WO2021192866A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2021192866A1
WO2021192866A1 PCT/JP2021/008143 JP2021008143W WO2021192866A1 WO 2021192866 A1 WO2021192866 A1 WO 2021192866A1 JP 2021008143 W JP2021008143 W JP 2021008143W WO 2021192866 A1 WO2021192866 A1 WO 2021192866A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode
light emitting
layer
display device
Prior art date
Application number
PCT/JP2021/008143
Other languages
English (en)
French (fr)
Inventor
修一 大澤
佳克 今関
陽一 上條
光一 宮坂
義史 亀井
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2021192866A1 publication Critical patent/WO2021192866A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/06Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • One embodiment of the present invention relates to a display device having an electrochemical light emitting cell (LEC: Light-emitting Electrical Cell) and a method for manufacturing the display device.
  • LOC electrochemical light emitting cell
  • the light-emitting cell has been attracting attention as a light-emitting element.
  • the light-emitting cell has a structure in which a first electrode, a second electrode, and a light emitting layer containing a light emitting polymer and an ionic liquid are laminated, and a light emitting layer is sandwiched between the first electrode and the second electrode.
  • the light emitting layer contains both electrons and ions, and by applying a voltage between the first electrode and the second electrode, a p-in bond is spontaneously formed to form a light emitting layer. Lights up (see Patent Documents 1 and 2).
  • the conventional light-emitting cell has a problem that the life is shortened because the ionic liquid contained in the light-emitting layer is decomposed when left in the atmosphere. Further, when a full-color display device is manufactured using an electrochemical light-emitting cell, it is difficult to manufacture a display device by separately painting RGB because it is necessary to prepare an ionic liquid for each light-emitting polymer.
  • one of the objects of the embodiment of the present invention is to extend the life of the display device using the light-emitting cell.
  • the display device has a first substrate having a first surface and a second surface opposite to the first surface, a first electrode provided on the second surface, and a first electrode.
  • the display device includes a first substrate having a first surface and a second surface opposite to the first surface, a first electrode provided on the second surface, and a first luminescent polymer. And a first ionic liquid, including a first light emitting layer provided on the first electrode, a second electrode provided on the first light emitting layer, a second light emitting polymer and a second ionic liquid, and a first A second light emitting layer provided on the electrodes via the first light emitting layer and the second electrode, a third electrode provided on the second light emitting layer, and a second substrate provided on the third electrode.
  • a first ionic liquid including a first light emitting layer provided on the first electrode, a second electrode provided on the first light emitting layer, a second light emitting polymer and a second ionic liquid, and a first A second light emitting layer provided on the electrodes via the first light emitting layer and the second electrode, a third electrode provided on the second light emitting layer, and a second substrate provided on the third electrode.
  • a member or region is “above (or below)” another member or region, it is directly above (or directly below) the other member or region, unless otherwise specified. Not only in some cases, but also in the case of being above (or below) the other member or region, that is, including the case where another component is included above (or below) the other member or region. ..
  • the side on which the light-emitting cell 120 is provided with respect to the first substrate is referred to as “upper” or “upper”, and is “upper” or “upper”.
  • the surface viewed from above is referred to as “upper surface” or “upper surface side”, and the opposite is referred to as “lower”, “lower”, “lower surface” or “lower surface side”.
  • FIG. 1 is a development view of a display device according to an embodiment of the present invention.
  • the display device 100 includes a first substrate 101, an element forming layer 140, a first electrode 121, a light emitting layer 123B, a second electrode 122, and a second substrate 102.
  • the first electrode 121, the light emitting layer 123B, and the second electrode 122 constitute the light emitting cell 120.
  • An element forming layer 140 is provided on the first substrate 101.
  • pixel circuits including switching elements for controlling the electrochemical light emitting cell 120 are arranged in a matrix.
  • the light-emitting cell 120 is electrically connected to the switching element, and the light emission of the light-emitting cell 120 is controlled by turning the switching element on or off.
  • the light-emitting cell 120 has a configuration in which a light-emitting layer 123B containing a light-emitting polymer and an ionic liquid is sandwiched between the first electrode 121 and the second electrode 122.
  • the light emitting layer 123 contains both electrons and ions, and by applying a voltage between the first electrode 121 and the second electrode 122, a p-in bond is spontaneously formed.
  • the light emitting layer 123 emits light.
  • the ionic liquid means an organic salt that is liquid at room temperature.
  • a second substrate 102 is provided on the light-emitting cell 120.
  • the first substrate 101 and the second substrate 102 are bonded to each other via an adhesive 115.
  • FIG. 2 is a cross-sectional view when the display device 100 shown in FIG. 1 is cut along the lines A1-A2.
  • FIG. 2 shows a cross section of the light-emitting cells 120_1, 120_2, and 120_3.
  • the light-emitting cells 120_1, 120_2, and 120_3 are not distinguished from each other, they are referred to as the light-emitting cells 120.
  • the first substrate 101 and the second substrate 102 for example, a glass substrate or a plastic substrate is used.
  • the plastic substrate for example, an organic resin such as acrylic, polyimide, polyethylene terephthalate, or polyethylene naphthalate is used.
  • a flexible plastic substrate as the first substrate 101 and the second substrate 102, it is possible to form a display device 100 that can be bent or curved.
  • the first substrate 101 has a first surface 101a and a second surface 101b facing the first surface 101a. Further, the second substrate 102 has a first surface 102a and a second surface 102b facing the first surface 102a.
  • the first surface 102a of the second substrate 102 is a surface on which the light emitted from the light-emitting cell 120 is emitted, and the first surface 102a preferably has a light diffusing effect.
  • the first surface 102a preferably has minute irregularities due to anti-glare treatment.
  • the element forming layer 140 is provided on the second surface 101b of the first substrate 101, and the first electrodes 121_1, 121_2, 121_3 are provided on the element forming layer 140.
  • the first electrodes 121_1, 121_2, and 121_3 are arranged in a matrix, and each of the first electrodes 121_1, 121_2, and 121_3 is electrically connected to the switching element.
  • the first electrode 121 has at least one of an oxide conductive layer and a metal conductive layer.
  • the oxide conductive layer for example, a translucent indium oxide-based conductive layer (for example, ITO) or a zinc oxide-based conductive layer (for example, IZO, ZnO) is used.
  • an MgAg thin film may be used instead of the oxide conductive layer.
  • the metal conductive layer for example, copper, titanium, molybdenum, tantalum, tungsten, or aluminum is used as a single layer or laminated.
  • a light emitting layer 123B is provided on the first electrodes 121_1, 121_2, 121_3 arranged in a matrix.
  • the light emitting layer 123 contains a light emitting polymer and an ionic liquid.
  • the luminescent polymer is not particularly limited as long as it can emit visible light.
  • the light emitting layer 123B emits light in the blue wavelength band, for example. In the following description, the light emitting layer 123 that emits light in the blue wavelength band will be referred to as a light emitting layer 123B.
  • a second electrode 122 is provided on the light emitting layer 123B.
  • the second electrode faces each of the first electrodes 121_1, 121_2, and 121_3 via the light emitting layer 123B.
  • the second electrode 122 has at least one of an oxide conductive layer and a metal conductive layer.
  • an oxide conductive layer for example, a translucent indium oxide-based conductive layer (for example, ITO) or a zinc oxide-based conductive layer (for example, IZO, ZnO) is used.
  • an MgAg thin film may be used instead of the oxide conductive layer.
  • the metal conductive layer for example, copper, titanium, molybdenum, tantalum, tungsten, or aluminum is used as a single layer or laminated.
  • a metal conductive layer is used as the first electrode 121_1, 121_2, 121_3 and an oxide conductive layer is used as the second electrode 122 will be described.
  • the light emitted by the light emitting layer 123B is reflected from the first electrode 121 and emitted from the second electrode 122 side.
  • the film thickness of the first electrode 121 is, for example, 50 nm or more and 150 nm or less.
  • the film thickness of the second electrode 122 is, for example, 50 nm or more and 150 nm or less.
  • the light-emitting cell 120_1 has a configuration in which a light-emitting layer 123B containing a light-emitting polymer and an ionic liquid is sandwiched between the first electrode 121_1 and the second electrode 122. Therefore, when a voltage is applied between the first electrode 121_1 and the second electrode 122, the light emitting layer 123B that spontaneously forms a p-in bond and superimposes on the first electrode 121_1 is formed. It emits light.
  • the light-emitting cells 120_2 and 120_3 also have the same configuration as the light-emitting cells 120_1.
  • a color conversion layer 124G is provided in a region that overlaps with the first electrode 121_2, and a color conversion layer 124R is provided in a region that overlaps with the first electrode 121_3.
  • the color conversion layer 124G and the color conversion layer 124R contain a luminescent polymer. Further, the luminescent polymer contained in the color conversion layers 124G and 124R is not particularly limited as long as it can be excited to emit visible light.
  • the color conversion layer 124G emits light in the green wavelength band, for example, and the color conversion layer 124R emits light in the red wavelength band, for example.
  • the color conversion layer 124 that emits light in the green wavelength band will be referred to as a color conversion layer 124G
  • the color conversion layer 124 that emits light in the red wavelength band will be referred to as a color conversion layer 124R. ..
  • an insulating layer 125 is provided between the region overlapping with the first electrode 121_1 and the color conversion layer 124G and the color conversion layer 124R.
  • an inorganic material or an organic material may be used as long as it is a translucent material.
  • the insulating layer 125 may be an inorganic material such as silicon oxide or silicon nitride, or an organic material such as polyimide, polyamide, acrylic, or epoxy, as long as it has translucency.
  • the light-emitting cell 120_1 when the light-emitting cell 120_1 emits light in the blue wavelength band, the light is emitted from the first surface 102a side of the second substrate 102 via the translucent insulating layer 125. ..
  • the light-emitting cell 120_2 when the light-emitting cell 120_2 emits light in the blue wavelength band, the light in the blue wavelength band is incident on the color conversion layer 124G.
  • the light emitting polymer contained in the color conversion layer 124G is excited to emit light in the green wavelength band, and the light is emitted from the first surface 102a side of the second substrate 102.
  • the light-emitting cell 120_3 when the light-emitting cell 120_3 emits light in the blue wavelength band, the light in the blue wavelength band is incident on the color conversion layer 124R.
  • the light emitting polymer contained in the color conversion layer 124R is excited to emit light in the red wavelength band, and the light is emitted from the first surface 102a side of the second substrate 102.
  • an ionic liquid is applied to the color conversion layers 124G and 124R. It does not have to be included.
  • the adhesive 115 is provided so as to surround the peripheral edges of the first substrate 101 and the second substrate 102. As a result, the first substrate 101 and the second substrate 102 are adhered to each other. Since the light emitting layer 123B deteriorates due to the decomposition of the ionic liquid contained in the light emitting layer 123B, it is preferable that the adhesion between the first substrate 101 and the second substrate 102 is high.
  • FIG. 2 is shown so that the second surface 102b of the second substrate 102 and the light-emitting cell 120 are in contact with each other, but the configuration is not limited to this.
  • An insulating film may be provided between the second surface 102b of the second substrate 102 and the light-emitting cell 120.
  • the insulating film is provided on the second surface 102b side of the second substrate 102.
  • the insulating film may be an inorganic material such as silicon oxide or silicon nitride, or an organic material such as polyimide, polyamide, acrylic, or epoxy, as long as it has translucency.
  • the light in the blue wavelength band is emitted by the light-emitting cell 120_1. Further, the light in the blue wavelength band from the light-emitting cells 120_2 and 120_3 is incident on the color conversion layers 124G and 124R to emit the light in the red wavelength band and the light in the green wavelength band. Therefore, since it is not necessary to apply a voltage to the color conversion layers 124G and 124R, the ionic liquid can be omitted in the color conversion layers 124G and 124R. An insulating layer 125 and color conversion layers 124G and 124R are provided on the light-emitting cell 120. Therefore, since the sealing is strong, it is possible to suppress the decomposition of the ionic liquid contained in the light emitting layer 123B. As a result, the life of the display device 100 can be extended.
  • FIG. 3 is a plan view showing an outline of the element forming layer 140.
  • the first substrate 101 is provided with a display area 103, and a peripheral area 104 is provided around the display area 103.
  • a plurality of pixel circuits 109 are arranged in a matrix in the display area 103. Each of the pixel circuits 109 arranged in this matrix superimposes on each of the light-emitting cells 120.
  • the switching element included in the pixel circuit 109 is electrically connected to the light-emitting cell 120. The light emission of the light-emitting cell 120 is controlled by a switching element.
  • peripheral area 104 is provided with scanning line drive circuits 105a and 105b so as to sandwich the display area 103, and a plurality of terminals 107 are provided at the end of the peripheral area 104 (the end of the first substrate 101). Has been done.
  • a driver IC 106 is provided between the plurality of terminals 107 and the display area 103. Further, the plurality of terminals 107 are connected to the flexible printed circuit board 108.
  • the scanning line drive circuits 105a and 105b are connected to the gate wiring 111 connected to the pixel circuit 109. Further, the driver IC 106 is connected to the data wiring 112 connected to the pixel circuit 109.
  • FIG. 3 shows an example in which the signal line drive circuit is incorporated in the driver IC, the signal line drive circuit may be provided on the first substrate 101 separately from the driver IC 106. Further, the driver IC 106 may be arranged on the first substrate 101 in the form of an IC chip, or may be arranged on the flexible printed circuit board 108.
  • the pixel circuit 109 has a switching element, the gate of the switching element 130 is connected to the gate wiring 111, and the source or drain of the switching element 130 is connected to the data wiring 112.
  • FIG. 4 is an enlarged plan view of a part of the display device 100 according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the display device shown in FIG. 4 cut along the B1-B2 line.
  • FIG. 4 shows a pixel region that emits blue light, a pixel region that emits green light, and a pixel region that emits red light.
  • the pixel region that emits blue light corresponds to a region (region indicated by a chain line) that overlaps with the first electrode 121_1.
  • the pixel region that emits green light corresponds to the region where the color conversion layer 124G is provided.
  • the pixel region that emits red light corresponds to the region where the color conversion layer 124R is provided.
  • An insulating layer 125 is provided on the second electrode 122 except for a region where the color conversion layers 124G and 124R are provided.
  • the color conversion layers 124B, 124G, 124R contain a luminescent polymer.
  • the luminescent polymer contained in the color conversion layers 124B, 124G, and 124R is not particularly limited as long as it can be excited to emit visible light.
  • the color conversion layer 124B emits light in the blue wavelength band, for example, the color conversion layer 124G emits light in the green wavelength band, and the color conversion layer 124R emits light in the red wavelength band, for example.
  • the color conversion layer 124 that emits light in the blue wavelength band will be referred to as a color conversion layer 124B.
  • FIG. 5 describes the detailed structure of the element forming layer 140 and the electrochemical light emitting cells 120_1 and 120_2.
  • a switching element 130 is provided on the first surface 101a of the first substrate 101 via the underlying insulating film 131.
  • the switching element 130 is a transistor and has a semiconductor layer 132, a gate insulating film 133, a gate electrode 134, an interlayer insulating film 135, and a source electrode or a drain electrode 136a, 136b.
  • the underlying insulating film 131 is provided to prevent impurities from being mixed into the semiconductor layer 132 from the first substrate 101.
  • the gate insulating film 133 is provided on the semiconductor layer 132 on the underlying insulating film 131, and the gate electrode 134 is provided so as to superimpose on the semiconductor layer 132.
  • An interlayer insulating film 135 is provided so as to cover the gate electrode 134, and a source electrode or a drain electrode 136a, 136b is provided on the interlayer insulating film 135.
  • the source electrode or drain electrode 136a and 136b are connected to the semiconductor layer 132 via a contact hole formed in the interlayer insulating film 135.
  • the gate electrode 134 is a part of the gate wiring 111
  • the source electrode or the drain electrode 136b is a part of the data wiring 112.
  • An interlayer insulating film 137 is provided on the interlayer insulating film 135 and the source electrode or drain electrode 136a, 136b, and an insulating film 139 is provided on the interlayer insulating film 137.
  • Amorphous silicon, polysilicon, or an oxide semiconductor can be used as the semiconductor layer 132.
  • the gate electrode 134 the source electrode or the drain electrode 136a and 136b, copper, titanium, molybdenum, tantalum, tungsten and aluminum can be used as a single layer or laminated.
  • an inorganic material such as silicon oxide or silicon nitride can be used as the underlying insulating film 131, the gate insulating film 133, the interlayer insulating film 135, and the interlayer insulating film 137.
  • the insulating film 139 preferably has a flattening function, and an organic material such as polyimide, polyamide, acrylic, or epoxy can be used.
  • First electrodes 121_1 and 121_2 are provided on the insulating film 139.
  • the first electrode 121_1 is electrically connected to the source electrode or the drain electrode 136b via the contact holes formed in the interlayer insulating film 137 and the insulating film 139.
  • a light emitting layer 123B is provided on the first electrodes 121_1 and 121_2, and a second electrode 122 is provided on the light emitting layer 123B.
  • a color conversion layer 124G is provided in a region overlapping with the first electrode 121_2, and an insulating layer 125 is provided in the other region.
  • a second substrate 102 is provided on the color conversion layer 124G and the insulating layer 125.
  • FIG. 6A is a diagram illustrating a step of forming the element forming layer 140 on the first substrate 101.
  • the first substrate 101 has a first surface 101a and a second surface 101b facing the first surface 101a.
  • the first surface 101a of the first substrate 101 may be subjected to anti-glare treatment. Further, by setting the thickness of the first substrate 101 to 0.1 mm to 0.3 mm, the thickness of the display device 100 can be reduced. When a diffuser plate or a reflective material is separately provided on the first surface 101a side, the anti-glare treatment may not be applied to the first surface 101a.
  • the element forming layer 140 is formed on the second surface 101b of the first substrate 101.
  • the underlying insulating film 131, the switching element 130, the interlayer insulating film 137 on the switching element 130, and the insulating film 139 included in the element forming layer 140 are formed by a known method.
  • the first electrodes 121_1, 121_2, and 121_3 are formed on the element forming layer 140.
  • a contact hole reaching the source electrode or the drain electrode 136b is formed in the interlayer insulating film 137 and the insulating film 139 of the element forming layer 140.
  • a reflective metal conductive film is formed on the element forming layer 140 (insulating film 139), and the first electrode 121 is formed by a photolithography step. As a result, the first electrode 121 and the source electrode or the drain electrode 136b are electrically connected.
  • FIG. 6B is a diagram illustrating a step of forming the light emitting layer 123B on the first electrodes 121_1, 121_2, 121_3.
  • the light emitting layer 123B is formed on the first electrodes 121_1, 121_2, 121_3 arranged in a matrix.
  • a light emitting material that emits blue light is applied onto the first electrode 121 using a spin coater or a roll coater.
  • a light emitting material may be applied onto the first electrode 121 by using flexographic printing, offset printing, or lift-off.
  • flexographic printing, offset printing, and lift-off may be used.
  • Luminescent materials include luminescent polymers, ionic liquids, and organic solvents.
  • the luminescent polymer examples include various ⁇ -conjugated polymers. Specific examples thereof include polymers of paraphenylene vinylene, fluorene, 1,4-phenylene, thiophene, pyrrole, paraphenylene sulfide, benzothiasiazol, biothiophine or derivatives having a substituent introduced therein, or a copolymer containing them. Can be done.
  • the ionic liquid is a substance that maintains a liquid state at room temperature even though it is an ionic species. As an example, a substance using a phosnium-based raw material can be mentioned, but other raw materials may be used.
  • an ionic liquid and a luminescent polymer are efficiently mixed and used to secure an appropriate viscosity for coating on the insulating film 139 and the first electrodes 121_1, 121_2, 121_3.
  • the organic solvent for example, it is preferable to use at least one selected from the group consisting of toluene, benzene, tetrahydrofuran, carbon disulfide, dimethyl chloride, chlorobenzene and chloroform. In this case, as the organic solvent, only one of these compounds or a combination of two or more of these compounds can be used.
  • the annealing temperature is preferably a temperature at which the light emitting material does not deteriorate, for example, 120 ° C. or lower.
  • Annealing may be performed in the air or in vacuum. Further, annealing may be performed in a nitrogen atmosphere or an argon atmosphere.
  • the organic solvent contained in the light emitting material is evaporated to form a light emitting layer 123B having a light emitting polymer and an ionic liquid.
  • FIG. 7A is a diagram illustrating a step of forming the second electrode 122 on the light emitting layer 123B.
  • the second electrode 122 is formed by using an oxide conductive film by a sputtering method or a thin film deposition method. In the step of forming the second electrode 122, for example, the opposed target sputtering method is suitable.
  • the second electrode 122 is formed on substantially the entire surface of the light emitting layer 123B. When the second electrode 122 is formed on the light emitting layer 123B, it is difficult to process the oxide conductive film on the light emitting layer 123B by performing a photolithography step.
  • the second electrode 122 when the second electrode 122 is formed on the light emitting layer 123B, it is preferable to form the second electrode 122 by a method that does not require a photolithography step.
  • the second electrode 122 is formed by a vapor deposition method using a metal mask. After the formation of the second electrode 122, the organic solvent contained in the light emitting layer 123B may be removed by further annealing.
  • FIG. 7B is a diagram illustrating a process of forming the insulating layer 125 on the second electrode 122. Specifically, it is provided on the second electrode 122 in a region that overlaps with the first electrode 121_1 and a region between the first electrode 121_2 and the first electrode 121_3.
  • the insulating layer 125 may be any material having translucency.
  • the insulating layer 125 may be formed by using an inorganic material such as silicon oxide or silicon nitride, or may be formed by using an organic material such as polyimide, polyamide, acrylic or epoxy. When the insulating layer 125 is formed by using an organic material, it may be formed by coating it by, for example, an inkjet method.
  • FIG. 8A is a diagram illustrating a step of forming the color conversion layers 124R and 124G on the second electrode 122.
  • a light emitting material that emits green light is applied to a region that overlaps with the first electrode 121_2, for example, by an inkjet method.
  • a light emitting material that emits red light is applied to a region that overlaps with the first electrode 121_3, for example, by an inkjet method.
  • the insulating layer 125 and the light emitting material are applied by the inkjet method, they can be formed at the same time, which is preferable.
  • the light emitting material forming the color conversion layers 124R and 124G contains a light emitting polymer and an organic solvent.
  • the luminescent polymer include various ⁇ -conjugated polymers. Specific examples thereof include polymers of paraphenylene vinylene, fluorene, 1,4-phenylene, thiophene, pyrrole, paraphenylene sulfide, benzothiasiazol, biothiophine or derivatives having a substituent introduced therein, or a copolymer containing them. Can be done.
  • the type of the luminescent polymer may be changed according to the color conversion layers 124R and 124G.
  • the organic solvent for example, it is preferable to use at least one selected from the group consisting of toluene, benzene, tetrahydrofuran, carbon disulfide, dimethyl chloride, chlorobenzene and chloroform.
  • the organic solvent only one of these compounds or a combination of two or more of these compounds can be used. In this way, when the color conversion layers 124R and 124G are formed, the luminescent material does not have to contain an ionic liquid.
  • the annealing temperature is preferably a temperature at which the light emitting material does not deteriorate, for example, 120 ° C. or lower. Annealing may be performed in the air or in vacuum. By annealing, the organic solvent contained in the luminescent material is evaporated to form the color conversion layers 124R and 124G having the luminescent polymer.
  • FIG. 8B is a diagram illustrating a step of drawing the adhesive 115 on the first surface 101a of the first substrate 101.
  • the adhesive material 115 is drawn on the first surface 101a of the first substrate 101 so as to surround the peripheral edge of the first electrode 121, for example, using a photocurable resin.
  • the second substrate 102 is attached onto the first substrate 101.
  • Anti-glare treatment is applied to the first surface 102a of the second substrate 102.
  • the thickness of the display device 100 can be reduced.
  • a diffuser plate or a reflective material is separately provided on the first surface 102a side, it is not necessary to apply anti-glare treatment to the first surface 102a.
  • the bonding of the first substrate 101 and the second substrate 102 may be performed in the atmosphere or in a vacuum. After the first substrate 101 and the second substrate 102 are bonded together, the adhesive material 115 is cured by irradiating the adhesive material 115 with light, and the first substrate 101 and the second substrate 102 can be bonded to each other. ..
  • the display device 100 according to the embodiment of the present invention can be manufactured.
  • a plurality of display devices 100 can be manufactured at one time by using a large format substrate.
  • a plurality of light-emitting cells 120 are formed on the first substrate 101, the first substrate 101 and the second substrate 102 are adhered to each other by an adhesive 115, and then individual pieces are formed for each of the plurality of display devices 100. It should be changed.
  • a light-emitting polymer and an ionic liquid are used as the light-emitting layer 123B, and a light-emitting polymer is used as the color conversion layers 124G and 124R. Therefore, since it is not necessary to use an ionic liquid as the color conversion layers 124G and 124R, it is not necessary to prepare an ionic liquid for each emitted color. Therefore, the manufacturing process of the display device 100 can be simplified.
  • the display device 100A having a configuration partially different from that of the display device 100 will be described with reference to FIGS. 9 to 14.
  • the same reference numerals are used for the same configurations as those described in the first embodiment, and the description will be omitted as appropriate for the parts where the explanations overlap.
  • FIG. 9 is a developed view of the display device 100A according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view when the display device shown in FIG. 9 is cut along the line C1-C2.
  • the display device 100A includes a first substrate 101, an element forming layer 140, a first electrode 121, a light emitting layer 123V, a second electrode 122, a color conversion layer 124R, 124G, 124B, a film 126 that blocks ultraviolet rays, and a second substrate 102.
  • the first electrode 121, the color conversion layer 124B, and the second electrode 122 constitute the light-emitting cell 150.
  • An element forming layer 140 is provided on the second surface 101b of the first substrate 101, and an electrochemical light emitting cell 150 is provided on the element forming layer 140.
  • the light-emitting cell 150 has a first electrode 121, a second electrode 122, and a light emitting layer 123V.
  • the light emitting layer 123V contains a light emitting polymer and an ionic liquid.
  • the luminescent polymer is not particularly limited as long as it can emit ultraviolet light.
  • the light emitting layer 123V emits light in the wavelength band of ultraviolet light. Therefore, all of the light-emitting cells 150_1, 150_2, and 150_3 emit light in the ultraviolet wavelength band.
  • the light emitting layer 123 that emits light in the ultraviolet wavelength band will be referred to as a light emitting layer 123V.
  • a color conversion layer 124B is provided in a region that overlaps with the first electrode 121_1, and a color conversion layer 124G is provided in a region that overlaps with the first electrode 121_2.
  • a color conversion layer 124R is provided in a region that overlaps with the 1 electrode 121_3. Therefore, when the light-emitting cell 150_1 emits ultraviolet light, the ultraviolet light is incident on the color conversion layer 124B. As a result, the light emitting polymer contained in the color conversion layer 124B is excited to emit light in the blue wavelength band, and the light is emitted from the first surface 102a of the second substrate 102.
  • the ultraviolet light is incident on the color conversion layer 124G.
  • the light emitting polymer contained in the color conversion layer 124G is excited to emit light in the green wavelength band, and the light is emitted from the first surface 102a of the second substrate 102.
  • the light-emitting cell 150_3 emits ultraviolet light
  • the ultraviolet light is incident on the color conversion layer 124R.
  • the light emitting polymer contained in the color conversion layer 124R is excited to emit light in the green wavelength band, and the light is emitted from the first surface 102a of the second substrate 102.
  • a film 126 that blocks ultraviolet light is provided between the color conversion layers 124B, 124G, 124R and the insulating layer 125 and the second surface 102b of the second substrate 102. As a result, the ultraviolet light emitted from the light-emitting cells 150_1, 150_2, and 150_3 is blocked by the film 126. Therefore, it is possible to suppress the emission of ultraviolet light from the first surface 102a side of the second substrate 102.
  • the light emitting layer 123V that emits ultraviolet light is used as the light emitting cell 150, and the color conversion layers 124B, 124G, 124R excited by the ultraviolet light are mounted on the electrochemical light emitting cell 150. I am using it. Therefore, it is not necessary to prepare the ionic liquid according to each of the color conversion layers 124B, 124G, and 124R. Therefore, the manufacturing process of the display device 100 can be simplified.
  • FIG. 11 is an enlarged plan view of a part of the display device according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the display device shown in FIG. 11 cut along the lines D1-D2.
  • FIG. 11 shows a pixel region that emits blue light, a pixel region that emits green light, and a pixel region that emits red light.
  • the pixel region that emits blue light corresponds to the region where the color conversion layer 124B is provided.
  • the pixel region that emits green light corresponds to the region where the color conversion layer 124G is provided.
  • the pixel region that emits red light corresponds to the region where the color conversion layer 124R is provided.
  • An insulating layer 125 is provided on the second electrode 122 except for a region where the color conversion layers 124B, 124G, and 124R are provided.
  • FIG. 12 describes the detailed structure of the element forming layer 140 and the electrochemical light emitting cells 150_1 and 150_2. Since the structure of the switching element 130 is the same as the structure of the switching element 130 shown in FIG. 5, detailed description thereof will be omitted.
  • First electrodes 121_1 and 121_2 are provided on the insulating film 139.
  • the first electrode 121_1 is electrically connected to the source electrode or the drain electrode 136b via the contact holes formed in the interlayer insulating film 137 and the insulating film 139.
  • a light emitting layer 123V is provided on the first electrodes 121_1 and 121_2, and a second electrode 122 is provided on the light emitting layer 123V.
  • a color conversion layer 124B is provided in a region superimposing on the first electrode 121_1, and a color conversion layer 124G is provided in a region superimposing on the first electrode 121_2.
  • an insulating layer 125 is provided between the color conversion layer 124B and the color conversion layer 124G.
  • a film 126 that blocks ultraviolet rays is provided on the color conversion layers 124B and 124G and the insulating layer 125.
  • a second substrate 102 is provided on the film 126.
  • FIG. 13A is a diagram illustrating a step of forming the light-emitting cell 150 on the element forming layer 140 on the first substrate 101.
  • the step of forming the element forming layer 140 on the second surface 101b of the first substrate 101 is formed by using a known method.
  • a contact hole reaching the source electrode or the drain electrode 136b is formed in the element forming layer 140 and the insulating film 139.
  • a metal conductive film is formed on the insulating film 139, and the first electrodes 121_1, 121_2, and 121_3 are formed by a photolithography step.
  • the first electrode 121_1 is electrically connected to the source electrode or the drain electrode 136b.
  • a light emitting material is applied onto the first electrodes 121_1, 121_2, 121_3.
  • a light emitting material is applied onto the first electrode 121 using a spin coater or a roll coater.
  • Luminescent materials include luminescent polymers, ionic liquids, and organic solvents.
  • the luminescent polymer may be a material capable of emitting ultraviolet light, and is not particularly limited. Further, the ionic liquid can also be appropriately set according to the luminescent polymer.
  • the light emitting material coated on the first electrodes 121_1, 121_2, 121_3 is annealed.
  • the annealing temperature is preferably a temperature at which the light emitting material does not deteriorate, for example, 120 ° C. or lower. Annealing may be performed in the air or in vacuum. By annealing, the organic solvent contained in the light emitting material is evaporated to form a light emitting layer 123V having a light emitting polymer and an ionic liquid.
  • the second electrode 122 is formed by using an oxide conductive film by a sputtering method or a thin film deposition method.
  • the second electrode 122 is formed on substantially the entire surface of the light emitting layer 123. After the formation of the second electrode 122, the organic solvent of the light emitting layer 123 may be removed by further annealing.
  • FIG. 13B is a diagram illustrating a step of forming the insulating layer 125 and the color conversion layers 124B, 124G, 124R on the second electrode 122.
  • an insulating layer 125 is formed between adjacent first electrodes 121, such as between the first electrode 121_1 and the first electrode 121_2, and between the first electrode 121_2 and the first electrode 121_1.
  • a blue light emitting material, a green light emitting material, and a red light emitting material are applied to a region surrounded by the insulating layer 125 and overlapping with the first electrode 121.
  • the insulating layer 125 and the light emitting material are applied by the inkjet method, they can be formed at the same time, which is preferable.
  • the annealing temperature is preferably a temperature at which the light emitting material does not deteriorate, for example, 120 ° C. or lower. Annealing may be performed in the air, in a vacuum, in a nitrogen atmosphere, or in an argon atmosphere.
  • the organic solvent contained in the luminescent material is evaporated to form the color conversion layers 124R, 124G, and 124B having the luminescent polymer and the ionic liquid.
  • FIG. 14A is a diagram illustrating a step of forming a film that blocks ultraviolet light on the second surface 102b of the second substrate 102.
  • FIG. 14B is a diagram illustrating a step of laminating the second substrate 102 on the first substrate 101.
  • the adhesive 115 is drawn on the first surface 101a of the first substrate 101.
  • the adhesive material 115 is formed on the second surface 101b of the first substrate 101 by using, for example, a photocurable resin so as to surround the peripheral edge of the first substrate 101.
  • the color conversion layers 124B, 124G, 124R formed on the second surface 101b of the first substrate 101 and the film 126 formed on the second surface 102b of the second substrate 102 are bonded together.
  • the bonding of the first substrate 101 and the second substrate 102 may be performed in the atmosphere or in a vacuum.
  • the adhesive material 115 is cured by irradiating the adhesive material 115 with light, and the first substrate 101 and the second substrate 102 can be bonded to each other. ..
  • the display device 100A according to the embodiment of the present invention can be manufactured.
  • the display device 100B having a configuration partially different from that of the display device 100A will be described with reference to FIGS. 15 to 20.
  • FIG. 15 is a developed view of the display device 100B according to the embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the display device 100B shown in FIG. 15 when the display device 100B is cut along the lines E1-E2.
  • the display device 100B blocks the first substrate 101, the element forming layer 140, the first electrode 121, the light emitting layer 123V, the second electrode 122, the light emitting layer 128R, 128G, 128B, the third electrode 127, the element forming layer 170, and ultraviolet rays. It has a film 126 and a second substrate 102.
  • the first electrode 121, the light emitting layer 123V, and the second electrode 122 constitute the light emitting cell 150.
  • An element forming layer 140 is provided on the second surface 102b of the first substrate 101, and an electrochemical light emitting cell 150 is provided on the element forming layer 140.
  • the light emitting layer 123V emits light in the wavelength band of ultraviolet light. Therefore, all of the light-emitting cells 150_1, 150_2, and 150_3 emit light in the ultraviolet wavelength band.
  • the description of the element forming layer 140 may be referred to.
  • a light emitting layer 128B is provided in a region superimposing on the first electrode 121_1, and a light emitting layer 128G is provided in a region superimposing on the first electrode 121_2.
  • a light emitting layer 128R is provided in a region that overlaps with 121_3.
  • the light emitting layer 128B contains a light emitting polymer and an ionic liquid
  • the light emitting layer 128G contains a light emitting polymer and an ionic liquid
  • the light emitting layer 128R contains a light emitting polymer and an ionic liquid.
  • a film 126 that blocks ultraviolet light is provided on the second surface 102b of the second substrate 102. Further, the element forming layer 170 is provided in contact with the film 126.
  • the element forming layer 170 has the same structure as the element forming layer 140.
  • the element forming layer 170 is provided with a third electrode 127_1, 127_2, 127_3.
  • the third electrodes 127_1, 127_2, and 127_3 are arranged in a matrix, and each of the third electrodes 127_1, 127_2, and 127_3 is electrically connected to the switching element.
  • As the third electrode 127 a light-transmitting oxide conductive layer is used.
  • the description of the first electrode 121 or the second electrode 122 may be referred to.
  • the third electrode 127_1 faces the first electrode 121_1 with the light emitting layer 128B, the second electrode 122, and the light emitting layer 123V interposed therebetween. Further, the third electrode 127_2 faces the first electrode 121_3 with the light emitting layer 128G, the second electrode 122, and the light emitting layer 123V interposed therebetween. Further, the third electrode 127_3 faces the first electrode 121_3 with the light emitting layer 128R, the second electrode 122, and the light emitting layer 123V interposed therebetween.
  • the light emitting layer 128B emits light in the blue wavelength band
  • the light emitting layer 128G emits light in the green wavelength band
  • the light emitting layer 128R emits light in the red wavelength band.
  • the light emitting layer 128 that emits light in the blue wavelength band is referred to as light emitting layer 128B
  • the light emitting layer 128 that emits light in the green wavelength band is referred to as light emitting layer 128G, and the red wavelength.
  • the light emitting layer 128 that emits light in the band is referred to as a light emitting layer 128R.
  • the second electrode 122, the light emitting layer 128, and the third electrode constitute the light emitting cell 160.
  • Each of the light-emitting cells 160_1, 160_2, and 160_3 is controlled by a switching element included in the element forming layer 170. Therefore, when a voltage is applied between the second electrode 122 and the third electrode 127_1, the light emitting layer 128B emits light, and a voltage is applied between the second electrode 122 and the third electrode 127_1.
  • the light emitting layer 128G emits light, and a voltage is applied between the second electrode 122 and the third electrode 127_3 to cause the light emitting layer 128B to emit light.
  • the light-emitting cells 160_1, 160_2, and 160_3 emit light in the wavelength band of visible light.
  • the light-emitting cell 150 and the light-emitting cell 160 share the second electrode 122. Therefore, when the light emission is controlled by the light-emitting cell 150, it is not necessary to control the light emission of the light-emitting cell 160. That is, the excited light can be emitted by causing the light in the ultraviolet wavelength band emitted from the light-emitting cell 160 into the light emitting layers 128B, 128G, and 128R. Further, when the light emission is controlled by the light-emitting cell 160, it is not necessary to control the light emission of the light-emitting cell 150. Therefore, the display device 100 can display an image by controlling either the light-emitting cell 150 or the light-emitting cell 160.
  • the display may be controlled by controlling the light-emitting cell 160, and any of the light-emitting layers 128B, 128G, and 128R may deteriorate, causing the light-emitting cell 160 to stop emitting light. be.
  • the excitation is utilized by controlling the light emission of the light-emitting cell 150 and causing the ultraviolet light emitted from the light-emitting cell 150 to enter the light-emitting layers 128B, 128G, and 128R.
  • the light emitting layers 128B, 128G, and 128R can be made to emit light.
  • the display may be controlled by controlling the light-emitting cell 150, the light emitting layer 123V may deteriorate, and the light-emitting cell 150 may not emit light.
  • the light emitting layers 128B, 128G, and 128R can be made to emit light by controlling the light-emitting cell 160. Therefore, even if either the electrochemical light emitting cell 150 or the electrochemical light emitting cell 160 is deteriorated, the life can be extended.
  • FIG. 17 is an enlarged plan view of a part of the display device according to the embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of the display device shown in FIG. 17 cut along the lines F1-F2.
  • FIG. 17 shows a pixel region that emits blue light, a pixel region that emits green light, and a pixel region that emits red light.
  • the pixel region that emits blue light corresponds to the region that overlaps with the light emitting layer 128B and the third electrode 127_1.
  • the pixel region that emits green light corresponds to the region that overlaps with the light emitting layer 128G and the third electrode 127_2.
  • the pixel region that emits red light corresponds to the region that overlaps with the light emitting layer 128R and the third electrode 127_3.
  • An insulating layer 125 is provided on the second electrode 122 except for a region where the light emitting layers 128G and 128R are provided.
  • FIG. 18 describes the detailed structure of the element forming layer 170 and the electrochemical light emitting cell 160.
  • a switching element 180 is provided on the first surface 102a of the second substrate 102 via the underlying insulating film 141.
  • the switching element 180 is a transistor and has a semiconductor layer 142, a gate insulating film 143, a gate electrode 144, an interlayer insulating film 145, and a source electrode or drain electrode 146a and 146b.
  • the underlying insulating film 141 is provided to prevent impurities from being mixed into the semiconductor layer 132 from the second substrate 102.
  • a gate insulating film 143 is provided on the semiconductor layer 142 on the underlying insulating film 141, and a gate electrode 144 is provided so as to superimpose on the semiconductor layer 142.
  • An interlayer insulating film 145 is provided so as to cover the gate electrode 144, and a source electrode or a drain electrode 146a and 146b are provided on the interlayer insulating film 145.
  • the source electrode or drain electrode 146a and 146b are connected to the semiconductor layer 142 via a contact hole formed in the interlayer insulating film 145.
  • the source electrode or drain electrode 146b is a part of the data wiring 112.
  • An interlayer insulating film 147 is provided on the interlayer insulating film 145 and the source electrode or drain electrode 146a and 146b, and an insulating film 149 is provided on the interlayer insulating film 147.
  • Amorphous silicon, polysilicon, or an oxide semiconductor can be used as the semiconductor layer 142.
  • the gate electrode 144, the source electrode or the drain electrode 146a and 146b copper, titanium, molybdenum, tantalum, tungsten and aluminum can be used as a single layer or laminated.
  • the underlying insulating film 141, the gate insulating film 143, the interlayer insulating film 145, and the interlayer insulating film 147 an inorganic material such as silicon oxide or silicon nitride can be used.
  • the insulating film 149 preferably has a flattening function, and an organic material such as polyimide, polyamide, acrylic, or epoxy can be used.
  • Third electrodes 127_1 and 127_2 are provided on the insulating film 149.
  • the third electrode 127_1 is electrically connected to the source electrode or the drain electrode 146b via the contact holes formed in the interlayer insulating film 147 and the insulating film 149.
  • a light emitting layer 128B is provided on the third electrodes 127_1 and 127_2, and a second electrode 122 is provided on the light emitting layer 128B.
  • a light emitting layer 128G is provided in a region overlapping with the first electrode 121_2, and an insulating layer 125 is provided in the other region.
  • a second substrate 102 is provided on the light emitting layer 128G and the insulating layer 125.
  • FIG. 19A is a diagram illustrating a step of forming the light-emitting cell 150 on the element forming layer 140 on the first substrate 101.
  • the description of FIGS. 13A and 13B may be referred to, and detailed description thereof will be omitted.
  • FIG. 19B is a diagram illustrating a process of forming the film 126, the element forming layer 170, and the third electrode 127 on the second surface of the second substrate. Since the step of forming the film 126 on the second surface of the second substrate may refer to the description of FIG. 14A, detailed description thereof will be omitted. Further, the step of forming the element forming layer 170 may refer to the step of forming the element forming layer 140, and the step of forming the third electrode 127_1, 127_2, 127_3 may refer to the description of FIG. 6A.
  • FIG. 20 is a diagram illustrating a process of bonding the second substrate 102 on the first substrate 101.
  • the adhesive 115 is drawn on the first surface 101a of the first substrate 101.
  • the adhesive material 115 is formed on the second surface 101b of the first substrate 101 by using, for example, a photocurable resin so as to surround the peripheral edge of the first substrate 101.
  • the light emitting layers 128B, 128G, 128R formed on the second surface 101b of the first substrate 101 and the film 126 formed on the second surface 102b of the second substrate 102 are bonded together.
  • the bonding of the first substrate 101 and the second substrate 102 may be performed in the atmosphere or in a vacuum.
  • the adhesive material 115 is cured by irradiating the adhesive material 115 with light, and the first substrate 101 and the second substrate 102 can be bonded to each other. ..
  • the display device 100B according to the embodiment of the present invention can be manufactured.
  • the method of forming the second electrode 122 and the light emitting layers 128B, 128G, 128R on the light emitting layer 123V has been described, but the present invention is not limited to this.
  • the light emitting layers 128B, 128G, 128R and the insulating layer 125 may be formed on the third electrode 127_1, 127_2, 127_3.
  • the light emitting layers 128B, 128G, 128R and the insulating layer 125 may face each other with the second electrode 122, and the first substrate 101 and the second substrate 102 may be bonded to each other.

Abstract

表示装置は、第1面及び第1面と反対側の第2面を有する第1基板と、第2面上に設けられた第1電極と、第1電極上に設けられた第1発光ポリマー及び第1イオン液体を含む第1発光層と、第1発光層上に設けられた第2電極と、第1電極上に第1発光層及び第2電極を介して設けられた第1色変換層と、第1色変換層上に設けられた第2基板と、を有する。

Description

表示装置
 本発明の一実施形態は、電気化学発光セル(LEC:Light-emitting Electrochemical Cell)を有する表示装置及び表示装置の製造方法に関する。
 近年、発光素子として電気化学発光セルが注目されている。電気化学発光セルは、第1電極、第2電極、及び発光ポリマー及びイオン液体を含む発光層が積層されており、第1電極と、第2電極との間に、発光層を挟んだ構成を有する。発光層には、電子とイオンの双方が含まれており、第1電極と第2電極との間に電圧を印加することで、自発的にp-i-n結合を形成することで発光層が発光する(特許文献1及び2を参照)。
特開2016-96328号公報 特開2001-267073号公報
 従来の電気化学発光セルでは、大気中に放置すると発光層に含まれるイオン液体が分解してしまうことで、寿命が短くなってしまうという問題があった。また、電気化学発光セルを用いてフルカラーの表示装置を製造する場合、発光ポリマー別にイオン液体を調合する必要があるため、RGBを塗り分けて表示装置を製造することが困難であった。
 上記問題に鑑み、本発明の一実施形態では、電気化学発光セルを用いた表示装置の長寿命化を図ることを目的の一つとする。
 本発明の一実施形態に係る表示装置は、第1面及び第1面と反対側の第2面を有する第1基板と、第2面上に設けられた第1電極と、第1電極上に設けられた第1発光ポリマー及び第1イオン液体を含む第1発光層と、第1発光層上に設けられた第2電極と、第1電極上に第1発光層及び第2電極を介して設けられた第1色変換層と、第1色変換層上に設けられた第2基板と、を有する。
 本発明の一実施形態に係る表示装置は、第1面及び第1面と反対側の第2面を有する第1基板と、第2面上に設けられた第1電極と、第1発光ポリマー及び第1イオン液体を含み、第1電極上に設けられた第1発光層と、第1発光層上に設けられた第2電極と、第2発光ポリマー及び第2イオン液体を含み、第1電極上に第1発光層及び第2電極を介して設けられた第2発光層と、第2発光層上に設けられた第3電極と、第3電極上に設けられた第2基板と、を有する。
本発明の一実施形態に係る表示装置の展開図である。 図1に示す表示装置をA1-A2線に沿って切断したときの断面図である。 素子形成層の概略を示す平面図である。 本発明の一実施形態に係る表示装置の一部を拡大したときの平面図である。 図4に示す表示装置をB1-B2線に沿って切断した断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の展開図である。 図9に示す表示装置をC1-C2線に沿って切断したときの断面図である。 本発明の一実施形態に係る表示装置の一部を拡大したときの平面図である。 図10に示す表示装置をD1-D2線に沿って切断したときの断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の展開図である。 図16に示す表示装置をE1-E2線に沿って切断したときの断面図である。 本発明の一実施形態に係る表示装置の一部を拡大したときの平面図である。 図18に示す表示装置をF1-F2線に沿って切断したときの断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。
 以下、本発明の実施の形態を、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号(又は数字の後にA、Bなどを付した符号)を付して、詳細な説明を適宜省略することがある。さらに各要素に対する「第1」、「第2」と付記された文字は、各要素を区別するために用いられる便宜的な標識であり、特段の説明がない限りそれ以上の意味を有さない。
 本明細書において、ある部材又は領域が他の部材又は領域の「上に(又は下に)」あるとする場合、特段の限定がない限りこれは他の部材又は領域の直上(又は直下)にある場合のみでなく他の部材又は領域の上方(又は下方)にある場合を含み、すなわち、他の部材又は領域の上方(又は下方)において間に別の構成要素が含まれている場合も含む。なお、以下の説明では、特に断りのない限り、断面視において、第1基板に対して電気化学発光セル120が設けられる側を「上」又は「上方」といい、「上」又は「上方」から見た面を「上面」又は「上面側」というものとし、その逆を「下」、「下方」、「下面」又は「下面側」というものとする。
(第1実施形態)
 本発明の一実施形態に係る表示装置100について、図1乃至図8を参照して説明する。
<表示装置100の構成>
 まず、本発明の一実施形態に係る表示装置100の構成について図1及び図2を参照して説明する。図1は、本発明の一実施形態に係る表示装置の展開図である。表示装置100は、第1基板101、素子形成層140、第1電極121、発光層123B、第2電極122、及び第2基板102を有する。本実施形態では、第1電極121、発光層123B、及び第2電極122によって、電気化学発光セル120が構成される。
 第1基板101上には、素子形成層140が設けられている。素子形成層140は、電気化学発光セル120を制御するためのスイッチング素子を含む画素回路がマトリクス状に配置されている。
 また、電気化学発光セル120は、スイッチング素子と電気的に接続されており、スイッチング素子がオン状態又はオフ状態とすることで電気化学発光セル120の発光が制御される。電気化学発光セル120は、第1電極121、第2電極122との間に、発光ポリマー及びイオン液体を含む発光層123Bを挟んだ構成を有する。発光層123には、電子とイオンの双方が含まれており、第1電極121と第2電極122との間に電圧を印加することで、自発的にp-i-n結合を形成することで発光層123が発光する。なお、イオン液体とは、室温で液体の有機塩をいう。
 電気化学発光セル120上には、第2基板102が設けられている。第1基板101と、第2基板102とは、接着材115を介して貼り合わされる。
 図2は、図1に示す表示装置100をA1-A2線に沿って切断したときの断面図である。図2には、電気化学発光セル120_1、120_2、120_3の断面を示している。以降の説明において、電気化学発光セル120_1、120_2、120_3をそれぞれ区別しない場合には、電気化学発光セル120と記載する。また、電気化学発光セル120_1、120_2、120_3のそれぞれの構成要素についても同様である。
 第1基板101及び第2基板102として、例えば、ガラス基板、プラスチック基板を用いる。プラスチック基板として、例えば、アクリル、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等の有機樹脂を用いる。また、第1基板101及び第2基板102として、可撓性を有するプラスチック基板を用いることにより、折り曲げたり、湾曲させたりすることが可能な表示装置100を形成することができる。
 第1基板101は、第1面101a及び第1面101aに対向する第2面101bを有する。また、第2基板102は、第1面102a及び第1面102aに対向する第2面102bを有する。第2基板102の第1面102aは、電気化学発光セル120から発光された光が射出される面であり、第1面102aは光拡散効果を有していることが好ましい。例えば、第1面102aは、アンチグレア処理により、微小な凹凸を有することが好ましい。
 第1基板101の第2面101b上には、素子形成層140が設けられており、素子形成層140上には、第1電極121_1、121_2、121_3が設けられている。第1電極121_1、121_2、121_3はマトリクス状に配置されており、第1電極121_1、121_2、121_3のそれぞれは、スイッチング素子と電気的に接続されている。第1電極121は、酸化物導電層及び金属導電層の少なくとも一方を有する。酸化物導電層として、例えば、透光性を有する酸化インジウム系導電層(例えばITO)や酸化亜鉛系導電層(例えばIZO、ZnO)を用いる。また、透光性を有する導電層として、酸化物導電層に代えてMgAg薄膜を用いてもよい。金属導電層として、例えば、銅、チタン、モリブデン、タンタル、タングステン、アルミニウムを単層又は積層して用いる。
 マトリクス状に配置された第1電極121_1、121_2、121_3上には、発光層123Bが設けられている。発光層123は、発光ポリマー及びイオン液体を含む。発光ポリマーとして、可視光を発することができるものであれば特に限定されない。発光層123Bは、例えば、青色の波長帯域の光を放射する。以降の説明において、青色の波長帯域の光を放射する発光層123を、発光層123Bと記載する。
 発光層123B上に、第2電極122が設けられている。第2電極は、発光層123Bを介して、第1電極121_1、121_2、121_3のそれぞれと対向している。第2電極122は、酸化物導電層及び金属導電層の少なくとも一方を有する。酸化物導電層として、例えば、透光性を有する酸化インジウム系導電層(例えばITO)や酸化亜鉛系導電層(例えばIZO、ZnO)を用いる。また、透光性を有する導電層として、酸化物導電層に代えてMgAg薄膜を用いてもよい。金属導電層として、例えば、銅、チタン、モリブデン、タンタル、タングステン、アルミニウムを単層又は積層して用いる。本実施形態では、第1電極121_1、121_2、121_3として金属導電層を用い、第2電極122として酸化物導電層を用いる場合について説明する。これにより、発光層123Bで発光した光は、第1電極121を反射して、第2電極122側から放射される。第1電極121の膜厚は、例えば、50nm以上150nm以下である。同様に、第2電極122の膜厚は、例えば、50nm以上150nm以下である。
 電気化学発光セル120_1は、第1電極121_1と、第2電極122との間に、発光ポリマー及びイオン液体を含む発光層123Bを挟んだ構成を有する。そのため、第1電極121_1と、第2電極122との間で、電圧が印加されることにより、自発的にp-i-n結合を形成することで第1電極121_1と重畳する発光層123Bが発光する。なお、電気化学発光セル120_2、120_3も、電気化学発光セル120_1と同様の構成を有している。
 第2電極122上において、第1電極121_2と重畳する領域には、色変換層124Gが設けられており、第1電極121_3と重畳する領域には、色変換層124Rが設けられている。色変換層124G及び色変換層124Rは、発光ポリマーを含む。また、色変換層124G、124Rに含まれる発光ポリマーとして、励起されて可視光を発することができるものであれば特に限定されない。色変換層124Gは、例えば、緑色の波長帯域の光を放射し、色変換層124Rは、例えば、赤色の波長帯域の光を放射する。以降の説明において、緑色の波長帯域の光を放射する色変換層124を、色変換層124Gと記載し、赤色の波長帯域の光を放射する色変換層124を、色変換層124Rと記載する。
 また、第2電極122上において、第1電極121_1と重畳する領域、色変換層124Gと色変換層124Rとの間には、絶縁層125が設けられている。絶縁層125として、透光性を有する材料であれば、無機材料、有機材料のいずれの材料を用いてもよい。絶縁層125は、透光性を有していればよく、酸化シリコン、又は窒化シリコン等の無機材料であってもよいし、ポリイミド、ポリアミド、アクリル、エポキシ等の有機材料であってもよい。
 本実施形態では、電気化学発光セル120_1が青色の波長帯域の光を放射した場合、透光性を有する絶縁層125を介して、第2基板102の第1面102a側から光が射出される。電気化学発光セル120_2が青色の波長帯域の光を放射した場合、色変換層124Gに青色の波長帯域の光が入射する。これにより、色変換層124Gに含まれる発光ポリマーが励起されることにより、緑色の波長帯域の光を放射し、第2基板102の第1面102a側から光が射出される。また、電気化学発光セル120_3が青色の波長帯域の光を放射した場合、色変換層124Rに青色の波長帯域の光が入射する。これにより、色変換層124Rに含まれる発光ポリマーが励起されることにより、赤色の波長帯域の光を放射し、第2基板102の第1面102a側から光が射出される。このように、第2電極122上に設けられる色変換層124G、124Rは、電界が印加されることで発光を放射するものでなくてもよいため、色変換層124G、124Rにはイオン液体を含んでいなくてもよい。
 接着材115は、第1基板101及び第2基板102の周縁部を囲むように設けられている。これにより、第1基板101と第2基板102とが接着されている。発光層123Bに含まれるイオン液体が分解することで発光層123Bが劣化してしまうため、第1基板101と第2基板102との密着性は高いことが好ましい。
 なお、図2では、第2基板102の第2面102bと、電気化学発光セル120とが接するように図示しているが、この構成に限定されない。第2基板102の第2面102bと、電気化学発光セル120との間に絶縁膜を設けてもよい。当該絶縁膜は、第2基板102の第2面102b側に設けられる。絶縁膜は、透光性を有していればよく、酸化シリコン又は窒化シリコン等の無機材料であってもよいし、ポリイミド、ポリアミド、アクリル、エポキシ等の有機材料であってもよい。
 従来の電気化学発光セルでは、発光層に含まれるイオン液体が分解してしまうことで、発光層が光らなくなり、寿命が短くなってしまうという問題があった。
 本発明の一実施形態に係る表示装置100では、青色の波長帯域の光は、電気化学発光セル120_1によって射出している。また、電気化学発光セル120_2、120_3からの青色の波長帯域の光を、色変換層124G、124Rに入射させることで、赤色の波長帯域の光及び緑色の波長帯域の光を放射している。そのため、色変換層124G、124Rには、電圧を印加する必要がないため、色変換層124G、124Rではイオン液体を省略することができる。電気化学発光セル120上には、絶縁層125及び色変換層124G、124Rが設けられている。そのため、封止が強固となるため、発光層123Bに含まれるイオン液体が分解することを抑制することができる。これにより、表示装置100の長寿命化を図ることができる。
<素子形成層140の平面図>
 図3は、素子形成層140の概略を示す平面図である。図3に示すように、第1基板101には表示領域103と、表示領域103の周囲には周辺領域104が設けられている。表示領域103には、複数の画素回路109がマトリクス状に配置されている。このマトリクス状に配置された画素回路109の各々が、電気化学発光セル120の各々と重畳する。図3に図示しないが、画素回路109に含まれるスイッチング素子が、電気化学発光セル120と電気的に接続される。電気化学発光セル120の発光は、スイッチング素子によって制御される。
 また、周辺領域104には、表示領域103を挟むように走査線駆動回路105a、105bが設けられ、周辺領域104の端部(第1基板101の端部)には、複数の端子107が設けられている。複数の端子107と表示領域103との間には、ドライバIC106が設けられている。また、複数の端子107は、フレキシブルプリント回路基板108と接続されている。
 走査線駆動回路105a、105bは、画素回路109と接続されるゲート配線111と接続される。また、ドライバIC106は、画素回路109と接続されるデータ配線112と接続される。なお、図3においては、ドライバICに信号線駆動回路が組み込まれている例を示すが、ドライバIC106とは別に第1基板101上に、信号線駆動回路が設けられていてもよい。また、ドライバIC106は、ICチップのような形態で第1基板101に配置してもよいし、フレキシブルプリント回路基板108上に配置してもよい。
 また、図示しないが、画素回路109は、スイッチング素子を有し、スイッチング素子130のゲートが、ゲート配線111と接続され、スイッチング素子130のソース又はドレインが、データ配線112と接続される。
<電気化学発光セル120の構成>
 次に、表示装置100に含まれる電気化学発光セル120の構成について、図4及び図5を参照して説明する。図4は、本発明の一実施形態に係る表示装置100の一部を拡大したときの平面図である。図5は、図4に示す表示装置をB1-B2線に沿って切断した断面図である。
 図4では、青色に発光する画素領域、緑色に発光する画素領域、及び赤色に発光する画素領域を示している。青色に発光する画素領域は、第1電極121_1と重畳する領域(鎖線で示す領域)に相当する。また、緑色に発光する画素領域は、色変換層124Gが設けられる領域に相当する。また、赤色に発光する画素領域は、色変換層124Rが設けられる領域に相当する。第2電極122上において、色変換層124G、124Rが設けられる領域以外は、絶縁層125が設けられている。色変換層124B、124G、124Rは、発光ポリマーを含む。また、色変換層124B、124G、124Rに含まれる発光ポリマーとして、励起されて可視光を発することができるものであれば特に限定されない。色変換層124Bは、例えば、青色の波長帯域の光を放射し、色変換層124Gは、例えば、緑色の波長帯域の光を放射し、色変換層124Rは、例えば、赤色の波長帯域の光を放射する。以降の説明において、青色の波長帯域の光を放射する色変換層124を、色変換層124Bと記載する。
 図5では、素子形成層140及び電気化学発光セル120_1、120_2の詳細な構造について説明する。
 第1基板101の第1面101a上に、下地絶縁膜131を介してスイッチング素子130が設けられている。スイッチング素子130は、具体的には、トランジスタであり、半導体層132、ゲート絶縁膜133、ゲート電極134、層間絶縁膜135、ソース電極又はドレイン電極136a、136bを有する。なお、下地絶縁膜131は、第1基板101から半導体層132に不純物が混入することを防止するために設けられる。下地絶縁膜131上に、半導体層132上に、ゲート絶縁膜133が設けられ、半導体層132に重畳してゲート電極134が設けられる。ゲート電極134を覆うように、層間絶縁膜135が設けられ、層間絶縁膜135上にソース電極又はドレイン電極136a、136bが設けられる。ソース電極又はドレイン電極136a、136bは、層間絶縁膜135に形成されたコンタクトホールを介して、半導体層132に接続されている。なお、ゲート電極134は、ゲート配線111の一部であり、ソース電極又はドレイン電極136bは、データ配線112の一部である。
 層間絶縁膜135、及びソース電極又はドレイン電極136a、136b上には、層間絶縁膜137が設けられており、層間絶縁膜137上には、絶縁膜139が設けられている。
 半導体層132として、アモルファスシリコン、ポリシリコン、又は酸化物半導体を用いることができる。また、ゲート電極134、ソース電極又はドレイン電極136a、136bとして、銅、チタン、モリブデン、タンタル、タングステン、アルミニウムを単層又は積層して用いることができる。また、下地絶縁膜131、ゲート絶縁膜133、層間絶縁膜135、及び層間絶縁膜137として、酸化シリコン又は窒化シリコンなどの無機材料を用いることができる。また、絶縁膜139として、平坦化機能を有することが好ましく、ポリイミド、ポリアミド、アクリル、エポキシ等の有機材料を用いることができる。
 絶縁膜139上には、第1電極121_1、121_2が設けられている。第1電極121_1は、層間絶縁膜137及び絶縁膜139に形成されたコンタクトホールを介して、ソース電極又はドレイン電極136bと電気的に接続される。また、第1電極121_1、121_2上には、発光層123Bが設けられており、発光層123B上に第2電極122が設けられている。第2電極122上において、第1電極121_2と重畳する領域には、色変換層124Gが設けられており、それ以外の領域には絶縁層125が設けられている。また、色変換層124G及び絶縁層125上には、第2基板102が設けられている。
<表示装置100の製造方法>
 次に、本発明の一実施形態に係る表示装置100の製造方法について、図6A乃至図8Bを参照して説明する。
 図6Aは、第1基板101上に素子形成層140を形成する工程を説明する図である。第1基板101は、第1面101a及び第1面101aと対向する第2面101bを有する。第1基板101の第1面101aにアンチグレア処理を施してもよい。また、第1基板101の厚みは、0.1mm~0.3mmとすることで、表示装置100の厚みを小さくすることができる。なお、第1面101a側に拡散板や反射材を別途設ける場合には、第1面101aにアンチグレア処理を施さなくてもよい。第1基板101の第2面101b上に素子形成層140を形成する。素子形成層140に含まれる下地絶縁膜131、スイッチング素子130、スイッチング素子130上の層間絶縁膜137、及び絶縁膜139は、既知の方法を用いて形成する。
 次に、素子形成層140上に、第1電極121_1、121_2、121_3を形成する。まず、素子形成層140の層間絶縁膜137及び絶縁膜139にソース電極又はドレイン電極136bに達するコンタクトホールを形成する。次に、素子形成層140(絶縁膜139)上に、反射性を有する金属導電膜を形成し、フォトリソグラフィー工程により、第1電極121を形成する。これにより、第1電極121とソース電極又はドレイン電極136bとは電気的に接続される。
 図6Bは、第1電極121_1、121_2、121_3上に、発光層123Bを形成する工程を説明する図である。発光層123Bは、マトリクス状に配置された第1電極121_1、121_2、121_3上に形成される。まず、スピンコータ、ロールコータを用いて第1電極121上に青色に発光する発光材料を塗布する。また、フレキソ印刷、オフセット印刷、リフトオフを用いて、第1電極121上に発光材料を塗布してもよい。発光層123Bをパターン化する場合には、フレキソ印刷、オフセット印刷、リフトオフを用いてもよい。発光材料は、発光ポリマー、イオン液体、及び有機溶剤を含む。発光ポリマーとして、各種のπ共役系ポリマーを挙げることができる。具体的には、パラフェニレンビニレン、フルオレン、1,4-フェニレン、チオフェン、ピロール、パラフェニレンスルフィド、ベンゾチアジアゾール、ビオチオフィン若しくはこれらに置換基を導入させた誘導体のポリマー又はこれらを含むコポリマー等を挙げることができる。また、イオン液体とは、イオン種でありながら常温において液体状態を維持する物質であり、一例としては、ホスニウム系を原料とするものが挙げられるが、他の原料を用いても構わない。有機溶媒として、イオン液体と発光ポリマーとを効率よく混合し、絶縁膜139及び第1電極121_1、121_2、121_3上に塗布するための適度な粘度を確保するために用いる。有機溶媒として、例えば、トルエン、ベンゼン、テトラヒドロフラン、二硫化炭素、ジメチルクロライド、クロロベンゼン及びクロロホルムからなる群から選ばれる少なくとも1種を用いることが好ましい。この場合、有機溶媒として、これらの化合物の1種のみを、又は2種以上を組み合わせたもののみを用いることができる。
 次に、第1電極121_1、121_2、121_3上に塗布した発光材料にアニールを行う。アニールの温度は、発光材料が劣化しない温度、例えば、120℃以下で行うことが好ましい。アニールは、大気中で行ってもよいし、真空中で行ってもよい。また、アニールは、窒素雰囲気中、アルゴン雰囲気中で行ってもよい。アニールにより、発光材料に含まれる有機溶剤を蒸発させることにより、発光ポリマー及びイオン液体を有する発光層123Bを形成する。
 図7Aは、発光層123B上に、第2電極122を形成する工程を説明する図である。第2電極122として、スパッタリング法又は蒸着法により酸化物導電膜を用いて形成する。第2電極122を形成する工程においては、例えば対向ターゲット式スパッタリング法が好適である。第2電極122は、発光層123Bのほぼ全面に形成される。発光層123B上に、第2電極122を形成する場合、発光層123B上において、フォトリソグラフィー工程を行って酸化物導電膜を加工ことは困難である。そのため、発光層123B上に、第2電極122を形成する場合には、フォトリソグラフィー工程が不要な方法により形成することが好ましい。例えば、メタルマスクを用いて蒸着法により第2電極122を形成する。第2電極122の形成後に、さらにアニールを行うことで、発光層123Bに含まれる有機溶媒を除去してもよい。
 図7Bは、第2電極122上に、絶縁層125を形成する工程を説明する図である。具体的には、第2電極122上において、第1電極121_1と重畳する領域、及び第1電極121_2と第1電極121_3との間の領域に設けられる。絶縁層125は、透光性を有する材料であればよい。絶縁層125として、例えば、酸化シリコン又は窒化シリコン等の無機材料を用いて形成してもよいし、ポリイミド、ポリアミド、アクリル、エポキシなどの有機材料を用いて形成してもよい。絶縁層125として、有機材料を用いて形成する場合には、例えば、インクジェット法により塗布して形成してもよい。
 図8Aは、第2電極122上に色変換層124R、124Gを形成する工程について説明する図である。具体的には、第2電極122上において、第1電極121_2と重畳する領域に緑色に発光する発光材料を、例えば、インクジェット法により塗布する。また、第2電極122上において、第1電極121_3と重畳する領域に赤色に発光する発光材料を、例えば、インクジェット法により塗布する。なお、絶縁層125及び発光材料の塗布を、インクジェット法により行う場合には、同時に形成することができるため好ましい。
 色変換層124R、124Gを形成する発光材料は、発光ポリマー及び有機溶剤を含む。発光ポリマーとして、各種のπ共役系ポリマーを挙げることができる。具体的には、パラフェニレンビニレン、フルオレン、1,4-フェニレン、チオフェン、ピロール、パラフェニレンスルフィド、ベンゾチアジアゾール、ビオチオフィン若しくはこれらに置換基を導入させた誘導体のポリマー又はこれらを含むコポリマー等を挙げることができる。色変換層124R、124Gに応じて、発光ポリマーの種類が変更されてもよい。有機溶媒として、例えば、トルエン、ベンゼン、テトラヒドロフラン、二硫化炭素、ジメチルクロライド、クロロベンゼン及びクロロホルムからなる群から選ばれる少なくとも1種を用いることが好ましい。この場合、有機溶媒として、これらの化合物の1種のみを、又は2種以上を組み合わせたもののみを用いることができる。このように、色変換層124R、124Gを形成する場合には、発光材料にイオン液体を含んでなくてもよい。
 次に、第2電極122上に塗布した発光材料にアニールを行う。アニールの温度は、発光材料が劣化しない温度、例えば、120℃以下で行うことが好ましい。アニールは、大気中で行ってもよいし、真空中で行ってもよい。アニールにより、発光材料に含まれる有機溶剤を蒸発させることにより、発光ポリマーを有する色変換層124R、124Gを形成する。
 図8Bは、第1基板101の第1面101aに、接着材115を描画する工程について説明する図である。接着材115は、例えば、光硬化性樹脂を用いて、第1基板101の第1面101a上に、第1電極121の周縁部を囲むように描画する。
 最後に、第1基板101上に第2基板102を貼り合わせる。第2基板102の第1面102aにアンチグレア処理を施す。また、第2基板102の厚みは、0.1mm~0.3mmとすることで、表示装置100の厚みを小さくすることができる。なお、第1面102a側に拡散板や反射材を別途設ける場合には、第1面102aにアンチグレア処理を施さなくてもよい。第1基板101と第2基板102との貼り合わせは、大気中で行ってもよいし、真空中で行ってもよい。第1基板101と第2基板102とを貼り合わせた後、接着材115に光を照射することで接着材115が硬化して、第1基板101と第2基板102とを接着することができる。
 以上の工程により、本発明の一実施形態に係る表示装置100を製造することができる。
 本実施形態では、一つの基板に対して、一つの表示装置100を製造する場合について説明したが、本発明はこれに限定されない。大判基板を用いて、複数の表示装置100を一度に製造することもできる。この場合には、第1基板101上に複数の電気化学発光セル120を形成し、第1基板101と第2基板102とを接着材115により接着した後、複数の表示装置100毎に個片化すればよい。
 従来の電気化学発光セルの製造方法によれば、電気化学発光セルを用いてフルカラーの表示装置を製造する場合、発光ポリマー別にイオン液体を調合する必要があるため、RGBを塗り分けて表示装置を製造することが困難であった。
 本発明の一実施形態に係る電気化学発光セル120の製造方法によれば、発光層123Bとして、発光ポリマー及びイオン液体を用い、色変換層124G、124Rとして、発光ポリマーを用いる。そのため、色変換層124G、124Rとしてイオン液体を用いなくてもよいため、発光色毎にイオン液体を調合する必要がなくなる。そのため、表示装置100の製造工程を簡略化することができる。
(第2実施形態)
 本実施形態では、表示装置100とは一部異なる構成を有する表示装置100Aについて、図9乃至図14を参照して説明する。なお、第1実施形態で説明した構成と同じ構成については同じ符号を用いており、説明が重複する部分は適宜説明を省略する。
<表示装置100Aの構成>
 まず、本発明の一実施形態に係る表示装置100Aの構成について図9及び図10を参照して説明する。図9は、本発明の一実施形態に係る表示装置100Aの展開図である。図10は、図9に示す表示装置をC1-C2線に沿って切断したときの断面図である。表示装置100Aは、第1基板101、素子形成層140、第1電極121、発光層123V、第2電極122、色変換層124R、124G、124B、紫外線を遮断するフィルム126、及び第2基板102を有する。本実施形態では、第1電極121、色変換層124B、及び第2電極122によって、電気化学発光セル150が構成される。
 第1基板101の第2面101b上には、素子形成層140が設けられており、素子形成層140上には、電気化学発光セル150が設けられている。電気化学発光セル150は、第1電極121、第2電極122、及び発光層123Vを有する。発光層123Vは、発光ポリマー及びイオン液体を含む。発光ポリマーとして、紫外光を発することができるものであれば特に限定されない。発光層123Vは、紫外光の波長帯域の光を放射する。したがって、電気化学発光セル150_1、150_2、150_3のいずれも、紫外の波長帯域の光を放射する。以降の説明において、紫外の波長帯域の光を放射する発光層123を、発光層123Vと記載する。
 第2電極122上において、第1電極121_1と重畳する領域には、色変換層124Bが設けられており、第1電極121_2と重畳する領域には、色変換層124Gが設けられており、第1電極121_3と重畳する領域には、色変換層124Rが設けられている。したがって、電気化学発光セル150_1が紫外光を放射した場合、色変換層124Bに紫外光が入射する。これにより、色変換層124Bに含まれる発光ポリマーが励起されることにより、青色の波長帯域の光を放射し、第2基板102の第1面102aから光が射出される。また、電気化学発光セル150_2が紫外光を放射した場合、色変換層124Gに紫外光が入射する。これにより、色変換層124Gに含まれる発光ポリマーが励起されることにより、緑の波長帯域の光を放射し、第2基板102の第1面102aから光が射出される。また、電気化学発光セル150_3が紫外光を放射した場合、色変換層124Rに紫外光が入射する。これにより、色変換層124Rに含まれる発光ポリマーが励起されることにより、緑の波長帯域の光を放射し、第2基板102の第1面102aから光が射出される。
 色変換層124B、124G、124R及び絶縁層125と第2基板102の第2面102bとの間には、紫外光を遮断するフィルム126が設けられている。これにより、電気化学発光セル150_1、150_2、150_3から放射された紫外光が、フィルム126によって遮断される。そのため、紫外光が第2基板102の第1面102a側から放射されることを抑制することができる。
 本実施形態で説明する表示装置100Aでは、電気化学発光セル150として、紫外光を放射する発光層123Vを用い、電気化学発光セル150上に紫外光によって励起する色変換層124B、124G、124Rを用いている。そのため、色変換層124B、124G、124Rのそれぞれに応じてイオン液体を調合する必要がなくなる。そのため、表示装置100の製造工程を簡略化することができる。
<電気化学発光セル150の構成>
 次に、表示装置100に含まれる電気化学発光セル150の構成について、図11及び図12を参照して説明する。図11は、本発明の一実施形態に係る表示装置の一部を拡大したときの平面図である。図12は、図11に示す表示装置をD1-D2線に沿って切断した断面図である。
 図11では、青色に発光する画素領域、緑色に発光する画素領域、及び赤色に発光する画素領域を示している。青色に発光する画素領域は、色変換層124Bが設けられる領域に相当する。また、緑色に発光する画素領域は、色変換層124Gが設けられる領域に相当する。また、赤色に発光する画素領域は、色変換層124Rが設けられる領域に相当する。第2電極122上において、色変換層124B、124G、124Rが設けられる領域以外は、絶縁層125が設けられている。
 図12では、素子形成層140及び電気化学発光セル150_1、150_2の詳細な構造について説明する。なお、スイッチング素子130の構造については、図5に示すスイッチング素子130の構造と同様であるため、詳細な説明は省略する。
 絶縁膜139上には、第1電極121_1、121_2が設けられている。第1電極121_1は、層間絶縁膜137及び絶縁膜139に形成されたコンタクトホールを介して、ソース電極又はドレイン電極136bと電気的に接続される。また、第1電極121_1、121_2上には、発光層123Vが設けられており、発光層123V上に第2電極122が設けられている。第2電極122上において、第1電極121_1と重畳する領域には、色変換層124Bが設けられており、第1電極121_2と重畳する領域には、色変換層124Gが設けられている。また、第2電極122上において、色変換層124Bと色変換層124Gとの間には、絶縁層125が設けられている。
 色変換層124B、124G及び絶縁層125上には、紫外線を遮断するフィルム126が設けられている。また、フィルム126上には、第2基板102が設けられている。
<表示装置100Aの製造方法>
 次に、本発明の一実施形態に係る表示装置100Aの製造方法について、図13A乃至図14Bを参照して説明する。なお、表示装置100の製造方法の説明と重複する説明は、適宜省略する。
 図13Aは、第1基板101上に素子形成層140上に電気化学発光セル150を形成する工程を説明する図である。第1基板101の第2面101b上に、素子形成層140を形成する工程については、既知の方法を用いて形成する。次に、素子形成層140及び絶縁膜139にソース電極又はドレイン電極136bに達するコンタクトホールを形成する。次に、絶縁膜139上に、金属導電膜を形成し、フォトリソグラフィー工程により、第1電極121_1、121_2、121_3を形成する。これにより、第1電極121_1は、ソース電極又はドレイン電極136bと電気的に接続される。
 次に、第1電極121_1、121_2、121_3上に、発光材料を塗布する。例えば、スピンコータ、ロールコータを用いて第1電極121上に、発光材料を塗布する。発光材料は、発光ポリマー、イオン液体、及び有機溶剤を含む。発光ポリマーは、紫外光を放射することができる材料を用いればよく、特に限定されない。また、イオン液体も、発光ポリマーに合わせて適宜設定することができる。
 次に、第1電極121_1、121_2、121_3上に塗布した発光材料にアニールを行う。アニールの温度は、発光材料が劣化しない温度、例えば、120℃以下で行うことが好ましい。アニールは、大気中で行ってもよいし、真空中で行ってもよい。アニールにより、発光材料に含まれる有機溶剤を蒸発させることにより、発光ポリマー及びイオン液体を有する発光層123Vを形成する。
 次に、発光層123V上に、第2電極122を形成する工程を説明する図である。第2電極122として、スパッタリング法又は蒸着法により酸化物導電膜を用いて形成する。第2電極122は、発光層123のほぼ全面に形成される。第2電極122の形成後に、さらにアニールを行うことで、発光層123の有機溶媒を除去してもよい。
 図13Bは、第2電極122上に、絶縁層125及び色変換層124B、124G、124Rを形成する工程を説明する図である。第2電極122上において、第1電極121_1と第1電極121_2との間、第1電極121_2と第1電極121_1との間など、隣接する第1電極121の間に絶縁層125を形成する。また、第2電極122上において、絶縁層125によって囲まれ、第1電極121と重畳する領域に、青色の発光材料、緑色の発光材料、及び赤色の発光材料を塗布する。絶縁層125及び発光材料の塗布を、インクジェット法により行う場合には、同時に形成することができるため好ましい。
 次に、素子形成層140上に塗布した発光材料にアニールを行う。アニールの温度は、発光材料が劣化しない温度、例えば、120℃以下で行うことが好ましい。アニールは、大気中で行ってもよいし、真空中、窒素雰囲気中、アルゴン雰囲気中で行ってもよい。アニールにより、発光材料に含まれる有機溶剤を蒸発させることにより、発光ポリマー及びイオン液体を有する色変換層124R、124G、124Bを形成する。
 図14Aは、第2基板102の第2面102b上に、紫外光を遮断するフィルムを形成する工程を説明する図である。
 図14Bは、第1基板101上に第2基板102を貼り合わせる工程を説明する図である。まず、第1基板101の第1面101aに、接着材115を描画する。接着材115は、例えば、光硬化樹脂を用いて、第1基板101の第2面101b上に、第1基板101の周縁部を囲むように形成する。次に、第1基板101の第2面101bに形成された色変換層124B、124G、124Rと、第2基板102の第2面102bに形成されたフィルム126とを貼り合わせる。第1基板101と第2基板102との貼り合わせは、大気中で行ってもよいし、真空中で行ってもよい。第1基板101と第2基板102とを貼り合わせた後、接着材115に光を照射することで接着材115が硬化して、第1基板101と第2基板102とを接着することができる。
 以上の工程により、本発明の一実施形態に係る表示装置100Aを製造することができる。
(第3実施形態)
 本実施形態では、表示装置100Aとは一部異なる構成を有する表示装置100Bについて、図15乃至図20を参照して説明する。
<表示装置100Bの構成>
 まず、本発明の一実施形態に係る表示装置100Bの構成について図15及び図16を参照して説明する。図15は、本発明の一実施形態に係る表示装置100Bの展開図である。図16は、図15に示す表示装置100BをE1-E2線に沿って切断したときの断面図である。表示装置100Bは、第1基板101、素子形成層140、第1電極121、発光層123V、第2電極122、発光層128R、128G、128B、第3電極127、素子形成層170、紫外線を遮断するフィルム126、及び第2基板102を有する。本実施形態では、第1電極121、発光層123V、及び第2電極122によって、電気化学発光セル150が構成される。
 第1基板101の第2面102b上には、素子形成層140が設けられており、素子形成層140上には、電気化学発光セル150が設けられている。発光層123Vは、紫外光の波長帯域の光を放射する。したがって、電気化学発光セル150_1、150_2、150_3のいずれも、紫外の波長帯域の光を放射する。素子形成層170については、素子形成層140の記載を参照すればよい。
 第2電極122上において、第1電極121_1と重畳する領域には、発光層128Bが設けられており、第1電極121_2と重畳する領域には、発光層128Gが設けられており、第1電極121_3と重畳する領域には、発光層128Rが設けられている。発光層128Bは、発光ポリマー及びイオン液体を含み、発光層128Gは、発光ポリマー及びイオン液体を含み、発光層128Rは、発光ポリマー及びイオン液体を含む。
 第2基板102の第2面102bには、紫外光を遮断するフィルム126が設けられている。また、フィルム126に接して素子形成層170が設けられている。素子形成層170は、素子形成層140と同様の構成を有している。素子形成層170には、第3電極127_1、127_2、127_3が設けられている。第3電極127_1、127_2、127_3はマトリクス状に配置されており、第3電極127_1、127_2、127_3のそれぞれは、スイッチング素子と電気的に接続されている。第3電極127として、透光性を有する酸化物導電層を用いる。第3電極127_1、127_2、127_3として用いる酸化物導電層については、第1電極121又は第2電極122の記載を参照すればよい。
 第3電極127_1は、発光層128B、第2電極122、及び発光層123Vを間に挟んで、第1電極121_1に対向している。また、第3電極127_2は、発光層128G、第2電極122、及び発光層123Vを間に挟んで、第1電極121_3に対向している。また、第3電極127_3は、発光層128R、第2電極122、及び発光層123Vを間に挟んで、第1電極121_3に対向している。発光層128Bは、青色の波長帯域の光を放射し、発光層128Gは、緑色の波長帯域の光を放射し、発光層128Rは、赤色の波長帯域の光を放射する。以降の説明において、青色の波長帯域の光を放射する発光層128を、発光層128Bと記載し、緑色の波長帯域の光を放射する発光層128を、発光層128Gと記載し、赤色の波長帯域の光を放射する発光層128を、発光層128Rと記載する。
 本実施形態では、第2電極122、発光層128、及び第3電極によって電気化学発光セル160が構成される。電気化学発光セル160_1、160_2、160_3のそれぞれは、素子形成層170に含まれるスイッチング素子によって制御される。したがって、第2電極122と第3電極127_1との間に電圧が印加されることで、発光層128Bが発光し、第2電極122と第3電極127_2との間に電圧が印加されることで、発光層128Gが発光し、第2電極122と第3電極127_3との間に電圧が印加されることで、発光層128Bが発光する。電気化学発光セル160_1、160_2、160_3は、可視光の波長帯域の光を放射する。
 本実施形態において、電気化学発光セル150と電気化学発光セル160とは、第2電極122を共有している。そのため、電気化学発光セル150によって発光を制御する場合、電気化学発光セル160の発光を制御しなくてもよい。つまり、電気化学発光セル160から放射された紫外の波長帯域の光を、発光層128B、128G、128Rに入射させることで励起された光を射出することができる。また、電気化学発光セル160によって発光を制御する場合、電気化学発光セル150の発光を制御しなくてもよい。したがって、表示装置100において、電気化学発光セル150と電気化学発光セル160のいずれかを制御することで、画像を表示させることができる。そのため、表示装置100の使用中に、電気化学発光セル150による表示と、電気化学発光セル160による表示とを切り替えることによって、発光層123V及び発光層128の劣化を抑制することができるため、長寿命化を図ることができる。
 例えば、表示装置100Bにおいて、電気化学発光セル160を制御することによって表示を制御して、発光層128B、128G、128Rのいずれかが劣化し、電気化学発光セル160が発光しなくなってしまう場合がある。このような場合であっても、電気化学発光セル150の発光を制御して、電気化学発光セル150から放射された紫外光を、発光層128B、128G、128Rに入射させることにより、励起を利用して発光層128B、128G、128Rを発光させることができる。または、例えば、表示装置100Bにおいて、電気化学発光セル150を制御することによって表示を制御して、発光層123Vが劣化し、電気化学発光セル150が発光しなくなってしまう場合がある。このような場合であっても、電気化学発光セル160を制御することで、発光層128B、128G、128Rを発光させることができる。したがって、電気化学発光セル150及び電気化学発光セル160のいずれかが劣化した場合であっても、長寿命化を図ることができる。
<電気化学発光セル160の構成>
 次に、表示装置100に含まれる電気化学発光セル150及び電気化学発光セル160の構成について、図17及び図18を参照して説明する。図17は、本発明の一実施形態に係る表示装置の一部を拡大したときの平面図である。図18は、図17に示す表示装置をF1-F2線に沿って切断した断面図である。
 図17では、青色に発光する画素領域、緑色に発光する画素領域、及び赤色に発光する画素領域を示している。青色に発光する画素領域は、発光層128B及び第3電極127_1と重畳する領域に相当する。また、緑色に発光する画素領域は、発光層128G及び第3電極127_2と重畳する領域に相当する。また、赤色に発光する画素領域は、発光層128R及び第3電極127_3と重畳する領域に相当する。第2電極122上において、発光層128G、128Rが設けられる領域以外は、絶縁層125が設けられている。
 図18では、素子形成層170及び電気化学発光セル160の詳細な構造について説明する。
 第2基板102の第1面102a上に、下地絶縁膜141を介してスイッチング素子180が設けられている。スイッチング素子180は、具体的には、トランジスタであり、半導体層142、ゲート絶縁膜143、ゲート電極144、層間絶縁膜145、ソース電極又はドレイン電極146a、146bを有する。なお、下地絶縁膜141は、第2基板102から半導体層132に不純物が混入することを防止するために設けられる。下地絶縁膜141上に、半導体層142上に、ゲート絶縁膜143が設けられ、半導体層142に重畳してゲート電極144が設けられる。ゲート電極144を覆うように、層間絶縁膜145が設けられ、層間絶縁膜145上にソース電極又はドレイン電極146a、146bが設けられる。ソース電極又はドレイン電極146a、146bは、層間絶縁膜145に形成されたコンタクトホールを介して、半導体層142に接続されている。なお、ソース電極又はドレイン電極146bは、データ配線112の一部である。
 層間絶縁膜145、及びソース電極又はドレイン電極146a、146b上には、層間絶縁膜147が設けられており、層間絶縁膜147上には、絶縁膜149が設けられている。
 半導体層142として、アモルファスシリコン、ポリシリコン、又は酸化物半導体を用いることができる。また、ゲート電極144、ソース電極又はドレイン電極146a、146bとして、銅、チタン、モリブデン、タンタル、タングステン、アルミニウムを単層又は積層して用いることができる。また、下地絶縁膜141、ゲート絶縁膜143、層間絶縁膜145、及び層間絶縁膜147として、酸化シリコン又は窒化シリコンなどの無機材料を用いることができる。また、絶縁膜149として、平坦化機能を有することが好ましく、ポリイミド、ポリアミド、アクリル、エポキシ等の有機材料を用いることができる。
 絶縁膜149上には、第3電極127_1、127_2が設けられている。第3電極127_1は、層間絶縁膜147及び絶縁膜149に形成されたコンタクトホールを介して、ソース電極又はドレイン電極146bと電気的に接続される。また、第3電極127_1、127_2上には、発光層128Bが設けられており、発光層128B上に第2電極122が設けられている。第2電極122上において、第1電極121_2と重畳する領域には、発光層128Gが設けられており、それ以外の領域には絶縁層125が設けられている。また、発光層128G及び絶縁層125上には、第2基板102が設けられている。
<表示装置の製造方法>
 次に、本発明の一実施形態に係る表示装置100Bの製造方法について、図19A乃至図20を参照して説明する。なお、第1実施形態及び第2実施形態と重複する説明は、適宜省略する。
 図19Aは、第1基板101上に素子形成層140上に電気化学発光セル150を形成する工程を説明する図である。素子形成層140及び電気化学発光セル150の形成方法については、図13A及び図13Bの記載を参照すればよいため、詳細な記載は省略する。
 図19Bは、第2基板の第2面に、フィルム126、素子形成層170、及び第3電極127を形成する工程を説明する図である。第2基板の第2面に、フィルム126を形成する工程は、図14Aの記載を参照すればよいため、詳細な記載は省略する。また、素子形成層170を形成する工程は、素子形成層140を形成する工程を参照すればよく、第3電極127_1、127_2、127_3を形成する工程は、図6Aの記載を参照すればよい。
 図20は、第1基板101上に第2基板102を貼り合わせる工程を説明する図である。まず、第1基板101の第1面101aに、接着材115を描画する。接着材115は、例えば、光硬化樹脂を用いて、第1基板101の第2面101b上に、第1基板101の周縁部を囲むように形成する。次に、第1基板101の第2面101bに形成された発光層128B、128G、128Rと、第2基板102の第2面102bに形成されたフィルム126とを貼り合わせる。第1基板101と第2基板102との貼り合わせは、大気中で行ってもよいし、真空中で行ってもよい。第1基板101と第2基板102とを貼り合わせた後、接着材115に光を照射することで接着材115が硬化して、第1基板101と第2基板102とを接着することができる。
 以上の工程により、本発明の一実施形態に係る表示装置100Bを製造することができる。
 また、本実施形態では、発光層123V上に、第2電極122及び発光層128B、128G、128Rを形成する方法について説明したが、これに限定されない。第3電極127_1、127_2、127_3上に、発光層128B、128G、128R及び絶縁層125を形成してもよい。この場合、発光層128B、128G、128R及び絶縁層125と、第2電極122とを対向させて、第1基板101と第2基板102とを貼り合わせてもよい。
 本発明の範疇において、当業者であれば、各種の変更例及び修正例に相当し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
100:表示装置、100A:表示装置、100B:表示装置、101:第1基板、101a:第1面、101b:第2面、102:第2基板、102a:第1面、102b:第2面、103:表示領域、104:周辺領域、105a:走査線駆動回路、105b:走査線駆動回路、106:ドライバIC、107:端子、108:フレキシブルプリント回路基板、109:画素回路、111:ゲート配線、112:データ配線、115:接着材、120:電気化学発光セル、121:第1電極、122:第2電極、123:発光層、123B:発光層、123V:発光層、124B:色変換層、124G:色変換層、124R:色変換層、125:絶縁層、126:フィルム、127:第3電極、128:発光層、128B:発光層、128G:発光層、128R:発光層、130:スイッチング素子、131:下地絶縁膜、132:半導体層、133:ゲート絶縁膜、134:ゲート電極、135:層間絶縁膜、136a:ソース電極又はドレイン電極、136b:ソース電極又はドレイン電極、137:層間絶縁膜、139:絶縁膜、140:素子形成層、141:下地絶縁膜、142:半導体層、143:ゲート絶縁膜、144:ゲート電極、145:層間絶縁膜、146a:ソース電極又はドレイン電極、146b:ソース電極又はドレイン電極、147:層間絶縁膜、149:絶縁膜、150:電気化学発光セル、160:電気化学発光セル、170:素子形成層、180:スイッチング素子

Claims (13)

  1.  第1面及び前記第1面と反対側の第2面を有する第1基板と、
     前記第2面上に設けられた第1電極と、
     前記第1電極上に設けられた第1発光ポリマー及び第1イオン液体を含む第1発光層と、
     前記第1発光層上に設けられた第2電極と、
     前記第1電極上に前記第1発光層及び前記第2電極を介して設けられた第1色変換層と、
     前記第1色変換層上に設けられた第2基板と、を有する、表示装置。
  2.  前記第1発光層は、第1波長帯域の光を放射し、
     前記第1色変換層は、前記第1発光層から放射された前記第1波長帯域の光で励起されることにより、前記第1波長帯域よりも長波長の第2波長帯域の光を放射する、請求項1に記載の表示装置。
  3.  前記第2面上に設けられた第3電極と、
     前記第2電極上に、前記第3電極と重畳する第1絶縁層と、をさらに有し、
     前記第1波長帯域の光は、前記第1絶縁層を透過して外部に射出される、請求項2に記載の表示装置。
  4.  前記第1波長帯域の光は、青帯域光又は紫外帯域光であり、
     前記第2波長帯域の光は、緑帯域光又は赤帯域光である、請求項3に記載の表示装置。
  5.  前記第2面上に設けられた第3電極と、
     前記第2電極上に、前記第3電極と重畳する第2色変換層と、をさらに有し、
     前記第2色変換層は、前記第1発光層から放射された前記第1波長帯域の光で励起されることにより、前記第1波長帯域よりも長波長側の第3波長帯域の光を放出する、請求項2に記載の表示装置。
  6.  前記第1波長帯域の光は、紫外帯域光であり、
     前記第2波長帯域の光は、緑帯域光又は赤帯域光であり、
     前記第3波長帯域の光は、青帯域光である、請求項5に記載の表示装置。
  7.  前記第1色変換層及び前記第2色変換層と、前記第2基板との間に、紫外光を遮断するフィルムをさらに有する、請求項6に記載の表示装置。
  8.  前記第1電極と電気的に接続されたスイッチング素子をさらに有する、請求項1に記載の表示装置。
  9.  第1面及び前記第1面と反対側の第2面を有する第1基板と、
     前記第2面上に設けられた第1電極と、
     第1発光ポリマー及び第1イオン液体を含み、前記第1電極上に設けられた第1発光層と、
     前記第1発光層上に設けられた第2電極と、
     第2発光ポリマー及び第2イオン液体を含み、前記第1電極上に前記第1発光層及び前記第2電極を介して設けられた第2発光層と、
     前記第2発光層上に設けられた第3電極と、
     前記第3電極上に設けられた第2基板と、を有する、表示装置。
  10.  前記第1発光層は、第1波長帯域の光を放射し、
     前記第2発光層は、前記第1波長帯域よりも長波長の第2波長帯域の光を放射する、請求項9に記載の表示装置。
  11.  前記第1波長帯域の光は、紫外帯域光であり、
     前記第2波長帯域の光は、青帯域光、緑帯域光、又は赤帯域光である、請求項10に記載の表示装置。
  12.  前記第2発光層と、前記第2基板との間に、紫外光を遮断するフィルムをさらに有する、請求項9に記載の表示装置。
  13.  前記第1電極と電気的に接続された第1スイッチング素子と、
     前記第3電極と電気的に接続された第2スイッチング素子と、をさらに有する、請求項9に記載の表示装置。
PCT/JP2021/008143 2020-03-26 2021-03-03 表示装置 WO2021192866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056239A JP2021157021A (ja) 2020-03-26 2020-03-26 表示装置
JP2020-056239 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192866A1 true WO2021192866A1 (ja) 2021-09-30

Family

ID=77892455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008143 WO2021192866A1 (ja) 2020-03-26 2021-03-03 表示装置

Country Status (2)

Country Link
JP (1) JP2021157021A (ja)
WO (1) WO2021192866A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267073A (ja) * 2000-03-23 2001-09-28 Nippon Hoso Kyokai <Nhk> フルカラー薄膜elディスプレイパネル
JP2007139899A (ja) * 2005-11-15 2007-06-07 Toshiba Corp 表示装置および表示素子駆動方法
CN101525497A (zh) * 2008-03-06 2009-09-09 中国科学院理化技术研究所 吡唑啉吡啶并苯并香豆素荧光染料衍生物及其合成方法和用途
CN106009776A (zh) * 2016-02-04 2016-10-12 南通纺织丝绸产业技术研究院 一种大分子半花菁阳离子荧光染料及其制备方法
JP2018025802A (ja) * 2016-08-11 2018-02-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カラーフィルタ、及びそれを含む表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267073A (ja) * 2000-03-23 2001-09-28 Nippon Hoso Kyokai <Nhk> フルカラー薄膜elディスプレイパネル
JP2007139899A (ja) * 2005-11-15 2007-06-07 Toshiba Corp 表示装置および表示素子駆動方法
CN101525497A (zh) * 2008-03-06 2009-09-09 中国科学院理化技术研究所 吡唑啉吡啶并苯并香豆素荧光染料衍生物及其合成方法和用途
CN106009776A (zh) * 2016-02-04 2016-10-12 南通纺织丝绸产业技术研究院 一种大分子半花菁阳离子荧光染料及其制备方法
JP2018025802A (ja) * 2016-08-11 2018-02-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カラーフィルタ、及びそれを含む表示装置

Also Published As

Publication number Publication date
JP2021157021A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7438448B1 (ja) 発光装置
US9818979B2 (en) Organic electroluminescence display device and method of manufacturing organic electroluminescence display device
US7737629B2 (en) Light emitting device, method of manufacturing the same, and electronic apparatus
JP4610343B2 (ja) 発光装置及びその作製方法
US7663311B2 (en) Organic light emitting display (OLED) device and method of fabricating the same
US8106577B2 (en) Organic EL device and electronic apparatus
EP1667245B1 (en) Organic electroluminescence display and method for manufacturing the same
US20070152579A1 (en) Display device
US20040152392A1 (en) Method for manufacturing light-emitting device
KR20040051524A (ko) 표시 장치 및 그 제조 방법
KR20020031070A (ko) 자기발광 표시패널 및 그 제조방법
JP2010257957A (ja) 有機エレクトロルミネッセンス装置
WO2009154288A1 (en) Organic electroluminescence display apparatus
KR20210025567A (ko) 전계 발광 표시 장치
US20080035929A1 (en) Organic light emitting display devices and methods for fabricating the same
WO2005094134A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法並びに表示装置
US10170713B2 (en) Display device and manufacturing method therefor
US20230013572A1 (en) Display device
CN100505292C (zh) 自发光面板和自发光面板的制造方法
WO2021192866A1 (ja) 表示装置
US8513689B2 (en) Organic light emitting diode lighting apparatus
WO2021029286A1 (ja) 表示装置
US20230337448A1 (en) Display device
CN110729333B (zh) 显示面板及其制作方法
WO2005112516A1 (ja) 有機el装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777054

Country of ref document: EP

Kind code of ref document: A1