WO2021196388A1 - 对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法 - Google Patents

对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法 Download PDF

Info

Publication number
WO2021196388A1
WO2021196388A1 PCT/CN2020/092772 CN2020092772W WO2021196388A1 WO 2021196388 A1 WO2021196388 A1 WO 2021196388A1 CN 2020092772 W CN2020092772 W CN 2020092772W WO 2021196388 A1 WO2021196388 A1 WO 2021196388A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
micro
interface
interface generator
side wall
Prior art date
Application number
PCT/CN2020/092772
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021196388A1 publication Critical patent/WO2021196388A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the field of oxidation reaction for preparing terephthalic acid from p-xylene, in particular to an external micro-interface oxidation system and method for preparing terephthalic acid from p-xylene.
  • Terephthalic acid is an important chemical raw material. It is usually produced by the oxidation reaction of p-xylene and oxygen-containing gas. It mainly includes 4 steps, p-xylene (PX) ⁇ p-methylbenzaldehyde (TALD) ⁇ p- Methyl benzoic acid (p-TA) ⁇ p-carboxybenzaldehyde (4-CBA) ⁇ terephthalic acid (TA).
  • PX p-xylene
  • TALD p-methylbenzaldehyde
  • p-TA Methyl benzoic acid
  • 4-CBA p-carboxybenzaldehyde
  • TA terephthalic acid
  • the mass transfer area and mass transfer efficiency are improved by increasing the solubility of the gas and liquid phases.
  • the first two reaction steps should use acetic acid as the solvent, and it is not suitable to use high temperature and high pressure.
  • the prior art adopts a mixed reaction process with a large amount of Side reactions lead to large consumption of acetic acid, high energy consumption, high impurity content, and product quality cannot be guaranteed.
  • the first object of the present invention is to provide an external micro-interface oxidation system for preparing terephthalic acid from p-xylene.
  • the external micro-interface oxidation system is equipped with a micro-interface generator outside the reactor. After the micro-interface generator is set, the phase boundary area between air and liquid phase materials can be increased, so that air and liquid phase materials enter the reactor.
  • the mass transfer space Before fully crushing and mixing, the mass transfer space is fully satisfied, and the residence time of air in the liquid phase is increased, thereby greatly increasing the reaction speed, effectively controlling side reactions and increasing product yield, significantly reducing the energy consumption of the reaction process, and reducing the operation at the same time
  • the temperature and pressure improve the safety of the reaction, and the segmented process is adopted, which solves the contradiction that the acetic acid solvent cannot withstand high-temperature oxidation conditions and improves the reaction efficiency.
  • the second object of the present invention is to provide a method for preparing terephthalic acid from p-xylene using the above-mentioned external micro-interface oxidation system, which is beneficial to reduce energy consumption and achieve better reaction effects than existing processes.
  • the present invention provides an external micro-interface oxidation system for preparing terephthalic acid from p-xylene, comprising: a first reactor, a rectification tower, and a second reactor connected in sequence, and the side wall of the first reactor A first outlet is provided, the side wall of the second reactor is provided with a first inlet, the side wall of the rectification tower is provided with a material inlet, and the bottom of the rectification tower is provided with a material outlet;
  • the first outlet is connected with the material inlet of the rectification tower, and the first inlet is connected with the material outlet of the rectification tower;
  • a first micro-interface generator is provided outside the first reactor, and a second micro-interface generator is provided outside the second reactor;
  • a first air inlet is connected to the side wall of the first micro-interface generator, and a raw material inlet is connected to the bottom; a second air inlet is connected to the bottom of the second micro-interface generator;
  • the outer side of the first reactor is provided with a first circulation pipe, one end of the first circulation pipe is connected with the side wall of the first micro-interface generator, and the other end is connected with the side wall of the first reactor .
  • a second circulation pipe is provided on the outside of the second reactor, one end of the second circulation pipe is connected to the side wall of the second micro-interface generator, and the other end is connected to the side wall of the second reactor .
  • reaction steps for preparing terephthalic acid from p-xylene are as follows:
  • PX p-xylene
  • TALD p-tolualdehyde
  • p-TA p-toluic acid
  • 4-CBA p-carboxybenzaldehyde
  • TA terephthalic acid
  • the oxidation reaction process is very complicated and involves gas-liquid heat and mass transfer.
  • the reaction device in the prior art generally has low mass transfer efficiency, and the reaction mixture raw materials and air cannot be fully mixed, which affects the reaction efficiency and raw material conversion rate.
  • the external micro-interface oxidation system of the present invention is provided with a micro-interface generator outside the reactor, and after air and raw materials are passed into the micro-interface generator, the inside realizes enhanced mass transfer, dispersion and crushing, and the micro-bubbles are broken into the reactor and then enter the reactor. , So that the mass transfer space is fully satisfied, thereby reducing the air consumption, even if the temperature and pressure do not need to be too high, the high reaction efficiency of the reaction itself can be ensured.
  • the present invention adopts a segmented process, which solves the contradiction that the acetic acid solvent cannot withstand high-temperature oxidation conditions, and improves the reaction efficiency.
  • the setting mode of the first micro-interface generator and the second micro-interface generator is not limited, the setting position is not limited, and the number is not limited; the first micro-interface generator and the second micro-interface generator Both can be connected to the inlet of the reactor by welding or flange; in addition, more preferably, the first reactor and the second reactor can both be provided with multiple micro-interface generators in series or in parallel. Multiple micro-interface generators can be connected to the inlet of the reactor.
  • the number of the first micro-interface generator is at least one; the number of the second micro-interface generator is at least one.
  • micro-interface generator used in the present invention is embodied in the inventor’s previous patents, such as the patent publication No. 106215730A.
  • the core of the micro-interface generator is bubble breakage, and the bubble breaker
  • the principle is that the gas carried by the high-speed jets collide with each other to transfer energy and break the bubbles.
  • the structure of the micro-interface generator is disclosed in one of the embodiments in the above patent, which will not be repeated here.
  • connection of the micro-interface generator to the first and second reactors and other equipment including the connection structure and the connection position, it depends on the structure of the micro-interface generator, which is not limited.
  • reaction mechanism and control method of the micro-interface generator it has been disclosed in the previous patent CN107563051B of the present inventor, which will not be repeated here.
  • the first circulating pipeline passes a circulating stream (including the p-tolualdehyde obtained by the reaction, acetic acid, water, a small amount of unreacted p-xylene, intermediate products, etc.), the circulating stream and the reaction mixed raw materials and The air is passed into the first micro-interface generator for dispersion and crushing, and after crushing, micro bubbles are formed and then enter the first reactor for oxidation reaction.
  • a circulating stream including the p-tolualdehyde obtained by the reaction, acetic acid, water, a small amount of unreacted p-xylene, intermediate products, etc.
  • the second circulating pipeline passes a circulating stream (including p-carboxybenzaldehyde, water, intermediate products, etc. obtained by the reaction), and the circulating stream and air are passed into the second micro-interface generator for dispersion and crushing.
  • the microbubbles formed after crushing enter the second reactor and mix with the materials (including p-toluic acid, hydrobromic acid, etc.) from the first inlet to continue the secondary oxidation reaction.
  • first circulation pipeline and the second circulation pipeline are both provided with circulating pumps that provide power
  • the inner wall of the circulating pump casing is provided with a metal sensor probe
  • the outer wall of the pump casing on one side of the metal sensor probe is provided with a temperature sensor
  • the metal sensor probe and the temperature sensor are connected by a wire, which can monitor the temperature of the liquid material in the circulating pump at any time.
  • the first circulation pipe and the second circulation pipe are both provided with heat exchangers to control the temperature of the circulating materials, so that the inside of the first reactor and the second reactor are kept at a constant temperature, preferably a plate heat exchanger Compared with other heat exchangers, the plate heat exchanger has the characteristics of high heat exchange efficiency, low heat loss, high efficiency and energy saving, easy cleaning and convenient disassembly.
  • the first outlet of the first reactor is set in the upper middle part of the side wall, and through the overflow pipe, the intermediate product (the main component is p-toluic acid, but also includes acetic acid, water, a small amount of unreacted p-xylene, intermediate Products, etc.) enter the middle of the rectification tower, where they are purified and separated.
  • the intermediate product the main component is p-toluic acid, but also includes acetic acid, water, a small amount of unreacted p-xylene, intermediate Products, etc.
  • the first inlet of the second reactor is set in the middle and lower part of the side wall, and the materials produced at the bottom of the rectification tower (p-toluic acid and water), supplementary catalyst (hydrobromic acid) and separated from the acid water separator
  • the water enters the second reactor from the first inlet together to continue the reaction, the air enters from the second air inlet, the circulating stream enters from the side wall of the second micro-interface generator, and the air and the circulating stream enter the second micro-interface generator.
  • the interface generator is dispersed and crushed and then enters the second reactor, mixed with the liquid phase material from the first inlet, and then undergoes a secondary oxidation reaction.
  • the third exit is mined.
  • both the first reactor and the second reactor are provided with a wave-preventing grille above the inside.
  • the wave-preventing grille mainly functions to filter out foam and remove the mist entrained in the airflow to ensure mass transfer efficiency.
  • the anti-wave grille can be made of domestic and imported high-quality materials, such as: Q235, 304, 304L, 321, 316L, F46, NS-80, nickel wire, titanium wire and alloys.
  • first reactor and the second reactor are both provided with a filter screen above the inside of the reactor, and a large amount of impurities such as intermediate products are accumulated above the reactor.
  • the filter screen can filter these impurities and improve the purity of the product.
  • the filter mesh material can be metal or plastic, preferably stainless steel and nylon.
  • the top of the first reactor is also provided with a second outlet, and the second outlet is connected with an acid water separator.
  • Part of the acetic acid and water extracted from the top of the rectification tower are combined with the tail gas extracted from the top of the first reactor and then enters the acid-water separator.
  • the separated acetic acid is returned to the inside of the first reactor for recycling and separation.
  • Part of the discharged water is discharged, and part of it enters the second reactor for recycling.
  • the rectification tower used in the present invention mainly consists of a light component separation section and a heavy component separation section.
  • the tower section between the light component separation section and the heavy component separation section is provided with a material inlet.
  • the materials coming in from the material inlet of the rectification tower mainly include p-toluic acid, and also include acetic acid, water, and a small amount of unreacted p-toluene. Toluene, intermediate products, etc., p-toluic acid and a small amount of water are rectified and separated to the bottom of the tower through the heavy component separation section located below the material inlet.
  • Acetic acid and most of the water are separated toward the top of the tower after passing through the light component separation section. Distillation separation.
  • the acetic acid and steam drawn from the distillate outlet pass through the condenser, part of which is returned to the rectification tower from the top of the tower as reflux liquid, and the remaining part is mixed with the tail gas in the first reactor through the pipeline and then enters the acid water separator
  • the liquid phase materials such as p-toluic acid and a small amount of water are extracted from the bottom product
  • a part of it passes through the bottom reboiler and returns to the heavy component separation section as reflux to continue rectification, and the other part enters the second reaction through the first inlet
  • the reaction continues after the inside of the vessel.
  • the light component separation section and the heavy component separation section in the rectification tower can be composed of a number of trays and fillers, preferably a tray structure near the bottom of the tower, and a filler structure near the top of the tower, because the tray
  • the pressure drop itself is relatively large, and the pressure drop of the packing is relatively small.
  • the top of the rectification tower is provided with a top condenser
  • the bottom of the tower is provided with a bottom reboiler
  • the type of the bottom reboiler is a falling film reboiler, this type of reboiler
  • the boiler forms a film on the tube wall, has a high heat exchange efficiency, a short residence time, and is not easy to coke, which avoids the formation of by-products from the polymerization of the substance in the tower.
  • the present invention also provides a method for preparing terephthalic acid from p-xylene using the above-mentioned external micro-interface oxidation system, which is characterized in that it comprises the following steps:
  • the air and the mixed raw materials are dispersed and broken through the micro-interface generator external to the first reactor, and then enter the inside of the first reactor for oxidation reaction;
  • the liquid phase material obtained by the oxidation reaction enters the rectification tower for separation;
  • the liquid phase material separated from the rectification tower enters the second reactor;
  • the air is dispersed and broken through the micro-interface generator external to the second reactor, and then enters the inside of the second reactor, mixed with the liquid phase materials separated from the rectification tower, and undergoes secondary oxidation reaction to obtain terephthalic acid.
  • the temperature in the first reactor is 120-155°C, and the pressure is 0.20-0.66 MPa.
  • the temperature in the second reactor is 135-180°C, and the pressure is 0.56-0.82 MPa.
  • the present invention has the following beneficial effects:
  • the present invention can increase the phase boundary area between air and liquid phase materials by installing a micro-interface generator outside the reactor, so that the air and liquid phase materials are fully crushed and mixed before entering the reactor, and the mass transfer space is fully satisfied. , Increase the residence time of air in the liquid phase, thereby greatly increasing the reaction speed, effectively controlling side reactions and increasing the product yield, significantly reducing the energy consumption of the reaction process, while reducing the operating temperature and pressure, and improving the safety of the reaction .
  • the present invention solves the contradiction that acetic acid as a solvent cannot withstand high-temperature oxidation conditions in the process of preparing terephthalic acid from p-xylene through a segmented process and provides different reaction conditions for different reactions, and the product can be taken out in time.
  • This staged oxidation is beneficial to reduce investment and consumption, and achieve better reaction effects than existing processes.
  • Fig. 1 is a schematic structural diagram of an external micro-interface oxidation system for preparing terephthalic acid from p-xylene according to an embodiment of the present invention.
  • an external micro-interface oxidation system for preparing terephthalic acid from p-xylene includes a first reactor 10, a rectification tower 20, a second reactor 30, and a first micro-interface generator 40,
  • the second micro-interface generator 50 is used to disperse the broken air and/or the mixture into bubbles.
  • the side wall of the first reactor 10 is provided with a first outlet 11, and a second inlet 12 is provided at a lower position of the opposite side wall.
  • the second inlet 12 is connected with the side wall of the first micro-interface generator 40.
  • the other side wall of the interface generator 40 is connected to the first circulating pipe 14.
  • a circulating pump 90 is provided on the first circulating pipe 14, a second outlet 13 is provided on the top of the first reactor 10, and the second outlet 13 is
  • the main materials are acetic acid and water vapor.
  • the side wall of the rectification tower 20 is provided with a material inlet 21, a material outlet 22 is provided at the bottom, a first inlet 31 is provided on the lower side of the second reactor 30, and a third inlet 33 is provided on the other side.
  • the inlet 33 is connected to the side wall of the second micro-interface generator 50, and the other side wall of the second micro-interface generator 50 is connected to the second circulation pipe 34.
  • the second circulation pipe 34 is provided with a circulation pump 90.
  • the outlet 11 is connected with the material inlet 21, and the first inlet 31 is connected with the material outlet 22.
  • the air and the circulating stream in the second circulating pipe 34 are in the After the bubbles are dispersed and broken in the two micro-interface generators, they enter the second reactor 30, where they are mixed with the liquid phase material from the first inlet 31 to perform a secondary oxidation reaction.
  • the third outlet 32 extracts and collects.
  • the circulating streams in the first circulation pipe 14 and the second circulation pipe 34 respectively pass through the heat exchanger 100 and then enter the micro-interface generator, so that the inside of the reactor is kept at a constant temperature.
  • the rectification tower 20 mainly includes a light component separation section 24 and a heavy component separation section 25. Part of the separated light component acetic acid and water is returned to the rectification tower from the top of the tower through the condenser 26 as reflux, and the other part of the acetic acid and water is mixed with the tail gas discharged from the second outlet 13 through the distillation tower distillate outlet 23 Then it enters the acid water separator 60, the separated water enters the second reactor 30, and the acetic acid returns to the first reactor 10 for recycling.
  • a part of the heavy component products (p-toluic acid, water, etc.) at the bottom material outlet 22 of the rectification tower passes through the bottom reboiler 110 and returns to the heavy component separation section 25 as reflux to continue the rectification, and the other part enters through the first inlet 31
  • the secondary oxidation reaction is carried out in the second reactor 30.
  • the reaction product terephthalic acid is extracted from the third outlet 32 on the side wall above the second reactor 30.
  • the top of the second reactor 30 is also provided with an exhaust gas outlet 35.
  • the exhaust gas enters the subsequent treatment stage from the outlet and is discharged to the atmosphere after reaching the standard. .
  • the first reactor 10 is provided with a first residual liquid outlet 15
  • the second reactor 30 is provided with a second residual liquid outlet 36.
  • the collected residual liquid enters the subsequent recycling process to reduce emissions and reduce polluted environment.
  • the temperature in the first reactor 10 is 120-155° C., and the pressure is 0.20-0.66 MPa; the temperature in the second reactor 30 is 135-180° C., and the pressure is 0.56-0.82 MPa.
  • the number of micro-interface generators is not limited.
  • additional micro-interface generators can also be added, especially the installation position of the micro-interface generator is not limited.
  • the device can also be built-in, and when it is built-in, it can also be installed on the side wall of the kettle in a relatively set manner to realize the hedge of the micro-bubbles coming out of the outlet of the micro-interface generator.
  • the first reactor 10 and the second reactor 30 are both provided with a wave grid 70 above the liquid level to filter out the mist entrained in the airflow and ensure the mass transfer efficiency.
  • the first reactor 10 and the second reactor 30 are both provided with a filter screen 80 above the liquid level to separate air and some gaseous substances.
  • the mixture of p-xylene, acetic acid and catalyst enters the first micro-interface generator 40 from the raw material inlet 42, and air enters the first micro-interface generator 40 from the first air inlet 41, and the first reaction
  • the circulating stream of the reactor 10 enters the first micro-interface generator 40 through the first circulating pipe 14, and the above three gas-liquid materials are dispersed and broken into micro-bubbles and then enter the first reactor 10 for oxidation reaction.
  • the product obtained after full reaction enters the rectification tower 20 through the first outlet 11, in which acetic acid and After passing through the light component separation section 24, the water is rectified and separated toward the top of the tower.
  • a part of the acetic acid and water vapor drawn from the distillate outlet 23 is refluxed to the rectification tower 20 through the condenser 26, and the other part of the acetic acid and water
  • the tail gas discharged through the pipeline and the second outlet 13 is mixed and then enters the acid water separator 60.
  • the water separated by the acid water separator 60 enters the second reactor 30, and the acetic acid is returned to the first reactor 10 for recycling.
  • Part of the heavy component products (p-toluic acid and water, etc.) produced at the bottom material outlet 22 of the distillation tower 20 are reboiled in the bottom reboiler 110 and then returned to the rectification tower 20, and the other part enters the rectification tower 20 through the first inlet 31 Inside the second reactor 30.
  • the circulating stream of the second reactor 30 enters the second micro-interface generator 50 through the second circulation pipe 34, and the air enters the second micro-interface generator 50 through the second air inlet 51, and both are in the second micro-interface generator 50.
  • the second reactor 30 After being dispersed and broken into micro-bubbles in 50, it enters the second reactor 30, and undergoes secondary oxidation reaction with the liquid phase material (p-toluic acid and water, etc.) from the first inlet 31 to produce terephthalic acid.
  • the solution is produced through the third outlet 32 and enters the post-treatment refining and separation section.
  • the waste gas is extracted from the waste gas outlet 35 of the second reactor 30 and then undergoes a subsequent treatment stage, and is discharged to the atmosphere after reaching the standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种对二甲苯制备对苯二甲酸的外置微界面氧化系统。该氧化系统包括:依次连接的第一反应器、精馏塔、第二反应器,第一反应器的侧壁设置有第一出口,第二反应器的侧壁设置有第一进口,精馏塔的侧壁设置有物料进口,精馏塔底部设置有物料出口;第一出口与精馏塔的物料进口连接,第一进口与精馏塔的物料出口连接;第一反应器的外部设置有第一微界面发生器,第二反应器的外部设置有第二微界面发生器;第一微界面发生器的侧壁连接有第一空气进口,底部连接有原料进口,所述第二微界面发生器的底部连接有第二空气进口。通过在反应器外部放置微界面发生器和采用分段式工艺,解决了传统工艺中反应效率低下的问题,给企业节约了成本。

Description

对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法 技术领域
本发明涉及对二甲苯制备对苯二甲酸的氧化反应领域,具体而言,涉及一种对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法。
背景技术
对苯二甲酸是一种重要的化工原料,通常由对二甲苯与含氧气体通过氧化反应制得,主要包括4个步骤,对二甲苯(PX)→对甲基苯甲醛(TALD)→对甲基苯甲酸(p-TA)→对羧基苯甲醛(4-CBA)→对苯二甲酸(TA),其中4个步骤反应过程非常复杂,涉及到气液的传热传质,现有技术中的反应装置普遍传质效率较低,反应混合原料和空气无法得到充分混合,相界面积有限,导致原料转化率低下,降低了对苯二甲酸的产率,因此工艺上不得不采用高温高压操作,通过增加气液相的溶解度来提高传质面积及传质效率,然而前两个反应步骤要以醋酸为溶剂,不宜采用高温高压,现有技术采用混合的反应工艺,同时伴随着大量的副反应,导致醋酸消耗量大,能耗高,杂质含量高,产品质量无法得到保证。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种对二甲苯制备对苯二甲酸的外置微界面氧化系统。该外置微界面氧化系统在反应器外部设置微界面发生器,通过设置了微界面发生器后,可以增加空气和液相物料之间的相界面积,使得空气和液相物料在进入反应器之前充分破碎混合,传质空间充分满足,增加了空气在液相中的停留时间,从而大幅提高反应速度、有效控制副反应和提高产品收率, 显著降低反应过程的能耗,同时降低了操作温度以及压力,提高了反应的安全性,而且采用了分段式工艺,解决了醋酸溶剂不能承受高温氧化条件的矛盾,提高了反应效率。
本发明的第二目的在于提供一种采用上述外置微界面氧化系统的对二甲苯制备对苯二甲酸的方法,该方法有利于减少能耗,达到比现有工艺更佳的反应效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种对二甲苯制备对苯二甲酸的外置微界面氧化系统,包括:依次连接的第一反应器、精馏塔、第二反应器,所述第一反应器的侧壁设置有第一出口,所述第二反应器的侧壁设置有第一进口,所述精馏塔的侧壁设置有物料进口,所述精馏塔底部设置有物料出口;
所述第一出口与所述精馏塔的物料进口连接,所述第一进口与所述精馏塔的物料出口连接;
所述第一反应器的外部设置有第一微界面发生器,所述第二反应器的外部设置有第二微界面发生器;
所述第一微界面发生器的侧壁连接有第一空气进口,底部连接有原料进口,;所述第二微界面发生器的底部连接有第二空气进口;
所述第一反应器的外侧设置有第一循环管道,所述第一循环管道的一端与所述第一微界面发生器的侧壁连接,另一端与所述第一反应器的侧壁连接。
所述第二反应器的外侧设置有第二循环管道,所述第二循环管道的一端与所述第二微界面发生器的侧壁连接,另一端与所述第二反应器的侧壁连接。
现有技术中,对二甲苯制备对苯二甲酸的反应步骤如下:
即对二甲苯(PX)→对甲基苯甲醛(TALD)→对甲基苯甲酸(p-TA)→对羧基苯甲醛(4-CBA)→对苯二甲酸(TA)
Figure PCTCN2020092772-appb-000001
其中氧化反应过程非常复杂,涉及到气液的传热传质,现有技术中的反应装置普遍传质效率较低,反应混合原料和空气无法得到充分混合,影响了反应效率和原料转化率。本发明的外置微界面氧化系统通过在反应器外部设置微界面发生器后,空气和原料通入微界面发生器后,内部实现强化传质、分散破碎,破碎形成了微气泡后进入反应器内,使得传质空间充分满足,从而降低了空气的耗量,即使温度和压力不需要太高的条件下,也可以保证反应本身的高反应效率。而且本发明采用分段式工艺,解决了醋酸溶剂不能承受高温氧化条件的矛盾,提高了反应效率。
进一步的,所述第一微界面发生器和第二微界面发生器的设置方式不限、设置位置不限,数量不限;所述第一微界面发生器与所述第二微界面发生器均可通过焊接或者法兰形式与反应器的进口连接;此外,更优选的,所述第一反应器和第二反应器均可通过串联或者并联的方式设置多个微界面发生器,所述多个微界面发生器均可连接反应器的进口。
进一步的,所述第一微界面发生器的设置数量至少为1个;所述第二微界面发生器的设置数量至少为1个。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中体现,如公开号106215730A的专利,微界面发生器其核心在于气泡破碎,气泡破碎器的原理是高速射流所携带的气体相互撞击进行能量传递,使气泡破碎,关于微界面发生器的结构在上述专利中公开其中一实施例,此不再赘述。关于微界面发生器与第一、第二反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。关于微界面发生器的反应机理及控制方法,在本发明人在先专利CN107563051B中已经公开,此不再赘述。
进一步的,所述第一循环管道通过循环物流(包括反应得到的对甲基苯甲醛、醋酸、水、少量未反应完全的对二甲苯、中间产物等),所述循环物流和反应混合原料和空气一起通入所述第一微界面发生器中进行分散破碎,破碎后形成了微气泡后进入所述第一反应器内部进行氧化反应。
进一步的,所述第二循环管道通过循环物流(包括反应得到的对羧基苯甲醛、水、中间产物等),所述循环物流和空气一起通入所述第二微界面发生器中进行分散破碎,破碎后形成了的微气泡后进入所述第二反应器内部,与所述第一进口进来的物料(包括对甲基苯甲酸,氢溴酸等)混合后继续二次氧化反应。
此外,所述第一循环管道和第二循环管道均设置有提供动力的循环泵,所述循环泵泵壳内壁设有金属传感探头,金属传感探头一侧的泵壳外壁设有温度传感器,金属传感探头和温度传感器通过导线连接,可以随时监控循环泵中通液相物料的温度。更优选的,所述第一循环管道和第二循环管道均设置有换热器,用来控制循环物料的温度,从而使得第一反应器和第二反应器内部保持恒温,优选板式换热器,相比其他换热器,板式换热器具有换热效率高,热损失小,高效节能,容易清洗拆装方便等特点。
第一反应器的第一出口设置在侧壁中上部,通过溢流管道,产出中间产物(主要成分为对甲基苯甲酸,还包括醋酸、水、少量未反应完全的对二甲苯、中间产物等)进入精馏塔的中部,在精馏塔中进行纯化分离。
第二反应器的第一进口设置在侧壁中下部,精馏塔塔底产出的物料(对甲基苯甲酸和水)、补充的催化剂(氢溴酸)以及从酸水分离器中分离的水一起从第一进口进入第二反应器中继续反应,空气从第二空气进口进入,循环物流从第二微界面发生器的侧壁进入,所述空气和循环物流在所述第二微界面发生器内进行分散破碎后进入第二反应器中,与第一进口进来的液相物料混合后进行二次氧化反应,生成的产物对苯二甲酸溶液从第二反应器的侧壁上部的第三出口采出。
更进一步的,所述第一反应器和第二反应器内部上方均设置有防浪格栅,防浪格栅主要起滤除泡沫的作用,除去气流中夹带的雾沫,以保证传质效率,降低有价值的物料损失,所述防浪格栅可采用国产进口优质材质,如:Q235、304、304L、321、316L、F46、NS-80、镍丝、钛丝及合金等材质。
进一步的,所述第一反应器和第二反应器内部上方均设置有除滤网,反应器的上方积聚了大量中间产物等杂质,设置除滤网可过滤这些杂质,提高生成产物的纯度,所述除滤网材料可采用金属或者塑料,优选不锈钢和尼龙材质。
进一步的,所述第一反应器顶部还设置有第二出口,所述第二出口连接有酸水分离器。精馏塔塔顶采出的部分醋酸和水,与第一反应器顶部采出的尾气共同汇合后进入到酸水分离器中,分离出的醋酸重新回到第一反应器内部循环使用,分离出的水一部分排出,一部分进入第二反应器内部循环使用。
进一步的,本发明所采用的精馏塔,主要有轻组分分离段和重组分分离段组成,所述轻组分分离段和重组分分离段之间的塔节上设置有物料进口,用于将第一反应器中的氧化产物通入所述精馏塔中,从精馏塔的物料进口进来的物料主要有对甲基苯甲酸,还包括醋酸、水、少量未反应完全的对二甲苯、中间产物等,对甲基苯甲酸和少量水经过位于物料进口下方的重组分分离段被精馏分离到塔底,醋酸和大部分水经过轻组分分离段后朝着塔顶方向被精馏分离,从馏出物出口引出的醋酸和水蒸汽经过冷凝器,一部分作为回流液从塔顶返回精馏塔,其余部分通过管道与第一反应器中的尾气混合后进入酸水分离器,塔底产物对甲基苯甲酸和少量水等液相物料采出后,一部分经过塔釜再沸器后作为回流液返回重组分分离段继续精馏,另一部分经过第一进口进入第二反应器内后继续进行反应。
精馏塔中的轻组分分离段和重组分分离段可由若干塔板、填料任意组合而成,优选地靠近塔釜位置采用塔板的结构,靠近塔顶位置采用填料的结构,因为塔板本身压降比较大,填料压降比较小。
进一步的,所述精馏塔的塔顶设置有塔顶冷凝器,塔釜设置有塔釜再沸器, 所述塔釜再沸器的类型为降膜式再沸器,这种类型的再沸器与普通的再沸器类型相比,在管壁上成膜,换热效率很高,滞留时间短,不容易结焦,避免了塔釜的物质发生聚合有副产物生成。
除此之外,本发明还提供了一种采用上述外置微界面氧化系统的对二甲苯制备对苯二甲酸的方法,其特征在于,包括如下步骤:
空气和混合原料通过第一反应器外置的微界面发生器进行分散破碎后进入第一反应器内部进行氧化反应;
通过氧化反应得到的液相物料进入到精馏塔中进行分离;
精馏塔分离出的液相物料进入第二反应器中;
空气通过第二反应器外置的微界面发生器进行分散破碎后进入第二反应器内部,与精馏塔分离出的液相物料混合后进行二次氧化反应得到对苯二甲酸。
进一步的,所述第一反应器内温度为120-155℃,压强为0.20-0.66MPa。
进一步的,所述第二反应器内温度为135-180℃,压强为0.56-0.82MPa。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过在反应器外部设置微界面发生器,可以增加空气和液相物料之间的相界面积,使得空气和液相物料在进入反应器之前充分破碎混合,传质空间充分满足,增加了空气在液相中的停留时间,从而大幅提高反应速度、有效控制副反应和提高产品收率,显著降低反应过程的能耗,同时降低了操作温度以及压力,提高了反应的安全性。
(2)本发明通过分段式工艺,针对不同反应给予不同的反应条件,解决了对二甲苯制备对苯二甲酸过程中,醋酸作为溶剂不能承受高温氧化条件的矛盾,并且能及时取出产物,这种分段氧化有利于减少投资和消耗,达到比现有工艺更佳的反应效果。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的对二甲苯制备对苯二甲酸的外置微界面氧化系统的结构示意图。
附图说明:
10-第一反应器;                        11-第一出口;
12-第二进口;                          13-第二出口;
14-第一循环管道;                      15-第一残液出口;
20-精馏塔;                            21-物料进口;
22-物料出口;                          23-馏出物出口;
24-轻组分分离段;                      25-重组分分离段;
26-冷凝器;
30-第二反应器;                        31-第一进口;
32-第三出口;                          33-第三进口;
34-第二循环管道;                      35-废气出口;
36-第二残液出口;
40-第一微界面发生器;                  41-第一空气进口;
42-原料进口;
50-第二微界面发生器;                  51-第二空气进口;
60-酸水分离器;                        70-防浪格栅;
80-除滤网;                            90-循环泵;
100-换热器;                           110-塔釜再沸器。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,对二甲苯制备对苯二甲酸的外置微界面氧化系统,其包括了第一反应器10,精馏塔20,第二反应器30,第一微界面发生器40,第二微 界面发生器50,微界面发生器用于分散破碎空气和/或混合物成气泡。
其中,第一反应器10的侧壁设置有第一出口11,相对侧壁靠下位置设置有第二进口12,第二进口12与第一微界面发生器40的侧壁连接,第一微界面发生器40的另一侧壁连接第一循环管道14,所述第一循环管道14上设置有循环泵90,第一反应器10的顶部设置有第二出口13,第二出口13出来的物料主要有醋酸和水蒸气。
精馏塔20的侧壁设置有物料进口21,底部设置有物料出口22,第二反应器30的侧壁靠下位置设置有第一进口31,另一侧设置有第三进口33,第三进口33与第二微界面发生器50的侧壁连接,第二微界面发生器50的另一侧壁连接第二循环管道34,所述第二循环管道34上设置有循环泵90,第一出口11与物料进口21连接,第一进口31与物料出口22连接,第一循环管道14中的循环物流和混合原料和空气在第一微界面发生器40中分散破碎气泡后,进入第一反应器10内进行一次氧化反应,氧化反应后的产物(主要成分为对甲基苯甲酸、还包括醋酸、水、少量未反应完全的对二甲苯、中间产物等)通过第一出口11进入精馏塔20分离,塔底分离出的产物(对甲基苯甲酸和水等)通过物料出口22从第一进口31进入第二反应器30中,空气和第二循环管道34内的循环物流在第二微界面发生器中分散破碎气泡后进入第二反应器30中,和第一进口31进来的液相物料混合进行二次氧化反应,反应产物对苯二甲酸从第二反应器30侧壁的第三出口32采出收集。上述第一循环管道14和第二循环管道34中的循环物流分别经过换热器100热交换后进入微界面发生器中,使得反应器内一直保持恒温。
此外,第一反应器10的尾气通过顶部第二出口13排出,产物通过第一出口11进入精馏塔20内进行分离,精馏塔20主要有轻组分分离段24和重组分分离段25组成,分离后的轻组分醋酸和水一部分通过冷凝器26作为回流液从塔顶返回精馏塔,另一部分醋酸和水通过精馏塔馏出物出口23同第二出口13排出的尾气混合后进入酸水分离器60中,分离出的水进入第二反应器30中, 醋酸回到第一反应器10内循环使用。精馏塔底部物料出口22的重组分产物(对甲基苯甲酸和水等)一部分经过塔釜再沸器110作为回流液返回重组分分离段25继续精馏,另一部分通过第一进口31进入第二反应器30内进行二次氧化反应。
反应产物对苯二甲酸从第二反应器30上方侧壁的第三出口32采出,第二反应器30的顶部还设置有废气出口35,废气从出口进入后续处理阶段,达标后排至大气。
在上述实施例中,第一反应器10设置有第一残液出口15,第二反应器30内设置有第二残液出口36,所收集残液进入后续再回收利用过程,减少排放,减轻污染环境。
在上述实施例中,第一反应器10内温度为120-155℃,压强为0.20-0.66MPa;第二反应器30内的温度为135-180℃,压强为0.56-0.82MPa。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。此外,精馏塔20的塔高、塔径、塔板个数以及塔段分割方式,都可以根据实际需要进行调整。
在上述实施例中,微界面发生器并不局限于个数,为了增加分散、传质效果,也可以多增设额外的微界面发生器,尤其是微界面发生器的安装位置不限,可外置也可内置,内置时还可以安装在釜内的侧壁上相对设置的方式,以实现从微界面发生器的出口出来的微气泡发生对冲。
在上述实施例中,第一反应器10和第二反应器30的液面上方均设置防浪格栅70,以滤除气流中夹带的雾沫,保证传质效率。
在上述实施例中,第一反应器10和第二反应器30的液面上方均设置除滤网80,以分离出空气和部分气体物质。
以下简要说明本发明对二甲苯制备对苯二甲酸的外置微界面氧化系统的工作过程和原理。
对二甲苯、醋酸和催化剂(醋酸钴,醋酸锰)的混合物从原料进口42进 入第一微界面发生器40内,空气从第一空气进口41进入第一微界面发生器40内,第一反应器10的循环物流通过第一循环管道14进入第一微界面发生器40内,上述三种气液相物料进行分散破碎成微气泡后进入第一反应器10内进行氧化反应。
充分反应后得到的产物(主要成分为对甲基苯甲酸,还包括醋酸、水、少量未反应完全的对二甲苯、中间产物等),通过第一出口11进入精馏塔20,其中醋酸和水经过轻组分分离段24后朝着塔顶方向被精馏分离,从馏出物出口23引出的一部分醋酸和水蒸气经过冷凝器26重新回流至精馏塔20内,另一部分醋酸和水通过管道与第二出口13排出的尾气混合后进入酸水分离器60中,酸水分离器60分离出的水进入第二反应器30中,醋酸回到第一反应器10内循环使用,精馏塔20的底部物料出口22产出的重组分产物(对甲基苯甲酸和水等)一部分经过塔釜再沸器110再沸处理后返回精馏塔20,另一部分通过第一进口31进入第二反应器30内。
第二反应器30的循环物流通过第二循环管道34进入第二微界面发生器50内,空气通过第二空气进口51进入第二微界面发生器50内,两者在第二微界面发生器50内进行分散破碎成微气泡后进入第二反应器30内,与上述第一进口31进来的液相物料(对甲基苯甲酸和水等)进行二次氧化反应,生成物对苯二甲酸溶液通过第三出口32产出,进入后处理精制分离工段,废气从第二反应器30的废气出口35采出后进行后续处理阶段,达标后排至大气。
以上各个工艺步骤循环往复,以使整个处理系统平稳的运行。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种对二甲苯制备对苯二甲酸的外置微界面氧化系统,其特征在于,包括:依次连接的第一反应器、精馏塔、第二反应器,所述第一反应器的侧壁设置有第一出口,所述第二反应器的侧壁设置有第一进口,所述精馏塔的侧壁设置有物料进口,所述精馏塔底部设置有物料出口;
    所述第一出口与所述精馏塔的物料进口连接,所述第一进口与所述精馏塔的物料出口连接;
    所述第一反应器的外部设置有第一微界面发生器,所述第二反应器的外部设置有第二微界面发生器;
    所述第一微界面发生器的侧壁连接有第一空气进口,底部连接有原料进口,所述第二微界面发生器的底部连接有第二空气进口;
    所述第一反应器的外侧设置有第一循环管道,所述第一循环管道的一端与所述第一微界面发生器的侧壁连接,另一端与所述第一反应器的侧壁连接。
    所述第二反应器的外侧设置有第二循环管道,所述第二循环管道的一端与所述第二微界面发生器的侧壁连接,另一端与所述第二反应器的侧壁连接。
  2. 根据权利要求1所述的外置微界面氧化系统,其特征在于,所述第一微界面发生器的设置数量至少为一个。
  3. 根据权利要求1所述的外置微界面氧化系统,其特征在于,所述第二微界面发生器的设置数量至少为一个。
  4. 根据权利要求1所述的外置微界面氧化系统,其特征在于,所述精馏塔包括轻组分分离段和重组分分离段,所述物料进口设置在所述轻组分分离段和重组分分离段中间的塔节上。
  5. 根据权利要求1-4任一项所述的外置微界面氧化系统,其特征在于,所述第一反应器和第二反应器内部上方均设置有防浪格栅。
  6. 根据权利要求1-4任一项所述的外置微界面氧化系统,其特征在于,所述第一反应器和第二反应器内部上方均设置有除滤网。
  7. 根据权利要求1-4任一项所述的外置微界面氧化系统,其特征在于,所述第一反应器顶部还设置有第二出口,所述第二出口连接有酸水分离器。
  8. 采用权利要求1-7任一项所述的外置微界面氧化系统的对二甲苯制备对苯二甲酸的方法,其特征在于,包括如下步骤:
    空气和混合原料通过第一反应器外置的微界面发生器进行分散破碎后进入第一反应器内部进行氧化反应;
    通过氧化反应得到的液相物料进入到精馏塔中进行分离;
    精馏塔分离出的液相物料进入第二反应器中;
    空气通过第二反应器外置的微界面发生器进行分散破碎后进入第二反应器内部,与精馏塔分离出的液相物料混合后进行二次氧化反应得到对苯二甲酸。
  9. 根据权利要求8所述的方法,其特征在于,所述第一反应器内温度为120-155℃,压强为0.20-0.66MPa。
  10. 根据权利要求8所述的方法,其特征在于,所述第二反应器内温度为135-180℃,压强为0.56-0.82MPa。
PCT/CN2020/092772 2020-03-31 2020-05-28 对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法 WO2021196388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010243410.4 2020-03-31
CN202010243410.4A CN111569788B (zh) 2020-03-31 2020-03-31 对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法

Publications (1)

Publication Number Publication Date
WO2021196388A1 true WO2021196388A1 (zh) 2021-10-07

Family

ID=72114889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092772 WO2021196388A1 (zh) 2020-03-31 2020-05-28 对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法

Country Status (2)

Country Link
CN (1) CN111569788B (zh)
WO (1) WO2021196388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669264A (zh) * 2022-04-08 2022-06-28 长沙鑫本药业有限公司 一种采用外环流氨化生产甲酸铵的装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300919A (zh) * 2020-10-21 2021-02-02 南京延长反应技术研究院有限公司 一种微界面发酵系统及其发酵方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531588A (zh) * 2008-03-13 2009-09-16 周向进 一种新的精对苯二甲酸的制造方法
CN109865493A (zh) * 2019-01-31 2019-06-11 浙江大学 一种用于对二甲苯氧化的双鼓泡塔反应装置及反应工艺
CN110002988A (zh) * 2019-03-04 2019-07-12 杭州多向流化学科技有限公司 一种用于生产精对苯二甲酸的两级升温式氧化工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151738A (en) * 1977-11-03 1979-05-01 General Electric Company Toxic gas monitor having automatic calibration
US7196215B2 (en) * 2001-06-04 2007-03-27 Eastman Chemical Company Process for the production of purified terephthalic acid
US7572936B2 (en) * 2004-09-02 2009-08-11 Eastman Chemical Company Optimized liquid-phase oxidation
MX336766B (es) * 2004-09-02 2016-01-29 Grupo Petrotemex Sa De Cv Produccion optimizada de acidos dicarboxilicos aromaticos.
CN105348067B (zh) * 2015-09-29 2017-12-12 江西科苑生物药业有限公司 一种联产甲基苯甲酸和苯二甲酸的方法
CN106268544B (zh) * 2016-08-05 2020-03-24 南京大学 塔式超细气泡反应器
CN209508088U (zh) * 2018-11-23 2019-10-18 南京延长反应技术研究院有限公司 一种甲基芳烃氧化反应系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531588A (zh) * 2008-03-13 2009-09-16 周向进 一种新的精对苯二甲酸的制造方法
CN109865493A (zh) * 2019-01-31 2019-06-11 浙江大学 一种用于对二甲苯氧化的双鼓泡塔反应装置及反应工艺
CN110002988A (zh) * 2019-03-04 2019-07-12 杭州多向流化学科技有限公司 一种用于生产精对苯二甲酸的两级升温式氧化工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ZHIBING; TIAN HONGZHOU; ZHANG FENG; ZHOU ZHENG: "Overview of Microinterface Intensification in Multiphase Reaction Systems", CIESC JOURNAL, HUAXUE GONGYE CHUBANSHE, CN, vol. 69, no. 1, 6 November 2017 (2017-11-06), CN, pages 44 - 49, XP009526633, ISSN: 0438-1157, DOI: 10.11949/j.issn.0438-1157.20171400 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669264A (zh) * 2022-04-08 2022-06-28 长沙鑫本药业有限公司 一种采用外环流氨化生产甲酸铵的装置及方法
CN114669264B (zh) * 2022-04-08 2023-09-05 长沙鑫本药业有限公司 一种采用外环流氨化生产甲酸铵的装置及方法

Also Published As

Publication number Publication date
CN111569788A (zh) 2020-08-25
CN111569788B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2021196386A1 (zh) 对二甲苯制备对苯二甲酸的内置微界面氧化系统及方法
WO2021196388A1 (zh) 对二甲苯制备对苯二甲酸的外置微界面氧化系统及方法
US20220410104A1 (en) Gas-liquid bubbling bed reactor, reaction system, and process for synthesizing carbonate ester
AU2020267320B2 (en) Built-in micro interfacial enhanced reaction system and process for pta production with px
WO2021208199A1 (zh) 一种氨肟化兼回收叔丁醇的反应系统及方法
CN105749575B (zh) 多晶硅生产中的尾气吸收液和冷凝液回收的分隔壁精馏塔、方法、处理系统
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
CN102276485A (zh) 一种丙烯酸二甲氨基乙酯的生产方法
CN111646890A (zh) 反应器与精馏塔热耦合的甲醇羰基化制醋酸的工艺方法
CN216419325U (zh) 一种氯代邻二甲苯连续氧化装置、系统及鼓泡反应器
CN215162250U (zh) 一种环己烯制备甲基环戊烷的装置
CN213506669U (zh) 对二甲苯制备对苯二甲酸的外置微界面氧化系统
WO2021208201A1 (zh) 一种外置微界面氨肟化反应系统及方法
CN102441288B (zh) 反应精馏无动力循环工艺及装置
CN1166616C (zh) 粗品乳酸纯化方法及设备
CN111320141A (zh) 一种气相循环法合成高纯度氯磺酸生产工艺
CN220803160U (zh) 一种4-氯丁酸甲酯的生产装置
CN219186901U (zh) 一种草酸酯的合成装置
CN212347756U (zh) 一种甲基苯基碳酸酯反应精馏塔装置
CN202237323U (zh) 反应精馏无动力循环装置
CN219941788U (zh) 一种稀硫酸浓缩提纯装置
CN104383705B (zh) 一种列管式上下循环加热甲酯精馏系统及其处理工艺
CN213822569U (zh) 一种中药饮片生产用浓缩设备
CN115106043B (zh) 一种用于连续反应制备二氟乙烷的装置、系统与方法
CN210522516U (zh) 一种合成催化剂的专用设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928797

Country of ref document: EP

Kind code of ref document: A1