WO2021193260A1 - 光ファイバ - Google Patents
光ファイバ Download PDFInfo
- Publication number
- WO2021193260A1 WO2021193260A1 PCT/JP2021/010704 JP2021010704W WO2021193260A1 WO 2021193260 A1 WO2021193260 A1 WO 2021193260A1 JP 2021010704 W JP2021010704 W JP 2021010704W WO 2021193260 A1 WO2021193260 A1 WO 2021193260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- optical fiber
- refractive index
- δclad
- central core
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000005452 bending Methods 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 13
- 239000011737 fluorine Substances 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 5
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract 3
- 239000000460 chlorine Substances 0.000 claims description 22
- 229910052801 chlorine Inorganic materials 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 10
- 239000011734 sodium Substances 0.000 claims description 10
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 1
- 239000000654 additive Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 34
- 239000002019 doping agent Substances 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/0365—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02214—Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
Definitions
- the present invention relates to an optical fiber.
- Patent Documents 1 and 2 Various technologies for realizing the characteristics of low transmission loss and low bending loss in optical fibers are disclosed.
- Patent Documents 1 and 2 a single peak type or W type refractive index profile is adopted, and a dopant added to the core portion is adjusted to bring the refractive index close to that of pure quartz glass, thereby resulting in low transmission loss.
- the technology to realize the above is disclosed.
- Patent Document 3 discloses a technique for realizing low bending loss by adopting a trench-type refractive index profile and making the refractive index of the trench layer relatively low.
- Patent Document 4 discloses a technique for realizing low bending loss by co-doping fluorine (F) and boron (B) in the trench layer while adopting a trench-type refractive index profile. Has been done.
- G.657 standard As a standard for low bending loss of optical fibers, ITU-T (International Telecommunication Union) G.M. A standard defined by 657 (hereinafter, may be referred to as G.657 standard or the like) is known. For example, G. 657.
- the A1 standard stipulates that the bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm is 0.75 dB / turn or less.
- the present invention has been made in view of the above, and an object of the present invention is to provide an optical fiber which can easily realize low transmission loss and low bending loss and is easy to manufacture.
- one aspect of the present invention includes a central core portion, an intermediate layer surrounding the outer periphery of the central core portion, a trench layer surrounding the outer periphery of the intermediate layer, and the like.
- a clad portion surrounding the outer periphery of the trench layer is provided, and the central core portion is made of germanium (Ge) -free quartz-based glass, and the average maximum specific refractive index difference of the central core portion with respect to pure quartz glass is ⁇ 1.
- the average specific refractive index difference of the intermediate layer is ⁇ 2
- the average specific refractive index difference of the trench layer is ⁇ 3
- the average specific refractive index difference of the clad portion is ⁇ Clad, ⁇ 1> ⁇ 2> ⁇ 3 and ⁇ Clad> ⁇ 3 are established.
- ⁇ 1 is 0.05% or more
- the intermediate layer, the trench layer, and the clad portion are made of quartz-based glass to which only fluorine (F) and chlorine (Cl) are added, and the central core portion.
- the core diameter is 7.7 ⁇ m or more and 8.7 ⁇ m or less
- the mode field diameter at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.2 ⁇ m or less
- the cable cutoff wavelength is 1260 nm or less
- the transmission loss at a wavelength of 1550 nm is 0. It is an optical fiber having a speed of 18 dB / km or less.
- ⁇ Clad may be less than 0%.
- the bending loss at a wavelength of 1550 nm when bent with a diameter of 20 mm may be 0.75 dB / turn or less.
- the zero dispersion wavelength may be 1300 nm or more and 1324 nm or less, and the dispersion slope at the zero dispersion wavelength may be 0.092 ps / nm 2 / km or less.
- ⁇ 1- ⁇ Clad may be 0.34% or more and 0.40% or less, and
- ⁇ 2- ⁇ Clad may be ⁇ 0.05% or more and 0.05% or less.
- b / a is 1.8 or more and 4.0 or less
- c / a is 3. It may be 4 or more and 7.0 or less.
- the central core diameter of the central core portion may be set so that the cable cutoff wavelength is 1000 nm or more and 1260 nm or less.
- the central core portion may be made of quartz glass to which at least one of chlorine (Cl), fluorine (F), potassium (K) and sodium (Na) is added.
- FIG. 1 is a schematic cross-sectional view of the optical fiber according to the embodiment.
- FIG. 2 is a schematic diagram of the refractive index profile of the optical fiber according to the embodiment.
- FIG. 3 is a diagram showing an example of the relationship between ( ⁇ 1- ⁇ Clad) and bending loss.
- the cutoff wavelength or the effective cutoff wavelength is referred to as ITU-T G.
- ITU-T G Refers to the cable cutoff wavelength defined in 650.1.
- G.I. 650.1 and G.M The definition and measurement method in 650.2 shall be followed.
- FIG. 1 is a schematic cross-sectional view of the optical fiber according to the embodiment.
- the optical fiber 10 is made of quartz glass, and has a central core portion 11, an intermediate layer 12 surrounding the outer periphery of the central core portion 11, a trench layer 13 surrounding the outer periphery of the intermediate layer 12, and a clad surrounding the outer periphery of the trench layer 13.
- a unit 14 is provided.
- the optical fiber 10 may include a coating layer that surrounds the outer periphery of the clad portion 14.
- FIG. 2 is a diagram showing a refractive index profile of the optical fiber 10.
- the profile P11 is a refractive index profile of the central core portion 11, and has a so-called step type.
- Profile P12 is a refractive index profile of the intermediate layer 12.
- Profile P13 is the refractive index profile of the trench layer 13.
- the profile P14 is a refractive index profile of the clad portion 14.
- the refractive index profile of the central core portion 11 is not only when it is a step type having a geometrically ideal shape, but also when the shape of the top is not flat and unevenness is formed due to manufacturing characteristics, or from the top to the hem. It may be shaped like a pull.
- the refractive index of the region that is substantially flat at the top of the refractive index profile within the range of the core diameter 2a of the central core portion 11 in the manufacturing design is an index for determining ⁇ 1.
- the core diameter of the central core portion 11 is 2a.
- the outer diameter of the intermediate layer 12, that is, the inner diameter of the trench layer 13 is 2b, and the outer diameter of the trench layer 13 is 2c. Therefore, the width (trench width) of the trench layer 13 is (bc).
- the specific refractive index difference (maximum specific refractive index difference) of the average maximum refractive index of the central core portion 11 with respect to the refractive index of pure quartz glass is ⁇ 1.
- the average specific refractive index difference of the refractive index of the intermediate layer 12 with respect to the refractive index of pure quartz glass is ⁇ 2.
- the difference in the average specific refractive index of the refractive index of the trench layer 13 with respect to the refractive index of pure quartz glass is ⁇ 3.
- the difference in the average specific refractive index of the refractive index of the clad portion 14 with respect to the refractive index of pure quartz glass is ⁇ Clad.
- the pure quartz glass is an extremely high-purity quartz glass that does not substantially contain a dopant that changes the refractive index and has a refractive index of about 1.444 at a wavelength of 1550 nm.
- the optical fiber 10 has a trench-type refractive index profile. Further, in the present embodiment, ⁇ Clad is less than 0%.
- the central core portion 11 is made of germanium (Ge) -free quartz glass, which is usually used as a dopant for adjusting the refractive index to increase the refractive index.
- the central core portion 11 contains at least one, for example, two or more of chlorine (Cl), fluorine (F), potassium (K) and sodium (Na) as a dopant.
- F is a dopant that lowers the refractive index of quartz glass
- Cl, K, and Na are dopants that increase the refractive index of quartz glass.
- ⁇ 1 of the central core portion 11 is 0.05% or more.
- the dopant for adjusting ⁇ 1 to 0.05% or more is not limited to these, but it is preferable that the dopant is not a dopant that increases Rayleigh scattering like Ge.
- the intermediate layer 12, the trench layer 13, and the clad portion 14 are made of quartz glass to which only F and Cl are added.
- ⁇ 1 of the central core portion 11 is 0.05% or more.
- ⁇ 1> ⁇ 2> ⁇ 3 and ⁇ Clad> ⁇ 3 are established.
- the refractive index profile is ⁇ 1> ⁇ 2> ⁇ 3 and ⁇ Clad> ⁇ 3, which is a trench type, and the intermediate layer 12, the trench layer 13, and the clad portion 14 are quartz-based to which only F and Cl are added. Since it is made of glass, it is easy to realize low bending loss and it is easy to manufacture.
- the central core portion 11, the intermediate layer 12, the trench layer 13, and the clad portion 14 contain the above-mentioned dopant by using a VAD (Vapor Axial Deposition) method, an OVD (Outside Vapor Deposition) method, or the like.
- VAD Very Axial Deposition
- OVD Outside Vapor Deposition
- This can be easily realized by manufacturing the optical fiber base material by the method described in the above method and manufacturing the optical fiber 10 from the optical fiber base material.
- dopants such as F, K, and Na can be added to the optical fiber base material by using a gas containing the dopant during the synthesis of the suit.
- Cl can be added to the optical fiber base material by leaving chlorine gas used in the dehydration step.
- F can be added to the optical fiber base material by flowing fluorine gas in the vitrified sintered structure.
- ⁇ 1 of the central core portion 11 is made smaller than 0.05%, the transmission loss can be more easily reduced, but the refractive index of the trench layer 13 needs to be set lower in order to realize the low bending loss. Difficult to manufacture.
- the transmission loss at a wavelength of 1550 nm can be reduced to 0.18 dB / km or less. Further, in the optical fiber 10, for example, when bent at a diameter of 20 mm, the bending loss at a wavelength of 1550 nm can be reduced to 0.75 dB / turn or less, and G.I. 657. A1 standard can be satisfied.
- the bending loss at a wavelength of 1550 nm when bent with a diameter of 20 mm may be simply referred to as a bending loss below.
- the mode field diameter (MFD) at a wavelength of 1310 nm can be 8.6 ⁇ m or more and 9.2 ⁇ m or less, and the cable cutoff wavelength ( ⁇ cc) can be set to 1260 nm or less.
- the optical fiber 10 has a G.I. Highly compliant with 652 standard or G657 standard.
- the core diameter 2a of the central core portion 11 is set so that the cable cutoff wavelength is 1000 nm or more and 1260 nm or less. Further, when the cable cutoff wavelength is 1000 nm or more, it is preferable from the viewpoint of reducing the macro bend loss.
- the conditions for ⁇ 1 and ⁇ Clad for the optical fiber 10 to satisfy the above optical characteristics are, for example, ⁇ 1- ⁇ Clad of 0.34% or more and 0.40% or less.
- optical fiber according to the embodiment will be described with reference to the result of the simulation calculation.
- FIG. 3 is a diagram showing an example of the relationship between ( ⁇ 1- ⁇ Clad) and bending loss.
- ⁇ 1- ⁇ Clad is set to various values of 0.34% or more and 0.40% or less, and parameters such as ⁇ 2, ⁇ 3, 2a, b / a, and c / a are comprehensively set to various values.
- the optical characteristics were calculated by changing to and combining.
- ⁇ 1- ⁇ Clad when ⁇ 1- ⁇ Clad is 0.34% or more and 0.40% or less, it can be set to 0.75 dB / turn or less by various combinations of parameters, and further, G.I. 657. It was confirmed that it can be set to 0.1 dB / turn or less, which meets the A2 standard. Further, in order to reduce the bending loss to 0.75 dB / turn or less, for example,
- the zero dispersion wavelength is 1300 nm or more and 1324 nm or less, and the dispersion slope at the zero dispersion wavelength is 0.092 ps / nm 2 / km or less. Furthermore, many characteristics were obtained in which the dispersion slope was 0.073 ps / nm 2 / km or more. These characteristics are described in G.M. It is a characteristic with high conformity to the 652 standard or the G657 standard.
- the sample numbers Nos. The measurement results of transmission loss, bending loss, MFD, and ⁇ cc were shown for the optical fibers 1 to 34.
- the core dopant added to the core portion was also set in various ways. For example, Cl 2 + F is a case where chlorine and fluorine are used as core dopants, and K + Na + Cl 2 is a case where potassium, sodium and chlorine are used as core dopants.
- ⁇ 1 is 0.05% or more
- ⁇ Crad is less than 0%
- b / a is 1.8 or more and 4.0 or less
- c / a is 3.4 or more and 7.0 or less
- ⁇ 1- ⁇ Clad is 0.34% or more and 0.40% or less
- is 0.26% or less
- ⁇ 2- ⁇ Clad is -0.05% or more and 0.05% or less
- the central core diameter is 7.7 ⁇ m or more and 8.7 ⁇ m or less
- ⁇ 2 is -0.32% or more and -0.19% or less
- ⁇ 3 is -0.55% or more and -0.39% or less
- ⁇ clad is -0.32% or more and -0.
- ⁇ 1 0.12%
- ⁇ 2 is -0.25%
- ⁇ 3 is -0.43%
- ⁇ clad is -0.25%
- ⁇ 2- ⁇ clad is 0%
- b / a is 2.2
- c / a is 4, 2a is 8.3 ⁇ m
- the core dopant is chlorine (Cl).
- the transmission loss at a wavelength of 1550 nm is 0.17 dB / km
- the bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm is 1.1 dB / m
- the MFD is 8.82 ⁇ m
- the ⁇ cc is 1248 nm.
- ⁇ 1 0.08%
- ⁇ 2 is ⁇ 0.29%
- ⁇ 3 is ⁇ 0.45%
- ⁇ clad is ⁇ 0.29%
- ⁇ 1- ⁇ Clad is 0. 37%
- core dopant Cl 2 wavelength 1550 nm
- the transmission loss is 0.17 dB / km and the diameter is 20 mm
- the bending loss at a wavelength of 1550 nm is 1.6 dB / m
- the MFD is 8.83 ⁇ m
- the ⁇ cc is 1241 nm.
- ⁇ 1 0.09%
- ⁇ 2 is ⁇ 0.28%
- ⁇ 3 is ⁇ 0.4%
- ⁇ clad is ⁇ 0.28%
- ⁇ 1- ⁇ Clad is 0. 37%
- core dopant Cl 2 transmission loss at wavelength 1550 nm
- the bending loss at a wavelength of 1550 nm when bent at 0.166 dB / km and a diameter of 20 mm is 1.5 dB / m
- the MFD is 8.84 ⁇ m
- the ⁇ cc is 1250 nm.
- the present invention is not limited to the above embodiments.
- the present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
- optical fiber according to the present invention can be suitably used in the field of optical communication such as data com and telecom.
- Optical fiber 11 Central core portion 12: Intermediate layer 13: Trench layer 14: Clad portion P11, P12, P13, P14: Profile
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
図1は、実施形態に係る光ファイバの模式的な断面図である。光ファイバ10は、石英系ガラスからなり、中心コア部11と、中心コア部11の外周を取り囲む中間層12と、中間層12の外周を取り囲むトレンチ層13と、トレンチ層13の外周を取り囲むクラッド部14と、を備える。なお、光ファイバ10は、クラッド部14の外周を取り囲む被覆層を備えていてもよい。
11 :中心コア部
12 :中間層
13 :トレンチ層
14 :クラッド部
P11、P12、P13、P14 :プロファイル
Claims (9)
- 中心コア部と、
前記中心コア部の外周を取り囲む中間層と、
前記中間層の外周を取り囲むトレンチ層と、
前記トレンチ層の外周を取り囲むクラッド部と、
を備え、
前記中心コア部はゲルマニウム(Ge)を含まない石英系ガラスからなり、
純石英ガラスに対する、前記中心コア部の平均の最大比屈折率差をΔ1、前記中間層の平均比屈折率差をΔ2、前記トレンチ層の平均比屈折率差をΔ3、前記クラッド部の平均比屈折率差をΔCladとすると、Δ1>Δ2>Δ3かつΔClad>Δ3が成り立ち、
Δ1が0.05%以上であり、
前記中間層、前記トレンチ層、および前記クラッド部は、フッ素(F)および塩素(Cl)のみが添加された石英系ガラスからなり、
前記中心コア部のコア径が7.7μm以上8.7μm以下であり、
波長1310nmにおけるモードフィールド径が8.6μm以上9.2μm以下であり、ケーブルカットオフ波長が1260nm以下であり、
波長1550nmにおける伝送損失が0.18dB/km以下である
光ファイバ。 - ΔCladが0%未満である
請求項1に記載の光ファイバ。 - 直径20mmで曲げた場合の波長1550nmにおける曲げ損失が0.75dB/turn以下である
請求項1または2に記載の光ファイバ。 - 零分散波長が1300nm以上1324nm以下あり、前記零分散波長での分散スロープが0.092ps/nm2/km以下である
請求項1~3のいずれか一つに記載の光ファイバ。 - Δ1-ΔCladが0.34%以上0.40%以下であり、|Δ3-ΔClad|が0.26%以下である
請求項1~4のいずれか一つに記載の光ファイバ。 - Δ2-ΔCladが-0.05%以上0.05%以下である
請求項1~5のいずれか一つに記載の光ファイバ。 - 前記中心コア部のコア径を2a、前記トレンチ層の内径、外径をそれぞれ2b、2cとしたときに、b/aが1.8以上4.0以下であり、c/aが3.4以上7.0以下である
請求項1~6のいずれか一つに記載の光ファイバ。 - 前記中心コア部のコア径が、ケーブルカットオフ波長が1000nm以上1260nm以下になるように設定されている
請求項1~7のいずれか一つに記載の光ファイバ。 - 前記中心コア部は、塩素(Cl)、フッ素(F)、カリウム(K)およびナトリウム(Na)の少なくとも一つが添加された石英系ガラスからなる
請求項1~8のいずれか一つに記載の光ファイバ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022509993A JPWO2021193260A1 (ja) | 2020-03-27 | 2021-03-16 | |
CN202180024028.7A CN115335742B (zh) | 2020-03-27 | 2021-03-16 | 光纤 |
EP21774304.6A EP4130819A4 (en) | 2020-03-27 | 2021-03-16 | OPTICAL FIBER |
US17/930,547 US11899239B2 (en) | 2020-03-27 | 2022-09-08 | Optical fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020057392 | 2020-03-27 | ||
JP2020-057392 | 2020-03-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/930,547 Continuation US11899239B2 (en) | 2020-03-27 | 2022-09-08 | Optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193260A1 true WO2021193260A1 (ja) | 2021-09-30 |
Family
ID=77891813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010704 WO2021193260A1 (ja) | 2020-03-27 | 2021-03-16 | 光ファイバ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11899239B2 (ja) |
EP (1) | EP4130819A4 (ja) |
JP (1) | JPWO2021193260A1 (ja) |
CN (1) | CN115335742B (ja) |
WO (1) | WO2021193260A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000042458A1 (fr) | 1999-01-18 | 2000-07-20 | Sumitomo Electric Industries, Ltd. | Fibre optique et son procede de fabrication |
JP2012027454A (ja) | 2010-07-02 | 2012-02-09 | Draka Comteq Bv | 単一モード光ファイバおよび光システム |
JP2016081067A (ja) * | 2014-10-21 | 2016-05-16 | オーエフエス ファイテル,エルエルシー | 低損失光ファイバ及びその製造方法 |
US20170146733A1 (en) * | 2015-11-24 | 2017-05-25 | Corning Incorporated | Raman-enhanced transmission fiber |
JP2018525661A (ja) * | 2015-06-30 | 2018-09-06 | コーニング インコーポレイテッド | 大きい有効面積及び低い曲げ損失を有する光ファイバ |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3853833B2 (ja) * | 2003-04-11 | 2006-12-06 | 株式会社フジクラ | 光ファイバ |
JP2008058664A (ja) * | 2006-08-31 | 2008-03-13 | Furukawa Electric Co Ltd:The | 光ファイバおよび光ファイバテープならびに光インターコネクションシステム |
JP2008058663A (ja) * | 2006-08-31 | 2008-03-13 | Furukawa Electric Co Ltd:The | 光ファイバおよび光ファイバテープならびに光インターコネクションシステム |
CN102221726A (zh) * | 2008-02-22 | 2011-10-19 | 住友电气工业株式会社 | 光纤及光缆 |
US8428415B2 (en) | 2009-01-09 | 2013-04-23 | Corning Incorporated | Bend insensitive optical fibers with low refractive index glass rings |
KR20100091710A (ko) * | 2009-02-11 | 2010-08-19 | 엘에스전선 주식회사 | 구부림 손실 특성이 개선된 광섬유 제조 방법 및 이 방법으로 제조된 광섬유 |
CN101598834B (zh) * | 2009-06-26 | 2011-01-19 | 长飞光纤光缆有限公司 | 一种单模光纤及其制造方法 |
US8385701B2 (en) * | 2009-09-11 | 2013-02-26 | Corning Incorporated | Low bend loss optical fiber |
US8588569B2 (en) * | 2011-11-30 | 2013-11-19 | Corning Incorporated | Low bend loss optical fiber |
US8995803B2 (en) * | 2012-02-19 | 2015-03-31 | Corning Incorporated | Mode delay managed few moded optical fiber link |
KR20130116009A (ko) * | 2012-04-12 | 2013-10-22 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 광섬유 |
KR101436723B1 (ko) * | 2012-04-26 | 2014-09-01 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 광섬유 |
CN102645699B (zh) * | 2012-05-02 | 2015-03-04 | 长飞光纤光缆股份有限公司 | 一种低衰减弯曲不敏感单模光纤 |
CN103941334A (zh) * | 2014-04-21 | 2014-07-23 | 长飞光纤光缆股份有限公司 | 一种低衰耗单模光纤 |
JP6817957B2 (ja) | 2015-04-15 | 2021-01-20 | コーニング インコーポレイテッド | フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ |
JP7409299B2 (ja) * | 2018-03-07 | 2024-01-09 | 住友電気工業株式会社 | 光ファイバ |
JP7214352B2 (ja) * | 2018-03-08 | 2023-01-30 | 古河電気工業株式会社 | 光ファイバ |
WO2019226477A1 (en) * | 2018-05-25 | 2019-11-28 | Corning Incorporated | Single-mode large effective area optical fibers with low cutoff wavelength |
JP7371011B2 (ja) * | 2018-12-12 | 2023-10-30 | 古河電気工業株式会社 | 光ファイバおよび光ファイバの製造方法 |
JPWO2020162406A1 (ja) * | 2019-02-05 | 2021-12-16 | 古河電気工業株式会社 | 光ファイバ |
JP7019617B2 (ja) * | 2019-02-07 | 2022-02-15 | 古河電気工業株式会社 | 光ファイバおよび光ファイバの製造方法 |
JP7060532B2 (ja) * | 2019-02-25 | 2022-04-26 | 古河電気工業株式会社 | 光ファイバおよび光ファイバの製造方法 |
-
2021
- 2021-03-16 CN CN202180024028.7A patent/CN115335742B/zh active Active
- 2021-03-16 EP EP21774304.6A patent/EP4130819A4/en active Pending
- 2021-03-16 JP JP2022509993A patent/JPWO2021193260A1/ja active Pending
- 2021-03-16 WO PCT/JP2021/010704 patent/WO2021193260A1/ja active Application Filing
-
2022
- 2022-09-08 US US17/930,547 patent/US11899239B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000042458A1 (fr) | 1999-01-18 | 2000-07-20 | Sumitomo Electric Industries, Ltd. | Fibre optique et son procede de fabrication |
JP2012027454A (ja) | 2010-07-02 | 2012-02-09 | Draka Comteq Bv | 単一モード光ファイバおよび光システム |
JP2016081067A (ja) * | 2014-10-21 | 2016-05-16 | オーエフエス ファイテル,エルエルシー | 低損失光ファイバ及びその製造方法 |
JP2018525661A (ja) * | 2015-06-30 | 2018-09-06 | コーニング インコーポレイテッド | 大きい有効面積及び低い曲げ損失を有する光ファイバ |
US20170146733A1 (en) * | 2015-11-24 | 2017-05-25 | Corning Incorporated | Raman-enhanced transmission fiber |
Non-Patent Citations (1)
Title |
---|
See also references of EP4130819A4 |
Also Published As
Publication number | Publication date |
---|---|
CN115335742B (zh) | 2024-08-20 |
US20230020502A1 (en) | 2023-01-19 |
EP4130819A1 (en) | 2023-02-08 |
EP4130819A4 (en) | 2024-03-20 |
US11899239B2 (en) | 2024-02-13 |
JPWO2021193260A1 (ja) | 2021-09-30 |
CN115335742A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7190236B2 (ja) | フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ | |
WO2020162209A1 (ja) | 光ファイバおよび光ファイバの製造方法 | |
JP5881213B2 (ja) | シングルモード光ファイバ | |
US10571628B2 (en) | Low loss optical fiber with core codoped with two or more halogens | |
CN117136321A (zh) | 光纤 | |
JP5799903B2 (ja) | シングルモード光ファイバ | |
JP7455079B2 (ja) | 光ファイバ | |
WO2023042769A1 (ja) | 光ファイバ | |
WO2021193260A1 (ja) | 光ファイバ | |
US11714228B2 (en) | Optical fiber and method of manufacturing optical fiber | |
US11506837B2 (en) | Optical fiber and method for manufacturing optical fiber | |
WO2022131161A1 (ja) | 光ファイバ、光ファイバの設計方法および光ファイバの製造方法 | |
WO2022075118A1 (ja) | 光ファイバ | |
CN113552666A (zh) | 光纤 | |
JP7508233B2 (ja) | 光ファイバならびに光ファイバおよび光ファイバ母材の製造方法 | |
WO2024122510A1 (ja) | 光ファイバ | |
WO2023085134A1 (ja) | 光ファイバ | |
WO2023228743A1 (ja) | 光ファイバ | |
WO2023112968A1 (ja) | 光ファイバ | |
JP7527114B2 (ja) | 光ファイバ | |
WO2022215603A1 (ja) | 光ファイバ | |
WO2023054620A1 (ja) | 光ファイバおよびその製造方法 | |
WO2022181614A1 (ja) | 光ファイバ | |
JP3850235B2 (ja) | 分散補償光ファイバ、これを用いた光ファイバ伝送路、および前記分散補償光ファイバの製造方法 | |
JP2024134644A (ja) | 光ファイバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21774304 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022509993 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021774304 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021774304 Country of ref document: EP Effective date: 20221027 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |