WO2021191518A1 - Rotor pour moteur électrique intégrant des éléments d'absorption acoustique - Google Patents

Rotor pour moteur électrique intégrant des éléments d'absorption acoustique Download PDF

Info

Publication number
WO2021191518A1
WO2021191518A1 PCT/FR2021/050374 FR2021050374W WO2021191518A1 WO 2021191518 A1 WO2021191518 A1 WO 2021191518A1 FR 2021050374 W FR2021050374 W FR 2021050374W WO 2021191518 A1 WO2021191518 A1 WO 2021191518A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
internal cavities
sound absorption
electric motor
sheets
Prior art date
Application number
PCT/FR2021/050374
Other languages
English (en)
Inventor
Cédric LEDIEU
Original Assignee
Novares France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novares France filed Critical Novares France
Priority to EP21714655.4A priority Critical patent/EP4128483A1/fr
Priority to CN202180024087.4A priority patent/CN115428300A/zh
Priority to US17/907,296 priority patent/US20230353011A1/en
Publication of WO2021191518A1 publication Critical patent/WO2021191518A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the invention relates to a rotor for an electric motor.
  • the invention also relates to an electric motor comprising such a rotor.
  • current electric motors include a rotor integral with a shaft and a stator which surrounds the rotor.
  • the stator is mounted in a housing which has bearings for the rotational mounting of the shaft.
  • the rotor comprises a body formed by a stack of sheets or pole wheels (claw pole) held in the form of a package by means of a suitable fixing system.
  • the rotor body has internal cavities housing permanent magnets.
  • the stator comprises a body formed by a stack of sheets forming a ring, the inner face of which is provided with teeth delimiting in pairs a plurality of notches open towards the interior of the stator body and intended to receive phase windings.
  • phase windings pass through the notches of the stator body and form buns projecting on either side of the stator body.
  • the phase windings can for example consist of a plurality of U-shaped conductor segments, the free ends of two adjacent segments being connected together by welding.
  • the pack of sheets is clamped axially between a front flange and a rear flange mounted coaxially with the shaft.
  • Each flange has the overall shape of a disc extending in a radial plane perpendicular to the axis of the shaft.
  • Each flange has a central orifice for coaxial mounting on the shaft and several through holes intended to receive fixing screws axially passing through the entire package of sheets, said screws being secured to the flanges by means of nuts.
  • the front and rear flanges are generally formed from a non-magnetic material which conducts heat, for example a metal.
  • the housing usually has front and rear bearings assembled together.
  • the bearings define an internal cavity in which the rotor and stator are housed.
  • Each of the bearings centrally carries a ball bearing for the rotational mounting of the rotor shaft.
  • noises can be of a mechanical nature and result from shocks or friction between the mechanical parts during the rotation of the rotor. They can also be magnetic and be generated by the magnetic forces produced by the currents flowing in the electric motor. Indeed, these magnetic forces can make vibrate the structure of the electric motor at audible frequencies (from 20 Hz to 20 kHz), and these vibrations are transmitted to the ambient air by the structure, generating noise.
  • the solutions currently envisaged generally consist in optimizing the design or the material constituting the mechanical parts used in the engine so as to limit mechanical noise.
  • these solutions do not make it possible to reduce magnetic noise.
  • One of the aims of the invention is therefore to propose a solution to the problem of noise pollution generated by electric motors as described above, and, in particular, to propose a solution making it possible to reduce both mechanical noise and magnetic noise.
  • the invention relates to a rotor for an electric motor comprising:
  • a pack of sheets mounted coaxially on the rotor shaft, said pack of sheets comprising a plurality of first internal cavities and second internal cavities;
  • a front flange and a rear flange mounted coaxially on the rotor shaft and arranged axially on either side of the pack of sheets; in which at least two of the second internal cavities each house at least one acoustic absorption element, said at least one acoustic absorption element being able to attenuate the vibrations and / or the mechanical and / or magnetic noises generated by the rotor during of its operation within the electric motor.
  • the rotor of the invention will make it possible to reduce the noise pollution generated during its operation.
  • the vibrations and / or the mechanical and / or magnetic noises generated by the rotor will be absorbed by the sound absorption elements housed inside the second internal cavities of the pack of sheets.
  • the rotor of the invention may include one or more of the following optional characteristics considered alone or in combination:
  • At least two second internal cavities are arranged symmetrically with respect to the axis.
  • At least four second internal cavities each house at least one sound absorption element, said at least four second internal cavities being regularly spaced around the axis.
  • All of the second internal cavities each house at least one sound absorption element.
  • the or each sound absorption element has a shape complementary to that of the second internal cavity in which it is housed.
  • the or each sound-absorbing element is made of a material chosen from a silicone material, an inorganic polyurethane, a polyurethane-based foam, and a polyamide-based foam.
  • Each second internal cavity is axially through and has a section in the form of a ring portion.
  • Each second internal cavity is axially through and has a section of triangular or rectangular shape.
  • the or each sound absorption element is secured to one of the front or rear flanges, said sound absorption element being able in particular to be overmolded, or welded, or glued, or clipped to said front or rear flange.
  • the or each sound absorption element is independent of the front and rear flanges and is held in position on each side by said front and rear flanges when said front and rear flanges are assembled to one another.
  • the invention also relates to an electric motor comprising a rotor as defined above.
  • FIG. 1 is a cutaway perspective view of an electric motor incorporating a rotor according to a particular embodiment of the invention.
  • FIG. 2 is an enlarged view of the rotor shown in FIG. 1, the rear balancing flange not being shown.
  • FIG. 3 is a rear axial view of the rotor of FIG. 2.
  • FIG. 4 is a perspective view of an acoustic absorption element which can be housed inside the rotor of FIG. 2.
  • FIG. 5 is a perspective view of a set of two sound absorption elements which can be housed inside the rotor of FIG. 2.
  • FIG. 6 is a perspective view of a set of four sound absorption elements which can be housed inside the rotor of FIG. 2.
  • FIG. 7 is a perspective view of a one-piece assembly formed of two sound absorption elements and a rear flange.
  • FIG. 8 is a perspective view of a one-piece assembly formed of four sound absorption elements and a rear flange.
  • axial and radial and their derivatives are defined with respect to the axis of rotation of the rotor.
  • an axial orientation refers to an orientation parallel to the axis of rotation of the rotor and a radial orientation refers to an orientation perpendicular to the axis of rotation of the rotor.
  • front and rear refer to separate positions along the axis of rotation of the rotor.
  • the "front" end of the rotor shaft corresponds to the end of the shaft on which can be fixed a pulley, a pinion, a spline intended to transmit the rotational movement. rotor to any other similar device for transmitting movements.
  • an electric motor 30 implementing a rotor 10 according to the invention.
  • This electric motor 30 comprises in particular a two-part housing housing the rotor 10 integral in rotation with a shaft 12 rotatably mounted about an axis X and an annular stator 36 which surrounds the rotor 10 coaxially with the shaft 12.
  • the housing consists in particular of a front bearing 32 and a rear bearing 34 connected to each other by means of fixing screws 31.
  • the bearings 32, 34 are of hollow shape and each centrally carry a ball bearing respectively 33 and 35 for the rotational mounting of the shaft 32.
  • chignons 37 project axially on either side of the stator body 36 and are housed in the intermediate space separating the stator 36 from the stator body 36. respective bearings 32, 34.
  • the rotor 10 comprises a substantially cylindrical body formed by a package of sheets 14 made of a ferromagnetic material, in particular steel, as well as a plurality of permanent magnets 15 intended to be housed in a plurality of first internal cavities 141 formed inside the package of sheets 14 and disposed obliquely to each other, each of the first internal cavities 141 housing a single permanent magnet 15.
  • the magnets 15 may be made of rare earth, for example.
  • the magnets 15 have the shape of a parallelepiped with rectangular cross section and are arranged axially around the shaft 12.
  • the magnets 15 are distributed uniformly along the outer piping edge of the rotor body and are arranged in such a manner. to form a star pattern with several branches.
  • the packet of sheets 14 is mounted coaxially on the shaft 12.
  • the shaft 12 can be fitted by force inside a central opening of the pack of sheets 14 so as to connect in rotation the body of the rotor with the shaft 12 .
  • the sheet metal pack 14 is formed by an axial stack of sheets which extend in a radial plane perpendicular to the X axis of the shaft 12.
  • a plurality of fixing holes 11 are made in the sheet metal pack 14 for allow the passage of fixing bolts 13 of the sheets of the package. These fixing holes 11 are through so that it is possible to pass inside each hole 11 a bolt 13.
  • a first end of the bolts 13 bears against the external face of a front end flange. 17, while the other end of the bolts bears against the external face of a rear end flange 19 (shown in FIG. 1).
  • the packet of sheets 14 is clamped axially between the front end flange 17 and the rear end flange 19.
  • These flanges 17, 19 make it possible to ensure balancing of the rotor 10 while allowing good retention of the magnets 15. inside the first internal cavities 141.
  • These flanges can be balanced by adding or removing material. The removal of material can be carried out by machining, while the addition of material can be carried out by implanting elements in openings provided for this purpose and distributed along the circumference of the flange 17, 19.
  • the sheet pack 14 further comprises a plurality of second internal cavities 142 s' extending in a radial direction with respect to the X axis and are axially traversing.
  • these second internal cavities 142 are four in number, namely the cavities 142a, 142b, 142c and 142d.
  • the cavities 142a-142d each have a section in the form of a ring portion and are distributed uniformly around the X axis.
  • Each cavity 142a-142d is configured to accommodate a single sound absorption element 16, shown in FIG. 4
  • the acoustic absorption element 16 will advantageously have a shape complementary to that of the cavities 142a-142d. it will also have specific properties making it suitable for attenuating vibrations and / or noise. For this purpose, it may be made of a material chosen from a silicone material, an inorganic polyurethane, a polyurethane-based foam, and a polyamide-based foam. In the embodiment of the FIG.
  • two substantially identical sound absorption elements 16a and 16c may be placed respectively in the cavities 142a and 142c which are symmetrical with respect to the axis X so as to guarantee good balancing of the rotor 10, the cavities 142b and 142d being in this case empty.
  • additional 16b and 16d as shown in Figure 6, which may be disposed respectively in the cavities 142b and 142d. In this case, all of the internal cavities 142a-142d would be occupied by the sound absorption elements 16a-16d.
  • the packet of sheets 14 may comprise three, or a multiple of three, second internal cavities 142, said second internal cavities 142 being capable of accommodating three sound absorption elements 16, said sound absorption elements 16 being arranged symmetrically about the X axis.
  • the centers of gravity of said sound absorption elements 16 may advantageously form an equilateral triangle in a plane orthogonal to the X axis of the 'tree 12.
  • each sound absorption element 16 is positioned symmetrically around the X axis and with respect to the other sound absorption elements so as not to create unbalance for the rotor.
  • each sound absorption element 16 is an independent part which is housed in the internal cavities 142 of the pack of sheets 14 prior to the assembly of the front and rear flanges 17, 19. Once screwed together , the front and rear flanges 17, 19 are arranged axially on either side of the sheet metal pack 14. The sound absorption elements 16 which are flush with the level of the opposite axial ends of the sheet metal pack 14 are thus held in position of each side by said front and rear flanges 17, 19.
  • each sound absorption element 16 is first overmolded, or welded, or glued, or clipped to one of the front or rear flanges 17, 19 before to be introduced into one of the internal cavities 142 of the sheet metal pack 14, the front and rear flanges 17, 19 being subsequently fixed to one another by screwing.
  • the one-piece assembly shown in FIG. 7, which is formed by the rear flange 19 integrating the acoustic absorption elements 16a, 16c, thus corresponds to the embodiment of FIG. 5.
  • the assembly monobloc shown in Figure 8, which is formed by the flange 19 integrating the acoustic absorption elements 16a to 16d, for its part corresponds to the embodiment of Figure 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

L'invention concerne un rotor (10) pour moteur électrique (30) comprenant : - un arbre (12) de rotor monté rotatif autour d'un axe (X); - un paquet de tôles (14) monté coaxialement sur l'arbre (12) de rotor, ledit paquet de tôles (14) comprenant une pluralité de premières cavités internes (141) et de deuxièmes cavités internes (142); - une pluralité d'aimants permanents (15) logés à l'intérieur des premières cavités internes (141) du paquet de tôles (14); - un flasque avant (17) et un flasque arrière (19) montés coaxialement sur l'arbre (12) de rotor et agencés axialement de part et d'autre du paquet de tôles (14); caractérisé en ce qu'au moins deux des deuxièmes cavités internes (142) logent chacune au moins un élément d'absorption acoustique (16), ledit au moins un élément d'absorption acoustique (16) étant apte à atténuer les vibrations et/ou les bruits mécaniques et/ou magnétiques générés par le rotor lors de son fonctionnement au sein du moteur électrique.

Description

Rotor pour moteur électrique intégrant des éléments d'absorption acoustique
L'invention concerne un rotor pour moteur électrique. L'invention concerne également un moteur électrique comprenant un tel rotor.
De manière générale, les moteurs électriques actuels comportent un rotor solidaire d'un arbre et un stator qui entoure le rotor. Le stator est monté dans un carter qui comporte des roulements pour le montage en rotation de l'arbre. Le rotor comporte un corps formé par un empilage de tôles ou roues polaires (claw pôle) maintenues sous forme de paquet au moyen d'un système de fixation adapté. Le corps du rotor comporte des cavités internes logeant des aimants permanents. Le stator comporte un corps constitué par un empilage de tôles formant une couronne, dont la face intérieure est pourvue de dents délimitant deux à deux une pluralité d'encoches ouvertes vers l'intérieur du corps de stator et destinées à recevoir des enroulements de phase. Ces enroulements de phase traversent les encoches du corps de stator et forment des chignons faisant saillie de part et d'autre du corps de stator. Les enroulements de phase peuvent par exemple être constitués d'une pluralité de segments de conducteur en forme de U, les extrémités libres de deux segments adjacents étant reliées entre elles par soudage.
Dans le rotor, le paquet de tôles est enserré axialement entre un flasque avant et un flasque arrière montés coaxialement à l'arbre. Chaque flasque a globalement la forme d'un disque s'étendant dans un plan radial perpendiculaire à l'axe de l'arbre. Chaque flasque comporte un orifice central pour le montage coaxial sur l'arbre et plusieurs trous traversants destinés à recevoir des vis de fixation traversant axialement l'ensemble du paquet de tôles, lesdites vis étant solidarisées aux flasques au moyen d'écrous. Les flasques avant et arrière sont généralement formés d'un matériau amagnétique, conducteur de chaleur, par exemple un métal.
Le carter comporte généralement des paliers avant et arrière assemblés ensemble. Les paliers définissent une cavité interne dans laquelle sont logés le rotor et le stator. Chacun des paliers porte centralement un roulement à bille pour le montage en rotation de l'arbre du rotor.
Lors de leur fonctionnement, les moteurs électriques génèrent souvent des bruits qui peuvent s'avérer gênants pour les personnes situées à proximité. Ces bruits peuvent être d'ordre mécanique et résulter des chocs ou frottements entre les pièces mécaniques lors de la rotation du rotor. Ils peuvent également être d'ordre magnétique et être générés par les forces magnétiques produites par les courants circulant dans le moteur électrique. En effet, ces forces magnétiques peuvent faire vibrer la structure du moteur électrique à des fréquences audibles (de 20 Hz à 20 kHz), et ces vibrations sont transmises à l'air ambiant par la structure, générant du bruit.
Pour réduire les nuisances sonores générées par les moteurs électriques, les solutions actuellement envisagées consistent généralement à optimiser le design ou le matériau constitutif des pièces mécaniques utilisées dans le moteur de manière à limiter les bruits mécaniques. Ces solutions ne permettent toutefois pas de réduire les bruits magnétiques.
Un des buts de l'invention est donc de proposer une solution au problème des nuisances sonores générées par les moteurs électriques tel que décrit précédemment, et, notamment, de proposer une solution permettant de réduire à la fois les bruits mécaniques et les bruits magnétiques.
A cet effet, l'invention concerne un rotor pour moteur électrique comprenant :
- un arbre de rotor monté rotatif autour d'un axe;
- un paquet de tôles monté coaxialement sur l'arbre de rotor, ledit paquet de tôles comprenant une pluralité de premières cavités internes et de deuxièmes cavités internes;
- une pluralité d'aimants permanents logés à l'intérieur des premières cavités internes du paquet de tôles;
- un flasque avant et un flasque arrière montés coaxialement sur l'arbre de rotor et agencés axialement de part et d'autre du paquet de tôles; dans lequel au moins deux des deuxièmes cavités internes logent chacune au moins un élément d'absorption acoustique, ledit au moins un élément d'absorption acoustique étant apte à atténuer les vibrations et/ou les bruits mécaniques et/ou magnétiques générés par le rotor lors de son fonctionnement au sein du moteur électrique.
Ainsi configuré, le rotor de l'invention permettra de réduire les nuisances sonores générées lors de son fonctionnement. En particulier, les vibrations et/ou les bruits mécaniques et/ou magnétiques générés par le rotor seront absorbés par les éléments d'absorption acoustique logés à l'intérieur des deuxièmes cavités internes du paquet de tôles.
Selon d'autres variantes de réalisation, le rotor de l'invention pourra comporter une ou plusieurs des caractéristiques optionnelles suivantes considérées seules ou en combinaison :
- lesdites au moins deux deuxièmes cavités internes sont disposées de manière symétrique par rapport à l'axe. - au moins quatre deuxièmes cavités internes logent chacune au moins un élément d'absorption acoustique, lesdites au moins quatre deuxièmes cavités internes étant régulièrement espacées autour de l'axe.
- l'ensemble des deuxièmes cavités internes logent chacune au moins un élément d'absorption acoustique.
- le ou chaque élément d'absorption acoustique possède une forme complémentaire à celle de la deuxième cavité interne dans laquelle il est logé.
- le ou chaque élément d'absorption acoustique est constitué d'un matériau choisi parmi une matière silicone, un polyuréthane minéral, une mousse à base de polyuréthane, et une mousse à base de polyamide.
- chaque deuxième cavité interne est axialement traversante et possède une section en forme de portion d'anneau.
- chaque deuxième cavité interne est axialement traversante et possède une section de forme triangulaire ou rectangulaire.
- le ou chaque élément d'absorption acoustique est solidarisé à l'un des flasques avant ou arrière, ledit élément d'absorption acoustique pouvant notamment être surmoulé, ou soudé, ou collé, ou clippé audit flasque avant ou arrière.
- le ou chaque élément d'absorption acoustique est indépendant des flasques avant et arrière et est maintenu en position de chaque côté par lesdits flasques avant et arrière lorsque lesdits flasques avant et arrière sont assemblés l'un à l'autre.
Selon un autre aspect, l'invention concerne également un moteur électrique comprenant un rotor tel que défini précédemment.
L'invention sera davantage comprise à la lecture de la description non limitative qui va suivre, faite en référence aux figures ci-annexées.
[Fig. 1] est une vue en perspective tronquée d'un moteur électrique incorporant un rotor selon un mode particulier de réalisation de l'invention.
[Fig. 2] est une vue agrandie du rotor représenté sur la figure 1, le flasque d'équilibrage arrière n'étant pas représenté.
[Fig. 3] est une vue axiale arrière du rotor de la figure 2.
[Fig. 4] est une vue en perspective d'un élément d'absorption acoustique pouvant être logé à l'intérieur du rotor de la figure 2.
[Fig. 5] est une vue en perspective d'un ensemble de deux éléments d'absorption acoustique pouvant être logés à l'intérieur du rotor de la figure 2.
[Fig. 6] est une vue en perspective d'un ensemble de quatre éléments d'absorption acoustique pouvant être logés à l'intérieur du rotor de la figure 2. [Fig. 7] est une vue en perspective d'un ensemble monobloc formé de deux éléments d'absorption acoustique et d'un flasque arrière.
[Fig. 8] est une vue en perspective d'un ensemble monobloc formé de quatre éléments d'absorption acoustique et d'un flasque arrière.
Dans l'ensemble de la description et dans les revendications, les termes « axial » et « radial » et leurs dérivés sont définis par rapport à l'axe de rotation du rotor. Ainsi, une orientation axiale se rapporte à une orientation parallèle à l'axe de rotation du rotor et une orientation radiale se rapporte à une orientation perpendiculaire à l'axe de rotation du rotor. Par ailleurs, par convention, les termes « avant » et « arrière » font référence à des positions séparées le long de l'axe de rotation du rotor. En particulier, l'extrémité « avant » de l'arbre du rotor correspond à l'extrémité de l'arbre sur laquelle peut être fixé(e) une poulie, un pignon, une cannelure destiné(e) à transmettre le mouvement de rotation du rotor à tout autre dispositif similaire de transmission de mouvements.
En référence à la figure 1, il est représenté un moteur électrique 30 mettant en œuvre un rotor 10 conforme à l'invention. Ce moteur électrique 30 comprend notamment un carteren deux parties logeant le rotor 10 solidaire en rotation d'un arbre 12 monté rotatif autour d'un axe X et un stator 36 annulaire qui entoure le rotor 10 de manière coaxiale à l'arbre 12. Le carter est constitué notamment d'un palier avant 32 et un palier arrière 34 connectés l'un à l'autre au moyen de vis de fixation 31. Les paliers 32, 34 sont de forme creuse et portent chacun centralement un roulement à billes respectivement 33 et 35 pour le montage en rotation de l'arbre 32. Comme illustré sur la figure 1, des chignons 37 font saillie axialement de part et d'autre du corps de stator 36 et sont logés dans l'espace intermédiaire séparant le stator 36 des paliers respectifs 32, 34.
Comme représenté sur les figures 2 et 3, le rotor 10 comprend un corps sensiblement cylindrique formé par un paquet de tôles 14 réalisé dans un matériau ferromagnétique, notamment en acier, ainsi qu'une pluralité d'aimants permanents 15 destinés à être logés dans une pluralité de premières cavités internes 141 formées à l'intérieur du paquet de tôles 14 et disposées obliquement les unes aux autres, chacune des premières cavités internes 141 logeant un unique aimant permanent 15. Les aimants 15 pourront être constitués de terre rare par exemple. Dans le mode de réalisation représenté, les aimants 15 possèdent une forme de parallélépipède à section rectangulaire et sont disposés axialement autour de l'arbre 12. Les aimants 15 sont répartis uniformément le long du bord pépiphérique externe du corps de rotor et sont disposés de manière à former un motif en étoile à plusieurs branches. Le paquet de tôles 14 est monté coaxialement sur l'arbre 12. L'arbre 12 pourra être emmanché en force à l'intérieur d'une ouverture centrale du paquet de tôles 14 de manière à lier en rotation le corps du rotor avec l'arbre 12.
Le paquet de tôles 14 est formé d'un empilement axial de tôles qui s'étendent dans un plan radial perpendiculaire à l'axe X de l'arbre 12. Une pluralité de trous de fixation 11 sont réalisés dans le paquet de tôles 14 pour permettre le passage de boulons de fixation 13 des tôles du paquet. Ces trous de fixation 11 sont traversants de sorte qu'il est possible de faire passer à l'intérieur de chaque trou 11 un boulon 13. Une première extrémité des boulons 13 est en appui contre la face externe d'un flasque d'extrémité avant 17, tandis que l'autre extrémité des boulons est en appui contre la face externe d'un flasque d'extrémité arrière 19 (représenté sur la figure 1). Ainsi, le paquet de tôles 14 est enserré axialement entre le flasque d'extrémité avant 17 et le flasque d'extrémité arrière 19. Ces flasques 17, 19 permettent d'assurer un équilibrage du rotor 10 tout en permettant un bon maintien des aimants 15 à l'intérieur des premières cavités internes 141. L'équilibrage de ces flasques peut être effectué par ajout ou retrait de matière. Le retrait de matière peut être effectué par usinage, tandis que l'ajout de matière peut être effectué en implantant des éléments dans des ouvertures prévues à cet effet et réparties suivant la circonférence du flasque 17, 19.
Comme illustré sur la figure 3, qui est une vue axiale arrière du rotor de la figure 2 dans lequel les boulons de fixation 13 n'ont pas été représentés, le paquet de tôles 14 comprend par ailleurs une pluralité de deuxièmes cavités internes 142 s'étendant suivant une direction radiale par rapport à l'axe X et sont axialement traversantes. Dans le mode de réalisation représenté, ces deuxièmes cavités internes 142 sont au nombre de quatre, à savoir les cavités 142a, 142b, 142c et 142d. Les cavités 142a-142d possèdent chacune une section en forme de portion d'anneau et sont réparties uniformément autour de l'axe X. Deux cavités 142a-142d directement adjacentes sont séparées par un segment radial 18 du paquet de tôles 14 de sorte qu'une partie annulaire centrale du corps du rotor est constitué d'une alternance de deuxième cavités internes 142a-142d et de segments radiaux 18. Chaque cavité 142a- 142d est configurée pour loger un unique élément d'absorption acoustique 16, représenté sur la figure 4. L'élément d'absoprtion acoustique 16 possédera avantageusement une forme complémentaire à celle des cavités 142a-142d. il possédera par ailleurs des propriétés spécifiques le rendant apte à atténuer les vibrations et/ou les bruits. A cet effet, il pourra être constitué d'un matériau choisi parmi une matière silicone, un polyuréthane minéral, une mousse à base de polyuréthane, et une mousse à base de polyamide. Dans l'exemple de réalisation de la figure 5, deux éléments d'absorption acoustique 16a et 16c sensiblement identiques pourront être disposés respectivement dans les cavités 142a et 142c qui sont symétriques par rapport à l'axe X de manière à garantir un bon équilibrage du rotor 10, les cavités 142b et 142d étant dans ce cas vides. Dans le cas où le niveau de bruit à atténuer dépasserait la capacité d'absorption acoustique de la paire d'éléments d'absorption acoustique 16a, 16c, il pourra être envisagé dans une autre variante de réalisation d'utiliser deux éléments d'absorption acoustique additionnels 16b et 16d, comme représentés sur la figure 6, lesquels pourront être disposés respectivement dans les cavités 142b et 142d. Dans ce cas, toutes les cavités internes 142a-142d seraient occupées par les éléments d'absorption acoustique 16a-16d. Dans une autre configuration (non représentée) de l'invention, le paquet de tôles 14 pourra comprendre trois, ou un multiple de trois, deuxièmes cavités internes 142, lesdites deuxièmes cavités internes 142 étant susceptibles de loger trois éléments d'absorption acoustique 16, lesdits éléments d'absorption acoustique 16 étant disposés de manière symétrique autour de l'axe X. En particulier, les centres de gravité desdits éléments d'absorption acoustique 16 pourront avantageusement formés un triangle équilatéral dans un plan orthogonal à l'axe X de l'arbre 12.
Dans toutes les configurations évoquées ci-dessus, chaque élément d'absorption acoustique 16 est positionné de manière symétrique autour de l'axe X et par rapport aux autres éléments d'absorption acoustique afin de ne pas créer de balourd pour le rotor.
Dans un mode de réalisation possible, chaque élément d'absorption acoustique 16 est une pièce indépendante qui vient se loger dans les cavités internes 142 du paquet de tôles 14 préalablement à l'assemblage des flasques avant et arrière 17, 19. Une fois vissés ensemble, les flasques avant, arrière 17, 19 sont disposés axialement de part et d'autre du paquet de tôles 14. Les éléments d'absorption acoustique 16 qui affleurent au niveau des extrémités axiales opposées du paquet de tôles 14 sont ainsi maintenus en position de chaque côté par lesdits flasques avant et arrière 17, 19.
Dans un autre mode de réalisation possible, représenté sur les figures 7 et 8, chaque élément d'absorption acoustique 16 est d'abord surmoulé, ou soudé, ou collé, ou clippé à l'un des flasques avant ou arrière 17, 19 avant d'être introduit dans l'une des cavités internes 142 du paquet de tôles 14, les flasques avant et arrière 17, 19 étant par la suite fixés l'un à l'autre par vissage. L'ensemble monobloc représenté sur la figure 7, qui est formé par le flasque arrière 19 intégrant les éléments d'absorption acoustique 16a, 16c, correspond ainsi au mode de réalisation de la figure 5. L'ensemble monobloc représenté sur la figure 8, qui est formé par le flasque 19 intégrant les éléments d'absorption acoustique 16a à 16d, correspond quant à lui au mode de réalisation de la figure 6.

Claims

REVENDICATIONS
1. Rotor (10) pour moteur électrique (30) comprenant :
- un arbre (12) de rotor monté rotatif autour d'un axe (X);
- un paquet de tôles (14) monté coaxialement sur l'arbre (12) de rotor, ledit paquet de tôles (14) comprenant une pluralité de premières cavités internes (141) et de deuxièmes cavités internes (142);
- une pluralité d'aimants permanents (15) logés à l'intérieur des premières cavités internes (141) du paquet de tôles (14);
- un flasque avant (17) et un flasque arrière (19) montés coaxialement sur l'arbre (12) de rotor et agencés axialement de part et d'autre du paquet de tôles (14); caractérisé en ce qu'au moins deux des deuxièmes cavités internes (142) logent chacune au moins un élément d'absorption acoustique (16), ledit au moins un élément d'absorption acoustique (16) étant apte à atténuer les vibrations et/ou les bruits mécaniques et/ou magnétiques générés par le rotor lors de son fonctionnement au sein du moteur électrique.
2. Rotor (10) selon la revendication 1, caractérisé en ce que lesdites au moins deux deuxièmes cavités internes (142a, 142c) sont disposées de manière symétrique par rapport à l'axe (X).
3. Rotor (10) selon la revendication 1 ou 2, caractérisé en ce qu'au moins quatre deuxièmes cavités internes (142a-142d) logent chacune au moins un élément d'absorption acoustique (16a-16d), lesdites au moins quatre deuxièmes cavités internes (142a-142d) étant régulièrement espacées autour de l'axe (X).
4. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce que l'ensemble des deuxièmes cavités internes (142a-142d) logent chacune au moins un élément d'absorption acoustique (16a-16d).
5. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce que le ou chaque élément d'absorption acoustique (16) possède une forme complémentaire à celle de la deuxième cavité interne (142) dans laquelle il est logé.
6. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce que le ou chaque élément d'absorption acoustique (16) est constitué d'un matériau choisi parmi une matière silicone, un polyuréthane minéral, une mousse à base de polyuréthane, et une mousse à base de polyamide.
7. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce que chaque deuxième cavité interne (142) est axialement traversante et possède une section en forme de portion d'anneau.
8. Rotor (10) selon l'une des revendications 1 à 6, caractérisé en ce que chaque deuxième cavité interne (142) est axialement traversante et possède une section de forme triangulaire ou rectangulaire.
9. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce que le ou chaque élément d'absorption acoustique (16) est solidarisé à l'un des flasques avant ou arrière (17, 19), ledit élément d'absorption acoustique (16) pouvant notamment être surmoulé, ou soudé, ou collé, ou clippé audit flasque avant ou arrière (17, 19).
10. Rotor (10) selon l'une des revendications 1 à 8, caractérisé en ce que le ou chaque élément d'absorption acoustique (16) est indépendant des flasques avant et arrière (17, 19) et est maintenu en position de chaque côté par lesdits flasques avant et arrière (17, 19) lorsque lesdits flasques avant et arrière (17, 19) sont assemblés l'un à l'autre.
11. Moteur électrique (30) comprenant un rotor (10) selon l'une des revendications précédentes.
PCT/FR2021/050374 2020-03-25 2021-03-04 Rotor pour moteur électrique intégrant des éléments d'absorption acoustique WO2021191518A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21714655.4A EP4128483A1 (fr) 2020-03-25 2021-03-04 Rotor pour moteur électrique intégrant des éléments d'absorption acoustique
CN202180024087.4A CN115428300A (zh) 2020-03-25 2021-03-04 用于电动马达的包含吸声元件的转子
US17/907,296 US20230353011A1 (en) 2020-03-25 2021-03-04 Rotor for an electric motor incorporating sound absorption elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002933A FR3108803B1 (fr) 2020-03-25 2020-03-25 Rotor pour moteur électrique intégrant des éléments d'absorption acoustique
FR20/02933 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021191518A1 true WO2021191518A1 (fr) 2021-09-30

Family

ID=70228370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050374 WO2021191518A1 (fr) 2020-03-25 2021-03-04 Rotor pour moteur électrique intégrant des éléments d'absorption acoustique

Country Status (5)

Country Link
US (1) US20230353011A1 (fr)
EP (1) EP4128483A1 (fr)
CN (1) CN115428300A (fr)
FR (1) FR3108803B1 (fr)
WO (1) WO2021191518A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775269A (ja) * 1993-08-31 1995-03-17 Matsushita Electric Ind Co Ltd 永久磁石電動機の回転子
US20120206007A1 (en) * 2010-06-14 2012-08-16 Toyota Jidosha Kabushiki Kaisha Rotor core for rotating electrical machine, and manufacturing method thereof
EP2696470A2 (fr) * 2012-08-07 2014-02-12 Nidec Corporation Rotor et procédé de fabrication de rotor
US20160365779A1 (en) * 2015-06-10 2016-12-15 Nidec Techno Motor Corporation Rotor, motor and method of manufacturing the rotor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8400311A (nl) * 1984-02-02 1985-09-02 Philips Nv Electromotor.
US5679995A (en) * 1992-08-12 1997-10-21 Seiko Epson Corporation Permanent magnet rotor of brushless motor
JPH06133479A (ja) * 1992-09-02 1994-05-13 Toshiba Corp 永久磁石ロータ及びその製造装置
JP3364960B2 (ja) * 1992-09-04 2003-01-08 松下電器産業株式会社 永久磁石電動機の回転子
US5811904A (en) * 1996-03-21 1998-09-22 Hitachi, Ltd. Permanent magnet dynamo electric machine
EP1401083A3 (fr) * 1999-02-22 2005-08-31 Kabushiki Kaisha Toshiba Machine tournante à reluctance avec aimants permanents
US6512317B2 (en) * 2000-12-26 2003-01-28 Industrial Technology Research Institute Motor using permanent magnet rotor
US7479723B2 (en) * 2007-01-30 2009-01-20 Gm Global Technology Operations, Inc. Permanent magnet machine rotor
KR20090011904U (ko) * 2008-05-20 2009-11-25 주식회사 에스 씨디 진동소음 흡수구조를 가진 비엘디씨 모터
BE1018595A3 (nl) * 2009-09-10 2011-04-05 Atlas Copco Airpower Nv Werkwijze voor het assembleren van een rotor met permanente magneten, houder daarbij toegepast, en rotor verkregen door zulke werkwijze.
JP6377128B2 (ja) * 2014-02-20 2018-08-22 三菱電機株式会社 回転子の製造方法
CN111193337B (zh) * 2020-01-19 2021-03-23 山东大学 一种电动汽车内置式永磁驱动电机及其电磁振动削弱方法
CN112383164B (zh) * 2020-11-26 2022-04-26 珠海格力电器股份有限公司 一种电机转子和制造方法及具有其的电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775269A (ja) * 1993-08-31 1995-03-17 Matsushita Electric Ind Co Ltd 永久磁石電動機の回転子
US20120206007A1 (en) * 2010-06-14 2012-08-16 Toyota Jidosha Kabushiki Kaisha Rotor core for rotating electrical machine, and manufacturing method thereof
EP2696470A2 (fr) * 2012-08-07 2014-02-12 Nidec Corporation Rotor et procédé de fabrication de rotor
US20160365779A1 (en) * 2015-06-10 2016-12-15 Nidec Techno Motor Corporation Rotor, motor and method of manufacturing the rotor

Also Published As

Publication number Publication date
FR3108803B1 (fr) 2022-03-11
EP4128483A1 (fr) 2023-02-08
FR3108803A1 (fr) 2021-10-01
US20230353011A1 (en) 2023-11-02
CN115428300A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
EP3326263B1 (fr) Motoreducteur compact
FR2884884A1 (fr) Reducteur de vitesse du type hypocycloide a moteur incorpore
EP4158754A1 (fr) Rotor pour moteur électrique muni d'un circuit de refroidissement
WO2021240100A1 (fr) Rotor pour moteur électrique muni d'un circuit de refroidissement
FR2829812A1 (fr) Reducteur a train epicycloidal notamment pour demarreur de vehicule automobile et demarreur equipe d'un tel reducteur
WO2021191518A1 (fr) Rotor pour moteur électrique intégrant des éléments d'absorption acoustique
WO2018178576A1 (fr) Corps statorique divise pour une machine electrique
FR2801656A1 (fr) Mecanisme a roue d'engrenage conique et systeme de direction a puissance electrique l'utilisant
FR3069973A1 (fr) Rotor de machine electrique tournante muni d'un flasque ayant une fonction de maintien d'aimants permanents
EP4111574B1 (fr) Rotor pour moteur électrique équipé d'aimants permanents en matière plastique
FR3108810A1 (fr) Moteur électrique
FR3057927B1 (fr) Amortisseur de torsion et vehicule automobile
WO2021176157A1 (fr) Moteur électrique muni d'un couvercle d'isolation phonique
EP2532908B1 (fr) Dispositif d'accouplement entre moteur et réducteur de direction assistée électrique de véhicule automobile
FR2946425A1 (fr) Resolveur
WO2024079424A1 (fr) Stator pour moteur electrique
EP0967711B1 (fr) Combinaison d'une machine électrique tournante et d'un support
FR2879369A1 (fr) Ensemble moteur-frein pour ecran de fermeture, de protection solaire, de projection ou analogue
FR3132993A1 (fr) Rotor pour moteur electrique muni d’un circuit de refroidissement
EP4128491A1 (fr) Rotor pour moteur électrique équipé de capteur de tiges
FR3111409A1 (fr) Support de moteur, ventilateur et installation dispositif de chauffage, ventilation et/ou climatisation pour véhicule automobile
FR3046823B1 (fr) Dispositif de transmission de mouvement et de filtrage
EP4165756A1 (fr) Support de moteur de ventilateur avec amortisseur et butée
FR3117577A1 (fr) Système de ventilation d’un véhicule automobile
FR3117412A1 (fr) Système de ventilation d’un véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21714655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021714655

Country of ref document: EP

Effective date: 20221025