WO2021192090A1 - 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ - Google Patents

基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ Download PDF

Info

Publication number
WO2021192090A1
WO2021192090A1 PCT/JP2020/013323 JP2020013323W WO2021192090A1 WO 2021192090 A1 WO2021192090 A1 WO 2021192090A1 JP 2020013323 W JP2020013323 W JP 2020013323W WO 2021192090 A1 WO2021192090 A1 WO 2021192090A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
supply port
exhaust
port
exhaust port
Prior art date
Application number
PCT/JP2020/013323
Other languages
English (en)
French (fr)
Inventor
優作 岡嶋
山口 天和
佑之輔 坂井
今井 義則
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2022509877A priority Critical patent/JP7399260B2/ja
Priority to PCT/JP2020/013323 priority patent/WO2021192090A1/ja
Priority to CN202080098653.1A priority patent/CN115315790A/zh
Publication of WO2021192090A1 publication Critical patent/WO2021192090A1/ja
Priority to US17/951,059 priority patent/US20230012668A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present disclosure relates to a substrate processing device, a method for manufacturing a semiconductor device, a recording medium, and an inner tube.
  • a step of supplying gas to a processing chamber containing a plurality of substrates to process the substrates may be performed (see, for example, Patent Document 1).
  • the present disclosure improves the quality of processing on a substrate when processing the substrate.
  • An inner tube having a substrate accommodating area inside for accommodating a plurality of substrates arranged in multiple stages along a predetermined arrangement direction in a horizontal posture.
  • An outer tube arranged outside the inner tube and A plurality of gas supply ports provided on the side wall of the inner tube along the arrangement direction, and A plurality of first exhaust ports provided on the side wall of the inner tube along the arrangement direction, and A second exhaust port provided on one end side of the outer tube along the arrangement direction, and
  • a rectifying mechanism for controlling the flow of gas in the annular space between the inner tube and the outer tube is provided.
  • the first exhaust port farthest from the second exhaust port among the plurality of first exhaust ports is designated as the exhaust port A, and the gas supply port facing the exhaust port A among the plurality of gas supply ports is used.
  • the port is a gas supply port A
  • a substrate processing device provided with fins surrounding at least a part of the outer periphery of the gas supply port A is provided in the vicinity of the gas supply port A.
  • FIG. 6A is discharged from the first exhaust port 41 provided in the inner pipe 21 into the space between the top plate of the inner pipe 21 and the top plate of the outer pipe 22, and is provided in the inner pipe 21.
  • FIG. 6B is a circle between the inner pipe 21 and the outer pipe 22 from the 1st exhaust port 41 provided in the inner pipe 21.
  • the substrate processing device is used in the manufacturing process of a semiconductor device, and vertically processes a plurality of substrates (for example, 5 to 100) to be processed together. It is configured as a mold substrate processing device.
  • the substrate to be processed include a semiconductor wafer substrate (hereinafter, simply referred to as “wafer”) in which a semiconductor integrated circuit device (semiconductor device) is built.
  • the substrate processing apparatus includes a vertical processing furnace 1.
  • the vertical processing furnace 1 has a heater 10 as a heating unit (heating mechanism, heating system).
  • the heater 10 has a cylindrical shape and is supported by a heater base (not shown) as a holding plate so that the heater 10 is installed perpendicularly to the installation floor (not shown) of the substrate processing apparatus.
  • the heater 10 also functions as an activation mechanism (excitation portion) for activating (exciting) the gas with heat.
  • the reaction tube 20 constituting a reaction vessel (processing vessel) is arranged concentrically with the heater 10.
  • the reaction tube 20 has a double tube configuration including an inner tube 21 as an inner tube and an outer tube 22 as an outer tube that concentrically surrounds the inner tube 21.
  • the inner tube 21 and the outer tube 22 are each made of a heat-resistant material such as quartz (SiO 2) or silicon carbide (SiC).
  • the inner pipe 21 and the outer pipe 22 are each formed in a cylindrical shape with the upper end closed and the lower end open.
  • a processing chamber 23 for processing the wafer W is formed inside the inner pipe 21, a processing chamber 23 for processing the wafer W is formed.
  • the processing chamber 23 is configured to accommodate a plurality of wafers W in a state of being arranged in multiple stages along a predetermined arrangement direction (here, the vertical direction) in a horizontal posture by a boat 40 described later.
  • a predetermined arrangement direction here, the vertical direction
  • the direction in which a plurality of wafers W are arranged in the processing chamber 23 is also referred to as an arrangement direction.
  • a region in the processing chamber 23 in which a plurality of wafers W are accommodated in a horizontal posture along the arrangement direction is also referred to as a substrate accommodating region 65.
  • a seal cap 50 is provided as a furnace palate body that can airtightly close the lower end opening of the reaction tube 20.
  • the seal cap 50 is made of a metal material such as stainless steel (SUS) and is formed in a disk shape.
  • An O-ring (not shown) as a sealing member that comes into contact with the lower end of the reaction tube 20 is provided on the upper surface of the seal cap 50.
  • the seal cap 50 is configured to be vertically raised and lowered by a boat elevator (not shown) as an elevating mechanism.
  • the boat elevator is configured as a transport device (convey mechanism) that carries in and out (transports) the boat 40 holding the wafer W into and out of the processing chamber 23 by raising and lowering the seal cap 50.
  • a board loading / unloading outlet (not shown) is provided below the seal cap 50.
  • the wafer W is moved inside and outside the transfer chamber (not shown) by a transfer robot (not shown) via the substrate carry-in / carry-out outlet.
  • the wafer W is loaded into the boat 40 and the wafer W is removed from the boat 40 in the transfer chamber.
  • the boat 40 as a substrate support has a plurality of wafers (for example, 5 to 100) in a predetermined arrangement direction (here, in the vertical direction) in a horizontal posture and in a state where the centers are aligned with each other. It is configured to be arranged and supported in multiple stages along the line, that is, to be arranged at intervals.
  • the boat 40 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating portion 42 configured as a heat insulating cylinder made of a heat-resistant material such as quartz or SiC is arranged.
  • the heat insulating portion 42 may be configured by supporting a heat insulating plate made of a heat-resistant material such as quartz or SiC in a horizontal posture in multiple stages.
  • a plurality of nozzles 30 as gas supply units for supplying gas into the inner tube 21 are arranged along the above-mentioned arrangement direction (here, the vertical direction), and the heater 10 and the heater 10 are arranged. It is provided so as to penetrate the outer pipe 22 from the side.
  • One nozzle 30 is provided for each wafer W accommodated in the substrate accommodating area 65. Further, the nozzle 30 is attached so that gas can be injected in a direction substantially parallel to the surface of the wafer W accommodated in the substrate accommodating area 65.
  • a gas supply port 31 for introducing the gas supplied from the nozzle 30 into the inner pipe 21 is arranged in the above-mentioned arrangement direction (here, the vertical direction). It is provided so as to arrange a plurality of them along the above.
  • One gas supply port 31 is provided for each wafer W accommodated in the substrate accommodating area 65. Further, each of the plurality of gas supply ports 31 is provided at a position facing the tip portions of the plurality of nozzles 30.
  • the gas supply port 31 farthest from the second exhaust port 91 described later that is, the gas supply port 31 provided at the uppermost position (the first exhaust port 31 described later).
  • the gas supply port 31) facing the 41a is also referred to as a gas supply port A (gas supply port 31a).
  • a gas supply port different from the gas supply port 31a (gas supply port 31 facing the first exhaust port 41b described later) is also referred to as a gas supply port B (gas supply port 31b).
  • the gas supply port 31b closest to the second exhaust port 91 described later that is, the gas supply port 31b provided at the lowermost position (gas facing the first exhaust port 41c described later).
  • the supply port 31) is also referred to as a gas supply port C (gas supply port 31c).
  • a gas supply pipe 51 is connected to each of the nozzles 30.
  • the gas supply pipe 51 is provided with a mass flow controller (MFC) 51a which is a flow rate controller (flow rate control unit) and a valve 51b which is an on-off valve in this order from the upstream side of the gas flow.
  • MFC mass flow controller
  • Gas supply pipes 52 and 53 are connected to the downstream side of the gas supply pipe 51 with respect to the valve 51b.
  • the gas supply pipes 52 and 53 are provided with MFCs 52a and 53a and valves 52b and 53b in this order from the upstream side of the gas flow, respectively.
  • a silane-based gas containing silicon (Si) as a main element constituting a film formed on the wafer W is processed as a raw material gas via the MFC 51a, the valve 51b, and the nozzle 30. It is supplied into the room 23.
  • the silane-based gas for example, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas can be used.
  • nitrided gas is supplied as a reaction gas into the processing chamber 23 via the MFC 52a, the valve 52b, the gas supply pipe 51, and the nozzle 30.
  • nitriding gas for example, ammonia (NH 3 ) gas can be used.
  • nitrogen (N 2 ) gas is supplied as an inert gas into the processing chamber 23 via the MFC 53a, the valve 53b, the gas supply pipe 51, and the nozzle 30.
  • the N 2 gas acts as a purge gas, a diluent gas, or a carrier gas.
  • a first exhaust port 41 is provided on the side wall of the inner pipe 21 at a position facing the gas supply port 31 across the above-mentioned substrate accommodating area 65.
  • a plurality of first exhaust ports 41 are provided so as to be arranged along the above-mentioned arrangement direction (here, the vertical direction).
  • the first exhaust port 41 is configured to discharge the gas supplied from the gas supply port 31 into the inner pipe 21 from the inner pipe 21.
  • the first exhaust port 41 is provided for each gas supply port 31, that is, for each wafer W accommodated in the substrate accommodating area 65.
  • the first exhaust port 41 farthest from the second exhaust port 91, which will be described later, that is, the first exhaust port 41 provided at the uppermost position is referred to as the exhaust port. Also referred to as A (first exhaust port 41a). Further, among the plurality of first exhaust ports 41, an exhaust port different from the first exhaust port 41a is also referred to as an exhaust port B (first exhaust port 41b). Further, among the plurality of first exhaust ports 41b, the first exhaust port 41b closest to the second exhaust port 91, which will be described later, that is, the first exhaust port 41b provided at the lowermost position is the exhaust port C (first exhaust port). Also called 41c).
  • a second exhaust port 91 is provided to discharge the discharged gas, that is, the exhaust gas flowing in the annular space between the inner pipe 21 and the outer pipe 22 to the outside of the reaction pipe 20.
  • An exhaust pipe 61 is connected to the second exhaust port 91.
  • the exhaust pipe 61 is provided via a pressure sensor 62 as a pressure detector (pressure detection unit) for detecting the pressure in the reaction pipe 20 and an APC (Auto Pressure Controller) valve 63 as a pressure regulator (pressure regulator).
  • a vacuum pump 64 as a vacuum exhaust device is connected.
  • the APC valve 63 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 23 by opening and closing the valve while the vacuum pump 64 is operated, and further, when the vacuum pump 64 is operated, the APC valve 63 can perform vacuum exhaust and vacuum exhaust stop.
  • the exhaust system that is, the exhaust line is mainly composed of the exhaust pipe 61, the APC valve 63, and the pressure sensor 62.
  • an exhaust buffer space Between the inner pipe 21 and the outer pipe 22, the flow of gas in the space between the inner pipe 21 and the outer pipe 22 (hereinafter, also referred to as an exhaust buffer space), that is, a plurality of first exhaust ports 41.
  • a rectifying mechanism R is provided to control the flow (exhaust path) of the exhaust gas discharged from each into the exhaust buffer space and toward the second exhaust port 91. The specific configuration of the rectifying mechanism R will be described later.
  • a temperature sensor 11 as a temperature detector is installed between the inner pipe 21 and the outer pipe 22. By adjusting the degree of energization of the heater 10 based on the temperature information detected by the temperature sensor 11, the temperature in the processing chamber 23 becomes a desired temperature distribution.
  • the temperature sensor 11 is formed in an L shape, and is provided along the outer wall of the inner pipe 21, for example.
  • the controller 70 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 71, a RAM (Random Access Memory) 72, a storage device 73, and an I / O port 74.
  • the RAM 72, the storage device 73, and the I / O port 74 are configured so that data can be exchanged with the CPU 71 via the internal bus 75.
  • An input / output device 82 and an external storage device 81 configured as, for example, a touch panel are connected to the controller 70.
  • the storage device 73 is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 70 can execute each step (each step) in the method of manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. are collectively referred to simply as programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 72 is configured as a memory area (work area) in which programs, data, and the like read by the CPU 71 are temporarily held.
  • the I / O port 74 is connected to the above-mentioned MFCs 51a to 53a, valves 51b to 53b, pressure sensor 62, APC valve 63, vacuum pump 64, heater 10, temperature sensor 11, and the like.
  • the CPU 71 is configured to read and execute a control program from the storage device 73, and read a recipe from the storage device 73 in response to an input of an operation command from the input / output device 82 or the like.
  • the CPU 71 adjusts the flow rate of various gases by the MFCs 51a to 53a, opens and closes the valves 51b to 53b, opens and closes the APC valve 63, and adjusts the pressure by the APC valve 63 based on the pressure sensor 62 so as to follow the contents of the read recipe. It is configured to control the operation, the start and stop of the vacuum pump 64, the temperature adjustment operation of the heater 10 based on the temperature sensor 11, the elevating operation of the boat 40 by the elevating mechanism, and the like.
  • the controller 70 can be configured by installing the above-mentioned program stored in the external storage device 81 on a computer.
  • the external storage device 81 includes, for example, a magnetic tape, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as MO, and a semiconductor memory such as a USB memory.
  • the storage device 73 and the external storage device 81 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. When the term recording medium is used in the present specification, it may include only the storage device 73 alone, it may include only the external storage device 81 alone, or it may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 81.
  • the step 1 of supplying HCDS gas as a raw material gas to the wafer W housed in the processing container (inside the processing chamber 23) and the wafer W housed in the processing chamber 23 By performing the cycle of supplying the NH 3 gas non-simultaneously, that is, without synchronizing, a predetermined number of times (n times, n is an integer of 1 or more), a silicon nitride film (SiN) is formed on the wafer W. Membrane) is formed.
  • Vacuum exhaust (vacuum exhaust) is performed by the vacuum pump 64 so that the inside of the processing chamber 23, that is, the space where the wafer W exists is at a desired pressure (vacuum degree).
  • the pressure in the reaction tube 20 is measured by the pressure sensor 62, and the APC valve 63 is feedback-controlled based on the measured pressure information so that the pressure in the processing chamber 23 becomes a desired pressure. It will be adjusted.
  • the vacuum pump 64 is always kept in an operating state at least until the processing on the wafer W is completed. Further, the wafer W in the processing chamber 23 is heated by the heater 10 so as to have a desired film forming temperature.
  • the state of energization of the heater 10 is feedback-controlled based on the temperature information detected by the temperature sensor 11 so that the inside of the processing chamber 23 has a desired temperature distribution.
  • the heating in the processing chamber 23 by the heater 10 is continuously performed at least until the processing on the wafer W is completed.
  • Step 1 In this step, HCDS gas is supplied to the wafer W in the processing chamber 23.
  • the valve 51b is opened to allow HCDS gas to flow into the gas supply pipe 51.
  • the flow rate of the HCDS gas is adjusted by the MFC 51a, and the HCDS gas is supplied into the processing chamber 23 (inside the inner pipe 21) via the nozzle 30 and the gas supply port 31.
  • the HCDS gas supplied into the inner pipe 21 flows in a direction parallel to the surface of the wafer W (horizontal direction), is discharged to the outside of the inner pipe 21 through the first exhaust port 41, and is discharged to the outside of the inner pipe 21. It is exhausted from the second exhaust port 91 through the space (exhaust buffer space) between the outer pipe 22 and the outer pipe 22. At this time, HCDS gas is supplied to each of the plurality of wafers W.
  • the valve 53b By opening the valve 53b, flow the N 2 gas to the gas supply pipe 53.
  • the flow rate of the N 2 gas is adjusted by the MFC 53a, and the N 2 gas is supplied into the inner pipe 21 via the nozzle 30 and the gas supply port 31.
  • the N 2 gas acts as a carrier gas.
  • the pressure in the processing chamber 23 is, for example, 0.1 to 30 Torr, preferably 0.2 to 20 Torr, and more preferably 0.3 to 13 Torr.
  • the supply flow rate of the HCDS gas is, for example, a flow rate in the range of 0.1 to 10 slm, preferably 0.2 to 2 slm.
  • the supply flow rate of the N 2 gas is, for example, a flow rate in the range of 0.1 to 20 slm.
  • the supply time of the HCDS gas is, for example, 0.1 to 60 seconds, preferably 0.5 to 5 seconds.
  • the temperature of the heater 10 is set so that the temperature of the wafer W is, for example, 200 to 900 ° C., preferably 300 to 850 ° C., more preferably 400 to 750 ° C.
  • a Si-containing layer is formed as the first layer on the outermost surface of each of the plurality of wafers W.
  • the valve 51b is closed and the supply of HCDS gas into the inner pipe 21 is stopped.
  • the APC valve 63 kept open, the inside of the reaction vessel 20 is evacuated by the vacuum pump 64, and the unreacted or HCDS gas remaining in the processing chamber 23 after contributing to the formation of the first layer is discharged into the processing chamber 23. Exclude from within.
  • the valve 53b is kept open to maintain the supply of the N 2 gas into the processing chamber 23.
  • the N 2 gas acts as a purge gas, and the effect of discharging the gas remaining in the processing chamber 23 from the processing chamber 23 can be enhanced.
  • the valve 53b is closed and the supply of N 2 gas into the processing chamber 23 is stopped.
  • Step 2 After step 1 is completed, and supplies NH 3 gas to the wafer W in the processing chamber 23.
  • valve 52 b by opening the valve 52 b, it flows the NH 3 gas into the gas supply pipe 52.
  • the flow rate of the NH 3 gas is adjusted by the MFC 52a, and the NH 3 gas is supplied into the processing chamber 23 (inside the inner pipe 21) via the gas supply pipe 51, the nozzle 30, and the gas supply port 31.
  • the NH 3 gas supplied into the inner pipe 21 flows in a direction parallel to the surface of the wafer W (horizontal direction), is discharged to the outside of the inner pipe 21 through the first exhaust port 41, and is discharged to the outside of the inner pipe 21.
  • the gas is exhausted from the second exhaust port 91 through the exhaust buffer space between the 21 and the outer pipe 22.
  • the NH 3 gas is supplied to each of the plurality of wafers W.
  • the valve 53b by opening the valve 53b, flow the N 2 gas to the gas supply pipe 53.
  • the flow rate of the N 2 gas is adjusted by the MFC 53a, and the N 2 gas is supplied into the inner pipe 21 via the nozzle 30 and the gas supply port 31.
  • the N 2 gas acts as a carrier gas.
  • the pressure in the processing chamber 23 is, for example, 0.1 to 30 Torr, preferably 0.2 to 20 Torr, and more preferably 0.3 to 13 Torr.
  • the supply flow rate of the HCDS gas is, for example, a flow rate in the range of 0.1 to 10 slm, preferably 0.2 to 2 slm.
  • the supply flow rate of the N 2 gas is, for example, a flow rate in the range of 0.1 to 20 slm.
  • the supply time of the HCDS gas is, for example, 0.1 to 60 seconds, preferably 0.5 to 5 seconds.
  • the temperature of the heater 10 is set so that the temperature of the wafer W is, for example, 200 to 900 ° C., preferably 300 to 850 ° C., more preferably 400 to 750 ° C.
  • the NH 3 gas supplied to the wafer W reacts with at least a part of the first layer, that is, the Si-containing layer formed on the wafer W in step 1.
  • the first layer is thermally nitrided by non-plasma and changed (modified) into a second layer containing Si and N, that is, a silicon nitride layer (SiN layer).
  • the valve 52b is closed and the supply of NH 3 gas into the inner pipe 21 is stopped. Then, the NH 3 gas and the reaction by-product remaining in the treatment chamber 23 are removed from the treatment chamber 23 by the same treatment procedure as in step 1.
  • a SiN film having a predetermined film thickness is formed on the wafer W by performing the above-mentioned steps 1 and 2 non-simultaneously, that is, by performing the cycles performed without synchronization a predetermined number of times (n times, n is an integer of 1 or more). be able to.
  • the above cycle is preferably repeated a plurality of times. That is, the thickness of the second layer formed per cycle is made smaller than the desired film thickness, and the film thickness formed by laminating the second layer becomes the desired film thickness. It is preferable to repeat this cycle a plurality of times.
  • Deposition step is completed and is formed SiN film having a predetermined thickness, supplying the N 2 gas into the reaction tube 20 is exhausted from the exhaust pipe 61. As a result, the inside of the treatment chamber 23 is purged, and the gas and reaction by-products remaining in the treatment chamber 23 are removed from the inside of the treatment chamber 23 (after-purge). After that, the atmosphere in the treatment chamber 23 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 23 is restored to the normal pressure (return to atmospheric pressure).
  • 6 (a) and 6 (b) exemplify the path of the exhaust gas in the exhaust buffer space when the rectifying mechanism R is not provided in the exhaust buffer space.
  • the exhaust gas discharged from the first exhaust port 41 is the space between the top plate of the inner pipe 21 and the top plate of the outer pipe 22 in the exhaust buffer space ( It may wrap around to the gas supply port 31 side through the upper buffer space) and flow into the inner pipe 21 through the gas supply port 31.
  • the exhaust gas path at this time is shown by "exhaust path A" in FIG. 6A.
  • the gas discharged from the first exhaust port 41a far from the second exhaust port 91 easily flows into the upper buffer space, and enters the gas supply port 31a facing the first exhaust port 41a from the vertical direction (vertical direction). It tends to flow in easily.
  • the exhaust gas that has flowed into the inner pipe 21 is a factor that deteriorates the quality of the substrate processing.
  • the exhaust gas discharged from the first exhaust port 41 is circular in the plan view between the side wall of the inner pipe 21 and the side wall of the outer pipe 22 in the exhaust buffer space. It may wrap around to the gas supply port 31 side through the annular space (side buffer space) and flow into the inner pipe 21 through the gas supply port 31.
  • the exhaust gas path at this time is shown by "exhaust path B" in FIG. 6 (b).
  • the gas discharged from the first exhaust port 41a far from the second exhaust port 91 easily flows into the side buffer space, and horizontally (horizontally and horizontally) in the gas supply port 31a facing the first exhaust port 41a. Tends to flow in easily.
  • the exhaust gas that has flowed into the inner pipe 21 is a factor that deteriorates the quality of the substrate processing.
  • a rectifying mechanism R (a general term for a rectifying plate group including fins 100 to 400 described later) in the exhaust buffer space. ) Is provided to control the flow (flow path) of the exhaust gas in the exhaust buffer space.
  • the rectifying mechanism R is provided with two fins 100 and two fins 200 in the vicinity of each of the plurality of gas supply ports 31.
  • the rectifying mechanism R includes fins 100 on both sides in the vertical direction with the gas supply port 31 interposed therebetween, that is, directly above and below the gas supply port 31.
  • the rectifying mechanism R includes fins 200 on both sides in the horizontal direction with the gas supply port 31 interposed therebetween, that is, on the left side and the right side of the gas supply port 31.
  • the rectifying mechanism R is provided with fins 300 at the ends of the fins 200 that sandwich the gas supply port 31c from both sides in the horizontal direction, specifically, at the lower end of the fins 200.
  • the rectifying mechanism R includes fins 400 in the vicinity of the first exhaust port 41a, specifically, directly above the first exhaust port 41a.
  • the fin 100 that sandwiches the gas supply port 31a from both sides in the vertical direction is also referred to as a first fin
  • the fin 200 that sandwiches the gas supply port 31a from both sides in the horizontal direction is also referred to as a second fin.
  • the fin 100 that sandwiches the gas supply port 31b from both sides in the vertical direction is also referred to as a third fin
  • the fin 200 that sandwiches the gas supply port 31b from both sides in the horizontal direction is also referred to as a fourth fin.
  • the fin 300 is also referred to as a fifth fin
  • the fin 400 is also referred to as a sixth fin.
  • each of the plurality of fins 100 as the first fin and the third fin is inside the upper and lower portions of the plurality of gas supply ports 31 on the outer wall of the inner pipe 21. It is provided so as to extend in the horizontal direction along the outer circumference of the pipe 21.
  • Each of the plurality of fins 100 is configured as a straightening vane protruding from the outer wall of the inner pipe 21 toward the inner wall of the outer pipe 22, that is, toward the radial outer side of the inner pipe 21.
  • a gap is maintained between the end of the fin 100 extending radially outward of the inner tube 21 and the inner wall of the outer tube 22 by a predetermined distance, for example, a distance greater than 2 mm and less than 7 mm. It is configured in.
  • Each of the plurality of fins 100, including the fin 100 directly above the gas supply port 31a, is provided in a posture parallel to the main surface of the wafer W accommodated in the horizontal posture.
  • each of the plurality of fins 100 is formed in a horizontal linear shape (flat plate shape) in a side view, and has a predetermined length (extension) larger than the inner diameter of the gas supply port 31 in the horizontal direction. It is provided in the length).
  • the plurality of fins 100 are all provided with the same extension length.
  • the fins 100 are provided so as to sandwich the gas supply ports 31 from both sides along the vertical direction (arrangement direction).
  • the fin 100 directly above the gas supply port 31a is provided below the upper end portion (top plate) of the inner pipe 21 by a predetermined distance.
  • each of the plurality of fins 200 as the second fin and the fourth fin is in the vertical direction in the vicinity of the left and right sides of the plurality of gas supply ports 31 on the outer wall of the inner pipe 21. It is provided so as to extend along (arrangement direction).
  • each of the plurality of fins 200 projects from the outer wall of the inner pipe 21 toward the inner wall of the outer pipe 22, that is, toward the radial outer side of the inner pipe 21, like the fin 100. It is configured as a straightening vane. Similar to the fin 100, the end of the fin 200 facing outward in the radial direction of the inner tube 21 and the inner wall of the outer tube 22 are separated by a predetermined distance, for example, a distance larger than 2 mm and smaller than 7 mm. It is configured to maintain the gap.
  • each of the plurality of fins 200 is formed in a vertically linear shape (flat plate shape) in a side view, and has a predetermined length (extension) larger than the inner diameter of the gas supply port 31 in the vertical direction. (Plumb bob) is provided.
  • the fins 200 are provided so as to sandwich the gas supply port 31 from both sides along the horizontal direction.
  • a plurality of fins 200 provided on the left side of the gas supply port 31 form an integral flat plate.
  • a plurality of fins 200 provided on the right side of the gas supply port 31 form an integral flat plate.
  • the side surfaces (horizontal outer side surfaces) of these flat plates are configured as continuous smooth surfaces having no steps or gaps.
  • the horizontal end portions of the fin 100 are joined to the fins 200 provided on both sides in the horizontal direction.
  • the outer circumferences of the plurality of gas supply ports 31 are surrounded (continuously) by the fins 100 and 200 without any gaps.
  • each of the two fins 300 as the fifth fin is on the gas supply port 31 side on the outer wall of the inner pipe 21 and is on the lower side of the gas supply port 31c in the vertical direction ( It is provided so as to extend along the arrangement direction), that is, toward the second exhaust port 91 with a predetermined length (extended length).
  • the two fins 300 extend downward from the lower ends of the two fins 200 that sandwich the gas supply port 31c from both sides in the horizontal direction.
  • the lower end portions of the two fins 300 are located, for example, in the vicinity of the lower end portion of the heater 10 and above the lower end portion of the heater 10 (see FIG. 1).
  • Each of the two fins 300 is configured as a straightening vane that projects from the outer wall of the inner pipe 21 toward the inner wall of the outer pipe 22, that is, toward the radial outer side of the inner pipe 21, like the fins 100 and the like. ing. Similar to the fin 100 and the like, a predetermined distance, for example, a distance larger than 2 mm and smaller than 7 mm, is separated between the end of the fin 300 extending outward in the radial direction of the inner pipe 21 and the inner wall of the outer pipe 22. It is configured so that the gap is maintained.
  • each of the two fins 300 is formed in a vertically linear shape (flat plate shape) in a side view.
  • a plurality of fins 200 and fins 300 provided on the left side of the gas supply port 31 form an integral flat plate.
  • a flat plate is formed by a plurality of fins 200 and fins 300 provided on the right side of the gas supply port 31.
  • the side surfaces (horizontal outer side surfaces) of these flat plates are configured as continuous smooth surfaces having no steps or gaps.
  • the fin 400 as the sixth fin is located on the upper end side of the outer wall of the inner pipe 21 on the first exhaust port 41 side, that is, above the first exhaust port 41a. It is provided in the vicinity so as to extend in the horizontal direction along the outer circumference of the inner pipe 21.
  • the fin 400 is formed in a horizontal linear shape (flat plate shape) in a side view, and is provided with a predetermined length (extended length) larger than the inner diameter of the first exhaust port 41a in the horizontal direction.
  • the fin 400 is provided below the upper end (top plate) of the inner pipe 21 by a predetermined distance.
  • the fin 400 is configured as a straightening vane protruding from the outer wall of the inner pipe 21 toward the inner wall of the outer pipe 22, that is, outward in the radial direction of the inner pipe 21. Similar to the fin 100 and the like, a predetermined distance, for example, a distance larger than 2 mm and smaller than 7 mm, is separated between the end of the fin 400 extending outward in the radial direction of the inner pipe 21 and the inner wall of the outer pipe 22. It is configured so that the gap is maintained.
  • the rectifying mechanism R of the present embodiment includes fins that surround at least a part of the outer circumference of the gas supply port 31a in the vicinity of the gas supply port 31a. As a result, it is possible to prevent the exhaust gas flowing in the exhaust buffer space from flowing into the inner pipe 21 through the gas supply port 31a. As a result, it is possible to improve the quality of the substrate processing, particularly the quality of the substrate processing for the wafer W arranged on the upper side of the substrate accommodating area 65.
  • the rectifying mechanism R of the present embodiment has fins 100 (first fins) extending along the horizontal direction with a predetermined length larger than the inner diameter of the gas supply port 31a in the horizontal direction in the vicinity of the gas supply port 31a. ) Is provided.
  • the fins 100 are provided so as to sandwich the gas supply ports 31a from both sides along the arrangement direction (vertical direction). As a result, it is possible to prevent the exhaust gas flowing in the exhaust buffer space from flowing into the gas supply port 31a. As a result, it is possible to improve the quality of the substrate processing, particularly the quality of the substrate processing for the wafer W arranged on the upper side of the substrate accommodating area 65.
  • the rectifying mechanism R of the present embodiment extends in the vicinity of the gas supply port 31a along the arrangement direction (vertical direction) with a predetermined length larger than the inner diameter in the arrangement direction (vertical direction) of the gas supply port 31a.
  • the existing fin 200 (second fin) is provided.
  • the fins 200 are provided so as to sandwich the gas supply port 31a from both sides along the horizontal direction. As a result, it is possible to prevent the exhaust gas flowing in the exhaust buffer space from flowing into the gas supply port 31a. As a result, it is possible to improve the quality of the substrate processing, particularly the quality of the substrate processing for the wafer W arranged on the upper side of the substrate accommodating area 65.
  • the rectifying mechanism R of the present embodiment has fins 100 (third fins) extending along the horizontal direction with a predetermined length larger than the inner diameter of the gas supply port 31b in the horizontal direction in the vicinity of the gas supply port 31b. ) Is provided.
  • the fins 100 are provided so as to sandwich the gas supply ports 31b from both sides along the arrangement direction (vertical direction). As a result, it is possible to prevent the exhaust gas flowing in the exhaust buffer space from flowing into the gas supply port 31b. As a result, it is possible to improve the quality of the substrate processing even for the wafer W accommodated in a place other than the upper side of the substrate accommodating area 65.
  • the rectifying mechanism R of the present embodiment extends along the vertical direction with a predetermined length larger than the inner diameter in the arrangement direction (vertical direction) of the gas supply port 31b in the vicinity of the gas supply port 31b. (4th fin) is provided.
  • the fins 200 are provided so as to sandwich the gas supply port 31b from both sides along the horizontal direction. As a result, it is possible to prevent the exhaust gas flowing in the exhaust buffer space from flowing into the gas supply port 31b. As a result, it is possible to improve the quality of the substrate processing even for the wafer W accommodated in a place other than the upper side of the substrate accommodating area 65.
  • the rectifying mechanism R of the present embodiment has fins 300 (fifth fins) extending at a predetermined length along the arrangement direction (vertical direction) from the end of the fins 200 provided in the vicinity of the gas supply port 31c. ) Is provided. This makes it possible to improve the quality of the substrate processing, particularly the quality of the substrate processing for the wafer W arranged on the lower side of the substrate accommodating area 65.
  • an integral flat plate is formed by a plurality of fins 200 and fins 300 provided on the left side of the gas supply port 31. Further, a plurality of fins 200 and fins 300 provided on the right side of the gas supply port 31 form an integral flat plate.
  • the side surfaces of these flat plates are configured as continuous smooth surfaces having no steps or gaps. As a result, it is possible to suppress the generation of turbulent flow in the exhaust buffer space and improve the quality of substrate processing.
  • the rectifying mechanism R of the present embodiment has fins 400 extending in the horizontal direction in the vicinity of the first exhaust port 41a with a predetermined length larger than the inner diameter of the first exhaust port 41a in the horizontal direction. It has 6 fins).
  • the fins 100 as the first fins or the third fins are provided on both the upper and lower sides of the gas supply port 31, respectively, and the fins 200 as the second fins or the fourth fins are provided as the gas supply port 31.
  • the present disclosure is not limited to these cases.
  • the fins 100 may be provided on only one of the upper side and the lower side of the gas supply port 31, and the fins 200 may be provided on only one of the left side and the right side of the gas supply port 31. It may be. Even in these cases, at least a part of the effects described in the above-described embodiment can be obtained.
  • the fin 300 as the fifth fin is extended from the lower ends of the two fins 200 that sandwich the gas supply port 31c from both sides in the horizontal direction, that is, the two fins 300 are provided.
  • the fins 300 may extend from the lower end of one of the two fins 200 that sandwich the gas supply port 31c from both sides in the horizontal direction, and only one fin 300 may be provided. Even in this case, at least a part of the effects described in the above-described embodiment can be obtained.
  • the present disclosure is not limited to this case.
  • only the fin 100 directly above the gas supply port 31a may be provided, and the installation of other fins may be omitted. Even in such a case, at least a part of the effects described in the above-described embodiment can be obtained.
  • each of the gas supply ports 31 is individually surrounded by the fins 100 and 200
  • the present disclosure is not limited to this case.
  • several (for example, 2 to 5) gas supply ports 31 are defined as one enclosing unit, and these units (several gas supply ports 31) are collectively enclosed by fins 100 and fins 200. It may be. Also in this case, the same effect as that of the above-described embodiment can be obtained.
  • the extending length of the fin 100 provided directly above the gas supply port 31a may be made the longest, and the extending length may be gradually shortened as the position of the fin 100 is lowered. Also in this case, the same effect as that of the above-described embodiment can be obtained.
  • the plurality of fins 100 all have the same extension length it is possible to prevent the gas discharged from the first exhaust port 41 into the exhaust buffer space from flowing into the gas supply port 31. It is preferable in that respect.
  • the first and second fins are formed in a flat plate shape, respectively, and a plurality of fins 200 provided on the left side of the gas supply port 31 form an integral flat plate.
  • a plurality of fins 200 provided on the right side of the gas supply port 31 form an integral flat plate.
  • the present disclosure is not limited to this.
  • the fins 100 and 200 are curved and integrated so as to form a continuous curved surface, and the inner pipe is viewed from the side from the gas supply port side as shown in FIG. 8A.
  • each of the plurality of gas supply ports may be surrounded by curved fins in a circular or elliptical shape. Also in this case, the same effect as that of the above-described embodiment can be obtained. However, the above-described embodiment in which the linear fins 100 and 200 surround the fins without gaps is preferable in that the generation of turbulent flow in the exhaust buffer space can be suppressed.
  • a gap of the same distance is maintained between the end portion of the fin 100 extending radially outward of the inner pipe 21 and the inner wall of the outer pipe 22.
  • the present disclosure is not limited to such a configuration.
  • the size of the fin 100 (the amount of protrusion from the outer wall of the inner pipe 21) may be set so that the gap of the distance in the fin 100 provided directly above the gas supply port 31a is the narrowest.
  • the size of the fins 200 (the amount of protrusion from the outer wall of the inner pipe 21) may be set so that the gap between the fins 200 provided on the left and right of the gas supply port 31a is the narrowest. By doing so, it is possible to more reliably suppress the exhaust gas flowing in the exhaust buffer space from flowing into the gas supply port 31a.
  • each of the plurality of fins 100 including the fin 100 directly above the gas supply port 31a is provided in a posture parallel to the main surface of the wafer W accommodated in the horizontal posture.
  • this disclosure is not limited to this.
  • the fin 100 may be provided immediately above the gas supply port 31a in a posture in which its end portion rises or falls as it goes outward in the radial direction of the inner pipe 21, that is, in an inclined posture. ..
  • the other fins 100 may be configured in the same manner. Even in these cases, at least a part of the effects described in the above-described embodiment can be obtained.
  • the inner tube 21 having a closed upper end has been described as an example, but the present disclosure is not limited to this.
  • an inner pipe 21 having an open upper end that is, an inner pipe 21 having no top plate at the upper end may be used.
  • the exhaust gas discharged from at least one of the plurality of first exhaust ports 41 and flowing into the upper buffer space is discharged from the open portion at the upper end into the inner pipe 21. It becomes easy to flow into.
  • providing the fin 400 as the sixth fin can suppress the wraparound of the exhaust gas discharged from at least one of the plurality of first exhaust ports 41 into the upper buffer space. In that respect, it is particularly meaningful.
  • the fin 100 directly above the gas supply port 31a may be provided at the same height as the upper end of the inner pipe 21. Even in such a case, at least a part of the effects described in the above-described embodiment can be obtained.
  • the fin 100 directly above the gas supply port 31a is provided at the same height as the upper end of the inner pipe 21, the upper end of the inner pipe 21 and the fin 100 are configured as a flat surface without a step. It becomes possible to do. This makes it possible to suppress the occurrence of turbulent flow around the upper end of the inner pipe 21. As a result, it is possible to suppress the intrusion of the exhaust gas into the inner pipe 21 through the gas supply port 31a and the intrusion of the exhaust gas into the inner pipe 21 when the upper end of the inner pipe 21 is opened. Become.
  • the fin 400 as the sixth fin directly above the first gas exhaust port 41a is provided below the upper end portion of the inner pipe 21 , but the present disclosure is not limited to this. ..
  • it may be provided at the same height as the upper end of the inner pipe 21. Even in such a case, at least a part of the effects described in the above-described embodiment can be obtained.
  • a flat surface having no step is provided between the upper end of the inner pipe 21 and the fin 400. It is possible to configure as. This makes it possible to suppress the occurrence of turbulent flow around the upper end of the inner pipe 21. As a result, the gas can be stably exhausted through the first gas exhaust port 41a. Further, when the upper end of the inner pipe 21 is opened, it is possible to suppress the intrusion of exhaust gas into the inner pipe 21 due to turbulent flow.
  • the tip of the nozzle 30 is provided outside the inner pipe 21 as shown in FIG. 1 and the gas is supplied into the inner pipe 21 from the outside of the inner pipe 21 has been described.
  • the disclosure is not limited to this case.
  • the tip of the nozzle 30 may be provided inside the inner pipe 21, and gas may be supplied into the inner pipe 21 from the inside of the inner pipe 21.
  • the same effect as that of the above-described embodiment can be obtained. Further, by doing so, it is possible to suppress the entrainment of the exhaust gas into the inner pipe 21 due to the gas supplied from the nozzle 30 into the inner pipe 21.
  • the fin 300 as the fifth fin extends downward in the vertical direction from the lower end of the fin 200 as the second fin provided on the lowermost side.
  • the present disclosure is not limited to this case.
  • either or both of the two fifth fins may be inclined at a predetermined angle with respect to the vertical direction from the lower end portion of the second fin provided on the lowermost side. That is, not only the vertical component but also the horizontal component may be included in the extending direction of either or both of the two fifth fins. Even in this way, the same effect as that of the above-described aspect can be obtained.
  • each of the plurality of first exhaust ports 41 is provided at a position facing the gas supply port 31 across the substrate accommodating area 65 on the side wall of the inner pipe 21 .
  • the first exhaust port 41 is provided at a predetermined distance along the circumferential direction of the side wall of the inner pipe 21 from a position facing the gas supply port 31 across the substrate accommodating area 65 on the side wall of the inner pipe 21. You may do so. In these cases as well, the same effects as those described above can be obtained.
  • each of the gas supply port 31 and the first exhaust port 41 is provided for each of the plurality of wafers 200 accommodated in the substrate accommodating area 65 .
  • at least one of the gas supply port 31 and the first exhaust port 41 is provided every few wafers (for example, at intervals of 2 to 5) with respect to a plurality of wafers 200 accommodated in the substrate accommodating area 65. You may do so. In these cases as well, the same effects as those described above can be obtained.
  • the present disclosure can be suitably applied even when a silicon film (Si film), a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), or the like is formed on the wafer W.
  • the present disclosure is also suitably applicable to the case of forming a metal-based thin film such as a film. In these cases as well, the same effects as those described above can be obtained.
  • the present disclosure is not limited to the process of forming a film on each of a plurality of wafers W, and the case where each of a plurality of wafers W is subjected to an etching process, an annealing process, or a plasma modification process. It is also suitably applicable in such cases. In these cases as well, the same effects as those described above can be obtained.

Abstract

複数枚の基板の水平姿勢で所定の配列方向に沿って多段に配列させて収容する基板収容領域を内部に有するインナーチューブと、インナーチューブの外側に配置されるアウターチューブと、インナーチューブの側壁に、配列方向に沿って複数設けられるガス供給口と、インナーチューブの側壁に、配列方向に沿って複数設けられる第1排気口と、アウターチューブにおける配列方向に沿った一端側に設けられる第2排気口と、インナーチューブとアウターチューブとの間の円環状の空間内のガスの流れを制御する整流機構と、を備え、整流機構は、複数の第1排気口のうち第2排気口から最も離れた第1排気口を排気口Aとし、複数のガス供給口のうち排気口Aに対向するガス供給口をガス供給口Aとしたとき、ガス供給口Aの近傍に、ガス供給口Aの外周の少なくとも一部を囲うフィンを備える基板処理装置を提供する。

Description

基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ
 本開示は、基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブに関する。
 半導体装置の製造工程の一工程として、複数枚の基板を収容した処理室内へガスを供給し、基板を処理する工程が行われることがある(例えば特許文献1参照)。
特開2018-088520号公報
 本開示は、基板を処理する際、基板に対する処理の品質を向上させる。
 本開示の一態様によれば、
 複数枚の基板のそれぞれを水平姿勢で所定の配列方向に沿って多段に配列させて収容する基板収容領域を内部に有するインナーチューブと、
 前記インナーチューブの外側に配置されるアウターチューブと、
 前記インナーチューブの側壁に、前記配列方向に沿って複数設けられるガス供給口と、
 前記インナーチューブの側壁に、前記配列方向に沿って複数設けられる第1排気口と、
 前記アウターチューブにおける前記配列方向に沿った一端側に設けられる第2排気口と、
 前記インナーチューブと前記アウターチューブとの間の円環状の空間内のガスの流れを制御する整流機構と、を備え、
 前記整流機構は、複数の前記第1排気口のうち前記第2排気口から最も離れた第1排気口を排気口Aとし、複数の前記ガス供給口のうち前記排気口Aに対向するガス供給口をガス供給口Aとしたとき、前記ガス供給口Aの近傍に、前記ガス供給口Aの外周の少なくとも一部を囲うフィンを備える基板処理装置が提供される。
 本開示によれば、基板を処理する際、基板に対する処理の品質を向上させることが可能となる。
本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置の縦型処理炉のガス供給系の構成を示す図である。 本開示の一態様で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉の要部を図1のB-B線断面図で示す図である。 本開示の一態様に係る基板処理装置の要部の構成例を示す図であり、図5(a)は、内管21の外壁を図4のC方向から見た図であり、図5(b)は、内管21の外壁を図4のD方向から見た図であり、図5(c)は、内管21の外壁を図4のE方向から見た図である。 図6(a)は、内管21に設けられた第1排気口41から、内管21の天板と外管22の天板との間の空間内へ排出され、内管21に設けられたガス供給口31へと向かう排気ガスの流れを示す図であり、図6(b)は、内管21に設けられた第1排気口41から内管21と外管22との間の円環状の空間内へ排出され、内管21に設けられたガス供給口31へと向かう排気ガスの流れを示す図である。 図7(a)、図7(b)は、それぞれ、内管21に設けられた第1排気口41から内管21と外管22との間の円環状の空間内へ排出され、外管22に設けられた第2排気口91へと向かう排気ガスが乱流発生箇所を示す図である。 図8(a)、図8(b)は、それぞれ、本開示の他の態様に係る基板処理装置の要部の構成例を示す図である。
<本開示の一態様>
 以下に、本開示の一態様について、図1~図4、図5(a)~図5(c)を参照しながら説明する。
(1)基板処理装置の構成
 本態様に係る基板処理装置は、半導体装置の製造工程で用いられるもので、処理対象となる基板を複数枚(例えば5~100枚)ずつ纏めて処理を行う縦型基板処理装置として構成されている。処理対象となる基板としては、例えば、半導体集積回路装置(半導体デバイス)が作り込まれる半導体ウエハ基板(以下、単に「ウエハ」という。)が挙げられる。
 図1に示すように、本態様に係る基板処理装置は、縦型処理炉1を備えている。縦型処理炉1は、加熱部(加熱機構、加熱系)としてのヒータ10を有する。ヒータ10は、円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより基板処理装置の設置床(図示せず)に対して垂直に据え付けられている。ヒータ10は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ10の内側には、ヒータ10と同心円状に反応容器(処理容器)を構成する反応管20が配設されている。反応管20は、インナーチューブとしての内管21と、内管21を同心円状に取り囲むアウターチューブとしての外管22と、を備えた二重管構成を有している。内管21および外管22は、それぞれ、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成されている。内管21および外管22は、それぞれ、上端が閉塞し下端が開口した円筒形状に形成されている。
 内管21の内部には、ウエハWに対する処理が行われる処理室23が形成されている。処理室23は、複数枚のウエハWのそれぞれを、後述するボート40によって水平姿勢で所定の配列方向(ここでは鉛直方向)に沿って多段に配列させた状態で収容可能に構成されている。本明細書では、処理室23内において複数枚のウエハWが配列される方向を、配列方向とも称する。また、処理室23内において複数枚のウエハWが水平姿勢で配列方向に沿って収容される領域を、基板収容領域65とも称する。
 反応管20の下方には、反応管20の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ50が設けられている。シールキャップ50は、例えばステンレス(SUS)等の金属材料により構成され、円盤状に形成されている。シールキャップ50の上面には、反応管20の下端と当接するシール部材としてのOリング(図示せず)が設けられている。シールキャップ50は、昇降機構としてのボートエレベータ(図示せず)によって垂直方向に昇降されるように構成されている。ボートエレベータは、シールキャップ50を昇降させることで、ウエハWを保持したボート40を処理室23内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。
 シールキャップ50の下方には、基板搬入搬出口(図示せず)が設けられている。基板搬入搬出口を介して、搬送ロボット(図示せず)により、ウエハWが移載室(図示せず)の内外を移動する。移載室内でボート40へのウエハWの装填、ボート40からのウエハWの脱装が行われる。
 基板支持具としてのボート40は、複数枚(例えば5~100枚)のウエハWのそれぞれを、水平姿勢で、かつ、互いに中心を揃えた状態で、所定の配列方向(ここでは鉛直方向)に沿って多段に配列させて支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート40は、例えば石英やSiC等の耐熱性材料によって構成される。ボート40の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱筒として構成された断熱部42が配設されている。断熱部42は、例えば石英やSiC等の耐熱性材料により構成される断熱板を水平姿勢で多段に支持することで構成されていてもよい。
 反応管20には、内管21内に向けてガスを供給するガス供給部としてのノズル30が、上述の配列方向(ここでは鉛直方向)に沿って複数配列するように、また、ヒータ10および外管22を側方から貫通するように設けられている。なお、ノズル30は、基板収容領域65内に収容されるウエハW毎にそれぞれ1つずつ設けられている。また、ノズル30は、基板収容領域65内に収容されるウエハWの表面に対して、ほぼ平行な方向に向けてガスを噴射することが可能なように取り付けられている。
 図5(a)にも示すように、内管21の側壁には、ノズル30から供給されるガスを内管21内へ導入するガス供給口31が、上述の配列方向(ここでは鉛直方向)に沿って複数配列するように設けられている。なお、ガス供給口31は、基板収容領域65内に収容されるウエハW毎にそれぞれ1つずつ設けられている。また、複数のガス供給口31のそれぞれは、複数のノズル30のそれぞれの先端部分と対向する位置に設けられている。なお、本明細書では、複数のガス供給口31のうち、後述する第2排気口91から最も離れたガス供給口31、すなわち、最も上方に設けられるガス供給口31(後述する第1排気口41aに対向するガス供給口31)を、ガス供給口A(ガス供給口31a)とも称する。また、複数のガス供給口31のうち、ガス供給口31aとは異なるガス供給口(後述する第1排気口41bに対向するガス供給口31)を、ガス供給口B(ガス供給口31b)とも称する。また、複数のガス供給口31bのうち、後述する第2排気口91に最も近接するガス供給口31b、すなわち、最も下方に設けられるガス供給口31b(後述する第1排気口41cに対向するガス供給口31)を、ガス供給口C(ガス供給口31c)とも称する。
 図2に示すように、ノズル30には、それぞれ、ガス供給管51が接続されている。ガス供給管51には、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)51aおよび開閉弁であるバルブ51bが設けられている。ガス供給管51のバルブ51bよりも下流側には、ガス供給管52,53が接続されている。ガス供給管52,53には、それぞれ、ガス流の上流側から順に、MFC52a,53aおよびバルブ52b,53bが設けられている。
 ガス供給管51からは、原料ガスとして、例えば、ウエハW上に形成される膜を構成する主元素としてのシリコン(Si)を含むシラン系ガスが、MFC51a、バルブ51b、ノズル30を介して処理室23内へ供給される。シラン系ガスとしては、例えば、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用いることができる。
 ガス供給管52からは、反応ガスとして、例えば、窒化ガスが、MFC52a、バルブ52b、ガス供給管51、ノズル30を介して処理室23内へ供給される。窒化ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。
 ガス供給管53からは、不活性ガスとして、例えば、窒素(N)ガスが、MFC53a、バルブ53b、ガス供給管51、ノズル30を介して処理室23内へ供給される。Nガスは、パージガス、希釈ガス、あるいはキャリアガスとして作用する。
 図4に示すように、内管21の側壁における上述の基板収容領域65を挟んでガス供給口31と対向する位置には、第1排気口41が設けられている。図1および図5(c)に示すように、第1排気口41は、上述の配列方向(ここでは鉛直方向)に沿って複数配列するように設けられている。第1排気口41は、ガス供給口31から内管21内へ供給されたガスを内管21内から排出するように構成されている。なお、第1排気口41は、ガス供給口31毎に、すなわち、基板収容領域65内に収容されるウエハW毎にそれぞれ1つずつ設けられている。なお、本明細書では、複数の第1排気口41のうち、後述する第2排気口91から最も離れた第1排気口41、すなわち、最も上方に設けられる第1排気口41を、排気口A(第1排気口41a)とも称する。また、複数の第1排気口41のうち、第1排気口41aとは異なる排気口を排気口B(第1排気口41b)とも称する。また、複数の第1排気口41bのうち、後述する第2排気口91に最も近接する第1排気口41b、すなわち、最も下方に設けられる第1排気口41bを排気口C(第1排気口41c)ともいう。
 外管22における上述の配列方向(ここでは鉛直方向)に沿った一端側(ここでは下端側)には、複数の第1排気口41のそれぞれを介して内管21内から外管22内へ排出されたガス、すなわち、内管21と外管22との間の円環状の空間内を流れる排気ガスを、反応管20外へ排出する第2排気口91が設けられている。第2排気口91には、排気管61が接続されている。排気管61には、反応管20内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ62および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ63を介して、真空排気装置としての真空ポンプ64が接続されている。APCバルブ63は、真空ポンプ64を作動させた状態で弁を開閉することで、処理室23内の真空排気および真空排気停止を行うことができ、さらに、真空ポンプ64を作動させた状態で、圧力センサ62により検出された圧力情報に基づいて弁開度を調節することで、処理室23内の圧力を調整することができるように構成されている。主に、排気管61、APCバルブ63、圧力センサ62により、排気系すなわち排気ラインが構成される。
 内管21と外管22との間には、内管21と外管22との間の空間(以下、排気バッファ空間ともいう)内におけるガスの流れ、すなわち、複数の第1排気口41のそれぞれから排気バッファ空間内へ排出され、第2排気口91へと向かう排気ガスの流れ(排気経路)を制御する整流機構Rが設けられている。整流機構Rの具体的な構成については後述する。
 内管21と外管22との間には、温度検出器としての温度センサ11が設置されている。温度センサ11により検出された温度情報に基づきヒータ10への通電具合を調整することで、処理室23内の温度が所望の温度分布となる。温度センサ11はL字型に構成されており、例えば、内管21の外壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ70は、CPU(Central Processing Unit)71、RAM(Random Access Memory)72、記憶装置73、I/Oポート74を備えたコンピュータとして構成されている。RAM72、記憶装置73、I/Oポート74は、内部バス75を介して、CPU71とデータ交換可能なように構成されている。コントローラ70には、例えばタッチパネル等として構成された入出力装置82、外部記憶装置81が接続されている。
 記憶装置73は、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置73内には、基板処理装置の動作を制御する制御プログラムや、後述する半導体装置の製造方法の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ70に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM72は、CPU71によって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート74は、上述のMFC51a~53a、バルブ51b~53b、圧力センサ62、APCバルブ63、真空ポンプ64、ヒータ10、温度センサ11等に接続されている。
 CPU71は、記憶装置73から制御プログラムを読み出して実行するとともに、入出力装置82からの操作コマンドの入力等に応じて記憶装置73からレシピを読み出すように構成されている。CPU71は、読み出したレシピの内容に沿うように、MFC51a~53aによる各種ガスの流量調整動作、バルブ51b~53bの開閉動作、APCバルブ63の開閉動作および圧力センサ62に基づくAPCバルブ63による圧力調整動作、真空ポンプ64の起動および停止、温度センサ11に基づくヒータ10の温度調整動作、昇降機構によるボート40の昇降動作等を制御するように構成されている。
 コントローラ70は、外部記憶装置81に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置81は、例えば、磁気テープ、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリを含む。記憶装置73や外部記憶装置81は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置73単体のみを含む場合、外部記憶装置81単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置81を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハW上に膜を形成するシーケンス例について説明する。以下の説明において、基板処理装置を構成する各部の動作は、コントローラ70により制御される。
 本態様の成膜シーケンスでは、処理容器内(処理室23内)に収容されたウエハWに対して原料ガスとしてHCDSガスを供給するステップ1と、処理室23内に収容されたウエハWに対してNHガスを供給するステップ2と、を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことで、ウエハW上にシリコン窒化膜(SiN膜)を形成する。
 本明細書では、上述の成膜処理を、便宜上、以下のように示すこともある。なお、以下の他の態様の説明においても同様の表記を用いることとする。
 (HCDS→NH)×n ⇒ SiN
(ウエハチャージおよびボートロード)
 複数枚のウエハWがボート40に装填(ウエハチャージ)されると、複数枚のウエハWを支持したボート40は、ボートエレベータによって持ち上げられて処理室23内へ搬入(ボートロード)される。この状態で、シールキャップ50は、Oリングを介して反応管20の下端をシールした状態となる。
(圧力・温度調整ステップ)
 処理室23内、すなわち、ウエハWが存在する空間が所望の圧力(真空度)となるように、真空ポンプ64によって真空排気(減圧排気)される。この際、反応管20内の圧力は圧力センサ62で測定され、この測定された圧力情報に基づきAPCバルブ63がフィードバック制御され、これにより、処理室23内の圧力が所望の圧力となるように調整される。真空ポンプ64は、少なくともウエハWに対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室23内のウエハWが所望の成膜温度となるようにヒータ10によって加熱される。この際、処理室23内が所望の温度分布となるように、温度センサ11が検出した温度情報に基づきヒータ10への通電具合がフィードバック制御される。ヒータ10による処理室23内の加熱は、少なくともウエハWに対する処理が終了するまでの間は継続して行われる。
(成膜ステップ)
 続いて、以下のステップ1,2を順次実行する。
[ステップ1]
 このステップでは、処理室23内のウエハWに対してHCDSガスを供給する。
 具体的には、バルブ51bを開き、ガス供給管51内へHCDSガスを流す。HCDSガスは、MFC51aにより流量調整され、ノズル30、ガス供給口31を介して処理室23内(内管21内)へ供給される。内管21内へ供給されたHCDSガスは、ウエハWの表面に対して平行な方向(水平方向)に向かって流れ、第1排気口41を介して内管21外へ排出され、内管21と外管22との間の空間(排気バッファ空間)を経て、第2排気口91から排気される。このとき、複数枚のウエハWのそれぞれに対してHCDSガスが供給されることとなる。このとき、バルブ53bを開き、ガス供給管53内へNガスを流す。Nガスは、MFC53aにより流量調整され、ノズル30、ガス供給口31を介して内管21内へ供給される。Nガスはキャリアガスとして作用する。
 このとき、処理室23内の圧力は、例えば0.1~30Torr、好ましくは0.2~20Torr、より好ましくは0.3~13Torrの範囲内の圧力とする。HCDSガスの供給流量は、例えば0.1~10slm、好ましくは0.2~2slmの範囲内の流量とする。Nガスの供給流量は、例えば0.1~20slmの範囲内の流量とする。HCDSガスの供給時間は、例えば0.1~60秒、好ましくは0.5~5秒の範囲内の時間とする。ヒータ10の温度は、ウエハWの温度が、例えば200~900℃、好ましくは300~850℃、より好ましくは400~750℃の範囲内の温度となるような温度に設定する。
 ウエハWに対してHCDSガスを供給することにより、複数枚のウエハWのそれぞれの最表面上に、第1層としてSi含有層が形成される。
 第1層が形成された後、バルブ51bを閉じ、内管21内へのHCDSガスの供給を停止する。このとき、APCバルブ63は開いたままとして、真空ポンプ64により反応容器20内を真空排気し、処理室23内に残留する未反応もしくは第1層形成に寄与した後のHCDSガスを処理室23内から排除する。このとき、バルブ53bは開いたままとして、Nガスの処理室23内への供給を維持する。Nガスはパージガスとして作用し、処理室23内に残留するガスを処理室23内から排出する効果を高めることができる。パージが終了したら、バルブ53bを閉じ、処理室23内へのNガスの供給を停止する。
[ステップ2]
 ステップ1が終了した後、処理室23内のウエハWに対してNHガスを供給する。
 具体的には、バルブ52bを開き、ガス供給管52内へNHガスを流す。NHガスは、MFC52aにより流量調整され、ガス供給管51、ノズル30、ガス供給口31を介して処理室23内(内管21内)へ供給される。内管21内へ供給されたNHガスは、ウエハWの表面に対して平行な方向(水平方向)に向かって流れ、第1排気口41を介して内管21外へ排出され、内管21と外管22との間の排気バッファ空間を経て、第2排気口91から排気される。このとき、複数枚のウエハWのそれぞれに対してNHガスが供給されることとなる。このとき、バルブ53bを開き、ガス供給管53内へNガスを流す。Nガスは、MFC53aにより流量調整され、ノズル30、ガス供給口31を介して内管21内へ供給される。Nガスはキャリアガスとして作用する。
 このとき、処理室23内の圧力は、例えば0.1~30Torr、好ましくは0.2~20Torr、より好ましくは0.3~13Torrの範囲内の圧力とする。HCDSガスの供給流量は、例えば0.1~10slm、好ましくは0.2~2slmの範囲内の流量とする。Nガスの供給流量は、例えば0.1~20slmの範囲内の流量とする。HCDSガスの供給時間は、例えば0.1~60秒、好ましくは0.5~5秒の範囲内の時間とする。ヒータ10の温度は、ウエハWの温度が、例えば200~900℃、好ましくは300~850℃、より好ましくは400~750℃の範囲内の温度となるような温度に設定する。
 ウエハWに対して供給されたNHガスは、ステップ1でウエハW上に形成された第1層、すなわちSi含有層の少なくとも一部と反応する。これにより第1層は、ノンプラズマで熱的に窒化され、SiおよびNを含む第2層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。
 第2層(SiN層)が形成された後、バルブ52bを閉じ、内管21内へのNHガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室23内に残留するNHガスや反応副生成物を処理室23内から排除する。
[所定回数実施]
 上述したステップ1,2を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハW上に、所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成される第2層の厚さを所望の膜厚よりも小さくし、第2層を積層することで形成される膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(アフターパージステップ・大気圧復帰ステップ)
 成膜ステップが終了し、所定膜厚のSiN膜が形成されたら、反応管20内へNガスを供給し、排気管61から排気する。これにより、処理室23内がパージされ、処理室23内に残留するガスや反応副生成物が処理室23内から除去される(アフターパージ)。その後、処理室23内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室23内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータによりシールキャップ50が下降され、反応管20の下端が開口されるとともに、処理済のウエハWが、ボート40に支持された状態で反応管20の外部に搬出(ボートアンロード)される。処理済のウエハWは、反応管20の外部に搬出された後、ボート40より取り出されることとなる(ウエハディスチャージ)。
(3)整流機構Rの構成
 以下、内管21と外管22との間の空間内における排気ガスの流れ(排気経路)を制御する整流機構Rの構成について説明する。上述したように、本明細書では、内管21と外管22との間の空間を「排気バッファ空間」ともいう。
 図6(a)、図6(b)は、整流機構Rを排気バッファ空間に設けないこととした場合における、排気バッファ空間内での排気ガスの経路を例示するものである。
 まず、図6(a)に示すように、第1排気口41から排出された排気ガスが、排気バッファ空間のうち、内管21の天板と外管22の天板との間の空間(上部バッファ空間)を介して、ガス供給口31側へ回り込み、ガス供給口31を介して内管21内へ流入する場合がある。このときの排気ガスの経路を、図6(a)において「排気経路A」で示す。特に、第2排気口91から遠い第1排気口41aから排出されたガスは、上部バッファ空間内へ流れ込みやすく、第1排気口41aに対向するガス供給口31a内に鉛直方向(上下方向)から流入しやすい傾向がある。内管21内へ流入した排気ガスは、基板処理の品質を低下させる要因となる。
 また、図6(b)に示すように、第1排気口41から排出された排気ガスが、排気バッファ空間のうち、内管21の側壁と外管22の側壁との間の平面視において円環状の空間(側方バッファ空間)を介して、ガス供給口31側へ回り込み、ガス供給口31を介して内管21内へ流入する場合がある。このときの排気ガスの経路を、図6(b)において「排気経路B」で示す。特に、第2排気口91から遠い第1排気口41aから排出されたガスは、側方バッファ空間内へ流れ込みやすく、第1排気口41aに対向するガス供給口31a内に水平方向(左右方向)から流入しやすい傾向がある。上述したように、内管21内へ流入した排気ガスは、基板処理の品質を低下させる要因となる。
 これらの課題を解決するため、本態様では、図5(a)~図5(c)等に示すように、排気バッファ空間に整流機構R(後述するフィン100~400を含む整流板群の総称)を設け、排気バッファ空間内における排気ガスの流れ(流路)を制御するようにしている。
 図5(a)に示すように、整流機構Rは、複数のガス供給口31のそれぞれの近傍に、フィン100とフィン200をそれぞれ2枚ずつ備えている。具体的には、整流機構Rは、ガス供給口31を挟んで鉛直方向の両側のそれぞれ、すなわち、ガス供給口31の直上および直下のそれぞれに、フィン100を備えている。また、整流機構Rは、ガス供給口31を挟んで水平方向の両側のそれぞれ、すなわち、ガス供給口31の左側および右側のそれぞれに、フィン200を備えている。また、整流機構Rは、ガス供給口31cを水平方向の両側から挟むフィン200の端部に、具体的には、フィン200の下端部にフィン300を備えている。また、整流機構Rは、第1排気口41aの近傍に、具体的には、第1排気口41aの直上に、フィン400を備えている。本明細書では、ガス供給口31aを鉛直方向の両側から挟むフィン100を第1フィンとも呼び、ガス供給口31aを水平方向の両側から挟むフィン200を第2フィンとも呼ぶ。また、ガス供給口31bを鉛直方向の両側から挟むフィン100を第3フィンとも呼び、ガス供給口31bを水平方向の両側から挟むフィン200を第4フィンとも呼ぶ。また、フィン300を第5フィンとも呼び、フィン400を第6フィンとも呼ぶ。
 以下、整流機構Rが備える第1~第6フィン(フィン100~400)の構成を詳しく説明する。
(第1フィン、第3フィン)
 図4、図5(a)に示すように、第1フィン、第3フィンとしての複数のフィン100のそれぞれは、内管21の外壁における複数のガス供給口31のそれぞれの上下近傍に、内管21の外周に沿って水平方向に延在するように設けられている。
 複数のフィン100のそれぞれは、内管21の外壁から外管22の内壁に向かって、すなわち、内管21の径方向外側に向かって突出する整流板として構成されている。内管21の径方向外側に向かうフィン100の端部と外管22の内壁との間には、所定の距離、例えば、2mmよりも大きく7mmよりも小さい距離だけ離れた間隙が維持されるように構成されている。複数のフィン100のそれぞれは、ガス供給口31aの直上におけるフィン100も含め、水平姿勢で収容されるウエハWの主面に対して平行な姿勢で設けられている。
 図5(a)に示すように、複数のフィン100のそれぞれは、側面視において水平直線形状(平板状)に構成され、ガス供給口31の水平方向における内径よりも大きな所定の長さ(延在長)で設けられている。複数のフィン100は、全て同じ延在長で設けられている。フィン100は、鉛直方向(配列方向)に沿ってガス供給口31をそれぞれ両側から挟むように設けられている。ガス供給口31aの直上におけるフィン100は、内管21の上端部(天板)よりも所定の距離だけ下方に設けられている。
(第2フィン、第4フィン)
 また、図5(a)に示すように、第2フィン、第4フィンとしての複数のフィン200のそれぞれは、内管21の外壁における複数のガス供給口31のそれぞれの左右近傍に、鉛直方向(配列方向)に沿って延在するように設けられている。
 図4にも示すように、複数のフィン200のそれぞれは、フィン100と同様に、内管21の外壁から外管22の内壁に向かって、すなわち、内管21の径方向外側に向かって突出する整流板として構成されている。内管21の径方向外側に向かうフィン200の端部と外管22の内壁との間には、フィン100と同様に、所定の距離、例えば、2mmよりも大きく7mmよりも小さい距離だけ離れた間隙が維持されるように構成されている。
 図5(a)に示すように、複数のフィン200のそれぞれは、側面視において鉛直直線形状(平板状)に構成され、ガス供給口31の鉛直方向における内径よりも大きな所定の長さ(延在長)で設けられている。フィン200は、水平方向に沿ってガス供給口31をそれぞれ両側から挟むように設けられている。ガス供給口31の左側に設けられる複数のフィン200により、一体の平板が構成される。同様に、ガス供給口31の右側に設けられる複数のフィン200により、一体の平板が構成される。図5(b)に示すように、これらの平板における側面(水平方向の外側における側面)は、段差や間隙を有さない連続的な平滑面として構成されている。
 図5(a)に示すように、フィン100の水平方向における端部は、水平方向の両側に設けられたフィン200に接合されている。これにより、複数のガス供給口31における外周は、フィン100とフィン200とによりそれぞれ隙間なく(連続的に)囲われている。
(第5フィン)
 図5(a)に示すように、第5フィンとしての2枚のフィン300のそれぞれは、内管21の外壁におけるガス供給口31側であってガス供給口31cの下方側に、鉛直方向(配列方向)に沿って、すなわち、第2排気口91へ向かって、所定の長さ(延在長)で延在するように設けられている。2枚のフィン300は、ガス供給口31cを水平方向の両側から挟む2枚のフィン200の下端部から下方に向かって延在している。2枚のフィン300の下方側の端部は、それぞれ、例えば、ヒータ10の下端部の近傍であって、ヒータ10の下端部よりも上方に位置している(図1参照)。
 2枚のフィン300のそれぞれは、フィン100等と同様に、内管21の外壁から外管22の内壁に向かって、すなわち、内管21の径方向外側に向かって突出する整流板として構成されている。内管21の径方向外側に向かうフィン300の端部と外管22の内壁との間には、フィン100等と同様に、所定の距離、例えば、2mmよりも大きく7mmよりも小さい距離だけ離れた間隙が維持されるように構成されている。
 図5(a)に示すように、2枚のフィン300のそれぞれは、側面視において鉛直直線形状(平板状)に構成されている。ガス供給口31の左側に設けられる複数のフィン200とフィン300とにより、一体の平板が構成されている。ガス供給口31の右側に設けられる複数のフィン200とフィン300とにより、一体の平板が構成されている。図5(b)に示すように、これらの平板における側面(水平方向の外側における側面)は、段差や間隙を有さない連続的な平滑面として構成されている。
(第6フィン)
 図5(b)、図5(c)に示すように、第6フィンとしてのフィン400は、内管21の外壁における第1排気口41側の上端側、すなわち、第1排気口41aの上方近傍に、内管21の外周に沿って水平方向に延在するように設けられている。フィン400は、側面視において水平直線形状(平板状)に構成され、第1排気口41aの水平方向における内径よりも大きな所定の長さ(延在長)で設けられている。フィン400は、内管21の上端部(天板)よりも所定の距離だけ下方に設けられている。
 フィン400は、フィン100等と同様に、内管21の外壁から外管22の内壁に向かって、すなわち、内管21の径方向外側に向かって突出する整流板として構成されている。内管21の径方向外側に向かうフィン400の端部と外管22の内壁との間には、フィン100等と同様に、所定の距離、例えば、2mmよりも大きく7mmよりも小さい距離だけ離れた間隙が維持されるように構成されている。
(4)本態様の効果
 本態様によれば、以下に示す一つまたは複数の効果を奏する。
(a)本態様の整流機構Rは、ガス供給口31aの近傍に、ガス供給口31aの外周の少なくとも一部を囲うフィンを備えている。これにより、排気バッファ空間内を流れる排気ガスが、ガス供給口31aを介して内管21内へ流入することを抑制することができる。結果として、基板処理の品質、特に、基板収容領域65の上部側に配置されたウエハWに対する基板処理の品質を向上させることが可能となる。
(b)本態様の整流機構Rは、ガス供給口31aの近傍に、ガス供給口31aの水平方向における内径よりも大きな所定の長さで水平方向に沿って延在するフィン100(第1フィン)を備えている。フィン100は、配列方向(鉛直方向)に沿ってガス供給口31aをそれぞれ両側から挟むように設けられている。これらにより、排気バッファ空間内を流れる排気ガスが、ガス供給口31a内へ流入することを、抑制することが可能となる。結果として、基板処理の品質、特に、基板収容領域65の上部側に配置されたウエハWに対する基板処理の品質を、向上させることが可能となる。
(c)本態様の整流機構Rは、ガス供給口31aの近傍に、ガス供給口31aの配列方向(鉛直方向)における内径よりも大きな所定の長さで配列方向(鉛直方向)に沿って延在するフィン200(第2フィン)を備えている。フィン200は、水平方向に沿ってガス供給口31aをそれぞれ両側から挟むように設けられている。これらにより、排気バッファ空間内を流れる排気ガスが、ガス供給口31a内へ流入することを、抑制することが可能となる。結果として、基板処理の品質、特に、基板収容領域65の上部側に配置されたウエハWに対する基板処理の品質を、向上させることが可能となる。
(d)本態様の整流機構Rは、ガス供給口31bの近傍に、ガス供給口31bの水平方向における内径よりも大きな所定の長さで水平方向に沿って延在するフィン100(第3フィン)を備えている。フィン100は、配列方向(鉛直方向)に沿ってガス供給口31bをそれぞれ両側から挟むように設けられている。これらにより、排気バッファ空間内を流れる排気ガスが、ガス供給口31b内へ流入することを、抑制することが可能となる。結果として、基板収容領域65の上部側以外の場所に収容されたウエハWに対しても、基板処理の品質を向上させることが可能となる。
(e)本態様の整流機構Rは、ガス供給口31bの近傍に、ガス供給口31bの配列方向(鉛直方向)における内径よりも大きな所定の長さで鉛直方向に沿って延在するフィン200(第4フィン)を備えている。フィン200は、水平方向に沿ってガス供給口31bをそれぞれ両側から挟むように設けられている。これらにより、排気バッファ空間内を流れる排気ガスが、ガス供給口31b内へ流入することを、抑制することが可能となる。結果として、基板収容領域65の上部側以外の場所に収容されたウエハWに対しても、基板処理の品質を向上させることが可能となる。
(f)本態様の整流機構Rは、ガス供給口31cの近傍に設けられるフィン200の端部から、配列方向(鉛直方向)に沿って所定の長さで延在するフィン300(第5フィン)を備えている。これにより、基板処理の品質、特に、基板収容領域65の下部側に配置されたウエハWに対する基板処理の品質を向上させることが可能となる。
 というのも、フィン300を設けないこととした場合、図7(a)の破線で示す箇所、すなわち、ガス供給口31cの周辺で排気ガスの乱流が発生し、この乱流の影響を受けて、ガス供給口31c内へ排気ガスが微量に流入する場合がある。この場合、上述の効果は充分に得られるものの、その効果が得られる範囲内で、基板処理の品質、特に、基板収容領域65の下部側に配置されたウエハWに対する処理の品質に影響が出る場合がある。
 このような課題に対し、フィン300を設けることにより、図7(b)に破線で示すように、排気ガスの乱流の発生箇所を、ガス供給口31cから遠ざけることが可能となる。これにより、ガス供給口31c内への排気ガスの流入を抑制し、基板処理の品質、特に、基板収容領域65の下部側に配置されたウエハWに対する基板処理の品質を向上させることが可能となる。
(g)本態様の整流機構Rにおいては、ガス供給口31の左側に設けられる複数のフィン200とフィン300とにより、一体の平板が構成されている。また、ガス供給口31の右側に設けられる複数のフィン200とフィン300とにより、一体の平板が構成されている。そして、これらの平板における側面(水平方向の外側における側面)は、段差や間隙を有さない連続的な平滑面として構成されている。これらにより、排気バッファ空間内における乱流の発生を抑制し、基板処理の品質を向上させることが可能となる。
(h)本態様の整流機構Rは、第1排気口41aの近傍に、第1排気口41aの水平方向における内径よりも大きな所定の長さで水平方向に沿って延在するフィン400(第6フィン)を備えている。これにより、複数の第1排気口41、特に、第1排気口41aから排出された排気ガスが、上部バッファ空間内へ流れることを抑制することができる。これにより、上部バッファ空間を介したガス供給口31a内への排気ガスの流入を抑制することが可能となる。結果として、ウエハWに対する基板処理、特に、基板収容領域65の上部側に配置されたウエハWに対する基板処理の品質を向上させることが可能となる。
<本開示の他の態様>
 以上、本開示の一態様を具体的に説明したが、本開示が上述の態様に限定されることはなく、その要旨を逸脱しない範囲で種々変更が可能である。
 また、例えば、上述の態様では、第1フィンあるいは第3フィンとしてのフィン100を、ガス供給口31の上下両側にそれぞれ設け、第2フィンあるいは第4フィンとしてのフィン200を、ガス供給口31の左右両側にそれぞれ設ける場合について説明したが、本開示はこれらの場合に限定されない。例えば、フィン100を、ガス供給口31の上側および下側のうちいずれか一方にのみ設けるようにしてもよく、フィン200を、ガス供給口31の左側および右側のうちいずれか一方にのみ設けるようにしてもよい。これらの場合においても、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。
 また例えば、上述の態様では、第5フィンとしてのフィン300を、ガス供給口31cを水平方向の両側から挟む2枚のフィン200の下端部からそれぞれ延在させる場合、すなわち、フィン300を2枚設ける場合について説明したが、本開示はこれに限定されない。例えば、フィン300を、ガス供給口31cを水平方向の両側から挟む2枚のフィン200のうちいずれか一方の下端部から延在させ、フィン300を1枚のみ設けるようにしてもよい。この場合においても、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。
 また例えば、上述の態様では、フィン100~400の全てを設ける場合について説明したが、本開示はこの場合に限定されない。例えば、ガス供給口31aの直上のフィン100のみを設け、他のフィンの設置を省略してもよい。このような場合においても、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。
 また例えば、上述した態様では、ガス供給口31のそれぞれを、フィン100とフィン200とを用いて個別に囲う場合について説明したが、本開示はこの場合に限定されない。例えば、数個(例えば2~5個)のガス供給口31を一つの囲う単位として定め、この単位を(数個のガス供給口31を)フィン100とフィン200とを用いてまとめて囲うようにしてもよい。この場合においても、上述の態様と同様の効果が得られる。
 また例えば、上述した態様では、複数のフィン100を全て同じ延在長で設ける場合について説明したが、本開示はこの場合に限定されない。例えば、ガス供給口31aの直上に設けられるフィン100の延在長を最も長くして、フィン100の位置が下方になるにつれて、その延在長を徐々に短くなるようにしてもよい。この場合においても、上述の態様と同様の効果が得られる。但し、複数のフィン100を全て同じ延在長とした上述の態様の方が、第1排気口41から排気バッファ空間内へ排出されたガスが、ガス供給口31内へ流入することを抑制できる点で好ましい。
 また例えば、上述した態様では、第1、第2フィン(フィン100,200)をそれぞれ平板状に構成し、ガス供給口31の左側に設けられる複数のフィン200により一体の平板を構成し、また、ガス供給口31の右側に設けられる複数のフィン200により一体の平板を構成する場合について説明したが、本開示はこれに限定されない。例えば、フィン100,200をそれぞれ湾曲させ、これらを連続的な曲面を構成するように一体化させ、図8(a)に示すように、内管をガス供給口側方向から側面視した際に、複数のガス供給口のそれぞれの外周を、曲線形状のフィンにより円形や楕円形に囲うようにしてもよい。この場合においても、上述の態様と同様の効果が得られる。但し、直線形状のフィン100とフィン200とにより隙間なく囲う上述の態様の方が、排気バッファ空間内での乱流の発生を抑制できる点で好ましい。
 また例えば、上述した態様では、複数のフィン100,200のそれぞれにおいて、内管21の径方向外側に向かうフィン100の端部と外管22の内壁との間には、同じ距離の間隙が維持されている例について説明したが、本開示はこのような構成に限定されない。例えば、ガス供給口31aの直上に設けられるフィン100における当該距離の間隙が最も狭くなるように、フィン100の大きさ(内管21の外壁からの突出量)を設定してもよい。また例えば、ガス供給口31aの左右に設けられるフィン200における当該距離の間隙が最も狭くなるように、フィン200の大きさ(内管21の外壁からの突出量)を設定してもよい。これらのようにすることで、排気バッファ空間内を流れる排気ガスがガス供給口31a内へ流入することを、より確実に抑制することが可能となる。
 また例えば、上述の態様では、ガス供給口31aの直上におけるフィン100を含め、複数のフィン100のそれぞれを、水平姿勢で収容されるウエハWの主面に対して平行な姿勢で設ける場合について説明したが、本開示はこれに限定されない。例えば、ガス供給口31aの直上において、フィン100を、内管21の径方向外側に向かうにつれてその端部が上がったり、または下がったりするような姿勢で、すなわち、傾斜姿勢で設けるようにしてもよい。他のフィン100においても、同様に構成してもよい。これらの場合においても、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。
 また例えば、上述した態様では、上端が閉塞した内管21を例に挙げて説明したが、本開示はこれに限定されない。例えば、上端が開放した内管21、すなわち、上端に天板を有さない内管21を用いるようにしてもよい。このような場合においても、上述の各種フィンを設けることにより、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。なお、内管21の上端を開放する場合には、複数の第1排気口41の少なくともいずれかから排出され、上部バッファ空間内へと流れ込んだ排気ガスが、上端の開放部から内管21内へと流入しやすくなる。このような課題に対し、第6フィンとしてのフィン400を設けることは、複数の第1排気口41の少なくともいずれかから排出された排気ガスの上部バッファ空間内への回り込みを抑制することが可能となる点で、特に有意義となる。
 また例えば、上述の態様では、ガス供給口31aの直上におけるフィン100を、内管21の上端部よりも下方に設ける場合について説明したが、本開示はこれに限定されない。例えば、ガス供給口31aの直上におけるフィン100を、内管21の上端部と同じ高さに設けるようにしてもよい。このような場合においても、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。なお、ガス供給口31aの直上におけるフィン100を、内管21の上端部と同じ高さに設ける場合には、内管21の上端部とフィン100との間を、段差のない平坦面として構成することが可能となる。これにより、内管21の上端部周辺における乱流の発生を抑制することが可能となる。結果として、ガス供給口31aを介した内管21内への排気ガスの侵入や、内管21の上端を開放した場合における内管21内への排気ガスの侵入等を抑制することが可能となる。
 また例えば、上述の態様では、第1ガス排気口41aの直上における第6フィンとしてのフィン400を、内管21の上端部よりも下方に設ける場合について説明したが、本開示はこれに限定されない。例えば、内管21の上端部と同じ高さに設けるようにしてもよい。このような場合においても、上述の態様で記載した効果のうち、少なくとも一部の効果を得ることができる。なお、第1ガス排気口41aの直上におけるフィン400を、内管21の上端部と同じ高さに設ける場合には、内管21の上端部とフィン400との間を、段差のない平坦面として構成することが可能となる。これにより、内管21の上端部周辺における乱流の発生を抑制することが可能となる。結果として、第1ガス排気口41aを介したガスの排気を、安定して行うことが可能となる。また、内管21の上端を開放した場合には、乱流による内管21内への排気ガスの侵入等を抑制することも可能となる。
 また例えば、上述した態様では、ノズル30の先端を図1に示すように内管21よりも外側に設け、内管21内へのガス供給を内管21の外側から行う場合について説明したが、本開示はこの場合に限定されない。例えば、ノズル30の先端を内管21の内側に設け、内管21内へのガス供給を内管21の内側から行うようにしてもよい。この場合においても、上述の態様と同様の効果が得られる。また、このようにすることで、ノズル30から内管21内へ供給されるガスによる内管21内への排気ガスの巻き込みを、抑制することが可能となる。
 また例えば、上述した態様では、第5フィンとしてのフィン300を、最下側に設けられた第2フィンとしてのフィン200の下端部から鉛直方向の下方に向かって延在させる例について説明したが、本開示はこの場合に限定されない。例えば、2枚の第5フィンのいずれか、或いは、両方を、最下側に設けられた第2フィンの下端部から、鉛直方向に対して所定の角度で傾斜させてもよい。すなわち、2枚の第5フィンのいずれか、或いは、両方の延在方向に、垂直方向成分だけでなく、水平方向成分を含ませてもよい。このようにしても、上述の態様と同様の効果が得られる。
 また例えば、図8(b)に示すように、2枚の第5フィンを、最下側に設けられた第2フィンの下端部から鉛直方向の下方に向かってそれぞれ延在させる際、これらのいずれか、或いは、両方を、鉛直方向に対して所定の角度で傾斜させ、下流端で合流させるようにしてもよい。このようにしても、上述の態様と同様の効果が得られる。また、このようにすることで、乱流発生箇所が2か所から1か所に減ることとなり、ガス供給口内へ排気ガスが流入する可能性をさらに低減させることが可能となる。結果として、基板処理の品質、特に、基板収容領域の下部側に配置されたウエハに対する処理の品質をさらに向上させることが可能となる。
 また例えば、上述した態様では、複数の第1排気口41のそれぞれを、内管21の側壁における基板収容領域65を挟んでガス供給口31と対向する位置に設ける例について説明したが、本開示はこれに限定されない。例えば、第1排気口41を、内管21の側壁における基板収容領域65を挟んでガス供給口31と対向する位置から、内管21の側壁の周方向に沿って所定の距離をずらして設けるようにしてもよい。これらの場合においても、上述の態様と同様の効果が得られる。
 また例えば、上述した態様では、ガス供給口31および第1排気口41のそれぞれを、基板収容領域65内に収容される複数のウエハ200毎に一つずつ設ける例について説明したが、本開示はこれに限定されない。例えば、ガス供給口31および第1排気口41のうち少なくともいずれかを、基板収容領域65内に収容される複数枚のウエハ200に対して数枚毎(例えば2~5枚間隔で)に設けるようにしてもよい。これらの場合においても、上述の態様と同様の効果が得られる。
 また例えば、上述した態様では、ウエハW上にSiN膜を形成する例について説明したが、本開示はこれに限定されない。例えば、ウエハW上に、シリコン膜(Si膜)、シリコン酸化膜(SiO膜)、シリコン酸窒化膜(SiON膜)等を形成する場合においても、本開示は好適に適用可能である。また、ウエハW上に、チタン膜(Ti膜)、チタン酸化膜(TiO膜)、チタン窒化膜(TiN膜)、アルミニウム膜(Al膜)、アルミニウム酸化膜(AlO膜)、ハフニウム酸化膜(HfO)膜等の金属系薄膜を形成する場合においても、本開示は好適に適用可能である。これらの場合においても、上述の態様と同様の効果が得られる。
 本開示は、複数枚のウエハW上にそれぞれ膜を形成する処理に限らず、複数枚のウエハWのそれぞれに対してエッチング処理を行う場合、アニール処理を行う場合、プラズマ改質処理を行う場合等においても、好適に適用可能である。これらの場合においても、上述の態様と同様の効果が得られる。
 21 内管(インナーチューブ)
 22 外管(アウターチューブ)
 31,31a,31b,31c ガス供給口
 41,41a,41b,41c 第1排気口
 65 基板収容領域
 91 第2排気口
 W ウエハ(基板)
 100 フィン(第1フィン、第3フィン)
 200 フィン(第2フィン、第4フィン)
 300 フィン(第5フィン)
 400 フィン(第6フィン)
 R 整流機構

Claims (15)

  1.  複数枚の基板のそれぞれを水平姿勢で所定の配列方向に沿って多段に配列させて収容する基板収容領域を内部に有するインナーチューブと、
     前記インナーチューブの外側に配置されるアウターチューブと、
     前記インナーチューブの側壁に、前記配列方向に沿って複数設けられるガス供給口と、
     前記インナーチューブの側壁に、前記配列方向に沿って複数設けられる第1排気口と、
     前記アウターチューブにおける前記配列方向に沿った一端側に設けられる第2排気口と、
     前記インナーチューブと前記アウターチューブとの間の円環状の空間内のガスの流れを制御する整流機構と、を備え、
     前記整流機構は、複数の前記第1排気口のうち前記第2排気口から最も離れた第1排気口を排気口Aとし、複数の前記ガス供給口のうち前記排気口Aに対向するガス供給口をガス供給口Aとしたとき、前記ガス供給口Aの近傍に、前記ガス供給口Aの外周の少なくとも一部を囲うフィンを備える基板処理装置。
  2.  前記整流機構は、前記ガス供給口Aの水平方向における内径よりも大きな所定の長さで水平方向に沿って延在する第1フィンを、前記ガス供給口Aの近傍に備える、
     請求項1に記載の基板処理装置。
  3.  前記整流機構は、前記第1フィンを、前記配列方向に沿って前記ガス供給口Aを両側から挟むように、前記ガス供給口Aの近傍にそれぞれ備える、
     請求項2に記載の基板処理装置。
  4.  前記整流機構は、前記ガス供給口Aの前記配列方向における内径よりも大きな所定の長さで前記配列方向に沿って延在する第2フィンを、前記ガス供給口Aの近傍に備える、
     請求項1~3のいずれか1項に記載の基板処理装置。
  5.  前記整流機構は、前記第2フィンを、水平方向に沿って前記ガス供給口Aを両側から挟むように、前記ガス供給口Aの近傍にそれぞれ備える、
     請求項4に記載の基板処理装置。
  6.  前記整流機構は、
     複数の前記第1排気口のうち前記排気口Aとは異なる排気口を排気口Bとし、複数の前記ガス供給口のうち前記排気口Bに対向するガス供給口をガス供給口Bとしたとき、
     前記ガス供給口Bの水平方向における内径よりも大きな所定の長さで水平方向に沿って延在する第3フィンを、前記ガス供給口Bの近傍に備える、
     請求項1~5のいずれか1項に記載の基板処理装置。
  7.  前記整流機構は、前記第3フィンを、前記配列方向に沿って前記ガス供給口Bを両側から挟むように、前記ガス供給口Bの近傍にそれぞれ備える、
     請求項6に記載の基板処理装置。
  8.  前記整流機構は、
     複数の前記第1排気口のうち前記排気口Aとは異なる排気口を排気口Bとし、複数の前記ガス供給口のうち前記排気口Bに対向するガス供給口をガス供給口Bとしたとき、
     前記ガス供給口Bの前記配列方向における内径よりも大きな所定の長さで前記配列方向に沿って延在する第4フィンを、前記ガス供給口Bの近傍に備える、
     請求項1~7のいずれか1項に記載の基板処理装置。
  9.  前記整流機構は、前記第4フィンを、前記ガス供給口Bを水平方向に沿って両側から挟むように、前記ガス供給口Bの近傍にそれぞれ備える、
     請求項8に記載の基板処理装置。
  10.  前記整流機構は、複数の前記第1排気口のうち前記第2排気口に最も近い第1排気口を排気口Cとし、複数の前記ガス供給口のうち前記排気口Cに対向するガス供給口をガス供給口Cとしたとき、
     前記ガス供給口Cの近傍に設けられる前記第4フィンの端部から、前記配列方向に沿って或いは前記第2排気口へ向かって所定の長さで延在する第5フィンをさらに有する、
     請求項8または9に記載の基板処理装置。
  11.  前記整流機構は、前記排気口Aと前記ガス供給口Aとの間における前記排気口Aの近傍に、前記排気口Aの水平方向における内径よりも大きな所定の長さで水平方向に沿って延在する第6フィンを備える、
     請求項1~10のいずれか1項に記載の基板処理装置。
  12.  前記第1排気口は前記基板収容領域を挟んで前記ガス供給口と対向する位置に設けられている、
     請求項1に記載の基板処理装置。
  13.  複数枚の基板のそれぞれを水平姿勢で所定の配列方向に沿って多段に配列させてインナーチューブ内の基板収容領域に収容する工程と、
     前記インナーチューブの側壁に前記配列方向に沿って複数設けられたガス供給口から前記インナーチューブ内に向けてガスを供給する工程と、
     前記インナーチューブの側壁に前記配列方向に沿って複数設けられた第1排気口から、前記インナーチューブの外側に配置されるアウターチューブ内へ、前記インナーチューブ内に供給されたガスを排出する工程と、
     前記アウターチューブにおける前記配列方向に沿った一端側に設けられる第2排気口から、前記インナーチューブと前記アウターチューブとの間の円環状の空間内を排気する工程と、
     複数の前記第1排気口のうち前記第2排気口から最も離れた第1排気口を排気口Aとし、複数の前記ガス供給口のうち前記排気口Aに対向するガス供給口をガス供給口Aとしたとき、前記ガス供給口Aの近傍に、前記ガス供給口Aの外周の少なくとも一部を囲うフィンを備える整流機構を用い、前記円環状の空間内のガスの流れを制御する工程と、
     を有する半導体装置の製造方法。
  14.  複数枚の基板のそれぞれを水平姿勢で所定の配列方向に沿って多段に配列させてインナーチューブ内の基板収容領域に収容する手順と、
     前記インナーチューブの側壁に前記配列方向に沿って複数設けられたガス供給口から前記インナーチューブ内に向けてガスを供給する手順と、
     前記インナーチューブの側壁に前記配列方向に沿って複数設けられた第1排気口から、前記インナーチューブの外側に配置されるアウターチューブ内へ、前記インナーチューブ内に供給されたガスを排出する手順と、
     前記アウターチューブにおける前記配列方向に沿った一端側に設けられる第2排気口から、前記インナーチューブと前記アウターチューブとの間の円環状の空間内を排気する手順と、
     複数の前記第1排気口のうち前記第2排気口から最も離れた第1排気口を排気口Aとし、複数の前記ガス供給口のうち前記排気口Aに対向するガス供給口をガス供給口Aとしたとき、前記ガス供給口Aの近傍に、前記ガス供給口Aの外周の少なくとも一部を囲うフィンを備える整流機構を用い、前記円環状の空間内のガスの流れを制御する手順と、
     をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
  15.  複数枚の基板のそれぞれを水平姿勢で所定の配列方向に沿って多段に配列させて収容する基板収容領域を内部に有し、前記配列方向に沿った一端側に第2排気口が設けられたアウターチューブ内に配置されるインナーチューブであって、
     前記インナーチューブの側壁には、前記配列方向に沿って複数のガス供給口が設けられ、
     前記インナーチューブの側壁には、前記配列方向に沿って複数の第1排気口が設けられ、
     複数の前記第1排気口のうち前記第2排気口から最も離れた第1排気口を排気口Aとし、複数の前記ガス供給口のうち前記排気口Aに対向するガス供給口をガス供給口Aとしたとき、前記インナーチューブの側壁における前記ガス供給口Aの近傍に、前記インナーチューブと前記アウターチューブとの間の円環状の空間内のガスの流れを制御する整流機構の少なくとも一部を構成するフィンが、前記ガス供給口Aの外周の少なくとも一部を囲うように設けられているインナーチューブ。
PCT/JP2020/013323 2020-03-25 2020-03-25 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ WO2021192090A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022509877A JP7399260B2 (ja) 2020-03-25 2020-03-25 基板処理装置、基板処理方法、半導体装置の製造方法、プログラム、およびインナーチューブ
PCT/JP2020/013323 WO2021192090A1 (ja) 2020-03-25 2020-03-25 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ
CN202080098653.1A CN115315790A (zh) 2020-03-25 2020-03-25 基板处理装置、半导体装置的制造方法、存储介质和内管
US17/951,059 US20230012668A1 (en) 2020-03-25 2022-09-22 Substrate processing apparatus, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and inner tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013323 WO2021192090A1 (ja) 2020-03-25 2020-03-25 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,059 Continuation US20230012668A1 (en) 2020-03-25 2022-09-22 Substrate processing apparatus, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and inner tube

Publications (1)

Publication Number Publication Date
WO2021192090A1 true WO2021192090A1 (ja) 2021-09-30

Family

ID=77891053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013323 WO2021192090A1 (ja) 2020-03-25 2020-03-25 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ

Country Status (4)

Country Link
US (1) US20230012668A1 (ja)
JP (1) JP7399260B2 (ja)
CN (1) CN115315790A (ja)
WO (1) WO2021192090A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222806A (ja) * 2001-01-26 2002-08-09 Ebara Corp 基板処理装置
JP2012015195A (ja) * 2010-06-29 2012-01-19 Tokyo Electron Ltd 基板処理装置及び基板処理装置のクリーニング方法
JP2012227265A (ja) * 2011-04-18 2012-11-15 Tokyo Electron Ltd 熱処理装置
JP2019062053A (ja) * 2017-09-26 2019-04-18 株式会社Kokusai Electric 基板処理装置、反応管、半導体装置の製造方法、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090097B2 (ja) * 2007-07-26 2012-12-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び基板処理方法
JP2012178492A (ja) * 2011-02-28 2012-09-13 Hitachi Kokusai Electric Inc 基板処理装置およびガスノズルならびに基板若しくは半導体デバイスの製造方法
JP2014096453A (ja) * 2012-11-08 2014-05-22 Tokyo Electron Ltd 熱処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222806A (ja) * 2001-01-26 2002-08-09 Ebara Corp 基板処理装置
JP2012015195A (ja) * 2010-06-29 2012-01-19 Tokyo Electron Ltd 基板処理装置及び基板処理装置のクリーニング方法
JP2012227265A (ja) * 2011-04-18 2012-11-15 Tokyo Electron Ltd 熱処理装置
JP2019062053A (ja) * 2017-09-26 2019-04-18 株式会社Kokusai Electric 基板処理装置、反応管、半導体装置の製造方法、及びプログラム

Also Published As

Publication number Publication date
US20230012668A1 (en) 2023-01-19
JP7399260B2 (ja) 2023-12-15
CN115315790A (zh) 2022-11-08
JPWO2021192090A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US11020760B2 (en) Substrate processing apparatus and precursor gas nozzle
US10388512B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6773880B2 (ja) 基板処理装置、半導体装置の製造方法、コンピュータプログラムおよび処理容器
JPWO2017212546A1 (ja) 基板処理装置、炉口部および半導体装置の製造方法並びにプログラム
US11591694B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium
US20170183775A1 (en) Substrate processing apparatus
US20210296110A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US10351951B2 (en) Substrate treatment apparatus including reaction tube with opened lower end, furnace opening member, and flange configured to cover upper surface of the furnace opening member
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US20220341041A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2020017757A (ja) 基板処理装置、反応容器および半導体装置の製造方法
US10640869B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20230407472A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20220157628A1 (en) Substrate processing apparatus, substrate suppport and method of manufacturing semiconductor device
JP4971954B2 (ja) 基板処理装置、半導体装置の製造方法、および加熱装置
JP7407521B2 (ja) 成膜方法及び成膜装置
US11066744B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP7198908B2 (ja) 基板処理装置、反応容器、半導体装置の製造方法およびプログラム
WO2021192090A1 (ja) 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ
WO2021192005A1 (ja) 基板処理装置、半導体装置の製造方法、記録媒体およびインナーチューブ
JP2022151071A (ja) 反応管、処理装置、および半導体装置の製造方法
US11898247B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP2020077890A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926687

Country of ref document: EP

Kind code of ref document: A1