刚体变换,将刚体变换后的航空叶片与设计叶片进行比较,判断航空叶片叶型是否合格。
本发明实例中,航空叶片叶型轮廓测点由包括但不限于三坐标测量机、点激光位移传感器及面阵扫描仪采集,设计叶片的轮廓测点由点、线段、圆弧及样条曲线的坐标信息或控制参数给出。
进一步地,曲率估计的具体实现方式为:
对航空叶片的叶型轮廓测点集中点p i,利用p i及其相邻两点p i-1、p i+1拟合二次曲线,计算二次曲线在p i处的一阶导数y′及二阶导数y″,进而求得p i的曲率
Figure PCTCN2020095990-appb-000015
取p i-1(x i-1,y i-1),p i(x i,y i),p i+1(x i+1,y i+1)三点拟合二次曲线y=ax 2+bx+c,则通过求解矩阵方程AC=y即可求解参数a、b、c,其中
Figure PCTCN2020095990-appb-000016
随后计算二次曲线在p i处的一阶导数y′=2ax i+b及二阶导数y″=2a,进而求得该点的曲率
Figure PCTCN2020095990-appb-000017
叶片叶型的曲率分布如图2。
进一步地,降采样的具体实现方式为:
计算叶型轮廓测点集中离散点间的曲率和,使得相邻采样间隔k1和k2满足关系
Figure PCTCN2020095990-appb-000018
K i表示叶型轮廓测点集中第i个点的曲率。如图3所示,p i至p i+k1之间的曲率和与p i+k1至p i+k2之间的曲率和相等。
进一步地,步骤(2)包括:
(21)设置最大拟合次数
Figure PCTCN2020095990-appb-000019
其中,
Figure PCTCN2020095990-appb-000020
为组合数,n为采样后轮廓测点的规模,如图4所示,从采样叶型轮廓测点中随机抽取3个点最小二乘拟合圆,随后将其余点代入判断是否位于该圆内,并记录在该圆上的点数量n i,重复进行k max次拟合,选择其中规模最大的两个圆,即为拟 合得到的前缘和后缘,得到前缘的圆心(x l,y l)及半径r l,后缘的圆心(x t,y t)及半径r t
(22)利用前缘的圆心及半径在叶型轮廓测点集中搜索前缘点集,利用后缘的圆心及半径在叶型轮廓测点集中搜索后缘点集,进而得到叶盆点集和叶背点集。
进一步地,前缘点集和后缘点集的搜索方法相同,所述搜索方法为:基于前缘的圆心(x l,y l)、半径r l及给定半径误差阈值δr,δr=0.05r l,在叶型轮廓测点集中搜索所有满足r l-δr≤|d|≤r l+δr的点,得到前缘点集,d为前缘的圆心与叶型轮廓测点集中点的距离。
在对设计叶片的轮廓曲线进行均匀离散得到离散点集Q,随后在点集Q上建立kdTreeT Q,搜索叶型轮廓测点p i对应的最近点q i,进而得到叶型轮廓测点最近点集Q near
建立无约束目标匹配函数
Figure PCTCN2020095990-appb-000021
其中d i=||Rp i+t-q i||是叶型轮廓测点p i到其最近点q i的距离,R是旋转矩阵,t是平移矩阵,对目标匹配函数E(R,t)进行变换可得E(R,t)=mintrace(RC),其中
Figure PCTCN2020095990-appb-000022
是叶型轮廓测点中心,
Figure PCTCN2020095990-appb-000023
是最近点集Q near的中心,对C进行SVD分解,可以求得初始位姿,即无约束匹配的旋转矩阵R o及平移矩阵t o
建立带约束的目标匹配函数
Figure PCTCN2020095990-appb-000024
分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带上限
Figure PCTCN2020095990-appb-000025
与下限
Figure PCTCN2020095990-appb-000026
j=1、2、3、4,1代表前缘点集,2代表后缘点集,3代表叶盆点集,4代表叶背点集,引入4个范围取值在0-1的变量η 1,η 2,η 3,η 4将分段约束转换为线性约束,即
Figure PCTCN2020095990-appb-000027
Figure PCTCN2020095990-appb-000028
s j为分割叶型轮廓的四个分界点的序号,对于序号为(s 1,s 2)之间的点,i=η 1s 12s 2,且η 12=1,其他分界点之间i的计算方法与之一致,R是旋转矩阵,t是平移矩阵,p i是叶型轮廓测点,q i是p i在设计叶片的轮廓测点集中的最近点,随后基于拉格朗日乘子法,将其转换为无约束的目标匹配函数
Figure PCTCN2020095990-appb-000029
其中,n为叶型轮廓测点集中点的总数,λ 1为第一线性约束g 1(R,t)的拉格朗日乘子,λ 2是第二线性约束g 2(R,t)的拉格朗日乘子。将初始位姿作为无约束的目标匹配函数的初始值,最后求解可得到最优位姿,即最优的刚体平移矩阵R *及t *
本发明方法适用于各种形式的航空叶片叶型的轮廓匹配。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于变公差带约束的航空叶片型面检测方法,其特征在于,包括如下步骤:
    (1)对航空叶片的叶型轮廓测点集中所有点进行曲率估计,得到曲率分布,基于曲率分布在叶型轮廓测点集中进行降采样,得到采样叶型轮廓测点;
    (2)利用采样叶型轮廓测点随机进行拟合圆,实现叶型轮廓分割,得到前缘点集、后缘点集、叶盆点集和叶背点集;
    (3)在设计叶片的轮廓测点集中搜索叶型轮廓测点集中每个点的最近点,组成最近点集,利用叶型轮廓测点集和最近点集进行无约束匹配,得到初始位姿,分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,将初始位姿作为初始值,求解目标匹配函数,得到最优位姿;
    (4)利用最优位姿对航空叶片进行刚体变换,将刚体变换后的航空叶片与设计叶片进行比较,判断航空叶片叶型是否合格。
  2. 如权利要求1所述的一种基于变公差带约束的航空叶片型面检测方法,其特征在于,所述曲率估计的具体实现方式为:
    对航空叶片的叶型轮廓测点集中点p i,利用p i及其相邻两点p i-1、p i+1拟合二次曲线,计算二次曲线在p i处的一阶导数y′及二阶导数y″,进而求得p i的曲率
    Figure PCTCN2020095990-appb-100001
  3. 如权利要求1或2所述的一种基于变公差带约束的航空叶片型面检测方法,其特征在于,所述降采样的具体实现方式为:
    计算叶型轮廓测点集中离散点间的曲率和,使得相邻采样间隔k1和k2满足关系
    Figure PCTCN2020095990-appb-100002
    K i表示叶型轮廓测点集中第i个点的曲率。
  4. 如权利要求1或2所述的一种基于变公差带约束的航空叶片型面检测方法,其特征在于,所述步骤(2)包括:
    (21)设置最大拟合次数k max,从采样叶型轮廓测点中随机抽取3个点最小二乘拟合圆,随后将其余点代入判断是否位于该圆内,并记录在该圆上的点数量n i,重复进行k max次拟合,选择其中规模最大的两个圆,即为拟合得到的前缘和后缘,得到前缘的圆心(x l,y l)及半径r l,后缘的圆心(x t,y t)及半径r t
    (22)利用前缘的圆心及半径在叶型轮廓测点集中搜索前缘点集,利用后缘的圆心及半径在叶型轮廓测点集中搜索后缘点集,进而得到叶盆点集和叶背点集。
  5. 如权利要求4所述的一种基于变公差带约束的航空叶片型面检测方法,其特征在于,所述前缘点集和后缘点集的搜索方法相同,所述搜索方法为:基于前缘的圆心(x l,y l)、半径r l及给定半径误差阈值δr,在叶型轮廓测点集中搜索所有满足r l-δr≤|d|≤r l+δr的点,得到前缘点集,d为前缘的圆心与叶型轮廓测点集中点的距离。
  6. 如权利要求1或2所述的一种基于变公差带约束的航空叶片型面检测方法,其特征在于,所述目标匹配函数的具体构建方式为:
    分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带上限
    Figure PCTCN2020095990-appb-100003
    与下限
    Figure PCTCN2020095990-appb-100004
    j=1、2、3、4,1代表前缘点集,2代表后缘点集,3代表叶盆点集,4代表叶背点集,引入4个范围取值在0-1的变量η 1,η 2,η 3,η 4将分段约束转换为线性约束,即
    Figure PCTCN2020095990-appb-100005
    Figure PCTCN2020095990-appb-100006
    i=η js j,s j为分割叶型轮廓的四个分界点的序号,对于序号为(s 1,s 2)之间的点,i=η 1s 12s 2,且η 12=1,其他分界点之间i的计算方法与之一致,R是旋转矩阵,t是平移矩阵,p i是叶型轮廓测点,q i是p i在设计叶片的轮廓测点集中的最近点,进而构建目标 匹配函数
    Figure PCTCN2020095990-appb-100007
    其中,n为叶型轮廓测点集中点的总数,λ 1为第一线性约束g 1(R,t)的拉格朗日乘子,λ 2是第二线性约束g 2(R,t)的拉格朗日乘子。
  7. 一种基于变公差带约束的航空叶片型面检测系统,其特征在于,包括:
    预处理模块,用于对航空叶片的叶型轮廓测点集中所有点进行曲率估计,得到曲率分布,基于曲率分布在叶型轮廓测点集中进行降采样,得到采样叶型轮廓测点;
    分割模块,用于利用采样叶型轮廓测点随机进行拟合圆,实现叶型轮廓分割,得到前缘点集、后缘点集、叶盆点集和叶背点集;
    函数构建模块,用于在设计叶片的轮廓测点集中搜索叶型轮廓测点集中每个点的最近点,组成最近点集,利用叶型轮廓测点集和最近点集进行无约束匹配,得到初始位姿,分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带范围和线性约束,构建目标匹配函数,将初始位姿作为初始值,求解目标匹配函数,得到最优位姿;
    检测模块,用于利用最优位姿对航空叶片进行刚体变换,将刚体变换后的航空叶片与设计叶片进行比较,判断航空叶片叶型是否合格。
  8. 如权利要求7所述的一种基于变公差带约束的航空叶片型面检测系统,其特征在于,所述预处理模块包括:
    曲率估计模块,用于对航空叶片的叶型轮廓测点集中点p i,利用p i及其相邻两点p i-1、p i+1拟合二次曲线,计算二次曲线在p i处的一阶导数y′及二阶导数y″,进而求得p i的曲率
    Figure PCTCN2020095990-appb-100008
    降采样模块,用于计算叶型轮廓测点集中离散点间的曲率和,使得相邻采样间隔k1和k2满足关系
    Figure PCTCN2020095990-appb-100009
    K i表示叶型轮廓测点集中第i个点的曲率。
  9. 如权利要求7或8所述的一种基于变公差带约束的航空叶片型面检测系统,其特征在于,所述分割模块包括:
    拟合模块,用于设置最大拟合次数k max,从采样叶型轮廓测点中随机抽取3个点最小二乘拟合圆,随后将其余点代入判断是否位于该圆内,并记录在该圆上的点数量n i,重复进行k max次拟合,选择其中规模最大的两个圆,即为拟合得到的前缘和后缘,得到前缘的圆心(x l,y l)及半径r l,后缘的圆心(x t,y t)及半径r t
    搜索模块,用于利用前缘的圆心及半径在叶型轮廓测点集中搜索前缘点集,利用后缘的圆心及半径在叶型轮廓测点集中搜索后缘点集,进而得到叶盆点集和叶背点集。
  10. 如权利要求7或8所述的一种基于变公差带约束的航空叶片型面检测系统,其特征在于,所述函数构建模块中目标匹配函数的具体构建方式为:
    分别为前缘点集、后缘点集、叶盆点集和叶背点集设置公差带上限
    Figure PCTCN2020095990-appb-100010
    与下限
    Figure PCTCN2020095990-appb-100011
    j=1、2、3、4,1代表前缘点集,2代表后缘点集,3代表叶盆点集,4代表叶背点集,引入4个范围取值在0-1的变量η 1,η 2,η 3,η 4将分段约束转换为线性约束,即
    Figure PCTCN2020095990-appb-100012
    Figure PCTCN2020095990-appb-100013
    i=η js j,s j为分割叶型轮廓的四个分界点的序号,对于序号为(s 1,s 2)之间的点,i=η 1s 12s 2,且η 12=1,其他分界点之间i的计算方法与之一致,R是旋转矩阵,t是平移矩阵,p i是叶型轮廓测点,q i是p i在设计叶片的轮廓测点集中的最近点,进而构建目标匹配函数
    Figure PCTCN2020095990-appb-100014
    其中,n为叶型轮廓测点集中点的总数,λ 1为第一线性约束g 1(R,t)的拉格朗日乘子,λ 2是第二线性约束g 2(R,t)的拉格朗日乘子。
PCT/CN2020/095990 2020-03-31 2020-06-13 一种基于变公差带约束的航空叶片型面检测方法和系统 WO2021196408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20904298.5A EP3910504A4 (en) 2020-03-31 2020-06-13 METHOD AND SYSTEM FOR DETERMINING AN AIRCRAFT ENGINE BLADE PROFILE BASED ON VARIABLE TOLERANCE ZONE RESTRICTIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010247950.XA CN111400667B (zh) 2020-03-31 2020-03-31 一种基于变公差带约束的航空叶片型面检测方法和系统
CN202010247950.X 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021196408A1 true WO2021196408A1 (zh) 2021-10-07

Family

ID=71429360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095990 WO2021196408A1 (zh) 2020-03-31 2020-06-13 一种基于变公差带约束的航空叶片型面检测方法和系统

Country Status (3)

Country Link
EP (1) EP3910504A4 (zh)
CN (1) CN111400667B (zh)
WO (1) WO2021196408A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114048558A (zh) * 2021-10-26 2022-02-15 西北工业大学 一种具有非均匀轮廓误差的压气机叶型造型方法
CN114943752A (zh) * 2022-05-31 2022-08-26 河南埃尔森智能科技有限公司 一种基于曲率特征描述的自适应轮廓模板识别配准方法
CN115146401A (zh) * 2022-06-07 2022-10-04 西北工业大学 空心涡轮叶片陶瓷型芯检测截面线点云外轮廓过滤方法
CN115841548A (zh) * 2023-02-21 2023-03-24 陕西空天信息技术有限公司 一种叶片模型的计算机辅助生成方法及系统
CN116202874A (zh) * 2023-05-05 2023-06-02 青岛宇通管业有限公司 一种排水管材柔韧性测试方法及系统
CN117372554A (zh) * 2023-09-14 2024-01-09 华中科技大学 一种基于径向基函数的三坐标叶片截面重构方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393428B (zh) * 2021-05-31 2023-07-25 华中科技大学无锡研究院 一种航空发动机叶片进排气边缘形状检测方法
CN113867258B (zh) * 2021-09-18 2023-09-01 华中科技大学 一种基于在机测量的航空叶片加工定位方法
CN116992600B (zh) * 2023-09-26 2023-12-15 南京航空航天大学 一种多约束的叶片截面线分区特征点获取方法
CN117387701B (zh) * 2023-12-13 2024-04-19 南通纳科达聚氨酯科技有限公司 风机叶片前缘保护膜的施工质量检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148784A (zh) * 2013-03-14 2013-06-12 哈尔滨鹰瑞达科技开发有限公司 一种大型叶片全尺寸检测方法
CN103411574A (zh) * 2013-08-14 2013-11-27 西北工业大学 航空发动机叶片型面三坐标测量方法
CN103486996A (zh) * 2013-08-14 2014-01-01 西北工业大学 未知cad模型的航空发动机叶片型面测量方法
US20140076038A1 (en) * 2011-05-10 2014-03-20 MTU Aero Engines AG Checking a blade contour of a turbomachine
CN103761389A (zh) * 2014-01-20 2014-04-30 北京航空航天大学 一种复杂曲面的分层光顺方法
CN106021782A (zh) * 2016-05-31 2016-10-12 西北工业大学 基于中弧线的叶片前后缘拟合及截面线光滑重构方法
CN106354927A (zh) * 2016-08-29 2017-01-25 西北工业大学 一种精锻叶片前后缘自适应加工优化模型的构建方法
CN106407502A (zh) * 2016-08-19 2017-02-15 西安交通大学 一种基于最佳匹配的叶片截面型线轮廓参数评价方法
CN110851967A (zh) * 2019-10-31 2020-02-28 山西大学 非完整测量数据下的空心涡轮叶片精铸蜡型模型重构方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499253B1 (en) * 2010-09-09 2016-11-22 Groem Brothers Aviation, Inc. Composite rotor blade for a reaction drive rotorcraft
CN105739440A (zh) * 2016-04-29 2016-07-06 南京航空航天大学 一种宽弦空心风扇叶片的自适应加工方法
CN106372291B (zh) * 2016-08-29 2019-03-29 西北工业大学 一种公差约束下的叶片余量优化模型建立及求解方法
CN107451378B (zh) * 2017-09-05 2021-01-05 电子科技大学 一种三坐标测量叶片截面采样点提取方法
CN108536932B (zh) * 2018-03-26 2020-07-28 华中科技大学 基于互扭约束条件下的航空叶片积叠轴垂直度计算方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140076038A1 (en) * 2011-05-10 2014-03-20 MTU Aero Engines AG Checking a blade contour of a turbomachine
CN103148784A (zh) * 2013-03-14 2013-06-12 哈尔滨鹰瑞达科技开发有限公司 一种大型叶片全尺寸检测方法
CN103411574A (zh) * 2013-08-14 2013-11-27 西北工业大学 航空发动机叶片型面三坐标测量方法
CN103486996A (zh) * 2013-08-14 2014-01-01 西北工业大学 未知cad模型的航空发动机叶片型面测量方法
CN103761389A (zh) * 2014-01-20 2014-04-30 北京航空航天大学 一种复杂曲面的分层光顺方法
CN106021782A (zh) * 2016-05-31 2016-10-12 西北工业大学 基于中弧线的叶片前后缘拟合及截面线光滑重构方法
CN106407502A (zh) * 2016-08-19 2017-02-15 西安交通大学 一种基于最佳匹配的叶片截面型线轮廓参数评价方法
CN106354927A (zh) * 2016-08-29 2017-01-25 西北工业大学 一种精锻叶片前后缘自适应加工优化模型的构建方法
CN110851967A (zh) * 2019-10-31 2020-02-28 山西大学 非完整测量数据下的空心涡轮叶片精铸蜡型模型重构方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3910504A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114048558A (zh) * 2021-10-26 2022-02-15 西北工业大学 一种具有非均匀轮廓误差的压气机叶型造型方法
CN114943752A (zh) * 2022-05-31 2022-08-26 河南埃尔森智能科技有限公司 一种基于曲率特征描述的自适应轮廓模板识别配准方法
CN114943752B (zh) * 2022-05-31 2024-03-29 河南埃尔森智能科技有限公司 一种基于曲率特征描述的自适应轮廓模板识别配准方法
CN115146401A (zh) * 2022-06-07 2022-10-04 西北工业大学 空心涡轮叶片陶瓷型芯检测截面线点云外轮廓过滤方法
CN115146401B (zh) * 2022-06-07 2024-02-23 西北工业大学 空心涡轮叶片陶瓷型芯检测截面线点云外轮廓过滤方法
CN115841548A (zh) * 2023-02-21 2023-03-24 陕西空天信息技术有限公司 一种叶片模型的计算机辅助生成方法及系统
CN116202874A (zh) * 2023-05-05 2023-06-02 青岛宇通管业有限公司 一种排水管材柔韧性测试方法及系统
CN117372554A (zh) * 2023-09-14 2024-01-09 华中科技大学 一种基于径向基函数的三坐标叶片截面重构方法

Also Published As

Publication number Publication date
EP3910504A1 (en) 2021-11-17
CN111400667A (zh) 2020-07-10
CN111400667B (zh) 2021-11-02
EP3910504A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2021196408A1 (zh) 一种基于变公差带约束的航空叶片型面检测方法和系统
CN111028220B (zh) 一种点云铆钉齐平度自动检测方法
CN104697462B (zh) 一种基于中轴线的航空叶片型面特征参数提取方法
CN106407502B (zh) 一种基于最佳匹配的叶片截面型线轮廓参数评价方法
CN111583318A (zh) 一种基于翼身实测数据虚拟对接的整流蒙皮修配方法
CN111539070B (zh) 基于实测数据的翼身对接间隙分布控制方法
CN112697058A (zh) 一种基于机器视觉的大尺寸板材装配间隙在线测量系统与方法
CN105868498A (zh) 基于扫描线点云的蒙皮边界特征重构方法
WO2023060683A1 (zh) 一种基于三维点云模型的预制梁段表面平整度检测方法
CN113834625B (zh) 一种飞行器模型表面压力测量方法及系统
CN106864770B (zh) 一种评估无人机制造外形气动偏差的方法
CN114936389B (zh) 一种叶片截面线的中弧线构造与几何特征分割方法
CN111368462B (zh) 一种基于曲率估计的航空叶片型面检测方法和系统
CN113393428B (zh) 一种航空发动机叶片进排气边缘形状检测方法
CN112013788A (zh) 基于叶片局部前缘曲线特征标定转动中心的方法
CN104050660A (zh) 一种测量工件圆形边缘的方法
CN103839274B (zh) 一种基于几何比例关系的扩展目标跟踪方法
CN109858124A (zh) 一种航空发动机叶片的测量与磨削量计算方法
CN111008980A (zh) 基于曲率变化的叶片缘头截面型线自适应分割方法
WO2021196407A1 (zh) 基于割线旋转迭代的航空叶片叶型弦长检测方法和系统
CN111553078B (zh) 基于实测数据引导的飞机结构加强件修配方法
CN115797414A (zh) 一种考虑测头半径的复杂曲面测量点云数据配准方法
CN115330977A (zh) 一种基于v向最优基准迭代的叶片修复区域曲面重构算法
Wang et al. Digitally reverse modeling for the repair of blades in aero-engines
CN112581521A (zh) 一种磁浮轨道中心线提取方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020904298

Country of ref document: EP

Effective date: 20210702

NENP Non-entry into the national phase

Ref country code: DE