CN106864770B - 一种评估无人机制造外形气动偏差的方法 - Google Patents

一种评估无人机制造外形气动偏差的方法 Download PDF

Info

Publication number
CN106864770B
CN106864770B CN201710103746.9A CN201710103746A CN106864770B CN 106864770 B CN106864770 B CN 106864770B CN 201710103746 A CN201710103746 A CN 201710103746A CN 106864770 B CN106864770 B CN 106864770B
Authority
CN
China
Prior art keywords
unmanned plane
shape
deviation
manufacture
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710103746.9A
Other languages
English (en)
Other versions
CN106864770A (zh
Inventor
包晓翔
孙凯军
付义伟
刘凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Aerospace Aerodynamics CAAA
Original Assignee
China Academy of Aerospace Aerodynamics CAAA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Aerospace Aerodynamics CAAA filed Critical China Academy of Aerospace Aerodynamics CAAA
Priority to CN201710103746.9A priority Critical patent/CN106864770B/zh
Publication of CN106864770A publication Critical patent/CN106864770A/zh
Application granted granted Critical
Publication of CN106864770B publication Critical patent/CN106864770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

一种评估无人机制造外形气动偏差的方法,第一步,一是根据无人机的理论外形结合风洞试验数据,根据对无人机理论进行CFD计算得到的气动数据与风洞试验数据的吻合度,确定最终适合无人机理论外形的CFD计算方法;二是无人机的制造外形获得其点云数据,进而进行逆向建模得三维模型;第二步,将无人机理论外形与三维模型进行偏差统计,得到二者的几何偏差数值分布;并对上述得到的三维模型利用上述确定的CFD计算方法进行计算,得到制造外形的气动数据;第三步,根据制造外形和理论外形CFD计算的气动数据,对比无人机气动偏差;若气动数据偏离在预设的范围内,则该无人机制造外形满足要求;否则,认定该无人机制造外形存在气动偏差。

Description

一种评估无人机制造外形气动偏差的方法
技术领域
本发明涉及一种评估无人机制造外形气动偏差的方法,属于航空飞行器中计算流体力学应用领域。
背景技术
气动外形对于无人机起着至关重要的作用,它提供无人机飞行时所需的升力及飞行姿态的力矩平衡。无人机的气动外形是根据其任务剖面设计点确定设计的,如果其外形发生变化,特别是机翼、尾翼(或鸭翼)这些升力面的外形变化,轻则会影响无人机性能指标和飞行品质,重则影响飞行安全。然而在飞机制造过程中,外形加工不可避免地会出现误差和偏差,因此需要对所加工的外形进行检测验收,评估制造误差对无人机气动特性及飞行性能的影响,以保证无人机满足性能指标和飞行安全。
飞机制造结构验收常用的方法是测量翼面及机身的关键尺寸、相对位置、安装角度等。此方法的缺点是不能准确地、全面地检测飞机外形制造的几何偏差,比如机翼翼型偏差、翼面上的凸凹变形等,也不能定量地评估制造误差对飞机气动性能的影响。无人机制造外形存在气动偏差时,无人机飞行的预设飞控程序可能会出现控制偏差,需要通过飞行数据来反推无人机气动数据的偏差来对飞控程序进行补偿修正,然后再进行飞行验证。这样会增加无人机试飞成本,严重的气动偏差甚至可能造成飞行安全。
发明内容
本发明的技术解决问题是:克服现有技术的不足,本发明提供了一种评估无人机制造外形气动偏差的方法,实现定量地评估制造误差对飞机气动性能的影响。
本发明的技术解决方案是:一种评估无人机制造外形气动偏差的方法,步骤如下:
第一步,完成两个部分的内容:一是根据无人机的理论外形结合风洞试验数据,根据对无人机理论进行CFD计算得到的气动数据与风洞试验数据的吻合度,确定最终适合无人机理论外形的CFD计算方法;二是根据无人机的制造外形获得其点云数据,进而进行逆向建模得三维模型;
第二步,将无人机理论外形与上述三维模型进行偏差统计,得到二者的几何偏差数值分布;并对上述得到的三维模型利用上述确定的CFD计算方法进行计算,得到制造外形的气动数据;
第三步,根据制造外形和理论外形CFD计算的气动数据,对比无人机气动偏差;若气动数据偏离在预设的范围内,则该无人机制造外形满足要求;否则,认定该无人机制造外形存在气动偏差。
进一步的,第三步中当认定该无人机制造外形存在气动偏差时,将制造外形的CFD计算气动数据导入飞控仿真机进行飞行仿真。
进一步的,若偏差的气动数据通过飞控程序的补偿修正能满足飞行要求,则认定无人机制造外形可接受;否则,按照第二步中的无人机几何偏差进行返厂修改。
进一步的,采用数字摄影三维测量系统对无人机制造外形进行测量,获得的点云数据。
本发明与现有技术相比有益效果为:
(1)结合数字摄影三维测量和CFD(计算流体动力学)技术既能直观地把握无人机全机的几何偏差,又能定量地评估无人机制造外形气动偏差。
(2)可为存在气动偏差的无人机制造外形提供指导意见,即飞控补偿或返厂修改;既提高效率,又避免因气动偏差造成的无人机飞行安全的风险。
附图说明
图1为本发明流程图;
图2是无人机制造外形与理论外形偏差;
图3是无人机制造外形与理论外形截面对比;
图4是无人机制造外形与理论外形气动数据对比。
具体实施方式
本发明以某无人机为例,提供一种评估无人机制造外形气动偏差的方法,此方法步骤如图1所示。
(1)将制造出的待测无人机水平地放置在地面上,采用精度小于0.1毫米的数字摄影三维测量仪扫描测量得到无人机的点云数据;在三维建模软件中,根据点云数据进行逆向建模,获得无人机制造外形的三维模型;以机头为参考点,将无人机的逆建模模型与理论模型的坐标系重合,对比两种模型的重合度,统计逆建模模型与理论模型几何偏差分布,如图2所示,由于影响无人机气动性能主要是翼面(机身的变化只是对阻力会有一定得影响),在此本文仅就无人机机翼,鸭翼及垂尾进行对比(但不限于此);并可截取无人机的截面形状进行对比,如图3所示。
(2)对步骤(1)中的无人机理论外形进行CFD网格划分,通过CFD计算可以得到六自由度分量气动力(升力,阻力、侧力、俯仰力矩、滚转力矩、偏航力矩),跟无人机理论外形的风洞试验数据进行对比,可以通过调整网格(如网格数量、局部网格加密及附面层网格尺寸等)及计算方法设置(如湍流模型,离散格式及边界条件等)得到与试验数据相吻合的气动数据的CFD计算方法。
当然上述两个步骤可以并行执行,没有一个严格的先后的顺序。
(3)将无人机逆建模三维模型导入步骤(2)中CFD网格替换无人机理论外形,将网格进行微调适配;导出无人机逆建模模型的划分网格,采用步骤(2)中所确定的CFD计算方法进行计算,得到无人机制造外形的气动数据。
(4)对比步骤(2)得到的无人机理论外形气动数据和步骤(3)中无人机制造外形的气动数据;图4为无人机一系列攻角的升力系数、俯仰力矩系数、升阻比对比(但不限于此);若气动数据偏离在预设的范围内,则该无人机制造外形满足要求;否则,认定该无人机制造外形存在气动偏差。
(5)将步骤(4)中存在气动偏差的CFD计算气动数据导入飞控仿真机进行飞行仿真,评估无人机起飞距离,爬升率,姿态配平,操稳特性等;若偏差的气动数据能通过飞控程序的补偿修正能满足飞行要求,则认定无人机制造外形可接受;否则,应依据照步骤(1)中的无人机几何偏差进行返厂修改;如果无人机升力系数偏小,需重点对比机翼制造偏差(如机翼安装角,扭转角,不同截面翼型的偏差)进行修形;若无人机纵向配平攻角及舵效存在偏差,需重点对比平尾(或鸭翼)安装角及距重心力臂的偏差进行修形。
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (4)

1.一种评估无人机制造外形气动偏差的方法,其特征在于步骤如下:
第一步,完成两个部分的内容:一是根据无人机的理论外形结合风洞试验数据,根据对无人机理论进行CFD计算得到的气动数据与风洞试验数据的吻合度,确定最终适合无人机理论外形的CFD计算方法;二是根据无人机的制造外形获得其点云数据,进而进行逆向建模得三维模型;
第二步,将无人机理论外形与上述三维模型进行偏差统计,得到二者的几何偏差数值分布;并对上述得到的三维模型利用上述确定的CFD计算方法进行计算,得到制造外形的气动数据;
第三步,根据制造外形和理论外形CFD计算的气动数据,对比无人机气动偏差;若气动数据偏离在预设的范围内,则该无人机制造外形满足要求;否则,认定该无人机制造外形存在气动偏差。
2.根据权利要求1所述的方法,其特征在于:第三步中当认定该无人机制造外形存在气动偏差时,将制造外形的CFD计算气动数据导入飞控仿真机进行飞行仿真。
3.根据权利要求2所述的方法,其特征在于:若偏差的气动数据通过飞控程序的补偿修正能满足飞行要求,则认定无人机制造外形可接受;否则,按照第二步中的无人机几何偏差进行返厂修改。
4.根据权利要求1所述的方法,其特征在于:采用数字摄影三维测量系统对无人机制造外形进行测量,获得的点云数据。
CN201710103746.9A 2017-02-24 2017-02-24 一种评估无人机制造外形气动偏差的方法 Active CN106864770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710103746.9A CN106864770B (zh) 2017-02-24 2017-02-24 一种评估无人机制造外形气动偏差的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710103746.9A CN106864770B (zh) 2017-02-24 2017-02-24 一种评估无人机制造外形气动偏差的方法

Publications (2)

Publication Number Publication Date
CN106864770A CN106864770A (zh) 2017-06-20
CN106864770B true CN106864770B (zh) 2019-07-12

Family

ID=59167800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710103746.9A Active CN106864770B (zh) 2017-02-24 2017-02-24 一种评估无人机制造外形气动偏差的方法

Country Status (1)

Country Link
CN (1) CN106864770B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107862128A (zh) * 2017-11-03 2018-03-30 张家港江苏科技大学产业技术研究院 一种三栖气垫船的机翼安装角度的获取方法
CN108629090B (zh) * 2018-04-18 2021-09-17 北京空间技术研制试验中心 一种用于设计返回舱气动外形的方法
CN108984862B (zh) * 2018-06-27 2021-05-07 中国直升机设计研究所 一种气动特性cfd计算结果修正方法
CN111846280B (zh) * 2020-07-24 2022-11-01 中国航空工业集团公司西安飞行自动控制研究所 一种飞控系统stp参数调节方法
CN116070551B (zh) * 2023-03-09 2023-06-23 中国空气动力研究与发展中心超高速空气动力研究所 基于权重型吻合度的风洞试验多源数据定量比较方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143223A (zh) * 2014-06-16 2014-11-12 珠海翔翼航空技术有限公司 一种飞行员飞行操纵品质自动评估系统及其方法
CN104787356A (zh) * 2015-04-02 2015-07-22 中航飞机股份有限公司西安飞机分公司 一种方向舵位置调整测量夹具和调整测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9334066B2 (en) * 2013-04-12 2016-05-10 The Boeing Company Apparatus for automated rastering of an end effector over an airfoil-shaped body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143223A (zh) * 2014-06-16 2014-11-12 珠海翔翼航空技术有限公司 一种飞行员飞行操纵品质自动评估系统及其方法
CN104787356A (zh) * 2015-04-02 2015-07-22 中航飞机股份有限公司西安飞机分公司 一种方向舵位置调整测量夹具和调整测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
低雷诺数翼型气动外形优化设计及其应用;陈学孔;《中国优秀硕士学位论文全文数据库》;20120715;全文

Also Published As

Publication number Publication date
CN106864770A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106864770B (zh) 一种评估无人机制造外形气动偏差的方法
CN104697462B (zh) 一种基于中轴线的航空叶片型面特征参数提取方法
CN106557837B (zh) 飞机连续下降进近轨迹的获取方法及装置
CN109710961B (zh) 一种基于gps数据的高空无人机升限数据处理方法
CN112362291B (zh) 一种飞翼布局飞机纵向气动力系数的雷诺数效应修正方法
CN108984862B (zh) 一种气动特性cfd计算结果修正方法
CN110641726B (zh) 一种快速确定飞机机翼安装角的方法
CN106650095A (zh) 基于风洞试验数据与cfd计算的无人机控制矩阵的修正方法
CN110633790B (zh) 基于卷积神经网络的飞机油箱剩余油量测量方法和系统
CN107367941B (zh) 高超声速飞行器攻角观测方法
CN105373647B (zh) 一种通过地面滑跑试验辨识气动焦点的方法
CN114912301B (zh) 一种低速风洞全机模型测力试验数据处理与修正系统
CN110155363A (zh) 基于cfd方法的弹性气动数据精确获取方法
CN110567669A (zh) 一种风洞试验的高速飞行器翼舵缝隙热流测量方法及装置
CN114880784B (zh) 一种基于飞机尾涡扫描特性的涡核位置估算方法
CN105760635A (zh) 一种基于鸮翼的仿生缝翼的设计方法
CN113468828B (zh) 一种飞机空中飞行颠簸强度指数计算方法
CN114065398B (zh) 一种大展弦比柔性飞行器飞行性能计算方法
CN111159817A (zh) 一种结冰风洞试验用的混合缩比机翼翼型设计方法
CN112699622A (zh) 一种固定翼无人机的紧密编队气动耦合效应建模方法
CN111274648B (zh) 一种民用飞机前缘襟翼的分布式飞行载荷设计方法
CN114004021B (zh) 用于飞行管理系统性能管理的巡航燃油流量计算方法
CN110104164B (zh) 一种用于跨声速机翼的前加载-吸气组合流动控制方法
CN109190232B (zh) 一种飞机平尾区动能损失计算评估方法
US9216821B1 (en) Methods and systems for helicopter rotor blade balancing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant