WO2021193321A1 - 作業機械および作業機械の制御方法 - Google Patents

作業機械および作業機械の制御方法 Download PDF

Info

Publication number
WO2021193321A1
WO2021193321A1 PCT/JP2021/010968 JP2021010968W WO2021193321A1 WO 2021193321 A1 WO2021193321 A1 WO 2021193321A1 JP 2021010968 W JP2021010968 W JP 2021010968W WO 2021193321 A1 WO2021193321 A1 WO 2021193321A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
attachment
bucket
respect
control
Prior art date
Application number
PCT/JP2021/010968
Other languages
English (en)
French (fr)
Inventor
翔太 山脇
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to EP21776835.7A priority Critical patent/EP4101990A4/en
Priority to CN202180016292.6A priority patent/CN115151697A/zh
Priority to US17/802,996 priority patent/US20230129066A1/en
Publication of WO2021193321A1 publication Critical patent/WO2021193321A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0841Articulated frame, i.e. having at least one pivot point between two travelling gear units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/432Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/432Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude
    • E02F3/433Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude horizontal, e.g. self-levelling

Definitions

  • the present invention relates to a work machine and a method for controlling the work machine.
  • the wheel loader is responsible for the dump operation, the bucket is lifted by the lift of the boom, and the earth and sand are loaded by the rotation of the bucket.
  • wheel loaders can mount a fork instead of a bucket in order to perform forklift work, but even in that case, parallel link control is performed so as to maintain the angle of the fork (for example, Patent Document). See 1.).
  • Patent Document 1 since the work machine of Patent Document 1 performs parallel link control based on the vehicle body, the angle of the bucket may not be maintained when the boom is raised when the vehicle body is placed on a sloped ground.
  • the work machine includes a main body, a work machine, an attachment tilt angle detection unit, and a control unit.
  • the working machine operates with respect to the main body and has an attachment.
  • the attachment tilt angle detection unit detects the tilt angle of the attachment with respect to the direction of gravity.
  • the control unit controls the inclination angle of the attachment with respect to the direction of gravity based on the detection value of the attachment inclination angle detection unit.
  • the control method of the work machine according to the second aspect is a control method of a work machine including a main body, a work machine that operates with respect to the main body and has an attachment, and includes an attachment inclination angle detection step and a control step. , Equipped with.
  • the attachment tilt angle detection step detects the tilt angle of the attachment with respect to the direction of gravity.
  • the control step controls the tilt angle of the attachment with respect to the direction of gravity based on the detected value in the attachment tilt angle detection step. (The invention's effect)
  • the side view which shows the working machine of the wheel loader of FIG. FIG. 5 is a side view showing control of a working machine in a horizontal state of the wheel loader of FIG. It is a side view which shows the control of the work machine in the tilted state of the wheel loader of FIG.
  • FIG. 1 is a schematic view showing the configuration of the wheel loader 1 of the present embodiment.
  • the wheel loader 1 (an example of a work machine) of the present embodiment includes a vehicle body 2 (an example of a main body) and a work machine 3.
  • the vehicle body 2 includes a vehicle body frame 10, a pair of front tires 4, a cab 5, an engine room 6, a pair of rear tires 7, a pair of steering cylinders 8, a control unit 9 (see FIG. 6), and a ground bucket. It has an angle detection unit 20 (an example of an attachment tilt angle detection unit) (see FIG. 6) and an operation unit 50 (see FIG. 6).
  • the wheel loader 1 performs earth and sand loading work using the work machine 3.
  • the body frame 10 is a so-called articulated type, and has a front frame 11, a rear frame 12, and a connecting shaft portion 13.
  • the front frame 11 is arranged in front of the rear frame 12.
  • the connecting shaft portion 13 is provided at the center in the vehicle width direction, and connects the front frame 11 and the rear frame 12 so as to be swingable to each other.
  • the pair of steering cylinders 8 are driven by flood control.
  • the pair of steering cylinders 8 are arranged side by side on the left and right sides in the vehicle width direction with the connecting shaft portion 13 interposed therebetween.
  • One end of each of the steering cylinders 8 is attached to the front frame 11, and the other end of each is attached to the rear frame 12.
  • the cab 5 is provided on the rear frame 12 and the driver's seat is arranged.
  • the engine room 6 is arranged behind the cab 5 and houses the engine and the like.
  • a pair of front tires 4 are attached to the left and right sides of the front frame 11. Further, a pair of rear tires 7 are attached to the left and right sides of the rear frame 12.
  • the work machine 3 is driven by hydraulic oil from the work machine pump.
  • the ground bucket angle detection unit 20 detects information on the inclination angle of the bucket 15 of the work machine 3 with respect to the gravity direction G, and sends the detected value to the control unit 9.
  • the control unit 9 performs ground control (described later) of the bucket 15 based on the detected value.
  • the operation unit 50 is set to execute ground control by the operator.
  • FIG. 2 is an enlarged side view of the working machine 3.
  • the working machine 3 has a boom 14, a bucket 15 (an example of an attachment), a boom cylinder 16, a bucket cylinder 17, and a bell crank 18.
  • One mounting portion 14a of the boom 14 is rotatably mounted on the front portion of the front frame 11.
  • the other attachment portion 14b of the boom 14 is rotatably attached to the rear portion of the bucket 15.
  • the tip of the cylinder rod 16a of the boom cylinder 16 is rotatably attached to the attachment portion 14c provided between the attachment portion 14a and the attachment portion 14b of the boom 14.
  • the cylinder body of the boom cylinder 16 is rotatably attached to the front frame 11 at the attachment portion 16b.
  • the bell crank 18 has a bell crank main body 18e and a rod 18f.
  • the attachment portion 18a provided at one end of the bell crank body 18e is rotatably attached to the tip of the cylinder rod 17a of the bucket cylinder 17.
  • One end of the rod 18f is rotatably attached to an attachment portion 18b provided at the other end of the bell crank body 18e.
  • the other end of the rod 18f is rotatably attached to the rear portion of the bucket 15 at the attachment portion 18g.
  • the bell crank body 18e is rotatably supported by the bell crank support 14d near the center of the boom 14 at the mounting portion 18c provided between the mounting portions 18a and the mounting portion 18b.
  • the cylinder body of the bucket cylinder 17 is rotatably attached to the front frame 11 at the attachment portion 17b. The expansion and contraction force of the bucket cylinder 17 is converted into rotational motion by the bell crank 18 and transmitted to the bucket 15.
  • the bucket 15 rotates with respect to the boom 14 to perform a tilt operation (see arrow J) and a dump operation (see arrow K).
  • the bucket 15 has a bottom surface 15a.
  • the bottom surface 15a extends forward from the lower side of the mounting portion 14b.
  • a claw 15c is arranged at the tip of the bottom surface 15a.
  • the tilting operation of the bucket 15 is an operation of tilting the opening 15b and the claw 15c of the bucket 15 by rotating toward the cab 5.
  • the dump operation of the bucket 15 is the opposite of the tilt operation, and is an operation of tilting by rotating the opening 15b and the claw 15c of the bucket 15 so as to move away from the cab 5.
  • the bucket 15 has a predetermined inclination angle ⁇ e with respect to the gravity direction G. It is possible to perform control (ground control) that maintains the above.
  • the buckets 15 in the upper position and the lower position are indicated by the alternate long and short dash lines.
  • the inclination angle (ground angle) of the bucket 15 with respect to the gravity direction G is, for example, the angle formed by the claw 15c and the gravity direction G, which is 90 degrees in FIG. 3, and the claw 15c faces the horizontal direction.
  • the wheel loader 1 is arranged on the horizontal road surface R, but as shown in FIG. 4, the wheel loader 1 of the present embodiment is arranged on the inclined road surface R even when it is arranged on the inclined road surface R.
  • ground control can be performed so that the bucket 15 maintains a predetermined inclination angle with respect to the gravity direction G.
  • a fork 19 can be attached to the wheel loader 1 instead of the bucket 15.
  • the fork 19 is attached to the attachment portion 14b and the attachment portion 18g shown in FIG.
  • FIG. 6 is a block diagram showing a control configuration of the wheel loader 1 of the present embodiment.
  • the ground bucket angle detection unit 20 includes a relative position detection unit 25, a vehicle body inclination angle sensor 23 (an example of a main body inclination angle detection unit), and an articulated angle sensor 24 (an example of a rotation angle detection unit).
  • the relative position detection unit 25 detects information regarding the relative position of the bucket 15 with respect to the vehicle body 2 and transmits the detected value to the control unit 9.
  • the relative position detection unit 25 includes a boom angle sensor 21 (an example of a boom angle detection unit) and a bell crank angle sensor 22 (an example of an attachment angle detection unit).
  • the boom angle sensor 21 is provided on the mounting portion 14a of the boom 14.
  • a potentiometer can be used as the boom angle sensor 21, for example, a potentiometer can be used.
  • the boom angle sensor 21 detects the boom angle (indicated by ⁇ a in the figure) between the center line L1 of the boom 14 and the horizontal line H as a voltage value, and outputs the detected detected voltage.
  • the center line L1 of the boom 14 is a line connecting the mounting portion 14a and the mounting portion 14b of the boom 14.
  • the boom angle has a negative value when the center line L1 is inclined toward the road surface R (see FIG. 1) with respect to the horizontal line H.
  • the detected voltage corresponds to an example of information on the tilt angle, information on the relative position, and information on the rotation angle of the boom.
  • the boom angle sensor 21 may detect the cylinder length of the boom cylinder 16, and can calculate the rotation angle of the boom 14 from the cylinder length.
  • the bell crank angle sensor 22 is provided on the mounting portion 18c of the bell crank 18.
  • a potentiometer can be used as the bell crank angle sensor 22.
  • the bell crank angle sensor 22 detects the bell crank angle (indicated by ⁇ b in the figure) between the line L2 connecting the mounting portion 18a and the mounting portion 18c of the bell crank 18 and the center line L1 of the boom 14 as a voltage value. , Output the detected detection voltage.
  • the detected voltage corresponds to an example of information on the tilt angle, information on the relative position, and information on the rotation angle of the attachment.
  • the bell crank angle sensor 22 may detect the cylinder length of the bucket cylinder 17, and can calculate the rotation angle of the bell crank 18 from the cylinder length.
  • the vehicle body tilt angle sensor 23 detects the tilt angle of the vehicle body 2 with respect to the gravity direction G, and outputs the detected tilt angle (an example of information on the tilt angle).
  • the vehicle body tilt angle sensor 23 may be arranged on either the rear frame 12 or the front frame 11, but since it is not necessary to correct the tilt angle error (described later) during the articulating operation in the tilted state, it is not necessary to correct the tilt angle error (described later). It is preferable that the front frame 11 is provided.
  • the articulated angle sensor 24 detects the rotation angle of the front frame 11 with respect to the rear frame 12 and outputs the rotation angle (an example of information on the inclination angle).
  • a potentiometer can be used as the articulating angle sensor 24, but the cylinder lengths of the pair of steering cylinders 8 may be detected.
  • the articulation angle can be detected from the cylinder length of the steering cylinder 8.
  • the operation unit 50 is provided inside the cab 5. As shown in FIG. 6, the operation unit 50 includes a ground control setting unit 51 and a target value setting unit 52.
  • the ground control setting unit 51 sets the ground control and cancels the ground control. For example, a button or the like displayed on a liquid crystal panel, the ground control is executed when the operator selects the execute button, and the ground control is canceled by selecting the release button.
  • the target value setting unit 52 sets the inclination angle of the bucket 15 with respect to the gravity direction G during ground control.
  • the target value setting unit 52 may be, for example, a numeric keypad displayed on the liquid crystal panel.
  • the control unit 9 includes a processor and a storage device.
  • the processor is, for example, a CPU (Central Processing Unit). Alternatively, the processor may be a processor different from the CPU.
  • the processor executes a process for controlling the wheel loader 1 according to a program.
  • the storage device includes a non-volatile memory such as ROM (Read Only Memory) and a volatile memory such as RAM (Random Access Memory).
  • the storage device may include a hard disk or an auxiliary storage device such as an SSD (Solid State Drive).
  • a storage device is an example of a recording medium that can be read by a non-transitory computer.
  • the storage device stores programs and data for controlling the wheel loader 1.
  • the detection value of the boom angle sensor 21, the detection value of the bell crank angle sensor 22, the detection value of the vehicle body tilt angle sensor 23, and the detection value of the articulate angle sensor 24 are input to the control unit 9.
  • the control unit 9 has the following functions by executing the program while using the input detection value and the data stored in the storage device.
  • the control unit 9 includes a vehicle body bucket angle calculation unit 31, a ground bucket angle calculation unit 32, a vehicle body / ground control determination unit 33, and a bucket control amount determination unit 34.
  • the vehicle body bucket angle calculation unit 31 calculates the vehicle body bucket angle, which is the angle of the bucket 15 with respect to the vehicle body 2, based on the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22.
  • the vehicle body bucket angle is the angle of the bucket 15 with respect to the vehicle body 2.
  • the posture of the work machine 3 is determined by the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22, the relative position of the bucket 15 with respect to the vehicle body 2 can be detected. Therefore, by using the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22, the angle of the bucket 15 with respect to the vehicle body can be obtained.
  • the angle with respect to the vehicle body bucket may be set with respect to the vehicle body 2.
  • a line parallel to a line connecting two points of the vehicle body frame (preferably the front frame 11) and a claw 15c of the bucket 15 can be set as the angle ⁇ c formed.
  • a portion having high vehicle body rigidity is desirable, and for example, a boom mounting portion can be mentioned as one point.
  • the ground bucket angle calculation unit 32 determines the gravity direction G based on the vehicle body bucket angle calculated by the vehicle body bucket angle calculation unit 31, the detection value of the vehicle body inclination angle sensor 23, and the detection value of the articulate angle sensor 24. Calculate the ground bucket angle, which is the angle of the bucket 15 with respect to.
  • the inclination angle (ground bucket angle) of the bucket 15 with respect to the gravity direction G can be calculated.
  • the inclination angle is ⁇ d (see FIG. 4) and the bucket angle with respect to the vehicle body is ⁇ c (see FIG. 3)
  • the inclination angle of the claw 15c of the bucket 15 with respect to the horizontal direction can be calculated by ⁇ d + ⁇ c. It is possible to calculate the ground bucket angle, which is the inclination angle with respect to.
  • the front frame 11 When the wheel loader 1 is arranged on the inclined surface and the front frame 11 is rotated with respect to the rear frame 12, when the vehicle body inclination angle sensor 23 is arranged on the rear frame 12, it is referred to as the front frame 11.
  • the rear frame 12 has a different inclination angle with respect to the gravity direction G. That is, when the rear frame 12 is along the inclination, the inclination angle of the rotating front frame 11 with respect to the gravity direction G may be smaller than the inclination angle of the rear frame 12 with respect to the gravity direction G. Therefore, the ground bucket angle can be calculated more accurately by correcting the detected value of the vehicle body tilt angle sensor 23 by using the detected value of the articulated angle sensor 24.
  • the anti-vehicle / ground control determination unit 33 determines whether to perform ground control or anti-vehicle control.
  • the target value set by the operator in the target value setting unit 52 is input to the vehicle body / ground control determination unit 33.
  • 7 (a) to 7 (c) are diagrams for explaining the vehicle body control and the ground control.
  • the rotation angle of the bucket 15 is set so that the claws 15c are horizontally arranged when the wheel loader 1 is arranged on a horizontal plane.
  • the ground control is to control the bucket 15 so as to maintain a desired angle with respect to the gravity direction G, and the bucket 15 is controlled with respect to the gravity direction G regardless of the inclination of the ground on which the wheel loader 1 is arranged. Can be kept at the desired angle. Therefore, as shown in FIG. 7B, even when the wheel loader 1 is arranged on the inclined surface and the boom 14 rotates upward, the bottom surface 15a of the bucket 15 is constant with respect to the gravity direction G. Maintain the angle.
  • the constant angle is an angle at which the bottom surface 15a of the bucket 15 and the horizontal plane are parallel to each other.
  • the angle of the bucket 15 with respect to the gravitational direction G does not have to be determined with reference to the bottom surface 15a, and may be determined with reference to either a configuration of forming a line segment or a vector in the bucket 15.
  • the vehicle body control is to control the bucket 15 so as to maintain a desired angle with respect to the vehicle body 2, and the angle of the bucket 15 with respect to the vehicle body 2 can be kept constant.
  • the angle with respect to the gravity direction G changes when the boom 14 is rotated due to the inclination of the ground on which the wheel loader 1 is arranged. Therefore, in FIG. 7C, the bucket 15 is arranged at an angle at which the claw 15c faces upward from the horizontal.
  • the ground / vehicle / ground control determination unit 33 executes ground control when the posture of the work machine 3 for setting the ground bucket angle of the bucket 15 to the target value is outside the movable limit or away from the movable limit. Further, when the posture of the work machine 3 for setting the ground bucket angle of the bucket 15 to the target value is within the movable limit or approaches the movable limit, the vehicle-to-body / ground control determination unit 33 does not execute the ground-to-vehicle control. Take control.
  • control unit 9 stores, for example, the rotatable range of the boom 14 and the rotatable range of the bell crank 18 at each rotation angle of the boom 14.
  • the vehicle body / ground control determination unit 33 calculates the rotation angle of the bell crank 18 for maintaining the ground bucket angle of the bucket 15 at the target value. Then, it is determined whether or not the calculated rotation angle of the bell crank 18 is within the movable range at the target rotation angle of the boom 14, and if it is within the movable range, ground control is executed, and if it is outside the movable range, ground control is executed. Anti-body control is executed. In this way, the vehicle body / ground control determination unit 33 switches between vehicle body control and ground control.
  • the vehicle body / ground control determination unit 33 can return to the ground control again. ..
  • the bucket control amount determination unit 34 When executing the ground control, the bucket control amount determination unit 34 obtains the difference between the ground bucket angle calculated by the ground bucket angle calculation unit 32 and the target value, and the bucket cylinder so that the ground bucket angle becomes the target value. The control amount of 17 is determined. Thereby, when the boom 14 is moved up and down, the control amount can be determined so as to maintain the angle of the bucket 15 with respect to the gravity direction G at a desired angle.
  • the bucket control amount determination unit 34 determines the control amount of the bucket cylinder 17 so as to maintain the vehicle body bucket angle calculated by the vehicle body bucket angle calculation unit 31. Thereby, when the boom 14 is moved up and down, the control amount can be determined so as to maintain the angle of the bucket 15 with respect to the vehicle body 2 at a desired angle.
  • the bucket cylinder 17 is controlled based on the control amount determined by the bucket control amount determination unit 34.
  • step S10 the ground control is set by the operator.
  • the operator sets that the ground control is performed by the operation unit in the cab 5.
  • step S20 the target value of the ground bucket angle set by the operator is input to the control unit 9.
  • step S30 the vehicle body bucket angle calculation unit 31 determines the angle (anti-body bucket angle) of the bucket 15 with respect to the vehicle body 2 based on the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22. calculate.
  • step S40 an example of the attachment tilt angle detection step
  • the ground bucket angle calculation unit 32 bases on the vehicle body bucket angle, the detection value of the vehicle body tilt angle sensor 23, and the detection value of the articulate angle sensor 24.
  • the angle of the bucket 15 with respect to the gravity direction G is calculated.
  • step S50 the vehicle body / ground control determination unit 33 determines whether to perform control of ground control or vehicle body control.
  • the vehicle body / ground control determination unit 33 determines that the ground control is executed when the posture of the work machine 3 for achieving the input target value is not included in the movable limit or moves away from the movable limit, and the control is performed.
  • the process proceeds to step S60.
  • the vehicle body / ground control determination unit 33 determines that the vehicle body control is executed when the posture of the work machine 3 for setting the input target value is within the movable limit or approaches the movable limit, and the flow is stepped. Proceed to S70.
  • step S60 the bucket control amount determination unit 34 obtains the difference between the ground bucket angle calculated by the ground bucket angle calculation unit and the target value, and the control amount of the bucket cylinder 17 so that the ground bucket angle becomes the target value. Is determined, and the control proceeds to step S80.
  • step S70 the bucket control amount determination unit 34 determines the control amount of the bucket cylinder 17 so as to maintain the anti-vehicle bucket angle calculated by the anti-vehicle bucket angle calculation unit 31, and the control is performed in step S80. move on.
  • step S80 (an example of a control step), the bucket cylinder 17 is controlled based on the determined control amount.
  • step S90 the control unit 9 determines whether or not the ground control setting has been canceled by the operator. If the ground control setting has not been canceled by the operator, the control returns to step S30, and steps S30 to S80 are repeated. On the other hand, when the ground control setting is canceled by the operator, the ground control ends.
  • the bucket 15 can maintain a predetermined inclination angle with respect to the gravity direction G. Further, when the work machine 3 approaches the movable limit or the movable limit when trying to maintain the bucket 15 at the target value, it is possible to switch to the vehicle body control.
  • FIG. 9 is a block diagram showing a control configuration of the wheel loader according to the second embodiment.
  • the wheel loader of the second embodiment is not provided with the vehicle body tilt angle sensor 23, but is provided with a bucket IMU41 (an example of a ground bucket angle detection unit).
  • the bucket IMU 41 is provided in the bucket 15 and is an IMU.
  • the control unit 9'of the wheel loader 1 of the second embodiment includes the vehicle body bucket angle calculation unit 31', the ground bucket angle calculation unit 32', the vehicle body / ground control determination unit 33, and the bucket control amount determination unit. 34 and.
  • the ground bucket angle calculation unit 32 calculates the inclination angle (ground bucket angle) of the bucket 15 with respect to the gravity direction G from the detected value of the bucket IMU41.
  • the vehicle body bucket angle calculation unit 31' calculates the angle of the bucket 15 with respect to the vehicle body 2 (anti-vehicle body bucket angle) based on the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22. Since the relative position of the bucket 15 with respect to the vehicle body 2 can be detected by the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22, the vehicle body bucket angle is calculated from this relative position and the ground bucket angle. be able to.
  • the vehicle body bucket angle calculation unit 31' is used to boom.
  • the ground bucket angle is calculated based on the ground bucket angle calculated by the ground bucket angle calculation unit 32'.
  • FIG. 10 is a flow chart showing the operation of the wheel loader 1 of the second embodiment.
  • the steps S30 and S40 are different from those in the first embodiment.
  • step S30' an example of the attachment tilt angle detection step
  • the ground bucket angle calculation unit 32' refers to the tilt angle (ground to ground) of the bucket 15 with respect to the gravity direction G from the detection value of the bucket IMU41. Bucket angle) is calculated.
  • step S40' the vehicle body bucket angle calculation unit 31' has the detection value of the boom angle sensor 21, the detection value of the bell crank angle sensor 22, and the ground bucket calculated by the ground bucket angle calculation unit 32'. Based on the angle, the angle of the bucket 15 with respect to the vehicle body 2 (the angle with respect to the vehicle body bucket) is calculated.
  • the wheel loader 1 of the first and second embodiments includes a vehicle body 2, a working machine 3, a ground bucket angle detection unit 20, a bucket IMU 41, and control units 9 and 9'.
  • the work machine 3 operates with respect to the vehicle body 2 and has a bucket 15 or a fork 19.
  • the ground bucket angle detection unit 20 or the bucket IMU 41 detects information regarding the inclination angle of the attachment with respect to the gravity direction.
  • the control units 9 and 9' control the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G based on the detection value of the ground bucket angle detection unit 20 or the bucket IMU 41.
  • the bucket 15 or the fork 19 is in an inclined state even when the wheel loader 1 is inclined.
  • the inclination angle of the gravitational direction G with respect to the gravitational direction G can be kept constant.
  • the ground bucket angle detection unit 20 includes a vehicle body inclination angle sensor 23 and a relative position detection unit 25.
  • the vehicle body tilt angle sensor 23 detects the tilt angle of the vehicle body 2 with respect to the gravity direction G.
  • the relative position detection unit 25 detects information regarding the relative position of the bucket 15 or the fork 19 with respect to the vehicle body 2.
  • the control unit 9 calculates the tilt angle (anti-vehicle bucket angle) of the bucket 15 or the fork 19 with respect to the vehicle body 2 from the detection value of the relative position detection unit 25, and the calculated anti-vehicle bucket angle and the detection value of the vehicle body tilt angle sensor 23.
  • the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G is calculated from the above.
  • the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G can be calculated from the relative position of the bucket 15 or the fork 19 with respect to the vehicle body 2 and the inclination angle of the vehicle body 2 with respect to the gravity direction G.
  • the working machine 3 further has a boom 14 rotatably connected to the vehicle body 2.
  • the bucket 15 or fork 19 is rotatably connected to the boom 14.
  • the relative position detection unit 25 includes a boom angle sensor 21 and a bell crank angle sensor 22.
  • the boom angle sensor 21 detects information about the rotation angle of the boom 14.
  • the bell crank angle sensor 22 detects information about the rotation angle of the bucket 15 or the fork 19.
  • the control unit 9 calculates the inclination angle of the bucket 15 or the fork 19 with respect to the vehicle body 2 by using the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22.
  • the relative position of the bucket 15 or the fork 19 with respect to the vehicle body 2 can be specified by the information regarding the rotation angle of the boom 14 and the information regarding the rotation angle of the bucket 15 or the fork 19.
  • control unit 9 controls the bucket 15 or the fork 19 based on the inclination angle of the bucket 15 or the fork 19 with respect to the vehicle body 2 based on the detection value of the ground bucket angle detection unit 20, or the bucket 15 or the fork 19 Control based on the tilt angle with respect to the gravity direction G.
  • control based on the relative inclination angle of the bucket 15 or the fork 19 with respect to the vehicle body 2 or control based on the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G can be performed.
  • the working machine 3 further has a boom 14 rotatably connected to the vehicle body 2.
  • the bucket 15 or fork 19 is rotatably connected to the boom 14.
  • the control unit 9 keeps the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G constant.
  • the vehicle body 2 has a front frame 11, a rear frame 12, a front tire 4, and a rear tire 7.
  • the working machine 3 is connected to the front frame 11.
  • the rear frame 12 is arranged behind the front frame 11.
  • the front tire 4 is provided on the front frame 11.
  • the rear tire 7 is provided on the rear frame 12.
  • the wheel loader 1 further includes an articulated angle sensor 24 that detects the rotation angle of the front frame 11 with respect to the rear frame 12.
  • the control unit 9 controls the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G based on the detection value of the ground bucket angle detection unit 20 and the detection value of the articulate angle sensor 24.
  • the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G may deviate from the inclined surface. Therefore, by correcting the detection value of the ground bucket angle detecting unit 20 with the articulated angle, the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G can be calculated more accurately.
  • the wheel loader 1 of the second embodiment further includes a relative position detecting unit 25.
  • the relative position detection unit 25 detects the position of the bucket 15 or the fork 19 relative to the vehicle body 2.
  • the control unit 9 controls the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G based on the detection value of the IMU 41 and the detection value of the relative position detection unit 25.
  • the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G can be controlled based on the detection value of the ground bucket angle detection unit 20 and the detection value of the relative position detection unit 25.
  • control units 9 and 9' control the bucket 15 or the fork 19 so that the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G becomes a predetermined angle.
  • control can be performed so that the angle of the bucket 15 or the fork 19 with respect to the gravity direction G is constant.
  • the control method of the wheel loader 1 of the first and second embodiments is a control method of the wheel loader 1 including the vehicle body 2, a working machine 3 that operates on the vehicle body 2 and has a bucket 15 or a fork 19.
  • a step S40 or a step S30'(an example of an attachment tilt angle detection step) and a step S80 (an example of a control step) are provided.
  • step S40 or step S30' the inclination angle of the bucket 15 or the fork 19 with respect to the gravity direction G is obtained.
  • Step S80 controls the tilt angle of the bucket 15 or fork 19 with respect to the direction of gravity based on the detected value in step S40 or step S30'.
  • the vehicle body / ground control determination unit 33 is provided and the control is automatically switched. However, when it is determined that the ground control is not performed, the operator controls the vehicle body. A choice may be made as to whether or not to do so.
  • the operation unit 50 is provided with the ground control setting unit 51, but the vehicle body control setting unit for setting the execution of the vehicle body control may be further provided.
  • the vehicle body / ground control determination unit 33 is provided, and the posture of the work machine 3 for setting the ground angle of the bucket 15 to the set target value is within the movable limit or approaches the movable limit. In some cases, the control is switched to the vehicle body control, but the control may be stopped without switching.
  • control units 9 and 9'stop controlling the inclination angle of the attachment with respect to the gravity direction G based on the detection value of the boom angle sensor 21 and the detection value of the bell crank angle sensor 22.
  • a warning may be displayed to the operator.
  • the warning display can be provided in the cab 5.
  • the vehicle body tilt angle sensor 23 is provided on the rear frame 12, the vehicle body tilt angle sensor 23 is corrected by the articulated angle sensor 24, but the vehicle body tilt angle sensor 23 is the front frame 11.
  • the articulated angle sensor 24 may not be provided when it is arranged in. In this case, it is more preferable that the vehicle body tilt angle sensor 23 is arranged in the vicinity of the working machine 3 of the front frame 11.
  • the boom angle sensor 21 and the bell crank angle sensor 22 are provided as the relative position detection unit 25, but the relative position detection unit 25 is not limited to this.
  • the rotation angle of the bucket 15 with respect to the boom 14 may be detected by a sensor, and the detection value and the detection value of the boom angle sensor 21 may be used to calculate the angle with respect to the vehicle body bucket.
  • the boom angle sensor 21 and the bell crank angle sensor 22 are provided as the relative position detection unit 25, but the relative position detection unit 25 is not limited to these. If any two of the boom angle sensor 21, the bell crank angle sensor 22, and the vehicle body tilt angle sensor 23 are provided, the relative position of the bucket 15 with respect to the vehicle body 2 can be known, so the vehicle body bucket angle is calculated. It is also possible to determine whether to perform vehicle-to-body control or ground-to-ground control. Further, the vehicle body tilt angle sensor 23 may be combined with the articulated angle sensor 24.
  • the work machine of the present invention and the control method of the work machine, it has an effect that the angle of the attachment can be maintained even in an inclined state, and is useful as a hydraulic excavator, a wheel loader, or the like.
  • Wheel loader 2 Body 3: Working machine 9: Control unit 15: Bucket 19: Fork 20: Ground bucket angle detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

ホイールローダ(1)は、車体(2)と、作業機(3)と、対地バケット角度検出部(20)と、制御部(9)と、を備える。作業機(3)は、車体(2)に対し動作し、バケット(15)またはフォーク(19)を有する。対地バケット角度検出部(20)は、バケット(15)またはフォーク(19)の重力方向に対する傾斜角度に関する情報を検出する。制御部(9)は、対地バケット角度検出部(20)の検出値に基づいて、バケット(15)またはフォーク(19)の重力方向Gに対する傾斜角度を制御する。

Description

作業機械および作業機械の制御方法
 本発明は、作業機械および作業機械の制御方法に関する。
 ホイールローダは、ダンプ動作を担い、ブームのリフトによってバケットを上昇し、バケットの回転で土砂を積み込む。
 積み荷状態では、積み荷の落下を防ぐためブームの上昇時に地面に対してバケットの角度を維持することが望まれるが、ブームが回転リンクであるため、構造的にブームを上昇させるとバケットの角度が変化する。そのため、ブームの動作に対応してバケット角度を動作させてバケットの角度を維持するようにパラレルリンク制御が行われている。
 また、ホイールローダには、フォークリフト作業を行うために、バケットに代わりフォークを装着可能なものがあるが、その場合においてもフォークの角度を維持するようにパラレルリンク制御が行われる(例えば、特許文献1参照。)。
米国特許明細書5188502号
 しかしながら、特許文献1の作業機械では車体基準でパラレルリンク制御を行うため、車体が傾斜地面に配置されている状態ではブームを上昇させるとバケットの角度が維持されない場合がある。
 本開示は、傾斜状態においてもアタッチメントの角度を維持することが可能な作業機械および作業機械の制御方法を提供することを目的とする。
(課題を解決するための手段)
 第1の態様に係る作業機械は、本体と、作業機と、アタッチメント傾斜角度検出部と、制御部と、を備える。作業機は、本体に対し動作し、アタッチメントを有する。アタッチメント傾斜角度検出部は、アタッチメントの重力方向に対する傾斜角度を検出する。制御部は、アタッチメント傾斜角度検出部の検出値に基づいて、重力方向に対するアタッチメントの傾斜角度を制御する。
 第2の態様の作業機械の制御方法は、本体と、本体に対し動作し、アタッチメントを有する作業機と、を備えた作業機械の制御方法であって、アタッチメント傾斜角度検出ステップと、制御ステップと、を備える。アタッチメント傾斜角度検出ステップは、アタッチメントの重力方向に対する傾斜角度を検出する。制御ステップは、アタッチメント傾斜角度検出ステップにおける検出値に基づいて、重力方向に対するアタッチメントの傾斜角度を制御する。
(発明の効果)
 本開示によれば、傾斜状態においてもアタッチメントの角度を維持することが可能な作業機械および作業機械の制御方法を提供することができる。
本開示にかかる実施の形態1のホイールローダを示す側面図。 図1のホイールローダの作業機を示す側面図。 図1のホイールローダの水平状態における作業機の制御を示す側面図。 図1のホイールローダの傾斜状態における作業機の制御を示す側面図。 図1のホイールローダにバケットに代わりフォークを取り付けた状態を示す側面図。 図1のホイールローダの制御構成を示すブロック図。 (a)水平面に配置されたホイールローダを示す側面図、(b)傾斜面に配置されたホイールローダの対地制御におけるバケットの状態を示す側面図、(c)傾斜面に配置されたホイールローダの対車体制御におけるバケットの状態を示す側面図。 本開示にかかる実施の形態1のホイールローダの制御動作を示すフロー図。 本開示にかかる実施の形態2のホイールローダの制御構成を示すブロック図。 本開示にかかる実施の形態2のホイールローダの制御動作を示すフロー図。
 本開示にかかる作業機械の一例としてのホイールローダについて図面を参照しながら以下に説明する。
 (実施の形態1)
 以下の実施の形態1のホイールローダについて説明する。
 <構成>
 (ホイールローダの概要)
 図1は、本実施の形態のホイールローダ1の構成を示す模式図である。
 本実施の形態のホイールローダ1(作業機械の一例)は、車体2(本体の一例)と、作業機3と、を備える。車体2は、車体フレーム10と、一対のフロントタイヤ4と、キャブ5と、エンジンルーム6と、一対のリアタイヤ7と、一対のステアリングシリンダ8と、制御部9(図6参照)と、対地バケット角度検出部20(アタッチメント傾斜角度検出部の一例)(図6参照)と、操作部50(図6参照)と、を有している。
 ホイールローダ1は、作業機3を用いて土砂積み込み作業などを行う。
 車体フレーム10は、いわゆるアーティキュレート式であり、フロントフレーム11とリアフレーム12と、連結軸部13と、を有している。フロントフレーム11は、リアフレーム12の前方に配置されている。連結軸部13は、車幅方向の中央に設けられており、フロントフレーム11とリアフレーム12を互いに揺動可能に連結する。
 一対のステアリングシリンダ8は、油圧によって駆動される。一対のステアリングシリンダ8は、連結軸部13を挟んで車幅方向の左右側に並んで配置されている。ステアリングシリンダ8は、それぞれの一端がフロントフレーム11に取り付けられており、それぞれの他端が、リアフレーム12に取り付けられている。
 キャブ5は、リアフレーム12に設けられ、運転席が配置される。エンジンルーム6は、キャブ5の後方に配置されており、エンジン等を収納する。
 一対のフロントタイヤ4は、フロントフレーム11の左右に取り付けられている。また、一対のリアタイヤ7は、リアフレーム12の左右に取り付けられている。
 作業機3は、作業機ポンプからの作動油によって駆動される。対地バケット角度検出部20は、作業機3のバケット15の重力方向Gに対する傾斜角度に関する情報を検出し、検出値を制御部9に送る。制御部9は、検出値に情報に基づいて、バケット15の対地制御(後述する)を行う。操作部50は、オペレータによって対地制御の実行の設定が行われる。
 (作業機3)
 図2は、作業機3の拡大側面図である。
 作業機3は、ブーム14と、バケット15(アタッチメントの一例)と、ブームシリンダ16と、バケットシリンダ17と、ベルクランク18と、を有する。
 ブーム14の一方の取付部14aはフロントフレーム11の前部に回動可能に取り付けられている。ブーム14の他方の取付部14bは、バケット15の後部に回動可能に取り付けられている。ブーム14の取付部14aと取付部14bの間に設けられた取付部14cには、ブームシリンダ16のシリンダロッド16aの先端が回動可能に取り付けられている。ブームシリンダ16のシリンダ本体は、取付部16bにおいてフロントフレーム11に回動可能に取り付けられている。
 ベルクランク18は、ベルクランク本体18eと、ロッド18fと、を有する。ベルクランク本体18eの一方の端部に設けられた取付部18aは、バケットシリンダ17のシリンダロッド17aの先端に回動可能に取り付けられている。ロッド18fの一端は、ベルクランク本体18eの他方の端部に設けられた取付部18bに回動可能に取り付けられている。ロッド18fの他端は、取付部18gにおいてバケット15の後部に回動可能に取り付けられている。ベルクランク本体18eは、取付部18aと取付部18bの間に設けられた取付部18cにおいてブーム14の中央近傍のベルクランクサポート14dに回動可能に支持されている。バケットシリンダ17のシリンダ本体は、取付部17bにおいてフロントフレーム11に回動可能に取り付けられている。バケットシリンダ17の伸縮力は、ベルクランク18によって回転運動に変換されてバケット15に伝達される。
 バケットシリンダ17の伸縮によって、バケット15はブーム14に対して回動し、チルト動作(矢印J参照)およびダンプ動作(矢印K参照)を行う。バケット15は、底面15aを有している。底面15aは、取付部14bの下側から前方に伸びている。また、底面15aの先端には爪15cが配置されている。
 ここで、バケット15のチルト動作とは、バケット15の開口部15bおよび爪15cがキャブ5に向かって回動することにより傾く動作である。バケット15のダンプ動作とは、チルト動作とは反対であって、バケット15の開口部15bおよび爪15cがキャブ5から遠ざかるように回動することにより傾く動作である。
 本実施の形態のホイールローダ1では、図3に示すように、キャブ5内の操作レバーを操作してブーム14を上下動する際に、バケット15が重力方向Gに対して所定の傾斜角度θeを維持するような制御(対地制御)を行うことができる。図3では、上方位置および下方位置のバケット15が二点鎖線で示されている。バケット15の重力方向Gに対する傾斜角度(対地角度)は、例えば、爪15cと重力方向Gの成す角度であり、図3では、90度であり、爪15cが水平方向を向いている。
 図3では、ホイールローダ1は水平な路面Rに配置されているが、図4に示すように、本実施の形態のホイールローダ1は、傾斜している路面Rに配置されている場合においてもブーム14を上下動させる際に、バケット15が重力方向Gに対して所定の傾斜角度を維持するように対地制御を行うことができる。
 また、図5に示すように、ホイールローダ1には、バケット15に換えてフォーク19を取り付けることができる。図2に示す取付部14bと取付部18gにフォーク19が取り付けられる。図5に示すように、傾斜状態においてブーム14を上下動させた場合であってもフォーク19を水平(重力方向Gに対して90度傾斜した状態(傾斜角度θe=90°))に維持することができる。
 (対地バケット角度検出部20)
 図6は、本実施の形態のホイールローダ1の制御構成を示すブロック図である。
 対地バケット角度検出部20は、相対位置検出部25と、車体傾斜角度センサ23(本体傾斜角度検出部の一例)と、アーティキュレート角度センサ24(回転角度検出部の一例)と、を有する。
 相対位置検出部25は、バケット15の車体2に対する相対位置に関する情報を検出し、検出値を制御部9に送信する。
 相対位置検出部25は、ブーム角度センサ21(ブーム角度検出部の一例)と、ベルクランク角度センサ22(アタッチメント角度検出部の一例)と、を有する。
 ブーム角度センサ21は、ブーム14の取付部14aに設けられている。ブーム角度センサ21としては、例えばポテンショメータを用いることができる。ブーム角度センサ21は、ブーム14の中心線L1と水平線Hとの間のブーム角度(図においてθaで示す)を電圧値として検出し、検出した検出電圧を出力する。ブーム14の中心線L1は、ブーム14の取付部14aと取付部14bを結ぶ線である。ブーム角度は、中心線L1が水平線Hよりも路面R(図1参照)側に傾斜している場合には、負の値となる。なお、検出電圧が、傾斜角度に関する情報、相対位置に関する情報、およびブームの回転角度に関する情報の一例に相当する。また、ブーム角度センサ21は、ブームシリンダ16のシリンダ長を検出してもよく、シリンダ長からブーム14の回転角度を演算することができる。
 ベルクランク角度センサ22は、ベルクランク18の取付部18cに設けられている。ベルクランク角度センサ22としては、例えばポテンショメータを用いることができる。ベルクランク角度センサ22は、ベルクランク18の取付部18aと取付部18cを結ぶ線L2と、ブーム14の中心線L1との間のベルクランク角度(図においてθbで示す)を電圧値として検出し、検出した検出電圧を出力する。なお、検出電圧が、傾斜角度に関する情報、相対位置に関する情報、およびアタッチメントの回転角度に関する情報の一例に相当する。また、ベルクランク角度センサ22は、バケットシリンダ17のシリンダ長を検出してもよく、シリンダ長からベルクランク18の回転角度を演算することができる。
 車体傾斜角度センサ23は、例えばIMU(inertial measurement unit)を用いることができる。車体傾斜角度センサ23は、重力方向Gに対する車体2の傾斜角度を検出し、検出した傾斜角度(傾斜角度に関する情報の一例)を出力する。車体傾斜角度センサ23は、リアフレーム12とフロントフレーム11のいずれに配置されていてもよいが、傾斜状態でのアーティキュレート動作時における傾斜角の誤差(後述する)を補正しなくてよいため、フロントフレーム11に設けられている方が好ましい。
 アーティキュレート角度センサ24は、リアフレーム12に対するフロントフレーム11の回転角度を検出し、回転角度(傾斜角度に関する情報の一例)を出力する。アーティキュレート角度センサ24としては、ポテンショメータを用いることができるが、一対のステアリングシリンダ8のシリンダ長を検出してもよい。ステアリングシリンダ8のシリンダ長からアーティキュレート角度を検出することができる。
 (操作部50)
 操作部50は、キャブ5の内部に設けられている。操作部50は、図6に示すように、対地制御設定部51と、目標値設定部52と、を有する。対地制御設定部51は、対地制御の設定および対地制御の解除を行う。例えば、液晶パネルに表示されたボタン等であって、オペレータが実行ボタンを選択することによって対地制御が実行され、解除ボタンを選択することによって対地制御が解除される。目標値設定部52は、対地制御の際のバケット15の重力方向Gに対する傾斜角度を設定する。目標値設定部52は、例えば、液晶パネル上に表示されたテンキー等であってもよい。
 (制御部9)
 制御部9は、プロセッサと、記憶装置を含む。プロセッサは、例えばCPU(Central Processing Unit)である。或いは、プロセッサは、CPUと異なるプロセッサであってもよい。プロセッサは、プログラムに従ってホイールローダ1の制御のための処理を実行する。記憶装置は、ROM(Read Only Memory)のような不揮発性メモリおよびRAM(Random Access Memory)のような揮発性メモリを含む。記憶装置は、ハードディスク、あるいはSSD(Solid State Drive)などの補助記憶装置を含んでいてもよい。記憶装置は、非一時的な(non-transitory)コンピュータで読み取り可能な記録媒体の一例である。記憶装置は、ホイールローダ1を制御するためのプログラムおよびデータを記憶している。
 制御部9には、ブーム角度センサ21の検出値、ベルクランク角度センサ22の検出値、車体傾斜角度センサ23の検出値、およびアーティキュレート角度センサ24の検出値が入力される。制御部9は、入力された検出値および記憶装置に記憶されているデータを利用しながらプログラムを実行することにより、以下の各部の機能を有する。
 制御部9は、対車体バケット角度算出部31と、対地バケット角度算出部32と、対車体/対地制御判定部33と、バケット制御量決定部34と、を有する。
 (対車体バケット角度算出部31)
 対車体バケット角度算出部31は、ブーム角度センサ21の検出値とベルクランク角度センサ22の検出値に基づいて、バケット15の車体2に対する角度である対車体バケット角度を算出する。対車体バケット角度は、車体2を基準としたときのバケット15の角度である。
 ブーム角度センサ21の検出値とベルクランク角度センサ22の検出値によって、作業機3の姿勢が定まるため、バケット15の車体2に対する相対的な位置を検出することができる。このためブーム角度センサ21の検出値とベルクランク角度センサ22の検出値を用いることによって、バケット15の対車体バケット角度を求めることができる。
 対車体バケット角度は、車体2を基準としてバケット15の角度を設定すればよく、例えば、車体フレーム(望ましくはフロントフレーム11)の2点を結ぶ線と平行な線と、バケット15の爪15cの成す角度θcのように設定することができる。なお、2点としては車体剛性が高い部分が望ましく、例えばブーム取付部が1点として挙げられる。
 (対地バケット角度算出部32)
 対地バケット角度算出部32は、対車体バケット角度算出部31で算出された対車体バケット角度と、車体傾斜角度センサ23の検出値と、アーティキュレート角度センサ24の検出値に基づいて、重力方向Gに対するバケット15の角度である対地バケット角度を算出する。
 ここで、ホイールローダ1が傾斜面に沿って配置され、フロントフレーム11がリアフレーム12に対して直線状に配置されている場合には、対車体バケット角度と車体傾斜角度センサ23の検出値からバケット15の重力方向Gに対する傾斜角度(対地バケット角度)を算出することができる。例えば、傾斜角度θd(図4参照)とし、対車体バケット角度をθc(図3参照)とすると、θd+θcで水平方向に対するバケット15の爪15cの傾斜角度が算出できるため、θd+θc+90度で重力方向Gに対する傾斜角度である対地バケット角度を算出することができる。
 なお、ホイールローダ1が傾斜面に配置され、フロントフレーム11がリアフレーム12に対して回転していると、車体傾斜角度センサ23がリアフレーム12に配置されている場合には、フロントフレーム11とリアフレーム12では重力方向Gに対する傾斜角度が異なる。すなわち、リアフレーム12が傾斜に沿っている場合には、回動しているフロントフレーム11の重力方向Gに対する傾斜角度は、リアフレーム12の重力方向Gに対する傾斜角度よりも小さくなるときがある。このため、アーティキュレート角度センサ24による検出値を用いて、車体傾斜角度センサ23の検出値を補正することによって、より正確に対地バケット角度を算出することができる。
 (対車体/対地制御判定部33)
 対車体/対地制御判定部33は、対地制御および対車体制御のいずれの制御を行うかを判定する。対車体/対地制御判定部33には、オペレータが目標値設定部52で設定した目標値が入力される。
 図7(a)~図7(c)は、対車体制御および対地制御を説明するための図である。
 図7(a)に示すように、ホイールローダ1が水平面に配置されている状態において爪15cが水平に配置されるような角度にバケット15の回転角度が設定されている。
 対地制御は、バケット15が重力方向Gに対して所望の角度を保つように制御を行うことであって、ホイールローダ1が配置されている地面の傾斜にかかわらずバケット15を重力方向Gに対して所望の角度に保つことができる。このため、図7(b)に示すように、ホイールローダ1が傾斜面に配置され、ブーム14が上方に回転した場合であっても、バケット15の底面15aが重力方向Gに対して一定の角度を維持する。なお、図7(b)に示す例では、一定の角度は、バケット15の底面15aと水平面が平行になる角度である。
 また、バケット15の重力方向Gに対する角度とは、底面15aを基準に決めなくてもよく、バケット15において線分またはベクトルを形成するいずれかの構成を基準にすればよい。
 一方、対車体制御は、車体2に対してバケット15が所望の角度を保つように制御を行うことであって、車体2に対するバケット15の角度は一定に保つことができるが、図7(c)に示すように、ホイールローダ1が配置されている地面の傾斜によって、ブーム14を回動した場合に重力方向Gに対する角度は変化する。このため、図7(c)では、バケット15は、爪15cが水平よりも上方を向く角度に配置されている。
 対車体/対地制御判定部33は、バケット15の対地バケット角度を目標値にするための作業機3の姿勢が可動限界外若しくは可動限界から遠ざかる場合に、対地制御を実行する。また、対車体/対地制御判定部33は、バケット15の対地バケット角度を目標値にするための作業機3の姿勢が可動限界内若しくは可動限界に近づく場合に、対地制御を実行せず対車体制御を実行する。
 作業機3の姿勢の可動限界に関する情報ついては、制御部9に記憶されている。可動限界に関する情報として、制御部9は、例えば、ブーム14の回転可能範囲、ブーム14の各々の回転角度におけるベルクランク18の回転可能範囲を記憶している。
 操作レバーを操作してブーム14の回転角度が変化すると、対車体/対地制御判定部33は、バケット15の対地バケット角度を目標値に維持するためのベルクランク18の回転角度を算出する。そして、算出されたベルクランク18の回転角度がブーム14の目標回転角度において可動範囲内であるか否かを判定し、可動範囲内であれば、対地制御が実行され、可動範囲外であれば対車体制御が実行される。このように、対車体/対地制御判定部33は、対車体制御と対地制御の切り替えを行う。
 なお、対車体制御に切り替えた後であっても、作業機3の姿勢が可動限界外若しくは可動限界から遠ざかる場合には、対車体/対地制御判定部33は、再度対地制御に戻すことができる。
 (バケット制御量決定部34)
 対地制御を実行する場合、バケット制御量決定部34は、対地バケット角度算出部32で算出された対地バケット角度と、目標値との差分を求め、対地バケット角度が目標値になるようにバケットシリンダ17の制御量を決定する。これにより、ブーム14を上下動させた場合に、バケット15の重力方向Gに対する角度を所望の角度に維持するように制御量を決定することができる。
 一方、対車体制御を実行する場合、バケット制御量決定部34は、対車体バケット角度算出部31で算出された対車体バケット角度を維持するように、バケットシリンダ17の制御量を決定する。これにより、ブーム14を上下動させた場合に、車体2に対するバケット15の角度を所望の角度に維持するように制御量を決定することができる。
 バケット制御量決定部34で決定した制御量に基づいて、バケットシリンダ17の制御が行われる。
 <動作>
 次に、本発明にかかる実施の形態のホイールローダ1の動作について説明するとともに、作業機械の制御方法についても同時に述べる。
 はじめにステップS10において、オペレータによって対地制御の設定が行われる。オペレータは、キャブ5内の操作部によって対地制御を行うことを設定する。
 次に、ステップS20において、オペレータによって設定された、対地バケット角度の目標値が、制御部9に入力される。
 次に、ステップS30において、対車体バケット角度算出部31が、ブーム角度センサ21の検出値およびベルクランク角度センサ22の検出値に基づいて、バケット15の車体2に対する角度(対車体バケット角度)を算出する。
 次に、ステップS40(アタッチメント傾斜角度検出ステップの一例)において、対地バケット角度算出部32が、対車体バケット角度と、車体傾斜角度センサ23の検出値とアーティキュレート角度センサ24の検出値に基づいて、バケット15の重力方向Gに対する角度(対地バケット角度)を算出する。
 次に、ステップS50において、対車体/対地制御判定部33が、対地制御および対車体制御のいずれの制御を行うかを判定する。対車体/対地制御判定部33は、入力された目標値にするための作業機3の姿勢が可動限界に含まれない場合若しくは可動限界から遠ざかる場合に、対地制御を実行すると判定し、制御はステップS60に進む。一方、対車体/対地制御判定部33は、入力された目標値にするための作業機3の姿勢が可動限界内若しくは可動限界に近づく場合に、対車体制御を実行すると判定し、フローはステップS70に進む。
 ステップS60では、バケット制御量決定部34が、対地バケット角度算出部で算出された対地バケット角度と、目標値との差分を求め、対地バケット角度が目標値になるようにバケットシリンダ17の制御量を決定し、制御はステップS80に進む。
 一方、ステップS70では、バケット制御量決定部34が、対車体バケット角度算出部31で算出された対車体バケット角度を維持するように、バケットシリンダ17の制御量を決定し、制御はステップS80に進む。
 ステップS80(制御ステップの一例)では、決定した制御量に基づいて、バケットシリンダ17の制御が行われる。
 次に、ステップS90において、制御部9は、オペレータによって対地制御の設定が解除されたか否かを判定する。オペレータによって対地制御の設定が解除されていない場合には、制御はステップS30に戻り、ステップS30~ステップS80が繰り返される。
一方、オペレータによって対地制御設定が解除された場合には、対地制御は終了する。
 これにより、対地制御を設定して操作レバーによってブーム14を上下動作させる際に、バケット15を重力方向Gに対して所定の傾斜角度を維持することができる。また、バケット15を目標値に維持しようとすると作業機3が可動限界若しくは可動限界に近づく場合には、対車体制御に切り替えることができる。
 (実施の形態2)
 以下に、実施の形態2のホイールローダについて説明する。本実施の形態2のホイールローダは、実施の形態1と制御構成が異なっている。そのため、本実施の形態2では相違点を中心に説明する。
 <構成>
 図9は、本実施の形態2のホイールローダの制御構成を示すブロック図である。
 本実施の形態2のホイールローダは、実施の形態1と比較して、車体傾斜角度センサ23が設けられておらず、バケットIMU41(対地バケット角度検出部の一例)が設けられている。バケットIMU41は、バケット15に設けられてIMUである。
 本実施の形態2のホイールローダ1の制御部9´は、対車体バケット角度算出部31´と、対地バケット角度算出部32´と、対車体/対地制御判定部33と、バケット制御量決定部34と、を有する。
 対地バケット角度算出部32´は、バケットIMU41の検出値からバケット15の重力方向Gに対する傾斜角度(対地バケット角度)を算出する。
 対車体バケット角度算出部31´は、ブーム角度センサ21の検出値と、ベルクランク角度センサ22の検出値に基づいて、バケット15の車体2に対する角度(対車体バケット角度)を算出する。ブーム角度センサ21の検出値とベルクランク角度センサ22の検出値によって、車体2に対するバケット15の相対的な位置を検出できるため、この相対的な位置と対地バケット角度から対車体バケット角度を算出することができる。
 なお、ブーム角度センサ21の代わりにブーム14にブームIMUを設け、ベルクランク角度センサ22の代わりにベルクランク18にベルクランクIMUを設けた場合には、対車体バケット角度算出部31´は、ブームIMUの検出値とベルクランクIMUの検出値に加えて対地バケット角度算出部32´で算出された対地バケット角度に基づいて対車体バケット角度を算出する。
 対車体/対地制御判定部33およびバケット制御量決定部34は、実施の形態1と同様であるため説明を省略する。
 <動作>
 次に、実施の形態2のホイールローダ1の動作について説明するとともに、作業機械の制御方法の一例についても同時に述べる。図10は、本実施の形態2のホイールローダ1の動作を示すフロー図である。
 本実施の形態2では、実施の形態1と比較して、ステップS30とステップS40が異なっている。
 すなわち、ステップS10、S20の次に、ステップS30´(アタッチメント傾斜角度検出ステップの一例)において、対地バケット角度算出部32´は、バケットIMU41の検出値からバケット15の重力方向Gに対する傾斜角度(対地バケット角度)を算出する。
 次に、ステップS40´において、対車体バケット角度算出部31´は、ブーム角度センサ21の検出値と、ベルクランク角度センサ22の検出値と、対地バケット角度算出部32´で算出された対地バケット角度に基づいて、バケット15の車体2に対する角度(対車体バケット角度)を算出する。
 以降のステップS50~S90は、実施の形態1と同様のため省略する。
 <特徴>
 (1)
 実施の形態1、2のホイールローダ1は、車体2と、作業機3と、対地バケット角度検出部20またはバケットIMU41と、制御部9、9´と、を備える。作業機3は、車体2に対し動作し、バケット15またはフォーク19を有する。対地バケット角度検出部20またはバケットIMU41は、アタッチメントの重力方向に対する傾斜角度に関する情報を検出する。制御部9、9´は、対地バケット角度検出部20またはバケットIMU41の検出値に基づいて、バケット15またはフォーク19の重力方向Gに対する傾斜角度を制御する。
 このように、バケット15またはフォーク19の重力方向Gに対する傾斜角度に関する情報を検出し、その傾斜角度に基づいて制御を行うことによって、ホイールローダ1が傾斜した状態であってもバケット15またはフォーク19の重力方向Gに対する傾斜角度を一定に維持することができる。
 (2)
 実施の形態1のホイールローダ1では、対地バケット角度検出部20は、車体傾斜角度センサ23と、相対位置検出部25と、を有する。車体傾斜角度センサ23は、車体2の重力方向Gに対する傾斜角度を検出する。相対位置検出部25は、バケット15またはフォーク19の車体2に対する相対的な位置に関する情報を検出する。制御部9は、相対位置検出部25の検出値からバケット15またはフォーク19の車体2に対する傾斜角度(対車体バケット角度)を算出し、算出した対車体バケット角度と車体傾斜角度センサ23の検出値からバケット15またはフォーク19の重力方向Gに対する傾斜角度を算出する。
 このように、バケット15またはフォーク19の車体2に対する相対的な位置と、車体2の重力方向Gに対する傾斜角度から、バケット15またはフォーク19の重力方向Gに対する傾斜角度を算出することができる。
 (3)
 実施の形態1のホイールローダ1では、作業機3は、車体2に回転可能に接続されるブーム14を更に有する。バケット15またはフォーク19は、ブーム14に回転可能に接続されている。相対位置検出部25は、ブーム角度センサ21と、ベルクランク角度センサ22、と、を有する。ブーム角度センサ21は、ブーム14の回転角度に関する情報を検出する。ベルクランク角度センサ22は、バケット15またはフォーク19の回転角度に関する情報を検出する。制御部9は、ブーム角度センサ21の検出値とベルクランク角度センサ22の検出値を用いて、バケット15またはフォーク19の車体2に対する傾斜角度を算出する。
 このように、バケット15またはフォーク19の車体2に対する相対位置は、ブーム14の回転角度に関する情報とバケット15またはフォーク19の回転角度に関する情報で特定することができる。
 (4)
 実施の形態1のホイールローダ1では、制御部9は、対地バケット角度検出部20の検出値に基づいて、バケット15またはフォーク19の車体2に対する傾斜角度に基づく制御、若しくは、バケット15またはフォーク19の重力方向Gに対する傾斜角度に基づく制御を行う。
 これにより、車体2に対するバケット15またはフォーク19の相対的な傾斜角度に基づく制御と、重力方向Gに対するバケット15またはフォーク19の傾斜角度に基づく制御のうちいずれかの制御を行うことができる。
 例えば、バケット15またはフォーク19の回転角度とブーム14の回転角度から求められる作業機3の姿勢では、バケット15またはフォーク19の重力方向に対する傾斜角度に基づく制御を行うことが出来ないと判断される場合には、バケット15またはフォーク19の車体2に対する傾斜角度に基づく制御を行うように切り替えることができる。
 (5)
 実施の形態1のホイールローダ1では、作業機3は、車体2に回転可能に接続されるブーム14を更に有する。バケット15またはフォーク19は、ブーム14に回転可能に接続されている。制御部9は、ブーム14を上昇させる際に、バケット15またはフォーク19の重力方向Gに対する傾斜角度を一定に維持する。
 これにより、例えば、傾斜地を上りながらブーム14を上昇させる際に、重力方向Gに対するバケット15またはフォーク19の角度を一定にすることができる。
 (6)
 実施の形態1のホイールローダ1では、車体2は、フロントフレーム11と、リアフレーム12と、フロントタイヤ4と、リアタイヤ7と、を有する。フロントフレーム11には、作業機3が接続される。リアフレーム12は、フロントフレーム11の後側に配置されている。フロントタイヤ4は、フロントフレーム11に設けられている。リアタイヤ7は、リアフレーム12に設けられている。ホイールローダ1は、リアフレーム12に対するフロントフレーム11の回転角度を検出するアーティキュレート角度センサ24を更に備える。制御部9は、対地バケット角度検出部20の検出値とアーティキュレート角度センサ24の検出値に基づいて、重力方向Gに対するバケット15またはフォーク19の傾斜角度を制御する。
 ホイールローダ1が傾斜面に配置されている場合、フロントフレーム11がリアフレーム12に対して回転すると、バケット15またはフォーク19の重力方向Gに対する傾斜角度が傾斜面とズレが発生することがある。このため、対地バケット角度検出部20の検出値をアーティキュレート角度で補正することによって、より正確にバケット15またはフォーク19の重力方向Gに対する傾斜角度を算出することができる。
 (7)
 実施の形態2のホイールローダ1は、相対位置検出部25を更に備える。相対位置検出部25は、バケット15またはフォーク19の車体2に対する相対的な位置を検出する。制御部9´は、IMU41の検出値、および相対位置検出部25の検出値に基づいて、重力方向Gに対するバケット15またはフォーク19の傾斜角度を制御する。
 これにより、対地バケット角度検出部20の検出値および相対位置検出部25の検出値に基づいて、重力方向Gに対するバケット15またはフォーク19の傾斜角度を制御することができる。
 (8)
 実施の形態1、2のホイールローダ1では、制御部9、9´は、バケット15またはフォーク19の重力方向Gに対する傾斜角度が、所定の角度になるように制御する。
 これにより、重力方向Gに対するバケット15またはフォーク19の角度を一定にするように制御を行うことができる。
 (9)
 本実施の形態1、2のホイールローダ1の制御方法は、車体2と、車体2に対し動作し、バケット15またはフォーク19を有する作業機3と、を備えたホイールローダ1の制御方法であって、ステップS40またはステップS30´(アタッチメント傾斜角度検出ステップの一例)と、ステップS80(制御ステップの一例)と、を備える。ステップS40またはステップS30´は、バケット15またはフォーク19の重力方向Gに対する傾斜角度を求める。ステップS80は、ステップS40またはステップS30´における検出値に基づいて、重力方向に対するバケット15またはフォーク19の傾斜角度を制御する。
 <他の実施形態>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施の形態1、2では、対車体/対地制御判定部33が設けられており、自動的に制御が切り換えられているが、対地制御を行わない判定をした場合、オペレータによって対車体制御を行うか否かの選択が行われてもよい。
 (B)
 上記実施の形態1、2では、操作部50に対地制御設定部51が設けられているが、対車体制御の実行を設定する対車体制御設定部が更に設けられていてもよい。
 (C)
 上記実施の形態1、2では、対車体/対地制御判定部33が設けられ、バケット15の対地角度を設定された目標値にするための作業機3の姿勢が可動限界内若しくは可動限界に近づく場合に、対車体制御への切り替えが行われるが、切り替えずに制御を停止してもよい。
 すなわち、制御部9、9´は、ブーム角度センサ21の検出値とベルクランク角度センサ22の検出値に基づいて、重力方向Gに対するアタッチメントの傾斜角度の制御を停止する。
 これにより、バケット15またはフォーク19の回転角度とブーム14の回転角度から求められる作業機3の姿勢では、バケット15またはフォーク19の重力方向Gに対する傾斜角度に基づく制御を行うことが出来ないと判断される場合には、制御を停止することができる。
 また、オペレータに警告表示を行ってもよい。警告表示は、キャブ5内に設けることができる。
 (D)
 上記実施の形態1では、車体傾斜角度センサ23がリアフレーム12に設けられているため、アーティキュレート角度センサ24によって車体傾斜角度センサ23が補正されているが、車体傾斜角度センサ23がフロントフレーム11に配置されている場合には、アーティキュレート角度センサ24は設けられていなくてもよい。この場合、車体傾斜角度センサ23は、フロントフレーム11の作業機3の近傍に配置されている方がより好ましい。
 (E)
 上記実施の形態1、2では、相対位置検出部25として、ブーム角度センサ21とベルクランク角度センサ22が設けられているが、これに限らなくてもよい。例えばベルクランク角度センサ22に代えてブーム14に対するバケット15の回転角度をセンサによって検出し、その検出値とブーム角度センサ21の検出値を用いて対車体バケット角度を算出してもよい。
 (F)
 上記実施の形態2では、相対位置検出部25として、ブーム角度センサ21とベルクランク角度センサ22が設けられているが、これにかぎらなくてもよい。ブーム角度センサ21とベルクランク角度センサ22と車体傾斜角度センサ23のうちいずれか2つが設けられていれば、車体2に対するバケット15の相対的に位置が分かるため、対車体バケット角度を算出し、対車体制御を行うか対地制御を行うか否かの判定も行うことができる。また、車体傾斜角度センサ23については、アーティキュレート角度センサ24を組み合わせてもよい。
 本発明の作業機械および作業機械の制御方法によれば、傾斜状態においてもアタッチメントの角度を維持することが可能な効果を有し、油圧ショベル、ホイールローダ等として有用である。
1     :ホイールローダ
2     :車体
3     :作業機
9     :制御部
15    :バケット
19    :フォーク
20    :対地バケット角度検出部

Claims (10)

  1.  本体と、
     前記本体に対し動作し、アタッチメントを有する作業機と、
     前記アタッチメントの重力方向に対する傾斜角度に関する情報を検出するアタッチメント傾斜角度検出部と、
     前記アタッチメント傾斜角度検出部の検出値に基づいて、前記アタッチメントの重力方向に対する傾斜角度を制御する制御部と、を備えた、
    作業機械。
  2.  前記アタッチメント傾斜角度検出部は、
     前記本体の重力方向に対する傾斜角度を検出する本体傾斜角度検出部と、
     前記アタッチメントの前記本体に対する相対的な位置に関する情報を検出する相対位置検出部と、を有し、
     前記制御部は、前記相対位置検出部の検出値から前記アタッチメントの前記本体に対する傾斜角度を算出し、算出した前記傾斜角度と前記本体傾斜角度検出部の検出値から前記アタッチメントの重力方向に対する傾斜角度を算出する、
    請求項1に記載の作業機械。
  3.  前記作業機は、前記本体に回転可能に接続されるブームを更に有し、
     前記アタッチメントは、前記ブームに回転可能に接続され、
     前記相対位置検出部は、
     前記ブームの回転角度に関する情報を検出するブーム角度検出部と、
     前記アタッチメントの回転角度に関する情報を検出するアタッチメント角度検出部と、を有し、
     前記制御部は、前記ブーム角度検出部の検出値と前記アタッチメント角度検出部の検出値を用いて、前記アタッチメントの前記本体に対する傾斜角度を算出する、
    請求項2に記載の作業機械。
  4.  前記制御部は、
     前記アタッチメント傾斜角度検出部の検出値に基づいて、
     前記アタッチメントの前記本体に対する傾斜角度に基づく制御、若しくは、
     前記アタッチメントの重力方向に対する角度に基づく制御を行う、
    請求項2に記載の作業機械。
  5.  前記制御部は、
     前記ブーム角度検出部の検出値と前記アタッチメント角度検出部の検出値に基づいて、重力方向に対する前記アタッチメントの傾斜角度の制御を停止する、
    請求項3に記載の作業機械。
  6.  前記作業機は、前記本体に回転可能に接続されるブームを更に有し、
     前記アタッチメントは、前記ブームに回転可能に接続され、
     前記制御部は、
     前記ブームを上昇させる際に、前記アタッチメントの重力方向に対する傾斜角度を一定に維持する、
    請求項1に記載の作業機械。
  7.  前記作業機械は、ホイールローダであって、
     前記本体は、
     前記作業機が接続されるフロントフレームと
     前記フロントフレームの後側に配置されたリアフレームと、
     前記フロントフレームに設けられたフロントタイヤと、
     前記リアフレームに設けられたリアタイヤと、
    を有し、
     前記リアフレームに対する前記フロントフレームの回転角度を検出する回転角度検出部を更に備え、
     前記制御部は、前記アタッチメント傾斜角度検出部の検出値と前記回転角度検出部の検出値に基づいて、重力方向に対する前記アタッチメントの傾斜角度を制御する、
    請求項1~6のいずれか1項に記載の作業機械。
  8.  前記アタッチメントの前記本体に対する相対的な位置を検出する相対位置検出部を更に備え、
     前記制御部は、前記アタッチメント傾斜角度検出部の検出値、および前記相対位置検出部の検出値に基づいて、重力方向に対する前記アタッチメントの傾斜角度を制御する、
    請求項1に記載の作業機械。
  9.  前記制御部は、前記アタッチメントの重力方向に対する傾斜角度が、所定の角度になるように制御する、
    請求項1~8のいずれか1項に記載の作業機械。
  10.  本体と、前記本体に対し動作し、アタッチメントを有する作業機と、を備えた作業機械の制御方法であって、
     前記アタッチメントの重力方向に対する傾斜角度を検出するアタッチメント傾斜角度検出ステップと、
     前記アタッチメント傾斜角度検出ステップにおける検出値に基づいて、重力方向に対する前記アタッチメントの傾斜角度を制御する制御ステップと、を備えた、
    作業機械の制御方法。
     
     
PCT/JP2021/010968 2020-03-26 2021-03-18 作業機械および作業機械の制御方法 WO2021193321A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21776835.7A EP4101990A4 (en) 2020-03-26 2021-03-18 OPERATION OF A MACHINE AND METHOD FOR CONTROLLING THE OPERATION OF A MACHINE
CN202180016292.6A CN115151697A (zh) 2020-03-26 2021-03-18 作业机械以及作业机械的控制方法
US17/802,996 US20230129066A1 (en) 2020-03-26 2021-03-18 Work machine and control method for work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055990A JP2021155980A (ja) 2020-03-26 2020-03-26 作業機械および作業機械の制御方法
JP2020-055990 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193321A1 true WO2021193321A1 (ja) 2021-09-30

Family

ID=77890273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010968 WO2021193321A1 (ja) 2020-03-26 2021-03-18 作業機械および作業機械の制御方法

Country Status (5)

Country Link
US (1) US20230129066A1 (ja)
EP (1) EP4101990A4 (ja)
JP (1) JP2021155980A (ja)
CN (1) CN115151697A (ja)
WO (1) WO2021193321A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220064899A1 (en) * 2019-01-17 2022-03-03 Graham Reid Fork lift attachment for a front end loader bucket
JP2023062818A (ja) * 2021-10-22 2023-05-09 株式会社小松製作所 作業機械の制御システムおよび制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188502A (en) 1990-12-24 1993-02-23 Caterpillar, Inc. Linkage arrangement for a multi-purpose vehicle
JP2018135649A (ja) * 2017-02-20 2018-08-30 株式会社小松製作所 作業車両および作業車両の制御方法
JP2018135679A (ja) * 2017-02-21 2018-08-30 株式会社小松製作所 作業車両および作業車両の制御方法
JP2019015176A (ja) * 2018-11-05 2019-01-31 株式会社小松製作所 建設機械の表示システムおよびその制御方法
JP2019049150A (ja) * 2017-09-11 2019-03-28 日立建機株式会社 作業車両

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1294894B (de) * 1962-02-19 1969-05-08 Ulrich Mfg Company Schaufelbagger
JPH01239231A (ja) * 1988-03-17 1989-09-25 Komatsu Ltd 建設機械のバケット対地角度制御装置
JPH086352B2 (ja) * 1988-09-22 1996-01-24 株式会社クボタ バックホウのバックホウ装置操作構造
US5704429A (en) * 1996-03-30 1998-01-06 Samsung Heavy Industries Co., Ltd. Control system of an excavator
JP4095710B2 (ja) * 1998-04-02 2008-06-04 株式会社室戸鉄工所 荷吊作業可能なパワーショベル
JP3827480B2 (ja) * 1999-08-13 2006-09-27 日立建機株式会社 自動運転建設機械およびその位置計測手段の校正方法
DE10115678C1 (de) * 2001-04-01 2002-11-28 Thomas Sauer Fahrbarer Schaufellader
CN2564518Y (zh) * 2002-04-20 2003-08-06 朱麟江 一种装载机
US7140830B2 (en) * 2003-01-14 2006-11-28 Cnh America Llc Electronic control system for skid steer loader controls
AU2005227398B1 (en) * 2005-10-28 2006-04-27 Leica Geosystems Ag Method and apparatus for determining the loading of a bucket
CN201007008Y (zh) * 2007-05-08 2008-01-16 杨吉 后卸式装载机
CN101705698B (zh) * 2009-11-21 2011-08-03 湖南山河智能机械股份有限公司 一种矿井用回转式液压挖掘机
CN102418353B (zh) * 2011-10-12 2014-01-29 厦门厦工机械股份有限公司 装载机的反转八连杆机构
JP5633043B2 (ja) * 2011-11-18 2014-12-03 株式会社エム・システム技研 電動アクチュエータ
CN103103997A (zh) * 2012-12-10 2013-05-15 辽宁鑫丰矿电设备制造有限公司 一种煤矿井下液压挖掘机
JP5969380B2 (ja) * 2012-12-21 2016-08-17 住友建機株式会社 ショベル及びショベル制御方法
JPWO2015056492A1 (ja) * 2013-10-18 2017-03-09 株式会社小松製作所 作業車両及び作業車両の制御方法
CN103615025B (zh) * 2013-11-20 2017-01-04 广西柳工机械股份有限公司 一种装载机铲装作业的控制方法及装载机
WO2016125232A1 (ja) * 2015-02-02 2016-08-11 株式会社小松製作所 作業車両および作業車両の制御方法
EP4043643A1 (en) * 2015-03-27 2022-08-17 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
EP3333325B1 (en) * 2015-08-07 2020-10-07 Komatsu Ltd. Wheel loader with automatic control of operations
US9663917B2 (en) * 2015-10-16 2017-05-30 Komatsu Ltd. Work vehicle, bucket device, and method for obtaining tilt angle
KR101779525B1 (ko) * 2015-12-09 2017-09-18 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량 및 틸트 각도의 취득 방법
CN108055855B (zh) * 2016-09-16 2020-11-10 日立建机株式会社 作业机械
WO2017126182A1 (ja) * 2016-10-28 2017-07-27 株式会社小松製作所 積込機械の制御システム及び積込機械の制御方法
JP6718014B2 (ja) * 2017-02-28 2020-07-08 本田技研工業株式会社 作業システムおよび作業機
JP6707053B2 (ja) * 2017-03-29 2020-06-10 日立建機株式会社 作業機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188502A (en) 1990-12-24 1993-02-23 Caterpillar, Inc. Linkage arrangement for a multi-purpose vehicle
JP2018135649A (ja) * 2017-02-20 2018-08-30 株式会社小松製作所 作業車両および作業車両の制御方法
JP2018135679A (ja) * 2017-02-21 2018-08-30 株式会社小松製作所 作業車両および作業車両の制御方法
JP2019049150A (ja) * 2017-09-11 2019-03-28 日立建機株式会社 作業車両
JP2019015176A (ja) * 2018-11-05 2019-01-31 株式会社小松製作所 建設機械の表示システムおよびその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4101990A4

Also Published As

Publication number Publication date
JP2021155980A (ja) 2021-10-07
EP4101990A4 (en) 2024-04-17
US20230129066A1 (en) 2023-04-27
EP4101990A1 (en) 2022-12-14
CN115151697A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
EP2924176B1 (en) Front loader
WO2021193321A1 (ja) 作業機械および作業機械の制御方法
JPH10252092A (ja) 建設機械の制御方法および制御装置
US11879234B2 (en) Work vehicle
WO2021044967A1 (ja) 作業機械
WO2022190650A1 (ja) 建設機械
WO2020203315A1 (ja) 作業機械および作業機械の制御方法
US20230122177A1 (en) Work machine
JP6928161B2 (ja) 作業車両及び作業車両の制御方法
CN117255880A (zh) 作业机械及用于控制作业机械的方法
JP7245141B2 (ja) 油圧ショベル
JP6223253B2 (ja) フロントローダ
JP7245099B2 (ja) 作業機械の校正方法、作業機械のコントローラ、および作業機械
JP3821260B2 (ja) 建設機械の作業機制御装置
JP2024137253A (ja) 作業車両
JP7268577B2 (ja) 作業機械
CN110418865B (zh) 作业车辆以及作业车辆的控制方法
CN114423905B (zh) 工程机械
WO2024190914A1 (ja) 作業機械の制御装置、遠隔操作システムおよび制御方法
WO2024106536A1 (ja) 積込機械の制御装置、遠隔制御装置および制御方法
JP2022106036A (ja) 建設機械
CA3199498A1 (en) Modifying a rotational position of a boom of a machine
JP2022099992A (ja) 作業機
JPH11247220A (ja) 建設機械の作業機制御装置
JP2023118197A (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021776835

Country of ref document: EP

Effective date: 20220906

NENP Non-entry into the national phase

Ref country code: DE