WO2021193260A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2021193260A1
WO2021193260A1 PCT/JP2021/010704 JP2021010704W WO2021193260A1 WO 2021193260 A1 WO2021193260 A1 WO 2021193260A1 JP 2021010704 W JP2021010704 W JP 2021010704W WO 2021193260 A1 WO2021193260 A1 WO 2021193260A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
optical fiber
refractive index
δclad
central core
Prior art date
Application number
PCT/JP2021/010704
Other languages
English (en)
French (fr)
Inventor
武笠 和則
脩悟 竹内
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2022509993A priority Critical patent/JPWO2021193260A1/ja
Priority to CN202180024028.7A priority patent/CN115335742B/zh
Priority to EP21774304.6A priority patent/EP4130819A4/en
Publication of WO2021193260A1 publication Critical patent/WO2021193260A1/ja
Priority to US17/930,547 priority patent/US11899239B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened

Definitions

  • the present invention relates to an optical fiber.
  • Patent Documents 1 and 2 Various technologies for realizing the characteristics of low transmission loss and low bending loss in optical fibers are disclosed.
  • Patent Documents 1 and 2 a single peak type or W type refractive index profile is adopted, and a dopant added to the core portion is adjusted to bring the refractive index close to that of pure quartz glass, thereby resulting in low transmission loss.
  • the technology to realize the above is disclosed.
  • Patent Document 3 discloses a technique for realizing low bending loss by adopting a trench-type refractive index profile and making the refractive index of the trench layer relatively low.
  • Patent Document 4 discloses a technique for realizing low bending loss by co-doping fluorine (F) and boron (B) in the trench layer while adopting a trench-type refractive index profile. Has been done.
  • G.657 standard As a standard for low bending loss of optical fibers, ITU-T (International Telecommunication Union) G.M. A standard defined by 657 (hereinafter, may be referred to as G.657 standard or the like) is known. For example, G. 657.
  • the A1 standard stipulates that the bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm is 0.75 dB / turn or less.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an optical fiber which can easily realize low transmission loss and low bending loss and is easy to manufacture.
  • one aspect of the present invention includes a central core portion, an intermediate layer surrounding the outer periphery of the central core portion, a trench layer surrounding the outer periphery of the intermediate layer, and the like.
  • a clad portion surrounding the outer periphery of the trench layer is provided, and the central core portion is made of germanium (Ge) -free quartz-based glass, and the average maximum specific refractive index difference of the central core portion with respect to pure quartz glass is ⁇ 1.
  • the average specific refractive index difference of the intermediate layer is ⁇ 2
  • the average specific refractive index difference of the trench layer is ⁇ 3
  • the average specific refractive index difference of the clad portion is ⁇ Clad, ⁇ 1> ⁇ 2> ⁇ 3 and ⁇ Clad> ⁇ 3 are established.
  • ⁇ 1 is 0.05% or more
  • the intermediate layer, the trench layer, and the clad portion are made of quartz-based glass to which only fluorine (F) and chlorine (Cl) are added, and the central core portion.
  • the core diameter is 7.7 ⁇ m or more and 8.7 ⁇ m or less
  • the mode field diameter at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.2 ⁇ m or less
  • the cable cutoff wavelength is 1260 nm or less
  • the transmission loss at a wavelength of 1550 nm is 0. It is an optical fiber having a speed of 18 dB / km or less.
  • ⁇ Clad may be less than 0%.
  • the bending loss at a wavelength of 1550 nm when bent with a diameter of 20 mm may be 0.75 dB / turn or less.
  • the zero dispersion wavelength may be 1300 nm or more and 1324 nm or less, and the dispersion slope at the zero dispersion wavelength may be 0.092 ps / nm 2 / km or less.
  • ⁇ 1- ⁇ Clad may be 0.34% or more and 0.40% or less, and
  • ⁇ 2- ⁇ Clad may be ⁇ 0.05% or more and 0.05% or less.
  • b / a is 1.8 or more and 4.0 or less
  • c / a is 3. It may be 4 or more and 7.0 or less.
  • the central core diameter of the central core portion may be set so that the cable cutoff wavelength is 1000 nm or more and 1260 nm or less.
  • the central core portion may be made of quartz glass to which at least one of chlorine (Cl), fluorine (F), potassium (K) and sodium (Na) is added.
  • FIG. 1 is a schematic cross-sectional view of the optical fiber according to the embodiment.
  • FIG. 2 is a schematic diagram of the refractive index profile of the optical fiber according to the embodiment.
  • FIG. 3 is a diagram showing an example of the relationship between ( ⁇ 1- ⁇ Clad) and bending loss.
  • the cutoff wavelength or the effective cutoff wavelength is referred to as ITU-T G.
  • ITU-T G Refers to the cable cutoff wavelength defined in 650.1.
  • G.I. 650.1 and G.M The definition and measurement method in 650.2 shall be followed.
  • FIG. 1 is a schematic cross-sectional view of the optical fiber according to the embodiment.
  • the optical fiber 10 is made of quartz glass, and has a central core portion 11, an intermediate layer 12 surrounding the outer periphery of the central core portion 11, a trench layer 13 surrounding the outer periphery of the intermediate layer 12, and a clad surrounding the outer periphery of the trench layer 13.
  • a unit 14 is provided.
  • the optical fiber 10 may include a coating layer that surrounds the outer periphery of the clad portion 14.
  • FIG. 2 is a diagram showing a refractive index profile of the optical fiber 10.
  • the profile P11 is a refractive index profile of the central core portion 11, and has a so-called step type.
  • Profile P12 is a refractive index profile of the intermediate layer 12.
  • Profile P13 is the refractive index profile of the trench layer 13.
  • the profile P14 is a refractive index profile of the clad portion 14.
  • the refractive index profile of the central core portion 11 is not only when it is a step type having a geometrically ideal shape, but also when the shape of the top is not flat and unevenness is formed due to manufacturing characteristics, or from the top to the hem. It may be shaped like a pull.
  • the refractive index of the region that is substantially flat at the top of the refractive index profile within the range of the core diameter 2a of the central core portion 11 in the manufacturing design is an index for determining ⁇ 1.
  • the core diameter of the central core portion 11 is 2a.
  • the outer diameter of the intermediate layer 12, that is, the inner diameter of the trench layer 13 is 2b, and the outer diameter of the trench layer 13 is 2c. Therefore, the width (trench width) of the trench layer 13 is (bc).
  • the specific refractive index difference (maximum specific refractive index difference) of the average maximum refractive index of the central core portion 11 with respect to the refractive index of pure quartz glass is ⁇ 1.
  • the average specific refractive index difference of the refractive index of the intermediate layer 12 with respect to the refractive index of pure quartz glass is ⁇ 2.
  • the difference in the average specific refractive index of the refractive index of the trench layer 13 with respect to the refractive index of pure quartz glass is ⁇ 3.
  • the difference in the average specific refractive index of the refractive index of the clad portion 14 with respect to the refractive index of pure quartz glass is ⁇ Clad.
  • the pure quartz glass is an extremely high-purity quartz glass that does not substantially contain a dopant that changes the refractive index and has a refractive index of about 1.444 at a wavelength of 1550 nm.
  • the optical fiber 10 has a trench-type refractive index profile. Further, in the present embodiment, ⁇ Clad is less than 0%.
  • the central core portion 11 is made of germanium (Ge) -free quartz glass, which is usually used as a dopant for adjusting the refractive index to increase the refractive index.
  • the central core portion 11 contains at least one, for example, two or more of chlorine (Cl), fluorine (F), potassium (K) and sodium (Na) as a dopant.
  • F is a dopant that lowers the refractive index of quartz glass
  • Cl, K, and Na are dopants that increase the refractive index of quartz glass.
  • ⁇ 1 of the central core portion 11 is 0.05% or more.
  • the dopant for adjusting ⁇ 1 to 0.05% or more is not limited to these, but it is preferable that the dopant is not a dopant that increases Rayleigh scattering like Ge.
  • the intermediate layer 12, the trench layer 13, and the clad portion 14 are made of quartz glass to which only F and Cl are added.
  • ⁇ 1 of the central core portion 11 is 0.05% or more.
  • ⁇ 1> ⁇ 2> ⁇ 3 and ⁇ Clad> ⁇ 3 are established.
  • the refractive index profile is ⁇ 1> ⁇ 2> ⁇ 3 and ⁇ Clad> ⁇ 3, which is a trench type, and the intermediate layer 12, the trench layer 13, and the clad portion 14 are quartz-based to which only F and Cl are added. Since it is made of glass, it is easy to realize low bending loss and it is easy to manufacture.
  • the central core portion 11, the intermediate layer 12, the trench layer 13, and the clad portion 14 contain the above-mentioned dopant by using a VAD (Vapor Axial Deposition) method, an OVD (Outside Vapor Deposition) method, or the like.
  • VAD Very Axial Deposition
  • OVD Outside Vapor Deposition
  • This can be easily realized by manufacturing the optical fiber base material by the method described in the above method and manufacturing the optical fiber 10 from the optical fiber base material.
  • dopants such as F, K, and Na can be added to the optical fiber base material by using a gas containing the dopant during the synthesis of the suit.
  • Cl can be added to the optical fiber base material by leaving chlorine gas used in the dehydration step.
  • F can be added to the optical fiber base material by flowing fluorine gas in the vitrified sintered structure.
  • ⁇ 1 of the central core portion 11 is made smaller than 0.05%, the transmission loss can be more easily reduced, but the refractive index of the trench layer 13 needs to be set lower in order to realize the low bending loss. Difficult to manufacture.
  • the transmission loss at a wavelength of 1550 nm can be reduced to 0.18 dB / km or less. Further, in the optical fiber 10, for example, when bent at a diameter of 20 mm, the bending loss at a wavelength of 1550 nm can be reduced to 0.75 dB / turn or less, and G.I. 657. A1 standard can be satisfied.
  • the bending loss at a wavelength of 1550 nm when bent with a diameter of 20 mm may be simply referred to as a bending loss below.
  • the mode field diameter (MFD) at a wavelength of 1310 nm can be 8.6 ⁇ m or more and 9.2 ⁇ m or less, and the cable cutoff wavelength ( ⁇ cc) can be set to 1260 nm or less.
  • the optical fiber 10 has a G.I. Highly compliant with 652 standard or G657 standard.
  • the core diameter 2a of the central core portion 11 is set so that the cable cutoff wavelength is 1000 nm or more and 1260 nm or less. Further, when the cable cutoff wavelength is 1000 nm or more, it is preferable from the viewpoint of reducing the macro bend loss.
  • the conditions for ⁇ 1 and ⁇ Clad for the optical fiber 10 to satisfy the above optical characteristics are, for example, ⁇ 1- ⁇ Clad of 0.34% or more and 0.40% or less.
  • optical fiber according to the embodiment will be described with reference to the result of the simulation calculation.
  • FIG. 3 is a diagram showing an example of the relationship between ( ⁇ 1- ⁇ Clad) and bending loss.
  • ⁇ 1- ⁇ Clad is set to various values of 0.34% or more and 0.40% or less, and parameters such as ⁇ 2, ⁇ 3, 2a, b / a, and c / a are comprehensively set to various values.
  • the optical characteristics were calculated by changing to and combining.
  • ⁇ 1- ⁇ Clad when ⁇ 1- ⁇ Clad is 0.34% or more and 0.40% or less, it can be set to 0.75 dB / turn or less by various combinations of parameters, and further, G.I. 657. It was confirmed that it can be set to 0.1 dB / turn or less, which meets the A2 standard. Further, in order to reduce the bending loss to 0.75 dB / turn or less, for example,
  • the zero dispersion wavelength is 1300 nm or more and 1324 nm or less, and the dispersion slope at the zero dispersion wavelength is 0.092 ps / nm 2 / km or less. Furthermore, many characteristics were obtained in which the dispersion slope was 0.073 ps / nm 2 / km or more. These characteristics are described in G.M. It is a characteristic with high conformity to the 652 standard or the G657 standard.
  • the sample numbers Nos. The measurement results of transmission loss, bending loss, MFD, and ⁇ cc were shown for the optical fibers 1 to 34.
  • the core dopant added to the core portion was also set in various ways. For example, Cl 2 + F is a case where chlorine and fluorine are used as core dopants, and K + Na + Cl 2 is a case where potassium, sodium and chlorine are used as core dopants.
  • ⁇ 1 is 0.05% or more
  • ⁇ Crad is less than 0%
  • b / a is 1.8 or more and 4.0 or less
  • c / a is 3.4 or more and 7.0 or less
  • ⁇ 1- ⁇ Clad is 0.34% or more and 0.40% or less
  • is 0.26% or less
  • ⁇ 2- ⁇ Clad is -0.05% or more and 0.05% or less
  • the central core diameter is 7.7 ⁇ m or more and 8.7 ⁇ m or less
  • ⁇ 2 is -0.32% or more and -0.19% or less
  • ⁇ 3 is -0.55% or more and -0.39% or less
  • ⁇ clad is -0.32% or more and -0.
  • ⁇ 1 0.12%
  • ⁇ 2 is -0.25%
  • ⁇ 3 is -0.43%
  • ⁇ clad is -0.25%
  • ⁇ 2- ⁇ clad is 0%
  • b / a is 2.2
  • c / a is 4, 2a is 8.3 ⁇ m
  • the core dopant is chlorine (Cl).
  • the transmission loss at a wavelength of 1550 nm is 0.17 dB / km
  • the bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm is 1.1 dB / m
  • the MFD is 8.82 ⁇ m
  • the ⁇ cc is 1248 nm.
  • ⁇ 1 0.08%
  • ⁇ 2 is ⁇ 0.29%
  • ⁇ 3 is ⁇ 0.45%
  • ⁇ clad is ⁇ 0.29%
  • ⁇ 1- ⁇ Clad is 0. 37%
  • core dopant Cl 2 wavelength 1550 nm
  • the transmission loss is 0.17 dB / km and the diameter is 20 mm
  • the bending loss at a wavelength of 1550 nm is 1.6 dB / m
  • the MFD is 8.83 ⁇ m
  • the ⁇ cc is 1241 nm.
  • ⁇ 1 0.09%
  • ⁇ 2 is ⁇ 0.28%
  • ⁇ 3 is ⁇ 0.4%
  • ⁇ clad is ⁇ 0.28%
  • ⁇ 1- ⁇ Clad is 0. 37%
  • core dopant Cl 2 transmission loss at wavelength 1550 nm
  • the bending loss at a wavelength of 1550 nm when bent at 0.166 dB / km and a diameter of 20 mm is 1.5 dB / m
  • the MFD is 8.84 ⁇ m
  • the ⁇ cc is 1250 nm.
  • the present invention is not limited to the above embodiments.
  • the present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • optical fiber according to the present invention can be suitably used in the field of optical communication such as data com and telecom.
  • Optical fiber 11 Central core portion 12: Intermediate layer 13: Trench layer 14: Clad portion P11, P12, P13, P14: Profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

低伝送損失かつ低曲げ損失を実現しやすく、かつ製造が容易な光ファイバを提供することを目的とする。光ファイバ(10)は、中心コア部(11)と、前記中心コア部の外周に形成された中間層(12)と、前記中間層の外周に形成されたトレンチ層(13)とを有するコア部と、前記コア部の外周に形成されたクラッド部(14)と、を備え、前記中心コア部はゲルマニウム(Ge)を含まず、純石英ガラスに対する、前記中心コア部の平均の最大比屈折率差をΔ1、前記中間層の平均比屈折率差をΔ2、前記トレンチ層の平均比屈折率差をΔ3とすると、Δ1>Δ2>Δ3、が成り立ち、かつ、Δ1が0.05%以上であり、前記中間層(12)、前記トレンチ層(13)、および前記クラッド部(14)は、フッ素(F)と塩素(Cl)のみが添加された石英系ガラスからなる。

Description

光ファイバ
 本発明は、光ファイバに関する。
 光ファイバにおいて、低伝送損失や低曲げ損失の特性を実現するための様々な技術が開示されている。たとえば、特許文献1、2では、単峰型やW型の屈折率プロファイルを採用し、コア部に添加するドーパントを調整して屈折率を純石英ガラスの屈折率に近づけることによって、低伝送損を実現する技術が開示されている。また、特許文献3では、トレンチ型の屈折率プロファイルを採用し、かつトレンチ層の屈折率を比較的低くすることによって、低曲げ損失を実現する技術が開示されている。
 しかしながら、コア部の屈折率を純石英ガラスの屈折率に近づける技術と、トレンチ層の屈折率を低くする技術の両立は困難である。これに対して、特許文献4では、トレンチ型の屈折率プロファイルを採用しつつ、トレンチ層にフッ素(F)とホウ素(B)とを共ドープすることによって、低曲げ損失を実現する技術が開示されている。
 なお、光ファイバの低曲げ損失に関する規格としては、ITU-T(国際電気通信連合)G.657で定義される規格(以下、G.657規格などと記載する場合がある)が知られている。たとえば、G.657.A1規格では、直径20mmで曲げた場合の波長1550nmにおける曲げ損失が0.75dB/turn以下であることが規定されている。
国際公開第00/042458号 特表2018-516386号公報 特開2012-027454号公報 特表2012-514772号公報
 しかしながら、トレンチ層にFとBとを共ドープする技術は、製造工程が複雑になるので、光ファイバの製造の難易度が高くなる。
 本発明は、上記に鑑みてなされたものであって、その目的は、低伝送損失かつ低曲げ損失を実現しやすく、かつ製造が容易な光ファイバを提供することにある。
 上述した課題を解決し、目的を達成するために、本発明の一態様は、中心コア部と、前記中心コア部の外周を取り囲む中間層と、前記中間層の外周を取り囲むトレンチ層と、前記トレンチ層の外周を取り囲むクラッド部と、を備え、前記中心コア部はゲルマニウム(Ge)を含まない石英系ガラスからなり、純石英ガラスに対する、前記中心コア部の平均の最大比屈折率差をΔ1、前記中間層の平均比屈折率差をΔ2、前記トレンチ層の平均比屈折率差をΔ3、前記クラッド部の平均比屈折率差をΔCladとすると、Δ1>Δ2>Δ3かつΔClad>Δ3が成り立ち、Δ1が0.05%以上であり、前記中間層、前記トレンチ層、および前記クラッド部は、フッ素(F)および塩素(Cl)のみが添加された石英系ガラスからなり、前記中心コア部のコア径が7.7μm以上8.7μm以下であり、波長1310nmにおけるモードフィールド径が8.6μm以上9.2μm以下であり、ケーブルカットオフ波長が1260nm以下であり、波長1550nmにおける伝送損失が0.18dB/km以下である光ファイバである。
 ΔCladが0%未満であるものでもよい。
 直径20mmで曲げた場合の波長1550nmにおける曲げ損失が0.75dB/turn以下であるものでもよい。
 零分散波長が1300nm以上1324nm以下あり、前記零分散波長での分散スロープが0.092ps/nm2/km以下であるものでもよい。
 Δ1-ΔCladが0.34%以上0.40%以下であり、|Δ3-ΔClad|が0.26%以下であるものでもよい。
 Δ2-ΔCladが-0.05%以上0.05%以下であるものでもよい。
 前記中心コア部の中心コア径を2a、前記トレンチ層の内径、外径をそれぞれ2b、2cとしたときに、b/aが1.8以上4.0以下であり、c/aが3.4以上7.0以下であるものでもよい。
 前記中心コア部の中心コア径が、ケーブルカットオフ波長が1000nm以上1260nm以下になるように設定されているものでもよい。
 前記中心コア部は、塩素(Cl)、フッ素(F)、カリウム(K)およびナトリウム(Na)の少なくとも一つが添加された石英系ガラスからなるものでもよい。
 本発明によれば、低伝送損失かつ低曲げ損失を実現しやすく、かつ製造が容易な光ファイバを実現できるという効果を奏する。
図1は、実施形態に係る光ファイバの模式的な断面図である。 図2は、実施形態に係る光ファイバの屈折率プロファイルの模式図である。 図3は、(Δ1-ΔClad)と、曲げ損失との関係の一例を示す図である。
 以下に、図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、各図面において、同一または対応する構成要素には適宜同一の符号を付している。また、本明細書においては、カットオフ波長または実効カットオフ波長とは、ITU-T G.650.1で定義するケーブルカットオフ波長をいう。また、その他、本明細書で特に定義しない用語についてはG.650.1およびG.650.2における定義、測定方法に従うものとする。
(実施形態)
 図1は、実施形態に係る光ファイバの模式的な断面図である。光ファイバ10は、石英系ガラスからなり、中心コア部11と、中心コア部11の外周を取り囲む中間層12と、中間層12の外周を取り囲むトレンチ層13と、トレンチ層13の外周を取り囲むクラッド部14と、を備える。なお、光ファイバ10は、クラッド部14の外周を取り囲む被覆層を備えていてもよい。
 図2は、光ファイバ10の屈折率プロファイルを示す図である。プロファイルP11は中心コア部11の屈折率プロファイルであり、いわゆるステップ型を有する。プロファイルP12は中間層12の屈折率プロファイルである。プロファイルP13はトレンチ層13の屈折率プロファイルである。プロファイルP14はクラッド部14の屈折率プロファイルである。
 ここで、中心コア部11の屈折率プロファイルは、幾何学的に理想的な形状のステップ型である場合だけでなく、頂部の形状が平坦ではなく製造特性により凹凸が形成されたり、頂部から裾を引くような形状となっていたりする場合がある。この場合、製造設計上の中心コア部11のコア径2aの範囲内における、屈折率プロファイルの頂部で略平坦である領域の屈折率が、Δ1を決定する指標となる。
 光ファイバ10の構造パラメータについて説明する。上述したように、中心コア部11のコア径は2aである。また、中間層12の外径すなわちトレンチ層13の内径は2bであり、トレンチ層13の外径は2cである。したがって、トレンチ層13の幅(トレンチ幅)は(c-b)である。
 また、純石英ガラスの屈折率に対する中心コア部11の平均の最大屈折率の比屈折率差(最大比屈折率差)はΔ1である。純石英ガラスの屈折率に対する中間層12の屈折率の平均比屈折率差はΔ2である。純石英ガラスの屈折率に対するトレンチ層13の屈折率の平均比屈折率差はΔ3である。純石英ガラスの屈折率に対するクラッド部14の屈折率の平均比屈折率差はΔCladである。ここで、純石英ガラスとは、屈折率を変化させるドーパントを実質的に含まず、波長1550nmにおける屈折率が約1.444である、きわめて高純度の石英ガラスである。
 Δ1、Δ2、Δ3、ΔCladについては、Δ1>Δ2>Δ3かつΔClad>Δ3が成り立つ。すなわち、光ファイバ10はトレンチ型の屈折率プロファイルを有する。また、本実施形態では、ΔCladは0%未満である。
 光ファイバ10の構成材料について説明する。中心コア部11は、屈折率を高める屈折率調整用のドーパントとして通常使用されるゲルマニウム(Ge)を含まない石英系ガラスからなる。たとえば、中心コア部11は、塩素(Cl)、フッ素(F)、カリウム(K)およびナトリウム(Na)の少なくとも一つ、たとえば2以上をドーパントとして含む。Fは石英ガラスの屈折率を低下させ、Cl、KおよびNaは石英ガラスの屈折率を上昇させるドーパントである。これらのドーパントの1つまたは2つ以上の組み合わせにより屈折率が調整されることによって、中心コア部11は、Δ1が0.05%以上となっている。Δ1を0.05%以上とするためのドーパントはこれらに限定されないが、Geのようにレイリー散乱を増加させるドーパントでないことが好ましい。
 一方、中間層12、トレンチ層13、およびクラッド部14は、FおよびClのみが添加された石英系ガラスからなる。これらのドーパントにより屈折率が調整されることによって、中心コア部11は、Δ1が0.05%以上となっている。これらのドーパントにより屈折率が調整されることによって、Δ1>Δ2>Δ3かつΔClad>Δ3が成り立っている。
 本実施形態に係る光ファイバ10は、中心コア部11のΔ1が比較的低い0.05%以上であるので、レイリー散乱損失が比較的抑制され、伝送損失を低減しやすい。また、光ファイバ10では、屈折率プロファイルがΔ1>Δ2>Δ3かつΔClad>Δ3というトレンチ型であり、中間層12、トレンチ層13、およびクラッド部14が、FおよびClのみが添加された石英系ガラスからなるので、低曲げ損失を実現しやすく、かつ製造が容易である。
 中心コア部11、中間層12、トレンチ層13、およびクラッド部14を、上記のドーパントを含むようにすることは、VAD(Vapor Axial Deposition)法やOVD(Outside Vapor Deposition)法などを用いた公知の方法で光ファイバ母材を製造し、この光ファイバ母材から光ファイバ10を製造することによって容易に実現できる。たとえば、F、K、Naなどのドーパントについては、スートの合成時にドーパントを含むガスを用いることで光ファイバ母材に添加することができる。また、Clについては、脱水工程において用いる塩素ガスを残留させることによって光ファイバ母材に添加することができる。また、Fについては、ガラス化焼結構成においてフッ素ガスを流すことによって光ファイバ母材に添加することができる。
 なお、中心コア部11のΔ1を0.05%より小さくすると、伝送損失をより低減しやすいが、低曲げ損失を実現するにはトレンチ層13の屈折率をより低く設定する必要があるので、製造が困難である。
 光ファイバ10では、たとえば、波長1550nmにおける伝送損失を0.18dB/km以下にすることができる。また、光ファイバ10では、たとえば、直径20mmで曲げた場合の波長1550nmにおける曲げ損失を0.75dB/turn以下にでき、G.657.A1規格を満たすことができる。なお、直径20mmで曲げた場合の波長1550nmにおける曲げ損失を、以下では単に曲げ損失と記載する場合がある。
 また、光ファイバ10では、波長1310nmにおけるモードフィールド径(MFD)を8.6μm以上9.2μm以下であり、ケーブルカットオフ波長(λcc)を1260nm以下にすることができる。これにより、光ファイバ10は、MFD、λccについて、G.652規格またはG657規格への適合性が高い。この場合、中心コア部11のコア径2aが、ケーブルカットオフ波長が1000nm以上1260nm以下になるように設定されることが好ましい。また、ケーブルカットオフ波長が1000nm以上であれば、マクロベンド損失を低減する観点から好ましい。
 光ファイバ10が上記の光学特性を満たすためのΔ1、ΔCladについての条件は、たとえば、Δ1-ΔCladが0.34%以上0.40%以下である。
 以下、実施形態に係る光ファイバについて、シミュレーション計算の結果を参照して説明する。
 図3は、(Δ1-ΔClad)と、曲げ損失との関係の一例を示す図である。図3は、Δ1-ΔCladを0.34%以上0.40%以下の様々な値に設定し、さらにΔ2、Δ3、2a、b/a、c/aなどのパラメータを様々な値に網羅的に変化させて組み合わせて光学特性の計算を行ったものである。
 図3に示すように、Δ1-ΔCladが0.34%以上0.40%以下の場合において、パラメータの様々な組み合わせにて、0.75dB/turn以下にでき、さらにはG.657.A2規格を満たす0.1dB/turn以下にもできることが確認された。また、曲げ損失を0.75dB/turn以下とするには、たとえば、|Δ3-ΔClad|が0.25%以下である、Δ2-ΔCladが-0.05%以上0.05%以下である、b/aが1.8以上4.0以下である、または、c/aが3.4以上7.0以下であることが好ましいことが確認された。
 また、曲げ損失を0.75dB/turn以下とするのに好ましい条件にて、零分散波長が1300nm以上1324nm以下あり、零分散波長での分散スロープが0.092ps/nm2/km以下であり、さらには分散スロープが0.073ps/nm2/km以上であるという特性が多く得られた。これらの特性は、G.652規格またはG657規格への適合性が高い特性である。
 さらに、表1および表2には、様々なΔ1、Δ2、Δ3、ΔClad、b/a、c/a、2aの数値の組み合わせで設計して製造した、サンプル番号No.1~34の光ファイバについて、伝送損失、曲げ損失、MFD,λccの測定結果を示した。なお、コア部に添加したコアドーパントについても様々に設定した。たとえば、Cl2+Fとは、塩素とフッ素とをコアドーパントして用いた場合であり、K+Na+Cl2とは、カリウムとナトリウムと塩素とをコアドーパントして用いた場合である。
 表1および表2に示すように、Δ1が0.05%以上、ΔCladが0%未満、b/aが1.8以上4.0以下、c/aが3.4以上7.0以下、Δ1-ΔCladが0.34%以上0.40%以下、|Δ3-ΔClad|が0.26%以下、Δ2-ΔCladが-0.05%以上0.05%以下であって、中心コア径が7.7μm以上8.7μm以下、Δ2が-0.32%以上-0.19%以下、Δ3が-0.55%以上-0.39%以下、Δcladが-0.32%以上-0.19%以下、伝送損失が0.18dB/km以下、曲げ損失が1.6dB/m以下、すなわち0.75dB/turn以下、MFDが8.6μm以上9.2μm以下、λccが1000nm以上1260nm以下という望ましい特性が得られた。なお、Δ3は-0.55%以上であり、添加すべきFの量を比較的少なく、かつ容易に添加できる程度にできた。
 表1および表2に示すそれぞれの数値は、以下の例に示すように明細書中に明示されているものである。以下に例として挙げたサンプル番号以外のサンプル番号についても、表1および表2に記載されている数値は、以下と同様に明細書中に記載されているものである。
 すなわち、例えば表2におけるサンプル番号「No.19」においては、Δ1が0.12%、Δ2が-0.25%、Δ3が-0.43%、Δcladが-0.25%、Δ1-ΔCladが0.37%、Δ2-Δcladが0%、|Δ3-ΔClad|が0.18%、b/aが2.2、c/aが4、2aが8.3μm、コアドーパントが塩素(Cl2)、波長1550nmにおける伝送損失が0.17dB/km、直径20mmで曲げた場合の波長1550nmにおける曲げ損失が1.1dB/m、MFDが8.82μm、λccが1248nmである。
 また、例えばサンプル番号「No.20」においては、Δ1が0.08%、Δ2が-0.29%、Δ3が-0.45%、Δcladが-0.29%、Δ1-ΔCladが0.37%、Δ2-Δcladが0%、|Δ3-ΔClad|が0.16%、b/aが2.2、c/aが4、2aが8.3μm、コアドーパントがCl2、波長1550nmにおける伝送損失が0.17dB/km、直径20mmで曲げた場合の波長1550nmにおける曲げ損失が1.6dB/m、MFDが8.83μm、λccが1241nmである。
 さらに、例えばサンプル番号「No.27」においては、Δ1が0.09%、Δ2が-0.28%、Δ3が-0.4%、Δcladが-0.28%、Δ1-ΔCladが0.37%、Δ2-Δcladが0%、|Δ3-ΔClad|が0.12%、b/aが3、c/aが5、2aが8.2μm、コアドーパントがCl2、波長1550nmにおける伝送損失が0.166dB/km、直径20mmで曲げた場合の波長1550nmにおける曲げ損失が1.5dB/m、MFDが8.84μm、λccが1250nmである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
 本発明に係る光ファイバは、データコムやテレコムなどの光通信の分野に好適に利用できる。
10  :光ファイバ
11  :中心コア部
12  :中間層
13  :トレンチ層
14  :クラッド部
P11、P12、P13、P14 :プロファイル

Claims (9)

  1.  中心コア部と、
     前記中心コア部の外周を取り囲む中間層と、
     前記中間層の外周を取り囲むトレンチ層と、
     前記トレンチ層の外周を取り囲むクラッド部と、
     を備え、
     前記中心コア部はゲルマニウム(Ge)を含まない石英系ガラスからなり、
     純石英ガラスに対する、前記中心コア部の平均の最大比屈折率差をΔ1、前記中間層の平均比屈折率差をΔ2、前記トレンチ層の平均比屈折率差をΔ3、前記クラッド部の平均比屈折率差をΔCladとすると、Δ1>Δ2>Δ3かつΔClad>Δ3が成り立ち、
     Δ1が0.05%以上であり、
     前記中間層、前記トレンチ層、および前記クラッド部は、フッ素(F)および塩素(Cl)のみが添加された石英系ガラスからなり、
     前記中心コア部のコア径が7.7μm以上8.7μm以下であり、
     波長1310nmにおけるモードフィールド径が8.6μm以上9.2μm以下であり、ケーブルカットオフ波長が1260nm以下であり、
     波長1550nmにおける伝送損失が0.18dB/km以下である
     光ファイバ。
  2.  ΔCladが0%未満である
     請求項1に記載の光ファイバ。
  3.  直径20mmで曲げた場合の波長1550nmにおける曲げ損失が0.75dB/turn以下である
     請求項1または2に記載の光ファイバ。
  4.  零分散波長が1300nm以上1324nm以下あり、前記零分散波長での分散スロープが0.092ps/nm2/km以下である
     請求項1~3のいずれか一つに記載の光ファイバ。
  5.  Δ1-ΔCladが0.34%以上0.40%以下であり、|Δ3-ΔClad|が0.26%以下である
     請求項1~4のいずれか一つに記載の光ファイバ。
  6.  Δ2-ΔCladが-0.05%以上0.05%以下である
     請求項1~5のいずれか一つに記載の光ファイバ。
  7.  前記中心コア部のコア径を2a、前記トレンチ層の内径、外径をそれぞれ2b、2cとしたときに、b/aが1.8以上4.0以下であり、c/aが3.4以上7.0以下である
     請求項1~6のいずれか一つに記載の光ファイバ。
  8.  前記中心コア部のコア径が、ケーブルカットオフ波長が1000nm以上1260nm以下になるように設定されている
     請求項1~7のいずれか一つに記載の光ファイバ。
  9.  前記中心コア部は、塩素(Cl)、フッ素(F)、カリウム(K)およびナトリウム(Na)の少なくとも一つが添加された石英系ガラスからなる
     請求項1~8のいずれか一つに記載の光ファイバ。
PCT/JP2021/010704 2020-03-27 2021-03-16 光ファイバ WO2021193260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022509993A JPWO2021193260A1 (ja) 2020-03-27 2021-03-16
CN202180024028.7A CN115335742B (zh) 2020-03-27 2021-03-16 光纤
EP21774304.6A EP4130819A4 (en) 2020-03-27 2021-03-16 OPTICAL FIBER
US17/930,547 US11899239B2 (en) 2020-03-27 2022-09-08 Optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057392 2020-03-27
JP2020-057392 2020-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/930,547 Continuation US11899239B2 (en) 2020-03-27 2022-09-08 Optical fiber

Publications (1)

Publication Number Publication Date
WO2021193260A1 true WO2021193260A1 (ja) 2021-09-30

Family

ID=77891813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010704 WO2021193260A1 (ja) 2020-03-27 2021-03-16 光ファイバ

Country Status (5)

Country Link
US (1) US11899239B2 (ja)
EP (1) EP4130819A4 (ja)
JP (1) JPWO2021193260A1 (ja)
CN (1) CN115335742B (ja)
WO (1) WO2021193260A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042458A1 (fr) 1999-01-18 2000-07-20 Sumitomo Electric Industries, Ltd. Fibre optique et son procede de fabrication
JP2012027454A (ja) 2010-07-02 2012-02-09 Draka Comteq Bv 単一モード光ファイバおよび光システム
JP2016081067A (ja) * 2014-10-21 2016-05-16 オーエフエス ファイテル,エルエルシー 低損失光ファイバ及びその製造方法
US20170146733A1 (en) * 2015-11-24 2017-05-25 Corning Incorporated Raman-enhanced transmission fiber
JP2018525661A (ja) * 2015-06-30 2018-09-06 コーニング インコーポレイテッド 大きい有効面積及び低い曲げ損失を有する光ファイバ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853833B2 (ja) * 2003-04-11 2006-12-06 株式会社フジクラ 光ファイバ
JP2008058664A (ja) * 2006-08-31 2008-03-13 Furukawa Electric Co Ltd:The 光ファイバおよび光ファイバテープならびに光インターコネクションシステム
JP2008058663A (ja) * 2006-08-31 2008-03-13 Furukawa Electric Co Ltd:The 光ファイバおよび光ファイバテープならびに光インターコネクションシステム
CN102221726A (zh) * 2008-02-22 2011-10-19 住友电气工业株式会社 光纤及光缆
US8428415B2 (en) 2009-01-09 2013-04-23 Corning Incorporated Bend insensitive optical fibers with low refractive index glass rings
KR20100091710A (ko) * 2009-02-11 2010-08-19 엘에스전선 주식회사 구부림 손실 특성이 개선된 광섬유 제조 방법 및 이 방법으로 제조된 광섬유
CN101598834B (zh) * 2009-06-26 2011-01-19 长飞光纤光缆有限公司 一种单模光纤及其制造方法
US8385701B2 (en) * 2009-09-11 2013-02-26 Corning Incorporated Low bend loss optical fiber
US8588569B2 (en) * 2011-11-30 2013-11-19 Corning Incorporated Low bend loss optical fiber
US8995803B2 (en) * 2012-02-19 2015-03-31 Corning Incorporated Mode delay managed few moded optical fiber link
KR20130116009A (ko) * 2012-04-12 2013-10-22 신에쓰 가가꾸 고교 가부시끼가이샤 광섬유
KR101436723B1 (ko) * 2012-04-26 2014-09-01 신에쓰 가가꾸 고교 가부시끼가이샤 광섬유
CN102645699B (zh) * 2012-05-02 2015-03-04 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
CN103941334A (zh) * 2014-04-21 2014-07-23 长飞光纤光缆股份有限公司 一种低衰耗单模光纤
JP6817957B2 (ja) 2015-04-15 2021-01-20 コーニング インコーポレイテッド フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
JP7409299B2 (ja) * 2018-03-07 2024-01-09 住友電気工業株式会社 光ファイバ
JP7214352B2 (ja) * 2018-03-08 2023-01-30 古河電気工業株式会社 光ファイバ
WO2019226477A1 (en) * 2018-05-25 2019-11-28 Corning Incorporated Single-mode large effective area optical fibers with low cutoff wavelength
JP7371011B2 (ja) * 2018-12-12 2023-10-30 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JPWO2020162406A1 (ja) * 2019-02-05 2021-12-16 古河電気工業株式会社 光ファイバ
JP7019617B2 (ja) * 2019-02-07 2022-02-15 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP7060532B2 (ja) * 2019-02-25 2022-04-26 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042458A1 (fr) 1999-01-18 2000-07-20 Sumitomo Electric Industries, Ltd. Fibre optique et son procede de fabrication
JP2012027454A (ja) 2010-07-02 2012-02-09 Draka Comteq Bv 単一モード光ファイバおよび光システム
JP2016081067A (ja) * 2014-10-21 2016-05-16 オーエフエス ファイテル,エルエルシー 低損失光ファイバ及びその製造方法
JP2018525661A (ja) * 2015-06-30 2018-09-06 コーニング インコーポレイテッド 大きい有効面積及び低い曲げ損失を有する光ファイバ
US20170146733A1 (en) * 2015-11-24 2017-05-25 Corning Incorporated Raman-enhanced transmission fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130819A4

Also Published As

Publication number Publication date
CN115335742B (zh) 2024-08-20
US20230020502A1 (en) 2023-01-19
EP4130819A1 (en) 2023-02-08
EP4130819A4 (en) 2024-03-20
US11899239B2 (en) 2024-02-13
JPWO2021193260A1 (ja) 2021-09-30
CN115335742A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
JP7190236B2 (ja) フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
WO2020162209A1 (ja) 光ファイバおよび光ファイバの製造方法
JP5881213B2 (ja) シングルモード光ファイバ
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
CN117136321A (zh) 光纤
JP5799903B2 (ja) シングルモード光ファイバ
JP7455079B2 (ja) 光ファイバ
WO2023042769A1 (ja) 光ファイバ
WO2021193260A1 (ja) 光ファイバ
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
US11506837B2 (en) Optical fiber and method for manufacturing optical fiber
WO2022131161A1 (ja) 光ファイバ、光ファイバの設計方法および光ファイバの製造方法
WO2022075118A1 (ja) 光ファイバ
CN113552666A (zh) 光纤
JP7508233B2 (ja) 光ファイバならびに光ファイバおよび光ファイバ母材の製造方法
WO2024122510A1 (ja) 光ファイバ
WO2023085134A1 (ja) 光ファイバ
WO2023228743A1 (ja) 光ファイバ
WO2023112968A1 (ja) 光ファイバ
JP7527114B2 (ja) 光ファイバ
WO2022215603A1 (ja) 光ファイバ
WO2023054620A1 (ja) 光ファイバおよびその製造方法
WO2022181614A1 (ja) 光ファイバ
JP3850235B2 (ja) 分散補償光ファイバ、これを用いた光ファイバ伝送路、および前記分散補償光ファイバの製造方法
JP2024134644A (ja) 光ファイバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509993

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021774304

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021774304

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE