EP4158754A1 - Rotor pour moteur électrique muni d'un circuit de refroidissement - Google Patents

Rotor pour moteur électrique muni d'un circuit de refroidissement

Info

Publication number
EP4158754A1
EP4158754A1 EP21733499.4A EP21733499A EP4158754A1 EP 4158754 A1 EP4158754 A1 EP 4158754A1 EP 21733499 A EP21733499 A EP 21733499A EP 4158754 A1 EP4158754 A1 EP 4158754A1
Authority
EP
European Patent Office
Prior art keywords
rotor
shaft
flange
face
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21733499.4A
Other languages
German (de)
English (en)
Inventor
Cédric LEDIEU
Julien BRODNIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novares France SAS
Original Assignee
Novares France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novares France SAS filed Critical Novares France SAS
Publication of EP4158754A1 publication Critical patent/EP4158754A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the invention relates to a rotor for an electric motor arranged to allow better removal of the heat generated during its operation.
  • the invention also relates to an electric motor comprising such a rotor.
  • current electric motors include a rotor integral with a shaft and a stator which surrounds the rotor.
  • the stator is mounted in a housing which has bearings for the rotational mounting of the shaft.
  • the rotor comprises a body formed by a stack of sheets or pole wheels (claw pole) held in the form of a package by means of a suitable fixing system.
  • the rotor body has internal cavities housing permanent magnets.
  • the stator comprises a body formed by a stack of sheets forming a ring, the inner face of which is provided with teeth delimiting in pairs a plurality of notches open towards the interior of the stator body and intended to receive phase windings.
  • phase windings pass through the notches of the stator body and form buns projecting on either side of the stator body.
  • the phase windings can for example consist of a plurality of U-shaped conductor segments, the free ends of two adjacent segments being connected together by welding.
  • the pack of sheets is clamped axially between a front flange and a rear flange mounted coaxially with the shaft.
  • Each flange has the overall shape of a disc extending in a radial plane perpendicular to the axis of the shaft.
  • Each flange comprises a central orifice for coaxial mounting on the shaft and several through holes intended to receive fixing screws axially passing through the entire package of sheets, said screws being secured to the flanges by means of nuts.
  • the front and rear flanges are generally formed from a non-magnetic material which conducts heat, for example a metal.
  • the housing generally has front and rear bearings assembled together.
  • the bearings define an internal cavity in which the rotor and the stator are housed.
  • Each of the bearings centrally carries a ball bearing for the rotational mounting of the rotor shaft.
  • the invention therefore aims to provide a rotor and an electric motor comprising such a rotor arranged to allow better removal of the heat generated during its operation and which does not have the drawbacks of the existing solutions described above.
  • This invention also makes it possible to use the same cooling circuit to cool both the permanent magnets of the stator and the chignons of the stator of this electric motor.
  • the invention relates to a rotor for an electric motor comprising:
  • a pack of sheets mounted coaxially on the rotor shaft, said pack of sheets extending between a front side face and a rear side face and comprising first internal cavities;
  • a front flange and a rear flange in the form of a disc mounted coaxially on the rotor shaft and arranged axially on either side of the pack of sheets so as to be contiguous respectively to the front and rear side faces of the pack of sheets ; characterized in that the shaft is provided with at least one internal channel for circulating a cooling fluid, called the inlet channel, and in that the front flange, respectively the rear flange, is configured to form with the front side face, respectively the rear side face, of the sheet bundle at least one front outlet channel, respectively at least one rear outlet channel, inside which a cooling fluid can circulate, said at least one flow channel front outlet, respectively rear, being in fluid communication with the inlet channel, and opening out at at least one outlet opening situated at the outer periphery of said front flange, respectively of said rear flange.
  • the shaft is provided with at least one internal channel for circulating a cooling fluid, called the inlet channel
  • the front flange, respectively the rear flange is configured to form with the
  • the rotor of the invention will make it possible to better evacuate the heat generated during its use, due to the passage of a cooling fluid in the front and rear outlet channels formed inside the front and rear flanges and which are contiguous to the sheet metal pack and to the permanent magnets. Furthermore, said output channels opening out at the level of the outer periphery of each of the flanges, the cooling fluid can then be directed towards the stator chignons by adequately positioning the outlet openings provided at this level in each of the flanges. An additional heat dissipation can thus be obtained. In addition, the fact of circulating the coolant through the end flanges generates little change in the general structure of the electric motor and, therefore, offers a relatively inexpensive solution to the problem of evacuation. of heat in electric motors.
  • the shaft comprises a hollow front end portion and a solid rear end portion separated from the front end portion by a hollow central portion, the front end portion and the central portion being crossed by a central cavity cylindrical in shape, said central cavity forming the inlet channel of the shaft, and in that at least one hole oriented radially with respect to the axis of the shaft is formed inside the portion of front end, respectively of the central portion, so as to open out, on one side, into the inlet channel and, on the other side, into said at least one front outlet channel, respectively said at least one outlet channel rear exit.
  • the shaft comprises a main body provided with a blind hole aligned along the axis of the shaft, said blind hole comprising two contiguous sections of different internal diameters, namely a first section having a first internal diameter and a second section having a second internal diameter, the inlet channel of the shaft being jointly defined by the first section and by the second section of the blind hole.
  • each of the front and rear flanges has an internal face in contact with a lateral face of the pack of sheets, said internal face being provided with at least one groove extending radially from a recessed central zone of said flange, at the level of which said groove is in fluid communication with the inlet channel of the shaft, up to a peripheral face of said flange, said at least one groove forming with the corresponding lateral face of the pack of sheets the front or rear outlet channel.
  • Said at least one groove has a specific profile allowing it to optimize the contact surfaces between the front outlet channel, respectively rear, and the permanent magnets housed in the stack of sheets.
  • At least one groove is formed by a succession of contiguous radial and orthoradial segments, said segments defining a baffle profile intended to increase the path to be covered by the cooling fluid during its circulation in the front outlet channel, respectively rear, with respect to a path which would be radially direct between the central zone and the peripheral face of said front, respectively rear flange.
  • the internal face of the front flange, respectively rear, is provided with a plurality of grooves extending radially from a recessed central zone of said front flange, respectively rear, at which said grooves are in fluid communication with the channel of entry of the shaft, up to a peripheral face of said front, respectively rear flange, said grooves forming with the corresponding lateral face of the pack of sheets a plurality of front outlet channels, respectively rear.
  • each of said grooves faces a radial hole formed through the shaft, said radial hole emerging, on one side, on the inlet channel of the shaft and, on the other side, on the peripheral wall of the tree.
  • - permanent magnets are made of ferrite.
  • - permanent magnets are made of rare earth.
  • At least one of the front and rear flanges is made of plastic.
  • the invention also relates to an electric motor comprising a rotor as defined above and an annular stator which surrounds the rotor coaxially with the shaft, chumbles projecting axially on either side of the stator, characterized by the causes that the outlet opening, respectively each of the outlet openings, through which the cooling fluid of the front and rear flanges exits, is axially aligned with the chignons so as to allow cooling of said chignons by means of said cooling fluid cooling.
  • FIG. 1 is a longitudinal sectional view of a rotor according to a first embodiment of the invention
  • FIG. 2 is a longitudinal sectional view of an electric motor incorporating the rotor according to FIG. 1
  • FIG. 3 is a perspective view of the shaft used in the rotor of FIG. 1
  • FIG. 4 is a longitudinal sectional view of the shaft of FIG. 3,
  • FIG. 5 is a rear axial view of the rotor according to FIG. 1, the rear flange having been removed,
  • FIG. 6 is a perspective view of the internal face of the front flange used in the rotor of FIG. 1,
  • FIG. 7 is an axial view of the internal face of the flange of FIG. 6,
  • FIG. 8 is a rear axial view of a rotor according to a second embodiment of the invention, the rear flange having been removed,
  • FIG. 9 is an axial view of the internal face of the front flange used in the rotor of FIG. 8.
  • an axial orientation refers to an orientation parallel to the axis of rotation of the rotor and a radial orientation refers to an orientation perpendicular to the axis of rotation of the rotor.
  • An orthoradial orientation refers to an orientation perpendicular to a radial orientation in a plane perpendicular to the axis of rotation of the rotor.
  • front and rear refer to separate positions along the axis of rotation of the rotor.
  • the "front" end of the rotor shaft corresponds to the end of the shaft on which can be fixed a pulley, a pinion, a spline intended (e) to transmit the rotational movement.
  • rotor to any other similar device for transmitting movements.
  • FIG. 1 represents a rotor 10 according to a first embodiment of the invention.
  • the rotor 10 comprises a substantially cylindrical body formed by a bundle of sheets 14 made of a ferromagnetic material, in particular steel, said body being integral in rotation with a shaft 12 mounted to rotate about an axis X.
  • the rotor 10 further comprises a plurality of permanent magnets 15 intended to be housed in a plurality of internal cavities 141 formed inside the bundle of sheets 14, each of the internal cavities 141 accommodating at least one permanent magnet 15.
  • the magnets 15 could be made of ferrite, for example.
  • the cavities 141 extend in a radial direction relative to the X axis and are axially traversing.
  • the magnets 15 are orthoradial magnetization, that is to say that the two end faces of each magnet 15 which are adjacent to each other in the orthoradial direction are magnetized so as to be able to generate a magnetic flux in an orthoradial orientation with respect to the X axis.
  • the packet of sheets 14 is formed from an axial stack of sheets which extend in a radial plane perpendicular to the X axis of the shaft 12 or from a sheet wound on itself (Slinky sheet).
  • the pack of sheets 14 is mounted coaxially on the shaft 12.
  • the shaft 12 can be force-fitted inside a central opening of the pack of sheets 14 so as to rotate the body of the rotor with the. shaft 12.
  • a plurality of fixing holes 11 are made in the pack of sheets 14 to allow the passage of fastening screws 13 intended to fix end flanges 17, 19 on the pack of sheets 14.
  • a first end of the screws bears against the outer face of a rear end flange 19, while the other end of the screws projects from the outer face of a front end flange 17 and is threaded so as to receive a nut which, once screwed, exerts pressure against said outer face.
  • the packet of sheets 14 is clamped axially between the front end flange 17 and the rear end flange 19.
  • These flanges 17, 19 may advantageously make it possible to ensure balancing of the rotor 10 while allowing good maintenance of the rotor. magnets 15 inside the internal cavities 141.
  • These flanges can be balanced by adding or removing material. The material removal can be carried out by machining, while the addition of material can be carried out by implanting elements in openings provided for this purpose and distributed along the circumference of the flange 17, 19.
  • an electric motor 30 equipped with the rotor 10 of Figure 1.
  • This electric motor 30 comprises in particular a two-part housing housing the rotor 10 and an annular stator 36 which surrounds the rotor 10 so coaxial with the shaft 12.
  • the housing comprises in particular a front bearing 32 and a rear bearing 34 connected to each other by means of fixing screws 31.
  • the bearings 32, 34 are of hollow shape and each centrally carry a ball bearings, 33 and 35 respectively, for mounting the shaft 12 in rotation.
  • Chignons 37 project axially on either side of the stator body 36 and are housed in the intermediate space separating the stator 36 from the Respective bearings 32, 34.
  • the front and rear bearings 32, 34 will advantageously be made of metal.
  • This shaft 12 comprises a main body formed of a front end portion 121 and a rear end portion 123. , said end portions 121, 123 being separated by a central portion 122.
  • the main body is provided with a blind hole 128 aligned along the X axis of the shaft 12.
  • This blind hole 128 comprises two contiguous sections of diameters different internal ones, namely a first section 128a having an internal diameter DI and a second section 128b having an internal diameter D2.
  • the shaft 12 has an internal channel 124, said inlet channel, through which can be conveyed a cooling fluid intended to cool the rotor 10.
  • the inlet channel 124 is formed jointly by the first section 128a and by the second section 128b of the blind hole 128. Furthermore, the shaft 12 is provided with several holes 125 oriented radially with respect to the X axis of the shaft 12, said holes 125 being formed inside the portion front end 121 so as to open out, on one side, into the inlet channel 124 and, on the other side, at the level of the peripheral wall of the shaft. Similarly, several holes 127 oriented radially with respect to the X axis of the shaft 12 are formed inside the central portion 122 so as to open out, on one side, into the inlet channel 124 and , on the other side, at the level of the peripheral wall of the shaft.
  • FIG. 6 and 7 there is shown the front flange 17 fitted to the rotor 10 of Figure 1.
  • the rear flange 19 having a structure substantially identical to the front flange 17, the technical details given below will apply so similar to the rear flange 19.
  • the front flange 17 is substantially in the form of a disc comprising in particular an external face (not shown) and an internal face 173.
  • the internal face 173 is in contact with the front lateral face 143 of the pack of sheets 14 (the face on the other hand, the internal side 193 of the rear flange 19 is in contact with the rear lateral face 144 of the packet of sheets 14).
  • the internal face 173 is provided with a groove 176 extending radially from a recessed central zone 172 of said flange to a peripheral face 177 of said flange.
  • the groove 176 is configured to form with the corresponding side face 143 of the sheet metal pack 14 a circulation channel for the cooling fluid, called the front outlet channel 175.
  • a similar groove allows the same. how to define a rear output channel 195.
  • the central area 172 of the flange has a profile complementary to the shaft 12 such that the shaft 12 is housed without play in said central area 172.
  • the groove 176 extends from a proximal end. 176i of annular shape, on which the radial holes 125 of the shaft 12 open, up to several distal ends 176j, forming openings 178 through the peripheral face 177 of the flange 17. In the mounted position of the electric motor 30 shown in FIG. FIG. 2, these distal ends 176j face the buns 37.
  • the groove 176 is moreover formed of a succession of radial segments 176a and of contiguous orthoradial segments 176b.
  • These segments 176a, 176b advantageously define a baffle profile which makes it possible to increase the path to be traveled by the cooling fluid during its circulation in the front outlet channel 175 relative to a path which would be radially direct between the central zone 172 and the peripheral face 177 of said flange. As illustrated in FIG. 6, this profile also makes it possible to optimize the contact surfaces between the front outlet channel 175 and the permanent magnets 15 housed in the pack of sheets 14.
  • the rotor 10 and the motor 30 can be cooled by a cooling fluid, such as oil for example, said cooling fluid circulating in the rotor successively through the inlet channel 124, then between the front flanges. and rear 17, 19 and the front and rear side faces 143, 144 of the sheet metal bundle 14 respectively through the front and rear outlet channels 175, 195, to finally be expelled out of the rotor 10 through the openings 178.
  • a cooling fluid such as oil for example
  • FIG. 8 is a rear axial view of a rotor 10 according to a second embodiment of the invention.
  • This second embodiment differs mainly from the first embodiment described above by the profile of the groove 176 formed in each of the front and rear flanges 17 and 19, as well as by the nature and the arrangement of the permanent magnets 15 in the pack of sheets 14.
  • the permanent magnets 15 have a parallelepipedal shape with a rectangular section and are substantially aligned in two planes perpendicular to the X axis of the shaft 12, each of said planes being aligned with one of the front and rear side faces 143, 144 of the sheet metal bundle 14.
  • the magnets 15 are distributed uniformly around the X axis and are arranged to form a star pattern with several branches.
  • the magnets 15 could be made of rare earth, for example.
  • the package of sheets 14 may in particular include a plurality of second internal cavities 142 axially traversing and extending along a radial direction with respect to the X axis. These second internal cavities 142 will be able to accommodate acoustic absorption elements inside the package of sheets. In the embodiment shown, these second internal cavities 142 are four in number and each have a section in the form of a ring portion. They are distributed uniformly around the X axis so as to avoid creating an unbalance in the rotor.
  • FIG. 9 there is shown the front flange 17 fitted to the rotor 10 of Figure 8.
  • the rear flange 19 having a structure substantially identical to the front flange 17, the technical details given below will apply in a similar manner. to the rear flange 19.
  • the internal face 173 of the front flange 17 is provided with a groove 176 which extends from a proximal end 176i, on which the radial holes 125 of the shaft 12 open, up to several ends.
  • distal 176j forming the openings 178 through the peripheral face 177 of the flange 17 through which the cooling fluid can be expelled.
  • these distal ends 176j face the buns 37.
  • the groove 176 is formed of a succession of radial segments 176a and of contiguous orthoradial segments 176b.
  • These segments 176a, 176b advantageously define a baffle profile which makes it possible to lengthen the path to be traveled by the cooling fluid during its circulation in the front outlet channel 175 relative to a path which would be radially direct between the central zone 172 and the peripheral face 177 of said flange. As illustrated in FIG. 8, this profile also makes it possible to circulate more cooling fluid in the zones of the front flange 17 which directly face the permanent magnets 15 housed in the pack of sheets 14.
  • the flanges 17, 19 may also be provided with several grooves 176 separated from each other so that the cooling fluid cannot circulate between the grooves through the flanges.
  • Each of the grooves 176 may advantageously extend radially from the recessed central zone of the flanges, at the level of which each of the grooves will be in fluid communication with the inlet channel 124, up to the peripheral face of said flanges at the level of a single exit opening.
  • This outlet opening will advantageously be axially aligned with the chignons 37 of the stator 36 so as to allow cooling of said chignons 37 by means of the cooling fluid expelled from the rotor through said outlet opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Un rotor (10) comprenant un arbre (12) monté autour d'un axe de rotation (X); - un paquet de tôles (14) monté coaxialement sur l'arbre (12), ledit paquet de tôles (14) s'étendant entre une face latérale avant (143) et une face latérale arrière (144). Il comprends des premières cavités internes (141), une pluralité d'aimants permanents (15) logés à l'intérieur desdites premières cavités internes (141), un flasque avant (17), un flasque arrière (19) en forme des disques et agencés de part et d'autre du paquet de tôles (14). L'arbre (12) est muni d'un canal interne d'entrée (124) de circulation d'un fluide de refroidissement. Le flasque avant (17) ou arrière (19) est configuré pour former avec la face latérale avant (143) ou arrière (144) au moins un canal de sortie avant (175) ou canal de sortie arrière (195) à l'intérieur duquel circule un fluide de refroidissement. Ledit canal de sortie avant (175) ou arrière (195) étant connecté au canal d'entrée débouche au niveau d'une ouverture de sortie (178) à la périphérie externe (177) dudit flasque avant (17) ou flasque arrière (19).

Description

ROTOR POUR MOTEUR ELECTRIQUE MUNI D'UN CIRCUIT DE REFROIDISSEMENT
L'invention concerne un rotor pour moteur électrique agencé pour permettre une meilleure évacuation de la chaleur générée lors de son fonctionnement. L'invention concerne également un moteur électrique comprenant un tel rotor.
De manière générale, les moteurs électriques actuels comportent un rotor solidaire d'un arbre et un stator qui entoure le rotor. Le stator est monté dans un carter qui comporte des roulements pour le montage en rotation de l'arbre. Le rotor comporte un corps formé par un empilage de tôles ou roues polaires (claw pôle) maintenues sous forme de paquet au moyen d'un système de fixation adapté. Le corps du rotor comporte des cavités internes logeant des aimants permanents. Le stator comporte un corps constitué par un empilage de tôles formant une couronne, dont la face intérieure est pourvue de dents délimitant deux à deux une pluralité d'encoches ouvertes vers l'intérieur du corps de stator et destinées à recevoir des enroulements de phase. Ces enroulements de phase traversent les encoches du corps de stator et forment des chignons faisant saillie de part et d'autre du corps de stator. Les enroulements de phase peuvent par exemple être constitués d'une pluralité de segments de conducteur en forme de U, les extrémités libres de deux segments adjacents étant reliées entre elles par soudage.
Dans le rotor, le paquet de tôles est enserré axialement entre un flasque avant et un flasque arrière montés coaxialement à l'arbre. Chaque flasque a globalement la forme d'un disque s'étendant dans un plan radial perpendiculaire à l'axe de l'arbre. Chaque flasque comporte un orifice central pour le montage coaxial sur l'arbre et plusieurs trous traversants destinés à recevoir des vis de fixation traversant axialement l'ensemble du paquet de tôles, lesdites vis étant solidarisées aux flasques au moyen d'écrous. Les flasques avant et arrière sont généralement formés d'un matériau amagnétique, conducteur de chaleur, par exemple un métal.
Le carter comporte généralement des paliers avant et arrière assemblés ensemble. Les paliers définissent une cavité interne dans laquelle sont logés le rotor et le stator. Chacun des paliers porte centralement un roulement à bille pour le montage en rotation de l'arbre du rotor.
Lors du fonctionnement du moteur, le courant circulant à travers les enroulements de phase du stator génère une chaleur importante qui doit être évacuée. Pour refroidir le moteur, il existe actuellement plusieurs solutions. L'une de ces solutions consiste à faire circuler de l'huile à travers l'arbre du rotor et à faire circuler ensuite cette huile le long du corps de stator de telle sorte qu'elle soit en contact avec les chignons des enroulements de phase. Cette circulation d'huile peut toutefois s'avérer difficile à réaliser en fonction du design du flasque d'équilibrage, notamment du fait de la présence d'ailettes ou d'écrous en vis-à-vis du trajet de l'huile, ainsi que du fait des problématiques d'indexage du flasque par rapport à l'arbre. Une telle solution nécessite donc de prévoir de nombreuses modifications au niveau de la structure du moteur, ce qui la rend difficile à mettre en œuvre, et, donc, relativement coûteuse.
L'invention vise donc à proposer un rotor et un moteur électrique comprenant un tel rotor agencé pour permettre une meilleure évacuation de la chaleur générée lors de son fonctionnement et ne présentant pas les inconvénients des solutions existantes décrites précédemment.
Cette invention permet également d'utiliser le même circuit de refroidissement pour refroidir à la fois les aimants permanents du stator et les chignons du stator de ce moteur électrique.
A cet effet, l'invention concerne un rotor pour moteur électrique comprenant :
- un arbre de rotor monté rotatif autour d'un axe ;
- un paquet de tôles monté coaxialement sur l'arbre de rotor, ledit paquet de tôles s'étendant entre une face latérale avant et une face latérale arrière et comprenant des premières cavités internes ;
- une pluralité d'aimants permanents logés à l'intérieur des premières cavités internes du paquet de tôles ;
- un flasque avant et un flasque arrière en forme de disque montés coaxialement sur l'arbre de rotor et agencés axialement de part et d'autre du paquet de tôles de telle sorte à être contigus respectivement aux faces latérales avant et arrière du paquet de tôles ; caractérisé par le fait que l'arbre est muni d'au moins un canal interne de circulation d'un fluide de refroidissement, dit canal d'entrée, et en ce que le flasque avant, respectivement le flasque arrière, est configuré pour former avec la face latérale avant, respectivement la face latérale arrière, du paquet de tôles au moins un canal de sortie avant, respectivement au moins un canal de sortie arrière, à l'intérieur duquel peut circuler un fluide de refroidissement, ledit au moins un canal de sortie avant, respectivement arrière, étant en communication fluidique avec le canal d'entrée, et débouchant au niveau d'au moins une ouverture de sortie située à la périphérie externe dudit flasque avant, respectivement dudit flasque arrière.
Ainsi configuré, le rotor de l'invention permettra de mieux évacuer la chaleur générée lors de son utilisation, du fait du passage d'un fluide de refroidissement dans les canaux de sortie avant et arrière formés à l'intérieur des flasques avant et arrière et qui sont contigus au paquet de tôles et aux aimants permanents. Par ailleurs, ledits canaux de sortie débouchant au niveau de la périphérie externe de chacun des flasques, le fluide de refroidissement pourra être dirigé ensuite vers les chignons du stator en positionnant de manière adéquate les ouvertures de sortie prévues à ce niveau dans chacun des flasques. Une évacuation de chaleur supplémentaire pourra ainsi être obtenue. En outre, le fait de faire circuler le fluide de refroidissement au travers des flasques d'extrémité génère peu de modifications au niveau de la structure générale du moteur électrique et, de ce fait, offre une solution relativement peu onéreuse au problème de l'évacuation de la chaleur dans les moteurs électriques.
Le rotor de l'invention pourra également comprendre une ou plusieurs des caractéristiques suivantes :
- l'arbre comprend une portion d'extrémité avant creuse et une portion d'extrémité arrière pleine séparée de la portion d'extrémité avant par une portion centrale creuse, la portion d'extrémité avant et la portion centrale étant traversées par une cavité centrale de forme cylindrique, ladite cavité centrale formant le canal d'entrée de l'arbre, et en ce qu'au moins un trou orienté radialement par rapport à l'axe de l'arbre est formé à l'intérieur de la portion d'extrémité avant, respectivement de la portion centrale, de manière à déboucher, d'un côté, dans le canal d'entrée et, de l'autre côté, dans ledit au moins un canal de sortie avant, respectivement ledit au moins un canal de sortie arrière.
- l'arbre comprend un corps principal muni d'un trou borgne aligné selon l'axe de l'arbre, ledit trou borgne comprenant deux sections contiguës de diamètres internes différents, à savoir une première section possédant un premier diamètre interne et une deuxième section possédant un deuxième diamètre interne, le canal d'entrée de l'arbre étant défini conjointement par la première section et par la deuxième section du trou borgne.
- chacun des flasques avant et arrière possède une face interne en contact avec une face latérale du paquet de tôles, ladite face interne étant munie d'au moins une rainure s'étendant radialement depuis une zone centrale évidée dudit flasque, au niveau de laquelle ladite rainure est en communication fluidique avec le canal d'entrée de l'arbre, jusqu'à une face périphérique dudit flasque, ladite au moins une rainure formant avec la face latérale correspondante du paquet de tôles le canal de sortie avant ou arrière. - ladite au moins une rainure possède un profil spécifique lui permettant d'optimiser les surfaces de contact entre le canal de sortie avant, respectivement arrière, et les aimants permanents logés dans le paquet de tôles.
- ladite au moins une rainure est formée d'une succession de segments radiaux et orthoradiaux contigus, lesdits segments définissant un profil en chicane destiné à accroître le trajet à parcourir par le fluide de refroidissement lors de sa circulation dans le canal de sortie avant, respectivement arrière, par rapport à un trajet qui serait radialement direct entre la zone centrale et la face périphérique dudit flasque avant, respectivement arrière.
- la face interne du flasque avant, respectivement arrière, est munie d'une pluralité de rainures s'étendant radialement depuis une zone centrale évidée dudit flasque avant, respectivement arrière, au niveau de laquelle lesdites rainures sont en communication fluidique avec le canal d'entrée de l'arbre, jusqu'à une face périphérique dudit flasque avant, respectivement arrière, lesdites rainures formant avec la face latérale correspondante du paquet de tôles une pluralité de canaux de sortie avant, respectivement arrière.
- chacune desdites rainures fait face à un trou radial formé au travers de l'arbre, ledit trou radial débouchant, d'un côté, sur le canal d'entrée de l'arbre et, de l'autre côté, sur la paroi périphérique de l'arbre.
- les aimants permanents sont constitués de ferrite.
- les aimants permanents sont constitués de terre rare.
- au moins l'un des flasques avant et arrière est réalisé en matière plastique.
L'invention concerne également un moteur électrique comprenant un rotor tel que défini ci-dessus et un stator annulaire qui entoure le rotor de manière coaxiale à l'arbre, des chignons faisant saillie axialement de part et d'autre du stator, caractérisé par le fait que l'ouverture de sortie, respectivement chacune des ouvertures de sortie, à travers laquelle sort le fluide de refroidissement des flasques avant et arrière, est alignée axialement avec les chignons de manière à permettre un refroidissement desdits chignons par l'intermédiaire dudit fluide de refroidissement.
L'invention sera davantage comprise à la lecture de la description non limitative qui va suivre, faite en référence aux figures ci-annexées.
[Fig. 1] est une vue en coupe longitudinale d'un rotor selon un premier mode de réalisation de l'invention,
[Fig. 2] est une vue en coupe longitudinale d'un moteur électrique incorporant le rotor selon la figure 1, [Fig. 3] est une vue en perspective de l'arbre utilisé dans le rotor de la figure 1,
[Fig. 4] est une vue en coupe longitudinale de l'arbre de la figure 3,
[Fig. 5] est une vue axiale arrière du rotor selon la figure 1, le flasque arrière ayant été retiré,
[Fig. 6] est une vue en perspective de la face interne du flasque avant utilisé dans le rotor de la figure 1,
[Fig. 7] est une vue axiale de la face interne du flasque de la figure 6,
[Fig. 8] est une vue axiale arrière d'un rotor selon un deuxième mode de réalisation de l'invention, le flasque arrière ayant été retiré,
[Fig. 9] est une vue axiale de la face interne du flasque avant utilisé dans le rotor de la figure 8.
Dans l'ensemble de la description et dans les revendications, les termes « axial » et « radial » et leurs dérivés sont définis par rapport à l'axe de rotation du rotor. Ainsi, une orientation axiale se rapporte à une orientation parallèle à l'axe de rotation du rotor et une orientation radiale se rapporte à une orientation perpendiculaire à l'axe de rotation du rotor. Une orientation orthoradiale se rapporte à une orientation perpendiculaire à une orientation radiale dans un plan perpendiculaire à l'axe de rotation du rotor. Par ailleurs, par convention, les termes « avant » et « arrière » font référence à des positions séparées le long de l'axe de rotation du rotor. En particulier, l'extrémité « avant » de l'arbre du rotor correspond à l'extrémité de l'arbre sur laquelle peut être fixé(e) une poulie, un pignon, une cannelure destiné(e) à transmettre le mouvement de rotation du rotor à tout autre dispositif similaire de transmission de mouvements.
La figure 1 représente un rotor 10 selon un premier mode de réalisation de l'invention. Le rotor 10 comprend un corps sensiblement cylindrique formé par un paquet de tôles 14 réalisé dans un matériau ferromagnétique, notamment en acier, ledit corps étant solidaire en rotation d'un arbre 12 monté rotatif autour d'un axe X. Comme illustré sur la figure 5, le rotor 10 comprend en outre une pluralité d'aimants permanents 15 destinés à être logés dans une pluralité de cavités internes 141 formées à l'intérieur du paquet de tôles 14, chacune des cavités internes 141 logeant au moins un aimant permanent 15. Les aimants 15 pourront être constitués en ferrite par exemple. Les cavités 141 s'étendent suivant une direction radiale par rapport à l'axe X et sont axialement traversantes. Elles possèdent une section sensiblement triangulaire et sont réparties uniformément autour de l'axe X. Deux cavités 141 directement adjacentes sont séparées par un segment radial 18 du paquet de tôles 14 de sorte que le corps du rotor est constitué d'une alternance de cavités 141 et de segments 18 lorsque l'on suit une circonférence du rotor 10. Les aimants 15 sont à aimantation orthoradiale, c'est-à-dire que les deux faces d'extrémité de chaque aimant 15 qui sont adjacentes l'une par rapport à l'autre dans le sens orthoradial sont magnétisées de manière à pouvoir générer un flux magnétique suivant une orientation orthoradiale par rapport à l'axe X.
Le paquet de tôles 14 est formé d'un empilement axial de tôles qui s'étendent dans un plan radial perpendiculaire à l'axe X de l'arbre 12 ou d'une tôle enroulée sur elle-même (tôle Slinky). Le paquet de tôles 14 est monté coaxialement sur l'arbre 12. L'arbre 12 pourra être emmanché en force à l'intérieur d'une ouverture centrale du paquet de tôles 14 de manière à lier en rotation le corps du rotor avec l'arbre 12. Une pluralité de trous de fixation 11 sont réalisés dans le paquet de tôles 14 pour permettre le passage de vis de fixation 13 destinées à fixer des flasques d'extrémité 17, 19 sur le paquet de tôles 14. Ainsi, une première extrémité des vis est en appui contre la face externe d'un flasque d'extrémité arrière 19, tandis que l'autre extrémité des vis dépasse de la face externe d'un flasque d'extrémité avant 17 et est filetée de manière à recevoir un écrou qui, une fois vissé, exerce une pression contre ladite face externe. Ainsi, le paquet de tôles 14 est enserré axialement entre le flasque d'extrémité avant 17 et le flasque d'extrémité arrière 19. Ces flasques 17, 19 pourront avantageusement permettre d'assurer un équilibrage du rotor 10 tout en permettant un bon maintien des aimants 15 à l'intérieur des cavités internes 141. L'équilibrage de ces flasques peut être effectué par ajout ou retrait de matière. Le retrait de matière peut être effectué par usinage, tandis que l'ajout de matière peut être effectué en implantant des éléments dans des ouvertures prévues à cet effet et réparties suivant la circonférence du flasque 17, 19.
En référence à la figure 2, il est représenté un moteur électrique 30 équipé du rotor 10 de la figure 1. Ce moteur électrique 30 comprend notamment un carter en deux parties logeant le rotor 10 et un stator 36 annulaire qui entoure le rotor 10 de manière coaxiale à l'arbre 12. Le carter comprend notamment un palier avant 32 et un palier arrière 34 connectés l'un à l'autre au moyen de vis de fixation 31. Les paliers 32, 34 sont de forme creuse et portent chacun centralement un roulement à billes, respectivement 33 et 35, pour le montage en rotation de l'arbre 12. Des chignons 37 font saillie axialement de part et d'autre du corps de stator 36 et sont logés dans l'espace intermédiaire séparant le stator 36 des paliers respectifs 32, 34. Les paliers avant et arrière 32, 34 seront avantageusement constitués de métal. En référence aux figures 3 et 4, il est représenté l'arbre 12 équipant le rotor de la figure 1. Cet arbre 12 comprend un corps principal formé d'une portion d'extrémité avant 121 et d'une portion d'extrémité arrière 123, lesdites portions d'extrémité 121, 123 étant séparées par une portion centrale 122. Le corps principal est muni d'un trou borgne 128 aligné selon l'axe X de l'arbre 12. Ce trou borgne 128 comprend deux sections contiguës de diamètres internes différents, à savoir une première section 128a possédant un diamètre interne DI et une deuxième section 128b possédant un diamètre interne D2. Ainsi configuré, l'arbre 12 possède un canal interne 124, dit canal d'entrée, par lequel peut être acheminé un fluide de refroidissement destiné à refroidir le rotor 10. Le canal d'entrée 124 est formé conjointement par la première section 128a et par la deuxième section 128b du trou borgne 128. Par ailleurs, l'arbre 12 est muni de plusieurs trous 125 orientés radialement par rapport à l'axe X de l'arbre 12, lesdits trous 125 étant formés à l'intérieur de la portion d'extrémité avant 121 de manière à déboucher, d'un côté, dans le canal d'entrée 124 et, de l'autre côté, au niveau de la paroi périphérique de l'arbre. De manière similaire, plusieurs trous 127 orientés radialement par rapport à l'axe X de l'arbre 12 sont formés à l'intérieur de la portion centrale 122 de manière à déboucher, d'un côté, dans le canal d'entrée 124 et, de l'autre côté, au niveau de la paroi périphérique de l'arbre.
En référence aux figures 6 et 7, il est représenté le flasque avant 17 équipant le rotor 10 de la figure 1. Le flasque arrière 19 possédant une structure sensiblement identique au flasque avant 17, les détails techniques donnés ci-dessous s'appliqueront de manière similaire au flasque arrière 19.
Le flasque avant 17 se présente sensiblement sous la forme d'un disque comprenant notamment une face externe (non représentée) et une face interne 173. La face interne 173 est en contact avec la face latérale avant 143 du paquet de tôles 14 (la face interne 193 du flasque arrière 19 est en revanche en contact avec la face latérale arrière 144 du paquet de tôles 14). La face interne 173 est munie d'une rainure 176 s'étendant radialement depuis une zone centrale 172 évidée dudit flasque jusqu'à une face périphérique 177 dudit flasque. La rainure 176 est configurée pour former avec la face latérale 143 correspondante du paquet de tôles 14 un canal de circulation pour le fluide de refroidissement, dit canal de sortie avant 175. Dans le cas du flasque arrière 19, une rainure similaire permet de la même façon de définir un canal de sortie arrière 195.
Comme représenté sur la figure 7, la zone centrale 172 du flasque possède un profil complémentaire à l'arbre 12 de telle sorte que l'arbre 12 est logé sans jeu dans ladite zone centrale 172. La rainure 176 s'étend depuis une extrémité proximale 176i de forme annulaire, sur laquelle débouchent les trous radiaux 125 de l'arbre 12, jusqu'à plusieurs extrémités distales 176j, formant des ouvertures 178 à travers la face périphérique 177 du flasque 17. Dans la position montée du moteur électrique 30 représentée sur la figure 2, ces extrémités distales 176j font face aux chignons 37. La rainure 176 est par ailleurs formée d'une succession de segments radiaux 176a et de segments orthoradiaux 176b contigus. Ces segments 176a, 176b définissent avantageusement un profil en chicane qui permet accroître le trajet à parcourir par le fluide de refroidissement lors de sa circulation dans le canal de sortie avant 175 par rapport à un trajet qui serait radialement direct entre la zone centrale 172 et la face périphérique 177 dudit flasque. Comme illustré sur la figure 6, ce profil permet également d'optimiser les surfaces de contact entre le canal de sortie avant 175 et les aimants permanents 15 logés dans le paquet de tôles 14.
Ainsi configurés, le rotor 10 et le moteur 30 pourront être refroidis par un fluide de refroidissement, comme de l'huile par exemple, ledit fluide de refroidissement circulant dans le rotor successivement au travers du canal d'entrée 124, puis entre les flasques avant et arrière 17, 19 et les faces latérales avant et arrière 143, 144 du paquet de tôles 14 respectivement au travers des canaux de sortie avant et arrière 175, 195, pour finalement être expulsé hors du rotor 10 au travers des ouvertures 178. Par la suite, ce fluide de refroidissement est dirigé vers les chignons 37 de telle sorte que, une fois au contact des chignons 37, il peut extraire une partie de la chaleur emmagasinée dans lesdits chignons 37. Le fluide de refroidissement circule ensuite, sous l'effet de la gravité, dans la partie basse du carter avant d'être évacué via une ouverture d'évacuation.
La figure 8 est une vue axiale arrière d'un rotor 10 selon un deuxième mode de réalisation de l'invention. Ce deuxième mode de réalisation diffère principalement du premier mode décrit précédemment par le profil de la rainure 176 formée dans chacun des flasques avant et arrière 17 et 19, ainsi que par la nature et la disposition des aimants permanents 15 dans le paquet de tôles 14.
En particulier, les aimants permanents 15 possèdent une forme parallélépipédique à section rectangulaire et sont sensiblement alignés dans deux plans perpendiculaires à l'axe X de l'arbre 12, chacun desdits plans étant aligné avec l'une des faces latérales avant et arrière 143, 144 du paquet de tôles 14. Les aimants 15 sont répartis uniformément autour de l'axe X et sont disposés de manière à former un motif en étoile à plusieurs branches. Les aimants 15 pourront être constitués en terre rare par exemple. Le paquet de tôles 14 pourra notamment comprendre une pluralité de deuxièmes cavités internes 142 axialement traversantes et s'étendant suivant une direction radiale par rapport à l'axe X. Ces deuxièmes cavités internes 142 pourront permettre de loger des éléments d'absorption acoustiques à l'intérieur du paquet de tôles. Dans le mode de réalisation représenté, ces deuxièmes cavités internes 142 sont au nombre de quatre et possèdent chacune une section en forme de portion d'anneau. Elles sont réparties uniformément autour de l'axe X de manière à éviter de créer un balourd dans le rotor.
En référence à la figure 9, il est représenté le flasque avant 17 équipant le rotor 10 de la figure 8. Le flasque arrière 19 possédant une structure sensiblement identique au flasque avant 17, les détails techniques donnés ci-dessous s'appliqueront de manière similaire au flasque arrière 19.
Comme représenté sur la figure 9, la face interne 173 du flasque avant 17 est munie d'une rainure 176 qui s'étend depuis une extrémité proximale 176i, sur laquelle débouchent les trous radiaux 125 de l'arbre 12, jusqu'à plusieurs extrémités distales 176j, formant les ouvertures 178 à travers la face périphérique 177 du flasque 17 à travers lesquelles pourra être expulsé le fluide de refroidissement. Comme pour la configuration précédente, ces extrémités distales 176j font face aux chignons 37. La rainure 176 est formée d'une succession de segments radiaux 176a et de segments orthoradiaux 176b contigus. Ces segments 176a, 176b définissent avantageusement un profil en chicane qui permet d'allonger le trajet à parcourir par le fluide de refroidissement lors de sa circulation dans le canal de sortie avant 175 par rapport à un trajet qui serait radialement direct entre la zone centrale 172 et la face périphérique 177 dudit flasque. Comme illustré sur la figure 8, ce profil permet également de faire circuler davantage de fluide de refroidissement dans les zones du flasque avant 17 qui font directement face aux aimants permanents 15 logés dans le paquet de tôles 14.
L'invention n'est évidemment pas limitée aux modes de réalisation tels que décrits précédemment. En particulier, dans d'autres modes de réalisation (non représentés) de l'invention, les flasques 17, 19 pourront également être munis de plusieurs rainures 176 séparées les unes des autres de telle sorte que le fluide de refroidissement ne puisse pas circuler entre les rainures au travers des flasques. Chacune des rainures 176 pourra avantageusement s'étendre radialement depuis la zone centrale évidée des flasques, au niveau de laquelle chacune des rainures sera en communication fluidique avec le canal d'entrée 124, jusqu'à la face périphérique desdits flasques au niveau d'une unique ouverture de sortie. Cette ouverture de sortie sera avantageusement alignée axialement avec les chignons 37 du stator 36 de manière à permettre un refroidissement desdits chignons 37 par l'intermédiaire du fluide de refroidissement expulsé du rotor au travers de ladite ouverture de sortie.

Claims

REVENDICATIONS
1. Rotor (10) pour moteur électrique (30) comprenant :
- un arbre (12) de rotor monté rotatif autour d'un axe (X);
- un paquet de tôles (14) monté coaxialement sur l'arbre (12) de rotor, ledit paquet de tôles (14) s'étendant entre une face latérale avant (143) et une face latérale arrière (144) et comprenant des premières cavités internes (141);
- une pluralité d'aimants permanents (15) logés à l'intérieur des premières cavités internes (141) du paquet de tôles (14);
- un flasque avant (17) et un flasque arrière (19) en forme de disque montés coaxialement sur l'arbre (32) de rotor et agencés axialement de part et d'autre du paquet de tôles (14) de telle sorte à être contigus respectivement aux faces latérales avant et arrière (143, 144) du paquet de tôles (14); caractérisé en ce que l'arbre (12) est muni d'au moins un canal interne (124) de circulation d'un fluide de refroidissement, dit canal d'entrée, et en ce que le flasque avant (17), respectivement le flasque arrière (19), est configuré pour former avec la face latérale avant (143), respectivement la face latérale arrière (144), du paquet de tôles (14) au moins un canal de sortie avant (175), respectivement au moins un canal de sortie arrière (195), à l'intérieur duquel peut circuler un fluide de refroidissement, ledit au moins un canal de sortie avant (175), respectivement arrière (195), étant en communication fluidique avec le canal d'entrée (124), et débouchant au niveau d'au moins une ouverture de sortie (178) située à la périphérie externe (177) dudit flasque avant (17), respectivement dudit flasque arrière (19).
2. Rotor (10) selon la revendication 1, caractérisé en ce que l'arbre (12) comprend une portion d'extrémité avant (121) creuse et une portion d'extrémité arrière (123) pleine séparée de la portion d'extrémité avant (121) par une portion centrale (122) creuse, la portion d'extrémité avant (121) et la portion centrale (122) étant traversées par une cavité centrale de forme cylindrique, ladite cavité centrale formant le canal d'entrée (124) de l'arbre (12), et en ce qu'au moins un trou (125, 127) orienté radialement par rapport à l'axe (X) de l'arbre (12) est formé à l'intérieur de la portion d'extrémité avant (121), respectivement de la portion centrale (122), de manière à déboucher, d'un côté, dans le canal d'entrée (124) et, de l'autre côté, dans ledit au moins un canal de sortie avant (175), respectivement ledit au moins un canal de sortie arrière (195).
3. Rotor (10) selon la revendication 2, caractérisé en ce que l'arbre (12) comprend un corps principal muni d'un trou borgne (128) aligné selon l'axe (X) de l'arbre (12), ledit trou borgne (128) comprenant deux sections contiguës de diamètres internes différents, à savoir une première section (128a) possédant un premier diamètre interne (Dl) et une deuxième section (128b) possédant un deuxième diamètre interne (D2), le canal d'entrée (124) de l'arbre (12) étant défini conjointement par la première section (128a) et par la deuxième section (128b) du trou borgne (128).
4. Rotor (10) selon la revendication 1, caractérisé en ce que chacun des flasques avant et arrière (17, 19) possède une face interne (173, 193) en contact avec une face latérale (143, 144) du paquet de tôles (14), ladite face interne (173, 193) étant munie d'au moins une rainure (176) s'étendant radialement depuis une zone centrale (172) évidée dudit flasque, au niveau de laquelle ladite rainure (176) est en communication fluidique avec le canal d'entrée (124) de l'arbre (12), jusqu'à une face périphérique (177) dudit flasque (17, 19), ladite au moins une rainure (176) formant avec la face latérale (143, 144) correspondante du paquet de tôles (14) le canal de sortie avant ou arrière (175, 195).
5. Rotor (10) selon la revendication 4, caractérisé en ce que ladite au moins une rainure (176) possède un profil spécifique lui permettant d'optimiser les surfaces de contact entre le canal de sortie avant (175), respectivement arrière (195), et les aimants permanents (15) logés dans le paquet de tôles (14).
6. Rotor (10) selon la revendication 4 ou 5, caractérisé en ce que ladite au moins une rainure (176) est formée d'une succession de segments radiaux (176a) et orthoradiaux (176b) contigus, lesdits segments (176a, 176b) définissant un profil en chicane destiné à accroître le trajet à parcourir par le fluide de refroidissement lors de sa circulation dans le canal de sortie avant (175), respectivement arrière (195), par rapport à un trajet qui serait radialement direct entre la zone centrale (172) et la face périphérique (177) dudit flasque avant (17), respectivement arrière (19).
7. Rotor (10) selon l'une des revendications 4 à 6, caractérisé en ce que la face interne (173, 193) du flasque avant (17), respectivement arrière (19), est munie d'une pluralité de rainures (176) s'étendant radialement depuis une zone centrale (172) évidée dudit flasque avant (17), respectivement arrière (19), au niveau de laquelle lesdites rainures (176) sont en communication fluidique avec le canal d'entrée (124) de l'arbre (12), jusqu'à une face périphérique (177) dudit flasque avant (17), respectivement arrière (19), lesdites rainures (176) formant avec la face latérale (143, 144) correspondante du paquet de tôles (14) une pluralité de canaux de sortie avant (175), respectivement arrière (195).
8. Rotor (10) selon la revendication 7, caractérisé en ce que chacune desdites rainures (176) fait face à un trou radial (125, 127) formé au travers de l'arbre (12), ledit trou radial (125, 127) débouchant, d'un côté, sur le canal d'entrée (124) de l'arbre (12) et, de l'autre côté, sur la paroi périphérique (177) de l'arbre (12).
9. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce que les aimants permanents (15) sont constitués de ferrite.
10. Rotor (10) selon l'une des revendications 1 à 8, caractérisé en ce que les aimants permanents (15) sont constitués de terre rare.
11. Rotor (10) selon l'une des revendications précédentes, caractérisé en ce qu'au moins l'un des flasques avant et arrière (17, 19) est réalisé en matière plastique.
12. Moteur électrique (30) comprenant un rotor (10) selon l'une des revendications précédentes et un stator (36) annulaire qui entoure le rotor (10) de manière coaxiale à l'arbre (12), des chignons (37) faisant saillie axialement de part et d'autre du stator (36), caractérisé en ce que l'ouverture de sortie (178), respectivement chacune des ouvertures de sortie (178), à travers laquelle sort le fluide de refroidissement des flasques avant et arrière (17, 19), est alignée axialement avec les chignons (37) de manière à permettre un refroidissement desdits chignons (37) par l'intermédiaire dudit fluide de refroidissement.
EP21733499.4A 2020-05-29 2021-05-20 Rotor pour moteur électrique muni d'un circuit de refroidissement Pending EP4158754A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2005689A FR3111029B1 (fr) 2020-05-29 2020-05-29 Rotor pour moteur électrique muni d’un circuit de refroidissement
PCT/FR2021/050922 WO2021240101A1 (fr) 2020-05-29 2021-05-20 Rotor pour moteur électrique muni d'un circuit de refroidissement

Publications (1)

Publication Number Publication Date
EP4158754A1 true EP4158754A1 (fr) 2023-04-05

Family

ID=72356133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21733499.4A Pending EP4158754A1 (fr) 2020-05-29 2021-05-20 Rotor pour moteur électrique muni d'un circuit de refroidissement

Country Status (5)

Country Link
US (1) US20230223807A1 (fr)
EP (1) EP4158754A1 (fr)
CN (1) CN115668695A (fr)
FR (1) FR3111029B1 (fr)
WO (1) WO2021240101A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759706B (zh) * 2022-03-17 2023-02-10 华为电动技术有限公司 一种转子、电机和电动车
DE102022122183A1 (de) * 2022-09-01 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Elektrische Maschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483948B2 (ja) * 2008-01-17 2010-06-16 トヨタ自動車株式会社 回転電機
JP5392101B2 (ja) * 2010-01-08 2014-01-22 トヨタ自動車株式会社 電動機の冷却構造
JP5772544B2 (ja) * 2011-11-25 2015-09-02 トヨタ自動車株式会社 回転電機の冷却構造
FR3064839A1 (fr) * 2017-03-28 2018-10-05 Valeo Equipements Electriques Moteur Machine electrique tournante a refroidissement optimise
US11283332B2 (en) * 2017-07-05 2022-03-22 Mitsubishi Electric Corporation Rotating electric machine

Also Published As

Publication number Publication date
FR3111029B1 (fr) 2023-06-30
FR3111029A1 (fr) 2021-12-03
CN115668695A (zh) 2023-01-31
WO2021240101A1 (fr) 2021-12-02
US20230223807A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
FR2819350A1 (fr) Machine tournante perfectionnee pour vehicules automobiles
EP4158754A1 (fr) Rotor pour moteur électrique muni d'un circuit de refroidissement
WO2021240100A1 (fr) Rotor pour moteur électrique muni d'un circuit de refroidissement
WO2019243740A1 (fr) Radiateur de refroidissement pour groupe motoventilateur
WO2001047093A1 (fr) Ralentisseur a courants de foucault
FR3056356A1 (fr) Manchon et arbre de machine electrique
EP3382856A1 (fr) Machine électrique tournante à refroidissement optimisé
EP4115501A1 (fr) Moteur électrique équipé d'un circuit de refroidissement
EP3539200A1 (fr) Machine electrique tournante integrant un carter de reducteur de vitesse
WO2023156735A1 (fr) Rotor pour moteur electrique muni d'un circuit de refroidissement
EP3758198A1 (fr) Machine electrique tournante munie d'ailettes de refroidissement
FR3060895B1 (fr) Machine electrique tournante a refroidissement ameliore
FR3134486A1 (fr) Rotor pour moteur electrique muni d’un circuit de refroidissement
WO2023062322A1 (fr) Rotor bobiné pour moteur électrique muni d'un circuit de refroidissement
WO2022219269A1 (fr) Moteur électrique agencé pour permettre une meilleure évacuation de la chaleur générée lors de son fonctionnement
EP4167440A1 (fr) Rotor bobiné pour moteur électrique muni d'un circuit de refroidissement
EP4128491A1 (fr) Rotor pour moteur électrique équipé de capteur de tiges
FR3056843B1 (fr) Machine electrique tournante a configuration de montage d'arbre amelioree
EP4324075A1 (fr) Moteur électrique agencé pour permettre une meilleure évacuation de la chaleur générée lors de son fonctionnement
WO2021160954A1 (fr) Rotor pour moteur électrique équipé de capteurs
FR3141014A1 (fr) Flasque pour une machine électrique tournante
WO2023111188A1 (fr) Machine électrique tournante munie d'une chambre de refroidissement à configuration optimisée
WO2021170940A1 (fr) Rotor pour moteur électrique équipé d'aimants permanents en matière plastique
FR3108001A1 (fr) Moteur électrique muni d'un couvercle d'isolation phonique
WO2020052843A1 (fr) Machine électrique tournante munie d'un palier réalisé à partir de deux parties surmoulées

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVARES FRANCE