WO2021189499A1 - 通信方法及相关产品 - Google Patents

通信方法及相关产品 Download PDF

Info

Publication number
WO2021189499A1
WO2021189499A1 PCT/CN2020/081885 CN2020081885W WO2021189499A1 WO 2021189499 A1 WO2021189499 A1 WO 2021189499A1 CN 2020081885 W CN2020081885 W CN 2020081885W WO 2021189499 A1 WO2021189499 A1 WO 2021189499A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
message
modulation order
terminal device
indicate
Prior art date
Application number
PCT/CN2020/081885
Other languages
English (en)
French (fr)
Inventor
余雅威
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/081885 priority Critical patent/WO2021189499A1/zh
Priority to CN202080098857.5A priority patent/CN115336362A/zh
Publication of WO2021189499A1 publication Critical patent/WO2021189499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communication technology, and specifically to a communication method and related products.
  • Channels can be divided into control channels and data channels according to channel functions.
  • the control channel is used to carry control information
  • the data channel is used to carry valid data.
  • the data carried on all channels need to be channel coded and modulated.
  • Common modulation methods in the current New Radio Access Technology (NR) system include Quadrature Phase Shift Keying (QPSK), 16-order Quadrature Amplitude Modulation (QAM), For 64QAM or even higher 256QAM, the corresponding modulation orders are 2, 4, 6, and 8, which means that each complex signal can carry 2 bits, 4 bits, 6 bits, and 8 bits of information.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16-order Quadrature Amplitude Modulation
  • For 64QAM or even higher 256QAM the corresponding modulation orders are 2, 4, 6, and 8, which means that each complex signal can carry 2 bits, 4 bits, 6 bits, and 8 bits of information.
  • the NR system supports Adaptive Modulation and Coding (AMC), that is, according to the fading size of the channel, the appropriate modulation order is selected, and the modulation and transmission are performed to improve the transmission efficiency.
  • AMC Adaptive Modulation and Coding
  • the power of the received signal may be much smaller than the power of the transmitted signal. In order to ensure that signals that have undergone fading can be received by the receiving end, the transmitting end will send the signal with a higher power.
  • the same modulation order is used for data modulation on the entire scheduled bandwidth (all sub-carriers); also after the transmission power is determined, it is used on each sub-carrier The same transmit power is used for data transmission.
  • there is frequency selective fading between sub-carriers that is, the corresponding channel fading between different sub-carriers is different. Therefore, the existing modulation method and the method of determining the transmission power do not accurately adapt the channel fading characteristics between the sub-carriers, which reduces the transmission efficiency.
  • This application provides a communication method and related products.
  • the modulation order and transmission power of each subband are respectively controlled to improve communication efficiency.
  • an embodiment of the present application provides a communication method, including: sending a first message to a terminal device, where the first message is used to indicate the first modulation order of each subband in at least one subband; The first modulation order uses the at least one subband to receive data from the terminal device or send data to the terminal device.
  • the first modulation order of each subband is determined by the network equipment according to the channel quality corresponding to each subband.
  • the network device can indicate the first modulation order of each subband through the first message, so as to successfully indicate the first modulation order of each subband to the terminal device;
  • the first modulation order of each subband performs data transmission with the terminal device. Since the first modulation order of each sub-band is determined according to the channel quality of each sub-band, the channel fading characteristics of each sub-band should be fully considered when data transmission is performed to meet the requirements of each sub-band’s modulation order. Demand, and then improve the efficiency of data transmission.
  • the first message includes the index of the first modulation order.
  • the first modulation order of each subband is indicated by way of index, thereby improving the flexibility of indicating the first modulation order of each subband.
  • the first message is a downlink control information DCI or a radio resource control RRC message.
  • the first modulation order of each subband can be indicated through a DCI or RRC message, so that the first modulation order of each subband can be successfully indicated to the terminal device.
  • the method before sending the first message to the terminal device, the method further includes: sending a second message to the terminal device, where the second message is used to indicate each subband in at least one subband. The second modulation order of each subband.
  • the network device first indicates the second modulation order of each subband through the second message. If the second modulation order in the current time unit does not match the channel quality, it will pass the first
  • the message indicates the first modulation order of each subband, and the first modulation order of each subband is determined by the network device according to the channel quality of each subband in the current time unit. Therefore, the modulation order of each subband can be adjusted through the first message, which improves the flexibility of indicating the modulation order of each subband.
  • the first message includes the index of the first modulation order
  • the second message includes the index of the second modulation order
  • the second modulation order can be indicated by the index, and when the modulation order needs to be adjusted, the first modulation order is indicated by the index, thereby increasing the indicated modulation order. Flexibility.
  • the first message is used to indicate an adjustment amount of the first modulation order relative to the second modulation order
  • the second message includes the adjustment amount of the second modulation order. index.
  • the second modulation order can be indicated by index, so as to successfully indicate the modulation order of each subband to the terminal device; and when the modulation order needs to be adjusted, the modulation order can be indicated by Indicating the first modulation order in a quantitative manner, thereby increasing the flexibility of indicating the modulation order.
  • the first message includes first information, and the first information is used to indicate an adjustment amount of the transmit power of the at least one subband, and the first modulation order relative to all the subbands. Describe the adjustment amount of the second modulation order.
  • the first information is the TPC field in the DCI, that is, by multiplexing the existing TPC field to indicate the adjustment amount of the transmit power of at least one subband, and the first modulation order relative to the second modulation order. Number of adjustments.
  • the existing TPC field in the DCI can be multiplexed to indicate the adjustment amount of the first modulation order relative to the second modulation order, thereby reducing signaling overhead.
  • the TPC field can also be used to indicate the adjustment amount of the transmission power of each subband, so that the terminal device can adjust the transmission power, so that the transmission power of each subband matches the channel quality, and further improves the transmission efficiency.
  • the first message is a DCI
  • the second message is an RRC message
  • the second modulation order is indicated by RRC, so that the first modulation order of each subband is now successfully indicated to the terminal device, and the modulation order is dynamically adjusted through DCI to increase the indicated modulation order. Number of flexibility.
  • an embodiment of the present application provides a communication method, including: receiving a first message from a network device; determining the first modulation order of each subband in the at least one subband according to the first message; The first modulation order uses the at least one subband to receive data from the network device or send data to the network device.
  • the first modulation order of each subband is determined by the network equipment according to the channel quality corresponding to each subband.
  • the terminal device can successfully obtain the first modulation order of each subband according to the first message sent by the network device; the network device performs data according to the first modulation order of each subband.
  • Transmission since the first modulation order of each subband is determined according to the channel quality of each subband, when data transmission is performed, the channel fading characteristics of each subband are fully considered to satisfy the modulation order of each subband. The demand for data, thereby improving the efficiency of data transmission.
  • the first message includes the index of the first modulation order.
  • the first modulation order of each subband is indicated by means of an index, thereby improving the flexibility of obtaining the first modulation order of each subband.
  • the first message is a downlink control information DCI or a radio resource control RRC message.
  • the terminal device can successfully obtain the first modulation order of each subband through DCI or RRC.
  • the method before receiving the first message from the network device, the method further includes:
  • a second message is received from the network device, where the second message is used to indicate the second modulation order of each subband in at least one subband.
  • the terminal device first determines the second modulation order of each subband according to the second message sent by the network device. If the second modulation order in the current time unit does not match the channel quality, Then, the first modulation order of each subband is determined according to the first message sent by the network device, and the first modulation order of each subband is determined by the network device according to the channel quality of each subband in the current time unit. Therefore, the modulation order of each subband is dynamically adjusted through the first message, and the flexibility of indicating the modulation order of each subband is improved.
  • the first message includes the index of the first modulation order
  • the second message includes the index of the second modulation order
  • the second modulation order can be indicated by the index, and when the modulation order needs to be adjusted, the first modulation order is indicated by the index, thereby increasing the indicated modulation order. Flexibility.
  • the first message is used to indicate an adjustment amount of the first modulation order relative to the second modulation order
  • the second message includes the adjustment amount of the second modulation order.
  • determining the first modulation order according to the first message includes: determining the first modulation order according to the first message and the second message.
  • the second modulation order can be indicated by index, so as to successfully indicate the modulation order of each subband to the terminal device; and when the modulation order needs to be adjusted, the modulation order can be indicated by Indicating the first modulation order in a quantitative manner, thereby increasing the flexibility of indicating the modulation order.
  • the first message includes first information, and the first information is used to indicate an adjustment amount of the transmit power of the at least one subband, and the first modulation order relative to all the subbands. Describe the adjustment amount of the second modulation order.
  • the first information is the TPC field in the DCI, that is, by multiplexing the existing TPC field to indicate the adjustment amount of the transmit power of at least one subband, and the first modulation order relative to the second modulation order. Number of adjustments.
  • the existing TPC field in the DCI can be multiplexed to indicate the adjustment amount of the first modulation order relative to the second modulation order, thereby reducing signaling overhead.
  • the TPC field can also be used to indicate the adjustment amount of the transmission power of each subband, so that the terminal device can adjust the transmission power, so that the transmission power of each subband matches the channel quality, and further improves the transmission efficiency.
  • the first message is a DCI
  • the second message is an RRC message
  • the second modulation order is indicated by RRC, so that the first modulation order of each subband is now successfully indicated to the terminal device, and the modulation order is dynamically adjusted through DCI to increase the indicated modulation order. Number of flexibility.
  • an embodiment of the present application provides a communication method, including: sending a third message to a terminal device, where the third message is used to indicate the transmission power of each subband in at least one subband; according to the transmission power, Using the at least one subband to receive data from the terminal device or send data to the terminal device.
  • the network device indicates the transmit power of each subband through the third message, so as to successfully indicate the transmit power of each subband to the terminal device; the network device communicates with the terminal device according to the transmit power of each subband.
  • the channel fading characteristics of each subband are fully considered to meet the transmission power requirements of each subband, thereby improving data transmission efficiency.
  • the third message includes an index value of the target transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value, thereby improving the flexibility of indicating the target transmission power.
  • the third message is used to indicate an adjustment amount of the transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value indicating the adjustment amount of the transmission power of each subband, thereby improving the flexibility of indicating the target transmission power.
  • the third message is a downlink control information DCI or a radio resource control RRC message.
  • an embodiment of the present application provides a communication method, including: receiving a third message from a network device; determining the transmission power of each subband in the at least one subband according to the third message; Power, using the at least one subband to receive data from the network device or send data to the network device.
  • the third message of the terminal device determines the transmission power of each subband, so as to successfully obtain the transmission power of each subband; the terminal device performs data transmission with the network device according to the transmission power of each subband.
  • the third message includes an index value of the target transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value, thereby improving the flexibility of indicating the target transmission power.
  • the third message is used to indicate an adjustment amount of the transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value indicating the adjustment amount of the transmission power of each subband, thereby improving the flexibility of indicating the target transmission power.
  • the third message is a downlink control information DCI or a radio resource control RRC message.
  • an embodiment of the present application provides a network device, including: a transceiver unit, configured to send a first message to a terminal device, where the first message is used to indicate the first modulation order of each subband in at least one subband
  • the processing unit is configured to control the transceiver unit to use the at least one subband to receive data from the terminal device or send data to the terminal device according to the first modulation order.
  • the first modulation order of each subband is determined by the network equipment according to the channel quality corresponding to each subband.
  • the network device can indicate the first modulation order of each subband through the first message, so as to successfully indicate the first modulation order of each subband to the terminal device;
  • the first modulation order of each subband performs data transmission with the terminal device. Since the first modulation order of each sub-band is determined according to the channel quality of each sub-band, the channel fading characteristics of each sub-band should be fully considered when data transmission is performed to meet the requirements of each sub-band’s modulation order. Demand, and then improve the efficiency of data transmission.
  • the first message includes the index of the first modulation order.
  • the first modulation order of each subband is indicated by way of index, thereby improving the flexibility of indicating the first modulation order of each subband.
  • the first message is a downlink control information DCI or a radio resource control RRC message.
  • the first modulation order of each subband can be indicated through a DCI or RRC message, so that the first modulation order of each subband can be successfully indicated to the terminal device.
  • the transceiving unit before sending the first message to the terminal device, is further configured to: send a second message to the terminal device, where the second message is used to indicate at least one child The second modulation order of each subband in the band.
  • the network device first indicates the second modulation order of each subband through the second message. If the second modulation order in the current time unit does not match the channel quality, it will pass the first
  • the message indicates the first modulation order of each subband, and the first modulation order of each subband is determined by the network device according to the channel quality of each subband in the current time unit. Therefore, the modulation order of each subband can be adjusted through the first message, which improves the flexibility of indicating the modulation order of each subband.
  • the first message includes the index of the first modulation order
  • the second message includes the index of the second modulation order
  • the second modulation order can be indicated by the index, and when the modulation order needs to be adjusted, the first modulation order is indicated by the index, thereby increasing the indicated modulation order. Flexibility.
  • the first message is used to indicate an adjustment amount of the first modulation order relative to the second modulation order
  • the second message includes the adjustment amount of the second modulation order. index.
  • the second modulation order can be indicated by index, so as to successfully indicate the modulation order of each subband to the terminal device; and when the modulation order needs to be adjusted, the modulation order can be indicated by Indicating the first modulation order in a quantitative manner, thereby increasing the flexibility of indicating the modulation order.
  • the first message includes first information, and the first information is used to indicate an adjustment amount of the transmit power of the at least one subband, and the first modulation order relative to all the subbands. Describe the adjustment amount of the second modulation order.
  • the first information is the TPC field in the DCI, that is, by multiplexing the existing TPC field to indicate the adjustment amount of the transmit power of at least one subband, and the first modulation order relative to the second modulation order. Number of adjustments.
  • the existing TPC field in the DCI can be multiplexed to indicate the adjustment amount of the first modulation order relative to the second modulation order, thereby reducing signaling overhead.
  • the TPC field can also be used to indicate the adjustment amount of the transmission power of each subband, so that the terminal device can adjust the transmission power, so that the transmission power of each subband matches the channel quality, and further improves the transmission efficiency.
  • the first message is a DCI
  • the second message is an RRC message
  • the second modulation order is indicated by RRC, so that the first modulation order of each subband is now successfully indicated to the terminal device, and the modulation order is dynamically adjusted through DCI to increase the indicated modulation order. Number of flexibility.
  • an embodiment of the present application provides a terminal device, including: a transceiving unit, configured to receive a first message from a network device; and a processing unit, configured to determine each subband in the at least one subband according to the first message The first modulation order of the band; the processing unit is further configured to control the transceiver unit to use the at least one subband to receive data from the network device or to the network device according to the first modulation order send data.
  • the first modulation order of each subband is determined by the network equipment according to the channel quality corresponding to each subband.
  • the terminal device can successfully obtain the first modulation order of each subband according to the first message sent by the network device; the network device performs data according to the first modulation order of each subband.
  • Transmission since the first modulation order of each subband is determined according to the channel quality of each subband, when data transmission, the channel fading characteristics of each subband should be fully considered to satisfy the modulation order of each subband. The demand for data, thereby improving the efficiency of data transmission.
  • the first message includes the index of the first modulation order.
  • the first modulation order of each subband is indicated by means of an index, thereby improving the flexibility of obtaining the first modulation order of each subband.
  • the first message is a downlink control information DCI or a radio resource control RRC message.
  • the terminal device can successfully obtain the first modulation order of each subband through DCI or RRC.
  • the transceiving unit before receiving the first message from the network device, is further configured to: receive a second message from the network device, where the second message is used to indicate at least one child The second modulation order of each subband in the band.
  • the terminal device first determines the second modulation order of each subband according to the second message sent by the network device. If the second modulation order in the current time unit does not match the channel quality, Then, the first modulation order of each subband is determined according to the first message sent by the network device, and the first modulation order of each subband is determined by the network device according to the channel quality of each subband in the current time unit. Therefore, the modulation order of each subband is dynamically adjusted through the first message, and the flexibility of indicating the modulation order of each subband is improved.
  • the first message includes the index of the first modulation order
  • the second message includes the index of the second modulation order
  • the second modulation order can be indicated by the index, and when the modulation order needs to be adjusted, the first modulation order is indicated by the index, thereby increasing the indicated modulation order. Flexibility.
  • the first message is used to indicate an adjustment amount of the first modulation order relative to the second modulation order
  • the second message includes the adjustment amount of the second modulation order.
  • Index in terms of determining the first modulation order according to the first message, the processing unit is specifically configured to: determine the first modulation order according to the first message and the second message.
  • the second modulation order can be indicated by index, so as to successfully indicate the modulation order of each subband to the terminal device; and when the modulation order needs to be adjusted, the modulation order can be indicated by Indicating the first modulation order in a quantitative manner, thereby increasing the flexibility of indicating the modulation order.
  • the first message includes first information, and the first information is used to indicate an adjustment amount of the transmit power of the at least one subband, and the first modulation order relative to all the subbands. Describe the adjustment amount of the second modulation order.
  • the first information is the TPC field in the DCI, that is, by multiplexing the existing TPC field to indicate the adjustment amount of the transmit power of at least one subband, and the first modulation order relative to the second modulation order. Number of adjustments.
  • the existing TPC field in the DCI can be multiplexed to indicate the adjustment amount of the first modulation order relative to the second modulation order, thereby reducing signaling overhead.
  • the TPC field can also be used to indicate the adjustment amount of the transmission power of each subband, so that the terminal device can adjust the transmission power, so that the transmission power of each subband matches the channel quality, and further improves the transmission efficiency.
  • the first message is a DCI
  • the second message is an RRC message
  • the second modulation order is indicated by RRC, so that the first modulation order of each subband is now successfully indicated to the terminal device, and the modulation order is dynamically adjusted through DCI to increase the indicated modulation order. Number of flexibility.
  • an embodiment of the present application provides a network device, including: a transceiver unit, configured to send a third message to a terminal device, where the third message is used to indicate the transmit power of each subband in at least one subband; processing The unit is configured to control the transceiver unit to use the at least one subband to receive data from the terminal device or send data to the terminal device according to the transmission power.
  • the network device indicates the transmit power of each subband through the third message, so as to successfully indicate the transmit power of each subband to the terminal device; the network device communicates with the terminal device according to the transmit power of each subband.
  • the channel fading characteristics of each subband are fully considered to meet the transmission power requirements of each subband, thereby improving data transmission efficiency.
  • the third message includes an index value of the target transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value, thereby improving the flexibility of indicating the target transmission power.
  • the third message is used to indicate an adjustment amount of the transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value indicating the adjustment amount of the transmission power of each subband, thereby improving the flexibility of indicating the target transmission power.
  • the third message is a downlink control information DCI or a radio resource control RRC message.
  • an embodiment of the present application provides a terminal device, including: a transceiving unit, configured to receive a third message from a network device; and a processing unit, configured to determine each of the at least one subband according to the third message The processing unit is further configured to control the transceiver unit according to the transmission power, and use the at least one subband to receive data from the network device or send data to the network device.
  • the third message of the terminal device determines the transmission power of each subband, so as to successfully obtain the transmission power of each subband; the terminal device performs data transmission with the network device according to the transmission power of each subband.
  • the third message includes an index value of the target transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value, thereby improving the flexibility of indicating the target transmission power.
  • the third message is used to indicate an adjustment amount of the transmit power of each subband in the at least one subband.
  • the target transmission power of each subband can be indicated by the index value indicating the adjustment amount of the transmission power of each subband, thereby improving the flexibility of indicating the target transmission power.
  • the third message is a downlink control information DCI or a radio resource control RRC message.
  • an embodiment of the present application provides a communication device, including a processor, the processor is connected to a memory, the memory is configured to store a computer program, and the processor is configured to execute the computer program stored in the memory, So that the device executes the method described in any one of the above-mentioned first aspect to the fourth aspect.
  • an embodiment of the present application provides a chip including a processor and an interface; the processor is configured to read instructions to execute the method according to any one of the first aspect to the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is run, it implements the above-mentioned first aspect-fourth aspect The method described in any embodiment.
  • an embodiment of the present application provides a computer program product, the computer program product includes instructions, and when the instructions are executed, the implementation as described in any one of the first aspect to the fourth aspect method.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of dividing subbands according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of indicating the first modulation order through a bitmap according to an embodiment of the application
  • FIG. 5 is a simulation diagram of transmission using the first modulation order of each subband according to an embodiment of the application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of determining the modulation order and transmission power of a subband according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a user equipment provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another user equipment provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of another user equipment provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of another user equipment provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • UTRAN Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data Rate for GSM Evolution
  • GERAN New radio NR
  • 5G New radio
  • the terminal equipment involved in the embodiments of the present application may be User Equipment (UE).
  • UE User Equipment
  • the UE may be a device that provides voice and/or data connectivity to the user.
  • UE may include a handheld device with a wireless connection function or a processing device connected to a wireless modem.
  • the UE may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • UE can include wireless user equipment, mobile user equipment, device-to-device communication (device-to-device, D2D) user equipment, vehicle-to-everything (V2X) user equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) user equipment, Internet of things (IoT) user equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile user equipment, portable, pocket-sized, hand-held, mobile devices built into computers, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the UE may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various UEs described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), they can all be considered as vehicle-mounted user equipment.
  • the vehicle-mounted user equipment is also called an on-board unit (OBU). This embodiment of the application does not limit this.
  • the embodiment of the present application also relates to a network device, which may be an access network (Access network, AN) device, for example.
  • the AN device may refer to a device that communicates with wireless user equipment through one or more cells on the air interface in an access network, such as a base station NodeB (for example, an access point).
  • the NodeB can be used to integrate the received air frame with the Internet protocol. (IP) packets are converted to each other and act as a router between the UE and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet protocol
  • the NodeB may be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an advanced long term evolution (LTE-A). Or, it may also include the new air interface network equipment gNB in the 5th generation (5G) NR system.
  • the AN device may also be a vehicle-to-everything (V2X) technology.
  • the access network device is a roadside unit (RSU).
  • the RSU may be a fixed infrastructure entity supporting V2X applications, and may exchange messages with other entities supporting V2X applications.
  • the AN device may also include a centralized unit (CU) and a distributed unit (DU) in the cloud radio access network (CloudRAN) system. At this time, the AN device coordinates Attribute management of the air interface.
  • the embodiment of this application does not limit the AN device.
  • channels can be divided into control channels and data channels according to channel functions.
  • the control channel is used to carry control information
  • the data channel is used to carry data information.
  • the corresponding channels include the Physical Uplink Shared Channel (PUSCH), the Physical Uplink Control Channel (PUCCH), the Physical Downlink Shared Channel (PDSCH), and the Physical Downlink Control Channel (PUCCH).
  • Physical Downlink Control Channel (PDCCH) Physical Broadcast Channel (Physical Broadcast Channel, PBCH), and Physical Random Access Channel (Physical Random Access Channel, PRACH).
  • the terminal equipment performs channel coding and rate matching on the uplink data to obtain the redundancy version (Rdundancy Version, RV); the terminal equipment modulates the RV to obtain multiple complex signals, and then loads the multiple complex signals on the subcarriers through the antenna Transmit to the base station; the base station receives the complex signal after channel fading through the antenna; the base station demodulates the received complex signal to obtain the RV, and performs corresponding channel decoding on the RV to obtain the uplink data.
  • RV redundancy Version
  • modulation methods in NR systems include Quadrature Phase Shift Keying (QPSK), 16-order Quadrature Amplitude Modulation (QAM), 64QAM or even higher 256QAM, etc.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16-order Quadrature Amplitude Modulation
  • 64QAM 64QAM or even higher 256QAM, etc.
  • the corresponding modulation The orders are 2, 4, 6, and 8, respectively.
  • the modulation order means that each complex signal can carry 2 bits, 4 bits, 6 bits, and 8 bits of information. Therefore, the higher the modulation order, the more bits carried in a complex signal, and the higher the transmission efficiency. But in the fading channel, affected by noise and signal fading, the higher the modulation order, the more difficult it is for the receiving end to demodulate the received complex signal correctly, and the higher the bit error rate.
  • the NR system supports adaptive modulation and coding (Adaptive Modulation and Coding, AMC). That is, according to the change of channel quality, the modulation order of different time units is adjusted. For example, the downlink transmission of the current time unit adopts QPSK modulation, but the base station determines that a higher modulation order can be used after knowing the quality of the downlink channel, and then adopts a higher modulation order in the downlink transmission of the next time unit for downlink transmission. transmission. For example, 16QAM or 64QAM is used for downlink transmission.
  • AMC Adaptive Modulation and Coding
  • the received signal power It may be much smaller than the signal power at the time of transmission.
  • the sending end usually sends a signal with a larger transmission power, so that after experiencing channel fading, the receiving end can still successfully receive the signal sent by the sending end.
  • the base station will receive the uplink signals sent by multiple terminal devices at the same time.
  • the signal power of the terminal devices close to the base station to the base station may be relatively large, and the signal power of the terminal equipment far away from the base station to the base station may be relatively small. This results in greater interference to remote terminal equipment (terminal equipment far from the base station), and the signal cannot be accurately demodulated and decoded, making the remote terminal equipment unable to perform normal communication. Therefore, the base station will comprehensively consider the interference between multiple terminal equipment, appropriately reduce the transmission power of the near-point terminal equipment (terminal equipment close to the base station), and increase the transmission power of the far-point terminal equipment.
  • the adjustment of the transmission power of the terminal equipment is mainly carried out through open-loop and closed-loop adjustment, and the way of adjusting the transmission power through the open-loop and closed-loop can be expressed by formula (1):
  • the open-loop operating points include P 0 (j), ⁇ (j), and PL(p), where j is the index value, and the terminal device selects P 0 (j from a set of configured P 0 values based on the index value j ), the selected P 0 (j) is related to the target signal to interference noise ratio (Signal to Interfrence Noise Ratio, SINR) expected on the base station side .
  • SINR Signal to Interfrence Noise Ratio
  • PL(p) is the path loss estimation.
  • the terminal device independently selects the PL(p) from a set of maintained path loss values.
  • the path loss estimation is based on the downlink channel state information reference signal (Channel State Information Reference Signal, CSI- RS) or synchronization signal block (Synchronization Signal and PBCH Block, SSB).
  • CSI- RS Channel State Information Reference Signal
  • SSB synchronization signal block
  • the closed-loop offset f(l) is the state value of the power control offset, which is used to adjust the transmission power of the terminal device, and indicates f(l) through the DCI.
  • the transmission power control (Transmission Power Control, TPC) command in the DCI can be used to instruct the terminal device to be based on f(l) Adjust the transmit power, f(l) is determined by the value ⁇ (l) of tpc-Accumulation and TPC command.
  • the subcarrier interval corresponding to other adjustments in formula (1) is 15KHz, and M represents the number of frequency domain resource units occupied by this uplink transmission, and the frequency domain resource unit may be a physical resource block (Physical Resource Block). Block, PRB).
  • PRB Physical Resource Block
  • u takes the value of 0, 1, 2, 3, and 4, and corresponds to the sub-carrier spacing respectively Values of 15KHz, 30KHz, 60KHz, 120KHz, and 240KHz;
  • is the adjustment value related to the transmission format (ie Modulation and Coding Scheme (MCS)) of this uplink transmission.
  • MCS Modulation and Coding Scheme
  • AMC transmission is supported in the NR system.
  • the same modulation order needs to be used on all scheduled subcarriers, that is, the same modulation order is used for modulation on the entire transmission block (Transmission Block, TB), and then mapped to the physical resource block (PRB) Send it.
  • the same transmission power is used for data transmission on all scheduled subcarriers.
  • frequency selective fading exists between sub-carriers, and different sub-carriers have different channel fading characteristics. Therefore, using the same modulation order and the same transmission power for data transmission on all sub-carriers cannot adapt the channel fading characteristics between the sub-carriers, resulting in low transmission efficiency.
  • the communication system 10 includes a terminal device 100 and a network device 200.
  • the network device 200 sends a first message to the terminal device 100, where the first message is used to indicate the first modulation order of each subband in at least one subband.
  • the terminal device 100 determines the first modulation order of each subband in the at least one subband according to the first message; the network device 200 uses the at least one subband to receive data from the terminal device 100 according to the first modulation order or Send data to the terminal device 100.
  • the network device indicates the modulation order of each subband through the first message, so as to successfully indicate the modulation order of each subband to the terminal device; therefore, the network device and the terminal device In between, data transmission can be performed according to the first modulation order of each subband. Due to the full consideration of the channel fading characteristics of each subband, the requirements of each subband for the modulation order are met, and the data transmission efficiency is improved.
  • the network device 200 sends a third message to the terminal device, where the third message is used to indicate the transmit power of each subband in at least one subband; the terminal device 100 The transmission power is determined according to the third message; the network device 200 uses the at least one subband to receive data from the terminal device 100 or transmit data to the terminal device 100 according to the transmission power.
  • the network device indicates the transmission power of each subband through the third message, so as to successfully indicate the transmission power of each subband to the terminal device; therefore, between the network device and the terminal device, Data transmission can be performed according to the transmission power of each subband. Due to the full consideration of the channel fading characteristics of each subband, the requirements for the transmission power of each subband are met, and the data transmission efficiency is improved.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • the method of this embodiment includes the following steps:
  • the network device sends a first message to the terminal device, where the first message is used to indicate the first modulation order of each subband in at least one subband.
  • the at least one subband is obtained by dividing the scheduled frequency domain resources by the network device.
  • the subband division method includes: the scheduled frequency domain resources can be divided evenly according to the granularity of the subbands to obtain at least one subband, and each subband contains The number of frequency domain resource units is the same (the number of frequency domain resource units in the last subband may be different from other subbands), and the frequency domain resource unit may be a physical resource block (PRB).
  • the granularity of the subband may be a predefined value in the user equipment, or may be configured by the network equipment through signaling. For example, the network equipment is configured through RRC signaling or DCI.
  • three frequency domain resource units are taken as the granularity of one subband. Therefore, starting from the first frequency domain resource unit, three adjacent frequency domain resource units are used as one subband.
  • the subband division method includes: starting from the first frequency domain resource unit, if two adjacent frequency domain resources in the scheduled frequency domain resource unit If the unit interval is m or greater than m frequency domain resource units that are not scheduled, the two adjacent frequency domain resource units are divided into two different subbands to obtain at least one subband, and m is an integer greater than or equal to 1. Therefore, the number of frequency domain resource units included in any two subbands is the same or different, where the value of m may be a predefined value in the user equipment, or it may be configured by the network equipment through signaling. For example, the network equipment is configured through RRC signaling or DCI.
  • the gray part represents the frequency domain resource unit of the discrete scheduling.
  • the interval m is set to 2, then the adjacent frequency domain resource unit in the scheduled frequency domain resource unit If the frequency domain resource units separated by two or more are not scheduled, the adjacent frequency domain resource units belong to two subbands. Therefore, both subband 1 and subband n include two frequency domain resource units, and subband 2 includes one frequency domain resource unit.
  • each frequency domain resource unit includes the same number of subcarriers, and the channel fading characteristics of all subcarriers in each subband are the same.
  • the modulation order of each subband is determined by the network equipment according to the channel quality.
  • the network device measures the channel quality of each subband according to the sounding reference signal (SRS) sent by the terminal device, and considers the target transmission rate of the terminal device and the interference of other terminal devices from data transmission to the terminal device , Get the first modulation order corresponding to each subband.
  • SRS sounding reference signal
  • the first message includes an index of the first modulation order of each subband, and the first modulation order of each subband is indicated by the index.
  • the index can be 00, 01, 10, or 11, etc., 00 is used to indicate that the modulation order is 2, 01 is used to indicate that the modulation order is 4, 10 is used to indicate that the modulation order is 6, and 11 is used to indicate The modulation order is 8.
  • the first message may be a DCI or RRC message.
  • the first modulation order of each subband can be indicated through the newly added field in the DCI, that is, the first modulation order of each subband is set through the newly added field
  • the index of the newly added field is obtained by expanding the field of the existing DCI, and the existing DCI is the DCI specified by the existing communication protocol 38.212f20.
  • the first modulation order of each subband can also be indicated through the existing field in DCI, that is, the modulation of each subband is implicitly indicated through the existing field of DCI.
  • the 2 bits indicated by the TPC of each subband during subband power control can be used to implicitly indicate the modulation order adjustment amount of each subband according to a predefined correspondence.
  • the first modulation order of each subband may be indicated by bits.
  • the network device can determine the length of the field to be expanded in the DCI according to the number of at least one subband, and indicate the first modulation order of each subband in a bitmap manner, that is, each subband corresponds to the bitmap in the bitmap.
  • the bits of indicates the first modulation order of each subband. For example, a total of 10 subbands are divided, and each subband is indicated by 2 bits, and 20 bits can be added to indicate the modulation order of each subband. As shown in FIG. 4, the first two bits in the bitmap are used to indicate the first modulation order of subband 1. If the index values corresponding to the first two bits are respectively 01, it indicates that the first modulation order of subband 1 is 4.
  • the RRC message When the first message is an RRC message, the RRC message includes the index of the first modulation order of each subband. Similarly, the index of the first modulation order of each subband can be set in the RRC message in a bitmap manner, and the index of the first modulation order of each subband is used to indicate the first modulation order of each subband.
  • the first modulation order of each subband can also be directly indicated in the RRC message. That is, the RRC message includes the value corresponding to the first modulation order of each subband.
  • the terminal device determines the first modulation order of each subband in the at least one subband according to the first message.
  • the terminal device parses the first message and determines the first modulation order of each subband. For example, if the first message includes the index of the first modulation order of each subband, the terminal device parses the first message to obtain the index of the first modulation order of each subband, according to the corresponding relationship between the index and the modulation order Determine the first modulation order of each subband. For another example, if the first message includes the value corresponding to the first modulation order of each subband, the terminal device analyzes the first message to directly obtain the first modulation order of each subband.
  • the terminal device uses the at least one subband to receive data from the network device or send data to the network device according to the first modulation order of each subband.
  • the terminal device sends data to the network device according to the at least one subband, that is, a process in which the terminal device performs uplink transmission.
  • the terminal device needs to calculate the transmission block size (Transmission Block Size, TBS) according to the transmission code rate. Therefore, in addition to indicating the first modulation order of each subband to the terminal device, the network device also needs to indicate the transmission code rate.
  • the transmission code rate may be indicated by the first message or may be indicated by other messages. This application does not limit this.
  • the terminal equipment determines the TBS according to the first modulation order and the transmission code rate of each subband; performs channel coding on the uplink data according to the TBS to obtain a bit string; performs rate matching on the bit string to obtain the RV; according to the first modulation of each subband
  • the order modulates the RV to obtain the uplink data carried on each subband, and then uses the at least one subband to send the uplink data carried on each subband to the network device.
  • the frequency domain resource unit may be a PRB. If the number of subbands is 10, each subband includes 2 PRBs, and each PRB includes 12 subcarriers and 14 time domain symbols.
  • the terminal device After determining the final TBS, the terminal device performs channel coding on the data to be transmitted to obtain a bit string. For example, when data transmission is performed on the uplink shared channel PUSCH, a low density parity check (LDPC) code is used to obtain a bit string.
  • LDPC low density parity check
  • a bit string with a bit length of 5960 is obtained.
  • the terminal device performs rate matching on the bit string, that is, selects some bits from the bit string to obtain the RV (that is, selects 10080 bit); modulates the RV according to the first modulation order of each subband, and modulates the RV according to the first modulation order of each subband.
  • the modulated bits are divided to obtain the uplink data carried by each subband;.
  • the at least one subband is used to send the uplink data carried by each subband to the network device.
  • the terminal device receives data from the network device according to the at least one subband, that is, the terminal device performs a downlink data transmission process. Therefore, the foregoing first message is also used to instruct the terminal device to demodulate the downlink data sent by the network device according to the first modulation order of each subband.
  • the network device indicates the first modulation order of each subband through the first message, so that the first modulation order of each subband is successfully indicated to the terminal device; therefore, the network device Between the terminal device and the terminal device, data can be transmitted according to the first modulation order of each subband, and the first modulation order of each subband is determined according to the channel quality of each subband, so it is realized in the process of data transmission. , Fully consider the channel fading characteristics of each subband, meet the requirements of each subband for the modulation order, and improve the data transmission efficiency.
  • FIG. 5 is a schematic diagram of simulating the modulation process in the case of ideal channel estimation (that is, the simulation parameter is 2T4R). It can be seen from Figure 5 that the transmission rate of the modulation method using the first modulation order of each subband is higher than the modulation method of the entire bandwidth; moreover, when the SNR is slightly higher, compared to the modulation of the entire bandwidth , Can obtain significant performance gains.
  • the RRC message sent by the network device in the current time unit may be sent to the terminal after one or several time units have passed.
  • Device which causes the second modulation order indicated by the network device through the RRC message to fail to indicate to the terminal device in real time.
  • the RRC message received by the terminal device in the current time unit may be the RRC message sent by the network device in the previous time unit or several time units. Therefore, the second modulation of each subband determined by the terminal device according to the RRC is essentially determined by the network device according to the channel quality in the previous one or several time units.
  • the channel quality is always in a dynamic change process, and the channel quality in the current time unit may be different from the channel quality in the previous time unit or several previous time units. Therefore, if the terminal device uses the second modulation order for data transmission, it cannot adapt to the current channel quality.
  • the following scheme is proposed.
  • FIG. 6 is a schematic flowchart of another communication method according to an embodiment of the application.
  • the content of this embodiment is the same as that of the embodiment shown in FIG. 2, and the description will not be repeated here.
  • the method of this embodiment includes the following steps:
  • the network device sends a second message to the terminal device, where the second message is used to indicate the second modulation order of each subband in at least one subband.
  • the second message is an RRC message, and the second message includes the second modulation order of each subband in at least one subband.
  • the second message includes the index of the second modulation order of each subband; or the value corresponding to the second modulation order of each subband.
  • the network device sends a first message to the terminal device, where the first message is used to indicate the first modulation order of each subband in at least one subband.
  • the first message may be DCI.
  • the first modulation order of each subband is determined by the network equipment according to the channel quality in the current time unit, and the second modulation order of each subband is determined by the network equipment according to the channel quality in the previous one or several time units . Therefore, if the first modulation order and the second modulation order of the subbands are different, the first message indicates the first modulation order of each subband in at least one subband.
  • the modulation order of the at least one subband needs to be re-indicated.
  • DCI transmission can be regarded as real-time transmission. Therefore, in the case that the second modulation order indicated by the second message does not match the channel quality, the network device re-instructs the first modulation order of each subband of the terminal device through DCI, which can accurately match the channel quality, thereby improving transmission efficient.
  • the first message includes the index of the first modulation order, that is, the index directly indicates the first modulation order of each subband; or, the first message includes the first modulation order relative to the second modulation order.
  • the adjustment amount of the modulation order that is, indirectly indicates the first modulation order of each subband through the adjustment amount.
  • the terminal device adjusts the second modulation order according to the adjustment amount of each subband to obtain the first modulation order of each subband. Modulation order.
  • the adjustment amount of the first modulation order of each subband relative to the second modulation order may be adjusting the second modulation order of each subband to an adjacent modulation order, that is, the second modulation order Increase or decrease the modulation order by one. It is also possible to adjust several modulation orders for the indication. For example, 00 indicates an increase of one modulation order, and 11 indicates an increase of two modulation orders. This application does not limit the method of adjusting the amount.
  • indicating the adjustment amount of the first modulation order relative to the second modulation order of each subband can also be implemented in a bitmap manner, which will not be described again.
  • the modulation order of the subband is related to the transmission power. Therefore, the first information can also be used to indicate the adjustment amount of the transmit power of each subband in the at least one subband, and the second modulation order for each subband is implicitly indicated by the adjustment amount of the transmit power of each subband. The amount of adjustment.
  • the modulation order of the subband can be increased by one level, that is, the second modulation order of the subband can be increased by one modulation order.
  • the modulation order of the subband is adjusted to 4;
  • the first information is used to indicate to reduce the transmission power of a certain subband, the subband’s transmission power can be
  • the modulation order is reduced by one level, that is, the second modulation order of the subband is reduced by one modulation order. For example, if the second modulation order is 4, the modulation order of the subband is adjusted to 2.
  • the first message when the first message includes an adjustment amount of the first modulation order relative to the second modulation order, the first message includes first information, and the first information is used to indicate The adjustment amount of the first modulation order relative to the second modulation order of each subband.
  • the first information may be a TPC field in the DCI, and the TPC field indicates an adjustment amount of the first modulation order relative to the second modulation order.
  • the TPC field indicates an adjustment amount of the first modulation order relative to the second modulation order. For example, if the value of the TPC field is a positive number, it indicates that the adjustment amount of the first modulation order relative to the second modulation order will increase by one modulation order. If the second modulation order is 4, the second modulation order needs to be adjusted. The modulation order is adjusted to 6; if the value of the TPC field is a negative number, it indicates that the adjustment amount of the first modulation order relative to the second modulation order is to reduce the second modulation order by one modulation order, if the second modulation order If the number is 4, the second modulation order needs to be adjusted to 2.
  • the mapping relationship between the adjustment amount and the value of the TPC field can be set; according to the value of the TPC field and the mapping relationship, the adjustment amount of the first modulation order relative to the second modulation order is indicated. For example, if the value of the TPC field is greater than the first threshold but less than the second threshold, the second modulation order is increased by one modulation level; if the value of the TPC field is greater than the second threshold but less than the third threshold, then The second modulation order is increased by two modulation levels; if the value of the TPC field is greater than the third threshold, the second modulation order is adjusted to the highest modulation level.
  • the network device may also indicate the adjustment amount of the transmit power of each subband through the TPC field, where the implementation manner of indicating the adjustment amount of the transmit power of each subband will be described in detail later, and will not be described here too much.
  • step 602 does not need to be performed, that is, there is no need to send the first modulation order to the terminal device.
  • Message indicating the first modulation order of each subband.
  • the foregoing indication of the first modulation order of each subband may be a new indication of the first modulation order of all or part of the at least one subband.
  • the channel quality of not all subbands does not match the channel quality of the previous or previous time units, so there may only be the second modulation order and the first modulation order of some subbands.
  • the numbers are inconsistent, that is, only the modulation order of some subbands needs to be changed. Therefore, the first modulation order of this part of the subband can be indicated through the first message.
  • the first message includes the index of the first modulation order of the partial subband or the adjustment amount of the first modulation order of the partial subband with respect to the second modulation order.
  • the first modulation order of all subbands can be indicated.
  • the subbands that need to be modulated continue to indicate the original modulation order or Indicates that the adjustment amount is zero.
  • the terminal device determines the first modulation order of each subband in the at least one subband according to the first message.
  • the terminal device determines the first modulation order of each subband according to the index; optionally, if the first message includes the first modulation order The adjustment amount of the first modulation order relative to the second modulation order, the second modulation order of each subband is adjusted according to the adjustment amount, and the first modulation order of each subband is obtained.
  • Which of the above-mentioned optional methods is used is predetermined by the terminal device and the network device.
  • the terminal device uses the at least one subband to receive data from the network device or send data to the network device according to the first modulation order.
  • the network device indicates the second modulation order of each subband through the RRC message, and in the case of determining that the second modulation order matches the channel quality during data transmission, the network device passes The DCI message re-indicates the modulation order of each subband as the first modulation order, so that the first modulation order of each subband is successfully indicated to the terminal device, and the flexibility of indicating the modulation order of each subband is improved.
  • data transmission is carried out according to the first modulation order of each subband, and the first modulation order of each subband is determined according to the channel quality of each subband, so that the data is being transmitted During transmission, the channel fading characteristics of each subband are fully considered to meet the requirements of each subband for the modulation order, thereby improving the data transmission efficiency.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the application.
  • the content in this embodiment that is the same as the embodiment shown in FIG. 2 and FIG. 6 will not be repeated here.
  • the method of this embodiment includes the following steps:
  • a network device sends a third message to a terminal device, where the third message is used to indicate the transmit power of each subband in at least one subband.
  • the third message includes an index of the target transmit power of each subband in at least one subband, that is, an index j that directly indicates P 0 (j). That is, the index directly indicates the target transmit power that the terminal device currently needs to use.
  • the third message includes an adjustment amount of the transmit power of each subband, and the adjustment amount includes an absolute adjustment amount or a relative adjustment amount.
  • the terminal device can determine the power state offset value according to the adjustment amount, and adjust the transmission power according to the power state offset value.
  • the state offset value f(l) of the transmit power of each subband is determined to be the adjustment amount ⁇ (l) (absolute adjustment amount), that is, the transmit power of each subband
  • the adjustment amount directly acts on the transmit power of each subband to adjust the transmit power of each subband; if tpc-Accumulation is enabled, the state offset value f(l) of the transmit power of each subband needs to be combined
  • indicating the index value of the target transmission power of each subband or the adjustment amount of the transmission power of each subband can also be implemented in a bitmap mode, which will not be described again.
  • the third message is a DCI or RRC message.
  • the network device uses at least one subband to receive data from the terminal device or send data to the terminal device according to the transmission power.
  • the network device uses the at least one subband to receive the uplink data sent by the terminal device.
  • the uplink data is sent by the terminal device according to the transmit power of each subband; in the downlink transmission, the network device according to each subband The transmission power of the band sends data to the terminal device.
  • the network device indicates the transmission power of each subband through the third message, so as to successfully indicate the transmission power of each subband to the terminal device;
  • the channel fading characteristics of each subband are fully considered to meet the requirements of each subband for transmission power, thereby improving data transmission efficiency.
  • FIG. 8 is a schematic flowchart of a method for determining a modulation order and transmission power according to an embodiment of the present application.
  • the method of this embodiment includes the following steps:
  • the network device determines the power balance of each subband according to the second modulation order of each subband in at least one subband and the second transmit power allocated to each subband, and obtains the total remaining power according to the power difference of each subband .
  • the second modulation order of each subband is the modulation order of each subband when the terminal device used each subband for data transmission last time.
  • the network equipment determines the first modulation order that each subband should use according to the current channel quality. According to the first modulation order that each subband should use, determine the first transmit power that each subband should use; according to the second transmit power allocated for each subband, that is, the network device allocates the initial transmit power for each subband, and The first transmit power that should be used by each subband is determined to determine the power balance corresponding to each subband; the power balance matrix is obtained according to the power balance corresponding to each subband; all elements of the power balance matrix are accumulated to obtain the corresponding power balance of the at least one subband Total remaining power.
  • the network device determines the first transmission power and the first modulation order of each subband according to the second modulation order of each subband and the total remaining power.
  • the network device determines the target subband in the at least one subband, and determines the first transmission power and the first modulation order of the target subband based on the total remaining power, where the target subband is the at least one subband The subband whose power difference is closest to the total remaining power.
  • the network device determines the target subband, it sets the modulation order of the target subband as the first modulation order, and allocates the power difference required by the target subband from the total remaining power to Let the transmit power of the target subband be the first transmit power to obtain the remaining total power; then, based on the remaining total power, repeat execution for all subbands in the at least one subband except for the target subband In the above modulation order setting and power allocation process, the first transmission power and the first modulation order of each subband are obtained.
  • the network device determines the first modulation order and transmission power of each subband according to the channel fading condition corresponding to each subband, so as to achieve the sub-band granularity to satisfy the modulation order and transmission power. Power requirements, so that in the process of using the first modulation order and transmit power of each subband to transmit data with the terminal device, the channel fading characteristics of each subband are taken into account, thereby improving the data transmission efficiency.
  • the network device 900 includes a processing unit 901 and a transceiver unit 902; among them:
  • the transceiver unit 902 is configured to send a first message to the terminal device, where the first message is used to indicate the first modulation order of each subband in at least one subband;
  • the processing unit 901 is configured to control the transceiver unit to use the at least one subband to receive data from the terminal device or send data to the terminal device according to the first modulation order.
  • the first message includes the index of the first modulation order.
  • the first message is a downlink control information DCI or a radio resource control RRC message.
  • the transceiver unit 902 before sending the first message to the terminal device, the transceiver unit 902 is further configured to:
  • the first message includes the index of the first modulation order
  • the second message includes the index of the second modulation order
  • the first message is used to indicate an adjustment amount of the first modulation order relative to the second modulation order
  • the second message includes the adjustment amount of the second modulation order. index.
  • the first message includes first information, and the first information is used to indicate an adjustment amount of the transmit power of the at least one subband, and the first modulation order relative to all the subbands. Describe the adjustment amount of the second modulation order.
  • the first message is a DCI
  • the second message is an RRC message
  • the network device 1000 includes a memory 1001, a processor 1002, and a transceiver 1003. They are connected by bus 1004.
  • the memory 1001 is used to store related instructions and data, and can transmit the stored data to the processor 1002.
  • the processor 1002 is configured to read related instructions in the memory 1001 to perform the following operations:
  • the transceiver 1003 is controlled to use the at least one subband to receive data from the terminal device or send data to the terminal device.
  • the foregoing processor 1002 may be the processing unit 901 of the network device 900 in the embodiment shown in FIG. 9, and the foregoing transceiver 1003 may be the transceiving unit 902 of the network device 900 in the embodiment shown in FIG. 9.
  • the user equipment 1100 includes a processing unit 1101 and a transceiver unit 1102; among them:
  • the transceiver unit 1102 is configured to receive a first message from a network device
  • the processing unit 1101 is configured to determine the first modulation order of each subband in the at least one subband according to the first message
  • the processing unit 1101 is further configured to control the transceiver unit 1102 to use the at least one subband to receive data from the network device or send data to the network device according to the first modulation order.
  • the first message includes the index of the first modulation order.
  • the first message is a downlink control information DCI or a radio resource control RRC message.
  • the transceiver unit 1101 before receiving the first message from the network device, the transceiver unit 1101 is further configured to:
  • a second message is received from the network device, where the second message is used to indicate the second modulation order of each subband in at least one subband.
  • the first message includes the index of the first modulation order
  • the second message includes the index of the second modulation order
  • the first message is used to indicate an adjustment amount of the first modulation order relative to the second modulation order
  • the second message includes the adjustment amount of the second modulation order.
  • the processing unit 1102 is specifically configured to:
  • the first modulation order is determined according to the first message and the second message.
  • the first message includes first information, and the first information is used to indicate an adjustment amount of the transmit power of the at least one subband, and the first modulation order relative to all the subbands. Describe the adjustment amount of the second modulation order.
  • the first message is a DCI
  • the second message is an RRC message
  • the user equipment 1200 includes a memory 1201, a processor 1202, and a transceiver 1203. They are connected by bus 1204.
  • the memory 1201 is used to store related instructions and data, and can transmit the stored data to the processor 1202.
  • the processor 1202 is configured to read related instructions in the memory 1201 to perform the following operations:
  • the transceiver 1203 is controlled to use the at least one subband to receive data from the network device or send data to the network device.
  • the foregoing processor 1202 may be the processing unit 1101 of the user equipment 1100 in the embodiment shown in FIG. 11, and the foregoing transceiver 1203 may be the transceiving unit 1102 of the user equipment 1100 in the embodiment shown in FIG. 11.
  • FIG. 13 provides a schematic structural diagram of a network device according to an embodiment of this application.
  • the network device 1300 includes a processing unit 1301 and a transceiver unit 1302; among them,
  • the transceiver unit 1302 is configured to send a third message to the terminal device, where the third message is used to indicate the transmit power of each subband in at least one subband;
  • the processing unit 1301 is configured to control the transceiver unit 1302 to use the at least one subband to receive data from the terminal device or send data to the terminal device according to the transmission power.
  • the third message includes an index value of the target transmit power of each subband in the at least one subband.
  • the third message is used to indicate an adjustment amount of the transmit power of each subband in the at least one subband.
  • the third message is a downlink control information DCI or a radio resource control RRC message.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device 1400 includes a memory 1401, a processor 1402, and a transceiver 1403. They are connected via a bus 1404.
  • the memory 1401 is used to store related instructions and data, and can transmit the stored data to the processor 1402.
  • the processor 1402 is configured to read related instructions in the memory 1401 to perform the following operations:
  • the transceiver 1403 is controlled to use the at least one subband to receive data from the terminal device or transmit data to the terminal device.
  • the foregoing processor 1402 may be the processing unit 1301 of the network device 1300 in the embodiment shown in FIG. 13, and the foregoing transceiver 1403 may be the transceiving unit 1302 of the network device 1300 in the embodiment shown in FIG. 13.
  • the terminal device 1500 includes a processing unit 1501 and a transceiver unit 1502; among them,
  • the transceiver unit 1502 is configured to receive the third message from the network device
  • a processing unit 1501 configured to determine the transmit power of each subband in the at least one subband according to the third message
  • the processing unit 1502 is further configured to control the transceiver unit 1502 according to the transmission power, and use the at least one subband to receive data from the network device or send data to the network device.
  • the third message includes an index value of the target transmit power of each subband in the at least one subband.
  • the third message is used to indicate an adjustment amount of the transmit power of each subband in the at least one subband.
  • the third message is a downlink control information DCI or a radio resource control RRC message.
  • the terminal device 1600 includes a memory 1601, a processor 1602, and a transceiver 1603. They are connected by bus 1604.
  • the memory 1601 is used to store related instructions and data, and can transmit the stored data to the processor 1602.
  • the processor 1602 is configured to read related instructions in the memory 1601 to perform the following operations:
  • the transceiver 1603 is controlled to use the at least one subband to receive data from the terminal device or transmit data to the terminal device.
  • the foregoing processor 1602 may be the processing unit 1501 of the terminal device 1500 in the embodiment shown in FIG. 15, and the foregoing transceiver 1603 may be the transceiving unit 1502 of the terminal device 1500 in the embodiment shown in FIG. 15.
  • FIG. 17 provides a schematic structural diagram of a chip provided in this application for an embodiment of this application.
  • the chip 1700 includes a processor 1701 and one or more interfaces 1702 coupled to the processor 1701.
  • the processor 1701 may be used to read and execute computer-readable instructions.
  • the processor 1701 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends control signals for operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logical operations, etc., and can also perform address operations and conversions.
  • the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 1101 can be an application specific integrated circuit (ASIC) architecture, a microprocessor without interlocked pipeline stage architecture (microprocessor without interlocked stages architecture, MIPS) architecture, and advanced streamlining. Instruction set machine (advanced RISC machines, ARM) architecture or NP architecture, etc.
  • the processor 1701 may be single-core or multi-core.
  • the interface 1702 can be used to input data to be processed to the processor 1701, and can output the processing result of the processor 1701 to the outside.
  • the interface 1702 can be a general purpose input output (GPIO) interface, which can be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connect.
  • GPIO general purpose input output
  • the interface 1702 is connected to the processor 1701 through the bus 1703.
  • the processor 1701 can be used to call the implementation program or data of the signal sending and receiving methods provided by one or more embodiments of the present application from the memory on the network device or terminal device side, so that the chip can The aforementioned communication methods shown in Fig. 2, Fig. 6 and Fig. 7 and the modulation order and transmission power shown in Fig. 8 are realized.
  • the memory may be integrated with the processor 1701, or may be coupled to the chip 1700 through the interface 1702, that is to say, the memory may be a part of the chip 1700 or may be independent of the chip 1700.
  • the interface 1702 may be used to output the execution result of the processor 1701.
  • the interface 1702 may be specifically used to output the modulation order determined by the processor 1701.
  • the signal sending and receiving methods provided by one or more embodiments of the present application reference may be made to the foregoing embodiments, and details are not described herein again.
  • processor 1701 and the interface 1702 can be implemented through hardware design, through software design, or through a combination of software and hardware, which is not limited here.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can realize the process related to the terminal device in the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the process related to the network device in the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product, which when it runs on a computer or a processor, enables the computer or the processor to execute one or more steps in any of the foregoing communication methods. If each component module of the aforementioned equipment is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer readable storage medium.
  • processors mentioned in the embodiment of this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • DSPs Digital Signal Processors
  • CPU Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the modules in the device of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请实施例公开了一种通信方法及相关产品,该方法包括向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;根据所述第一调制阶数,使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。

Description

通信方法及相关产品 技术领域
本申请涉及通信技术领域,具体涉及一种通信方法及相关产品。
背景技术
按照信道功能可以将信道划分为控制信道和数据信道,控制信道用于承载控制信息,数据信道用于承载有效数据。所有信道上承载的数据都需要进行信道编码和调制。当前无线新接入技术(New Radio Access Technology,NR)系统中常见的调制方式包括正交相移键控(Quadrature Phase Shift Keying,QPSK)、16阶正交幅度调制(Quadrature Amplitude Modulation,QAM)、64QAM甚至更高的256QAM等,对应的调制阶数分别为2、4、6和8,即每个复数信号能够承载2比特、4比特、6比特和8比特的信息。
因此,调制阶数越高,则一个复数信号中承载的比特数越多,系统传输的效率就越高。但在衰落信道中,受到噪声和信号衰落的影响,调制阶数越高,接收端正确解调接收到的复数信号的难度越大,即接收端越可能将接收到的复数信号解调为错误的比特信息。因此,为了提高传输效率,NR系统中支持自适应的调制编码(Adaptive Modulation and Coding,AMC),即依据信道的衰落大小,选择合适的调制阶数,进行调制和传输,以提高传输效率。另外,在传输过程中,由于受信道衰落的影响,接收信号的功率可能会远小于发送信号的功率。为了保证经历衰落后的信号能够被接收端接收,发送端会以较大功率发送信号。
当前NR系统中的AMC,在确定调制阶数后,在调度的整个带宽上(所有子载波)采用相同的调制阶数进行数据的调制;同样在确定好发送功率后,在各个子载波上采用相同的发射功率进行数据的发送。然而,子载波之间存在频选衰落,即不同子载波间对应的信道衰落不同。因此,现有的调制方式和确定发送功率的方法未准确适配子载波之间的信道衰落特性,降低了传输效率。
发明内容
本申请提供了一种通信方法及相关产品。分别对每个子带的调制阶数和发送功率进行控制,提高通信效率。
第一方面,本申请实施例提供一种通信方法,包括:向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;根据所述第一调制阶数,使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
其中,每个子带的第一调制阶数是网络设备根据每个子带对应的信道质量确定出来的。
可以看出,在本申请实施例中,网络设备可通过第一消息指示每个子带的第一调制阶数,从而实现将每个子带的第一调制阶数成功指示给终端设备;网络设备根据各个子带的第一调制阶数与终端设备进行数据传输。由于,每个子带的第一调制阶数是根据每个子带的信道质量确定出来的,因此,在进行数据传输时,充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引。
可以看出,在本实施方式中,通过索引的方式指示每个子带的第一调制阶数,从而提高指示每个子带的第一调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
可以看出,在本实施方式中,可通过DCI或RRC消息指示每个子带的第一调制阶数,实现将每个子带的第一调制阶数成功指示给终端设备。
在一些可能的实施方式中,在向终端设备发送所述第一消息之前,所述方法还包括:向所述终端设备发送第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
可以看出,在本实施方式中,网络设备先通过第二消息指示每个子带的第二调制阶数,若当前时间单元内的第二调制阶数与信道质量不匹配时,则通过第一消息指示每个子带的第一调制阶数,每个子带的第一调制阶数是网络设备根据当前时间单元内每个子带的信道质量确定的。因此,可以通过第一消息调整每个子带的调制阶数,提高指示每个子带的调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,并且在需要进行调制阶数的调整时,通过索引的方式指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,实现成功向终端设备指示每个子带的调制阶数;并且在需要进行调制阶数的调整时,通过指示调制量的方式来指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
其中,该第一信息为DCI中的TPC字段,即通过复用已有的TPC字段指示至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
可以看出,在本实施方式中,可通过复用DCI中已有的TPC字段来指示第一调制阶数相对于所述第二调制阶数的调整量,因此,减少了信令的开销。另外,还可以通过该TPC字段指示每个子带的发送功率的调整量,以便终端设备调整发送功率,使每个子带的发送功率与信道质量匹配,进一步提高传输效率。
在一些可能的实施方式中,所述第一消息为DCI,所述第二消息为RRC消息。
可以看出,在本实施方式中,通过RRC指示第二调制阶数,从而现将每个子带的第一调制阶数成功指示给终端设备,并通过DCI动态调整调制阶数,提高指示调制阶数的灵活性。
第二方面,本申请实施例提供一种通信方法,包括:从网络设备接收第一消息;根据 所述第一消息确定所述至少一个子带中每个子带的第一调制阶数;根据所述第一调制阶数,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
其中,每个子带的第一调制阶数是网络设备根据每个子带对应的信道质量确定出来的。
可以看出,在本申请实施例中,终端设备可根据网络设备发送的第一消息,成功获取到每个子带的第一调制阶数;网络设备根据各个子带的第一调制阶数进行数据传输,由于,每个子带的第一调制阶数是根据每个子带的信道质量确定出来的,因此,在进行数据传输时,充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引。
可以看出,在本实施方式中,通过索引的方式指示每个子带的第一调制阶数,从而提高获取每个子带的第一调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
可以看出,在本实施方式中,终端设备可通过DCI或RRC成功获取到每个子带的第一调制阶数。
在一些可能的实施方式中,在从所述网络设备接收第一消息之前,所述方法还包括:
从所述网络设备接收第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
可以看出,在本实施方式中,终端设备先根据网络设备发送的第二消息确定每个子带的第二调制阶数,若当前时间单元内的第二调制阶数与信道质量不匹配时,则在根据网络设备发送的第一消息确定每个子带的第一调制阶数,每个子带的第一调制阶数是网络设备根据当前时间单元内每个子带的信道质量确定的。因此,通过第一消息动态调整每个子带的调制阶数,提高指示每个子带的调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,并且在需要进行调制阶数的调整时,通过索引的方式指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引;其中,根据所述第一消息确定所述第一调制阶数,包括:根据所述第一消息和所述第二消息确定所述第一调制阶数。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,实现成功向终端设备指示每个子带的调制阶数;并且在需要进行调制阶数的调整时,通过指示调制量的方式来指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
其中,该第一信息为DCI中的TPC字段,即通过复用已有的TPC字段指示至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
可以看出,在本实施方式中,可通过复用DCI中已有的TPC字段来指示第一调制阶数相对于所述第二调制阶数的调整量,因此,减少了信令的开销。另外,还可以通过该TPC字段指示每个子带的发送功率的调整量,以便终端设备调整发送功率,使每个子带的发送功率与信道质量匹配,进一步提高传输效率。
在一些可能的实施方式中,所述第一消息为DCI,所述第二消息为RRC消息。
可以看出,在本实施方式中,通过RRC指示第二调制阶数,从而现将每个子带的第一调制阶数成功指示给终端设备,并通过DCI动态调整调制阶数,提高指示调制阶数的灵活性。
第三方面,本申请实施例提供一种通信方法,包括:向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;根据所述发送功率,使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
可以看出,在本申请实施例中,网络设备通过第三消息指示每个子带的发送功率,实现成功向终端设备指示每个子带的发送功率;网络设备根据各个子带的发送功率与终端设备进行数据传输,实现进行数据传输时,充分考虑各个子带的信道衰落特性,满足每个子带对发送功率的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
可以看出,在本实施方式中,可通过索引值指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
可以看出,在本实施方式中,可通过索引值指示每个子带的发送功率的调整量来指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
第四方面,本申请实施例提供一种通信方法,包括:从网络设备接收第三消息;根据所述第三消息确定所述至少一个子带中的每个子带的发送功率;根据所述发送功率,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
可以看出,在本申请实施例中,终端设备第三消息确定每个子带的发送功率,实现成功获取到每个子带的发送功率;终端设备根据各个子带的发送功率与网络设备进行数据传输,实现进行数据传输时,充分考虑各个子带的信道衰落特性,满足每个子带对发送功率的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
可以看出,在本实施方式中,可通过索引值指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
可以看出,在本实施方式中,可通过索引值指示每个子带的发送功率的调整量来指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
第五方面,本申请实施例提供一种网络设备,包括:收发单元,用于向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;处理单元,用于根据所述第一调制阶数,控制所述收发单元使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
其中,每个子带的第一调制阶数是网络设备根据每个子带对应的信道质量确定出来的。
可以看出,在本申请实施例中,网络设备可通过第一消息指示每个子带的第一调制阶数,从而实现将每个子带的第一调制阶数成功指示给终端设备;网络设备根据各个子带的第一调制阶数与终端设备进行数据传输。由于,每个子带的第一调制阶数是根据每个子带的信道质量确定出来的,因此,在进行数据传输时,充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引。
可以看出,在本实施方式中,通过索引的方式指示每个子带的第一调制阶数,从而提高指示每个子带的第一调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
可以看出,在本实施方式中,可通过DCI或RRC消息指示每个子带的第一调制阶数,实现将每个子带的第一调制阶数成功指示给终端设备。
在一些可能的实施方式中,在向终端设备发送所述第一消息之前,所述收发单元,还用于:向所述终端设备发送第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
可以看出,在本实施方式中,网络设备先通过第二消息指示每个子带的第二调制阶数,若当前时间单元内的第二调制阶数与信道质量不匹配时,则通过第一消息指示每个子带的第一调制阶数,每个子带的第一调制阶数是网络设备根据当前时间单元内每个子带的信道质量确定的。因此,可以通过第一消息调整每个子带的调制阶数,提高指示每个子带的调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,并且在需要进行调制阶数的调整时,通过索引的方式指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,实现成功向终端设备指示每个子带的调制阶数;并且在需要进行调制阶数的调整时,通过指示调制量的方式来指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
其中,该第一信息为DCI中的TPC字段,即通过复用已有的TPC字段指示至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
可以看出,在本实施方式中,可通过复用DCI中已有的TPC字段来指示第一调制阶数相对于所述第二调制阶数的调整量,因此,减少了信令的开销。另外,还可以通过该TPC字段指示每个子带的发送功率的调整量,以便终端设备调整发送功率,使每个子带的发送功率与信道质量匹配,进一步提高传输效率。
在一些可能的实施方式中,所述第一消息为DCI,所述第二消息为RRC消息。
可以看出,在本实施方式中,通过RRC指示第二调制阶数,从而现将每个子带的第一调制阶数成功指示给终端设备,并通过DCI动态调整调制阶数,提高指示调制阶数的灵活性。
第六方面,本申请实施例提供一种终端设备,包括:收发单元,用于从网络设备接收第一消息;处理单元,用于根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数;所述处理单元,还用于根据所述第一调制阶数,控制所述收发单元使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
其中,每个子带的第一调制阶数是网络设备根据每个子带对应的信道质量确定出来的。
可以看出,在本申请实施例中,终端设备可根据网络设备发送的第一消息,成功获取到每个子带的第一调制阶数;网络设备根据各个子带的第一调制阶数进行数据传输,由于,每个子带的第一调制阶数是根据每个子带的信道质量确定出来的,因此,在进行数据传输时,充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引。
可以看出,在本实施方式中,通过索引的方式指示每个子带的第一调制阶数,从而提高获取每个子带的第一调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
可以看出,在本实施方式中,终端设备可通过DCI或RRC成功获取到每个子带的第一调制阶数。
在一些可能的实施方式中,在从所述网络设备接收第一消息之前,所述收发单元,还用于:从所述网络设备接收第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
可以看出,在本实施方式中,终端设备先根据网络设备发送的第二消息确定每个子带的第二调制阶数,若当前时间单元内的第二调制阶数与信道质量不匹配时,则在根据网络 设备发送的第一消息确定每个子带的第一调制阶数,每个子带的第一调制阶数是网络设备根据当前时间单元内每个子带的信道质量确定的。因此,通过第一消息动态调整每个子带的调制阶数,提高指示每个子带的调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,并且在需要进行调制阶数的调整时,通过索引的方式指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引;在根据所述第一消息确定所述第一调制阶数方面,所述处理单元,具体用于:根据所述第一消息和所述第二消息确定所述第一调制阶数。
可以看出,在本实施方式中,可以通过索引的方式指示第二调制阶数,实现成功向终端设备指示每个子带的调制阶数;并且在需要进行调制阶数的调整时,通过指示调制量的方式来指示第一调制阶数,从而增加指示调制阶数的灵活性。
在一些可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
其中,该第一信息为DCI中的TPC字段,即通过复用已有的TPC字段指示至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
可以看出,在本实施方式中,可通过复用DCI中已有的TPC字段来指示第一调制阶数相对于所述第二调制阶数的调整量,因此,减少了信令的开销。另外,还可以通过该TPC字段指示每个子带的发送功率的调整量,以便终端设备调整发送功率,使每个子带的发送功率与信道质量匹配,进一步提高传输效率。
在一些可能的实施方式中,所述第一消息为DCI,所述第二消息为RRC消息。
可以看出,在本实施方式中,通过RRC指示第二调制阶数,从而现将每个子带的第一调制阶数成功指示给终端设备,并通过DCI动态调整调制阶数,提高指示调制阶数的灵活性。
第七方面,本申请实施例提供一种网络设备,包括:收发单元,用于向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;处理单元,用于根据所述发送功率,控制所述收发单元使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
可以看出,在本申请实施例中,网络设备通过第三消息指示每个子带的发送功率,实现成功向终端设备指示每个子带的发送功率;网络设备根据各个子带的发送功率与终端设备进行数据传输,实现进行数据传输时,充分考虑各个子带的信道衰落特性,满足每个子带对发送功率的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
可以看出,在本实施方式中,可通过索引值指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
可以看出,在本实施方式中,可通过索引值指示每个子带的发送功率的调整量来指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
第八方面,本申请实施例提供一种终端设备,包括:收发单元,用于从网络设备接收第三消息;处理单元,用于根据所述第三消息确定所述至少一个子带中的每个子带的发送功率;所述处理单元,还用于根据所述发送功率,控制所述收发单元,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
可以看出,在本申请实施例中,终端设备第三消息确定每个子带的发送功率,实现成功获取到每个子带的发送功率;终端设备根据各个子带的发送功率与网络设备进行数据传输,实现进行数据传输时,充分考虑各个子带的信道衰落特性,满足每个子带对发送功率的需求,进而提高数据的传输效率。
在一些可能的实施方式中,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
可以看出,在本实施方式中,可通过索引值指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
可以看出,在本实施方式中,可通过索引值指示每个子带的发送功率的调整量来指示每个子带的目标发送功率,从而提高指示目标发送功率的灵活性。
在一些可能的实施方式中,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
第九方面,本申请实施例提供一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第一方面-第四方面中任一实施例所述的方法。
第十方面,本申请实施例提供一种芯片,包括处理器和接口;所述处理器用于读取指令以执如上述第一方面-第四方面中任一实施例所述的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如上述第一方面-第四方面中任一实施例所述的方法。
第十二方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被运行时,实现如上述第一方面-第四方面中任一实施例所述的方法。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的一种划分子带的示意图;
图4为本申请实施例提供的一种通过位图指示第一调制阶数的示意图;
图5为本申请实施例提供的一种使用每个子带的第一调制阶数进行传输的仿真图;
图6为本申请实施例提供的另一种通信方法的流程示意图;
图7为本申请实施例提供的另一种通信方法的流程示意图;
图8为本申请实施例提供的一种确定子带的调制阶数和发送功率的示意图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的另一种网络设备的结构示意图;
图11为本申请实施例提供的一种用户设备的结构示意图;
图12为本申请实施例提供的另一种用户设备的结构示意图;
图13为本申请实施例提供的另一种网络设备的结构示意图;
图14为本申请实施例提供的另一种网络设备的结构示意图;
图15为本申请实施例提供的另一种用户设备的结构示意图;
图16为本申请实施例提供的另一种用户设备的结构示意图;
图17为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM),增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构、新空口NR(New radio,NR)架构,甚至5G之后的架构。
本申请实施例涉及的终端设备,例如,可以为用户设备(User Equipment,UE)。该UE可以为向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该UE可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。UE可以包括无线用户设备、移动用户设备、设备到设备通信(device-to-device,D2D)用户设备、车到一切(vehicle-to-everything,V2X)用户设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)用户设备、物联网(internet of things,IoT)用户设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动用户设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation  protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该UE还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种UE,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载用户设备,车载用户设备例如也称为车载单元(on-board unit,OBU),本申请实施例对此不作限定。
本申请实施例还涉及网络设备,例如可以为接入网(Access network,AN)设备。该AN设备可以是指接入网中在空口通过一个或多个小区与无线用户设备通信的设备,例如基站NodeB(例如,接入点),该NodeB可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为UE与接入网的其余部分之间的路由器,其中,该接入网的其余部分可包括IP网络且。例如,该NodeB可以是长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的新空口网络设备gNB。该AN设备还可以是一种车到一切(Vehicle to Everything,V2X)技术中的接入网设备为路侧单元(road side unit,RSU)。该RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。另外,AN设备还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),此时,该AN设备协调对空口的属性管理。本申请实施例对AN设备不作限定。
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
当前NR中按照信道的功能可以将信道划分控制信道和数据信道,控制信道用于承载控制信息,数据信道用于承载数据信息。按照基站与终端设备链路的传输方向可以划分为上行传输和下行传输,规定从基站发送,终端设备接收为下行传输;从终端设备发送,基站接收为上行传输。因此,相应的信道包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理广播信道(Physical Broadcast Channel,PBCH)和物理随机接入信道(Physical Random Access Channel,PRACH)。
以上行传输为例,任意一个信道上的数据传输流程如下:
终端设备对上行数据进行信道编码和速率匹配,得到冗余版本(Rdundancy Version,RV);终端设备对RV进行调制,得到多个复数信号,再将多个复数信号加载在子载波上,通过天线发射给基站;基站通过天线接收经历信道衰落后的复数信号;基站对接收到的复数信号进行解调,得到该RV,并对该RV进行相应的信道译码得到该上行数据。
目前,NR系统中常见的调制方式包括正交相移键控(Quadrature Phase Shift Keying,QPSK)、16阶正交幅度调制(Quadrature Amplitude Modulation,QAM)、64QAM甚至更高的256QAM等,对应的调制阶数分别为2、4、6和8,调制阶数是指每个复数信号能够承载2比特、4比特、6比特和8比特的信息。因此,调制阶数越高,一个复数信号中承载的比特数越多,传输效率越高。但在衰落信道中,受到噪声和信号衰落的影响,调制阶数越高,接收端正确解调接收到的复数信号的难度越大,误码率越高。
为了平衡传输效率和误码率之间的关系,NR系统中支持自适应的调制编码(Adaptive Modulation and Coding,AMC)。即依据信道质量的变化,调整不同时间单元的调制阶数。例如,当前时间单元的下行传输采用QPSK调制,但基站在获知下行信道质量后,确定可以采用更高的调制阶数,则在下一个时间单元的下行传输中采用更高的调制阶数,进行下行传输。例如,采用16QAM或者64QAM等进行下行传输。通过自适应的调制,在误码率较小的情况下(例如:误码率=10%),能够实现最高的传输效率。
另外,在基站和终端设备的链路传输中,由于无线信道衰落,包括传输距离导致的路径损失、信号经历障碍物时的穿透损失、折射和衍射的能量耗散等,接收到的信号功率可能会远小于发送时的信号功率。为了保证经历衰落后的较低功率的信号能够被接收端接收,通常要求接收信号大于接收端的灵敏度,即接收信号的功率要大于最小要求功率。因此,发送端通常会以较大发送功率发送信号,以便在经历信道衰落后,接收端仍然能够成功接收发送端发送的信号。
以上行传输为例,基站会同时收到多个终端设备发送的上行信号,靠近基站的终端设备到达基站的信号功率可能会比较大,远离基站的终端设备到达基站的信号功率可能会比较小,导致对远点终端设备(远离基站的终端设备)的干扰较大,且信号无法被准确的解调和译码,使得远点终端设备无法进行正常的通信。因此,基站会综合考虑多终端设备之间的干扰,适当的降低近点终端设备(靠近基站的终端设备)的发送功率,调高远点终端设备的发送功率。其中,调整终端设备的发送功率,主要通过开环和闭环的方式进行调整,且通过开环和闭环调整发送功率的方式可通过公式(1)表示:
Figure PCTCN2020081885-appb-000001
开环工作点包括P 0(j)、α(j)和PL(p),其中,j为索引值,终端设备基于索引值j,从配置的一组P 0值中选择出P 0(j),其选择的P 0(j)和基站侧期望的目标信号干扰噪声比(Signal to Interfrence Noise Ratio,SINR)相关,选择的P 0(j)越大,终端设备的发送功率越大,基站接收到的SINR也就越高;
PL(p)为路损估计,终端设备从维护的一组路损值自主选择该PL(p),路损估计是终端设备根据下行的信道状态信息参考信号(Channel State Information Reference Signal, CSI-RS)或者同步信号块(Synchronization Signal and PBCH Block,SSB)确定的。例如,处于连接态的终端设备配置有UE-specific的CSI-RS,可根据CSI-RS进行路损估计,没有配置UE-Specific CSI-RS的终端设备,可根据SSB进行路损估计;
α(j)为路损补偿因子,取值在0-1之间,j为索引值,通常与P 0(j)的索引相同,基于索引值j从配置的一组α值中选择该α(j),当α(j)=1时表示进行完全的路损补偿,当α(j)=0时表示不进行路损补偿,当α(j)在0~1中间时表示进行部分的路损补偿。
闭环偏移量f(l)为功控偏移的状态值,用于调节终端设备的传输功率,通过DCI指示f(l)。例如,当基站发现终端设备的某次发送功率过高,在调度下一次同类型传输的情况下,可通过DCI中的传输功率控制(Transmission Power Control,TPC)命令指示终端设备基于f(l)调整发送功率,f(l)由tpc-Accumulation和TPC command的取值δ(l)确定。
具体地,若tpc-Accumulation是非使能的,则f(l)=δ(l);若tpc-Accumulation是使能的,则f(l)=f(l-1)+δ(l)。
其中,公式(1)中的其他调整量对应的子载波间隔为15KHz,M表示的此次上行传输占用的频域资源单元的个数,所述频域资源单元可以是物理资源块(Physical Resource Block,PRB)。若其他的子载波间隔(numerology),则其他调整量为{10lg(2 u*M)+Δ},其中u取值为0、1、2、3和4,且分别对应于子载波间隔为15KHz、30KHz、60KHz、120KHz和240KHz的取值;Δ是表示与此次上行传输的传输格式(即调制编码策略(Modulation and Coding Scheme,MCS))相关的调整量。
虽然,NR系统中支持AMC传输。但是需要在调度的所有子载波上采用相同的调制阶数,即整个传输块(Transmission Block,TB)上采用相同的调制阶数进行调制,再映射到物理资源块(Physical Resource Block,PRB)上进行发送。另外,在确定传输功率后,在调度的所有子载波上采用相同的发送功率进行数据传输。然而,子载波之间存在频选衰落,不同的子载波对应的信道衰落特性不同。因此,对所有子载波采用相同的调制阶数和相同的发送功率进行数据传输,无法适配子载波之间的信道衰落特性,导致传输效率较低。
参阅图1,图1为本申请实施例提供的一种通信系统的示意图。通信系统10包括终端设备100和网络设备200。
在一些可能的实施方式中,基于图1所示的通信系统,网络设备200向终端设备100发送第一消息,该第一消息用于指示至少一个子带中每个子带的第一调制阶数;终端设备100根据该第一消息确定该至少一个子带中每个子带的第一调制阶数;网络设备200根据该第一调制阶数,使用该至少一个子带从终端设备100接收数据或者向终端设备100发送数据。
可以看出,在本申请实施例中,网络设备通过第一消息指示每个子带的调制阶数,从而实现将每个子带的调制阶数成功指示给终端设备;因此,网络设备和终端设备之间,可根据各个子带的第一调制阶数进行数据传输。由于充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,提高了数据传输效率。
在一些可能的实施方式中,基于图1所示的通信系统,网络设备200向终端设备发送第三消息,该第三消息用于指示至少一个子带中每个子带的发送功率;终端设备100根据 该第三消息确定发送功率;网络设备200根据该发送功率,使用所述至少一个子带从终端设备100接收数据或者向终端设备100发送数据。
可以看出,在本申请实施例中,网络设备通过第三消息指示每个子带的发送功率,从而实现将每个子带的发送功率成功指示给终端设备;因此,网络设备和终端设备之间,可根据各个子带的发送功率进行数据传输。由于充分考虑各个子带的信道衰落特性,满足各个子带对发送功率的需求,提高了数据传输效率。
参阅图2,图2为本申请实施例提供的一种通信方法的流程示意图。本实施例方法包括如下步骤:
201:网络设备向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数。
其中,该至少一个子带为网络设备对调度的频域资源进行划分得到的。
具体地,若该调度的频域资源为连续调度的,则子带的划分方式包括:可以对该调度的频域资源按照子带的粒度进行平均划分,得到至少一个子带,每个子带包含的频域资源单元数量相同(最后一个子带的频域资源单元的数目可能和其他子带不同),该频域资源单元可以是物理资源块(Physical Resource Block,PRB)。所述子带的粒度可以是该用户设备中的预定义取值,也可以是网络设备通过信令进行配置的。例如,网络设备通过RRC信令或者DCI进行配置。
如图3所示,将三个频域资源单元作为一个子带的粒度。因此,从第一个频域资源单元开始,将三个相邻的频域资源单元作为一个子带。
具体的,若调度的频域资源单元是离散调度的,则子带划分的方式包括:可从第一个频域资源单元开始,若调度的频域资源单元中相邻的两个频域资源单元间隔m或大于m个没有被调度的频域资源单元,则该相邻的两个频域资源单元作为两个不同子带的划分,得到至少一个子带,m为大于等于1的整数。因此,任意两个子带包含的频域资源单元的数量相同或不同,其中,m的取值可以是该用户设备中的预定义取值,也可以由网络设备通过信令进行配置。例如,网络设备通过RRC信令或者DCI进行配置。
如图3所示,灰色部分表示为该离散调度的频域资源单元,从第一个频域资源单元开始,所述间隔m取值为2,则调度的频域资源单元中相邻的频域资源单元,若间隔两个及以上的频域资源单元没有被调度,则该相邻的频域资源单元分属于两个子带。因此,子带1和子带n均包括两个频域资源单元,而子带2包括一个频域资源单元。
需要说明,在本申请实施例中,每个频域资源单元包括的子载波的数量相同,且每个子带中的所有子载波的信道衰落特性相同。
其中,每个子带的调制阶数是网络设备根据信道质量确定的。网络设备根据终端设备发送的探测参考信号(Sounding Reference Signal,SRS),对每个子带的信道质量进行测量,并考虑该终端设备的目标传输速率以及其他端设备对该终端设备进行数据传输的干扰,得到每个子带对应的第一调制阶数。
该第一消息包括每个子带的第一调制阶数的索引,通过该索引指示每个子带的第一调制阶数。例如,索引可以为00、01、10或11,等等,00用于指示调制阶数为2,01用于 指示调制阶数为4,10用于指示调制阶数为6,11用于指示调制阶数为8。
其中,该第一消息可以为DCI或RRC消息。
示例性的,在该第一消息为DCI的情况下,可通过DCI中的新增字段指示每个子带的第一调制阶数,即通过该新增字段设置每个子带的第一调制阶数的索引,其中,该新增字段是对现有DCI的字段进行扩充得到,该现有DCI为现有通信协议38.212f20所规定的DCI。
示例性的,在该第一消息为DCI的情况下,还可以通过DCI中现有的字段指示每个子带的第一调制阶数,即通过DCI的现有字段隐式指示每个子带的调制阶数。例如,可以利用子带功控时每个子带的TPC指示的2比特,按照预定义的对应关系,隐式指示各个子带的调制阶数调整量。
示例性的,每个子带的第一调制阶数可通过比特进行指示。网络设备可以根据至少一个子带的数量确定在DCI中需要扩充的字段的长度,并按照位图(bitmap)的方式指示每个子带的第一调制阶数,即通过每个子带在bitmap中对应的比特位指示每个子带的第一调制阶数。例如,一共划分了10个子带,每个子带通过2比特指示,则可新增20个比特指示各个子带的调制阶数。如图4所示,比特位图中的前两个比特用于指示子带1的第一调制阶数。若该前两个比特对应的索引取值分别为01,则指示子带1的第一调制阶数为4。
在该第一消息为RRC消息的情况下,该RRC消息包括每个子带的第一调制阶数的索引。同样,可在RRC消息中通过bitmap的方式设置每个子带的第一调制阶数的索引,通过每个子带的第一调制阶数的索引指示每个子带的第一调制阶数。
当然,也可以在该RRC消息中直接指示每个子带的第一调制阶数。即RRC消息中包括每个子带的第一调制阶数对应的取值。
202:终端设备根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数。
终端设备解析该第一消息,确定每个子带的第一调制阶数。例如,若该第一消息包括每个子带的第一调制阶数的索引,终端设备解析该第一消息,得到每个子带的第一调制阶数的索引,根据索引与调制阶数的对应关系确定每个子带的第一调制阶数。再如,若该第一消息包括每个子带的第一调制阶数对应的取值,则终端设备解析该第一消息,可直接得到每个子带的第一调制阶数。
203:终端设备根据所述每个子带的第一调制阶数,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
其中,终端设备根据该至少一个子带向网络设备发送数据,即终端设备进行上行传输的过程。另外,上行传输过程中,终端设备需要根据传输码率计算传输块大小(Transmission Block Size,TBS)。因此,网络设备除了向终端设备指示每个子带的第一调制阶数,还需要指示传输码率,该传输码率可以通过该第一消息指示,也可以通过其他消息进行指示。本申请对此不做限定。
终端设备根据每个子带的第一调制阶数和传输码率确定TBS;根据TBS对上行数据进行信道编码得到比特串;对该比特串进行速率匹配,得到RV;根据每个子带的第一调制阶数对该RV进行调制,得到每个子带上承载的上行数据,然后,使用该至少一个子带向网络设备发送每个子带上承载的上行数据。
举例来说,所述频域资源单元可以是PRB,若子带的数量为10个,每个子带包含2个PRB,每个PRB包括12个子载波和14个时域符号,假设该10个子带的调制阶数分别{2,2,2,2,2,4,4,4,4,4},则10个子带承载的比特总数为(2+2+2+2+2+4+4+4+4+4)*12*14*2=10080bit。假设传输码率为120/1024,则初始的TBS=10080*120/1024=1181.25,终端设备会从NR 38.214规定的TBS表格中,选择一个距离初始TBS(1181.25)最近,且不小于初始TBS取值,作为最终的TBS。根据TBS表格,确定最终的TBS=1192。即确定出给定码率为120/1024、10个子带的调制阶数分别为{2,2,2,2,2,4,4,4,4,4}的情况下,网络设备调度的频域资源能承载的有效比特数目为1192。
在确定出最终的TBS后,终端设备对待传输数据进行信道编码,得到比特串。例如,在上行共享信道PUSCH上进行数据传输时,使用低密度奇偶校验码(Low Density Parity Check,LDPC)编码,得到比特串。
由于LDPC编码的码率为1/5,因此在TBS=1192的情况下,经过LDPC编码后,得到比特长度为5960的比特串。终端设备对该比特串进行速率匹配,即从该比特串中选择出部分比特,得到RV(即选出10080bit);根据每个子带的第一调制阶数,对RV进行调制,并根据每个子带承载的比特数,对调制后的比特进行划分,得到每个子带承载的上行数据;。最后,使用该至少一个子带,向网络设备发送每个子带承载的上行数据。
其中,终端设备根据该至少一个子带从网络设备接收数据,即终端设备进行下行数据传输的过程。因此,上述第一消息还用于指示终端设备根据每个子带的第一调制阶数,对网络设备发送的下行数据进行解调。
可以看出,在本申请实施例中,网络设备通过第一消息指示每个子带的第一调制阶数,从而实现将每个子带的第一调制阶数成功指示给终端设备;因此,网络设备和终端设备之间,可根据各个子带的第一调制阶数进行数据传输,而各个子带的第一调制阶数是根据各个子带的信道质量确定的,故实现在进行数据传输过程中,充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,提高数据的传输效率。
参阅图5,图5为在理想信道估计的情况下(即仿真参数为2T4R),对调制过程进行仿真的示意图。从图5中可以看出,使用每个子带的第一调制阶数进行调制的方式的传输速率高于对整个带宽进行调制的方式;而且,在SNR稍高时,相比对整个带宽进行调制,能够获得显著的性能增益。
在使用RRC消息指示子带的调制阶数的情况下,由于RRC信令延迟较高,网络设备在当前时间单元内发送的RRC消息,可能在经历过一个或几个时间单元后才发送给终端设备,也就导致网络设备通过RRC消息指示的第二调制阶数不能实时的指示给终端设备。相对而言,终端设备在当前时间单元接收到的RRC消息,可能是网络设备在前一个或几个时间单元发送的RRC消息。因此,终端设备根据该RRC确定出的每个子带的第二调制实质上是网络设备根据该前一个或几个时间单元内的信道质量确定出来的。然而,信道质量一直处于动态变化过程中,当前时间单元内的信道质量可能与前一个或前几个时间单元的信道质量不同。因此,如果终端设备使用了该第二调制阶数进行数据传输,则并不能适配当 前的信道质量。为了解决RRC信令的时延问题,特提出了下面的方案。
参阅图6,图6为本申请实施例提供的另一种通信方法的流程示意图。本实施例与图2所示的实施例相同的内容,在此不再重复描述。本实施例方法包括如下步骤:
601:网络设备向终端设备发送第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
其中,该第二消息为RRC消息,该第二消息包括至少一个子带中每个子带的第二调制阶数。该第二消息包括每个子带的第二调制阶数的索引;或者每个子带的第二调制阶数对应的取值。
602:网络设备向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数。
其中,该第一消息可以为DCI。
每个子带的第一调制阶数为网络设备根据当前时间单元内的信道质量确定的,而每个子带的第二调制阶数是网络设备根据前一个或几个时间单元内的信道质量确定的。因此,若子带的第一调制阶数和第二调制阶数不同,则通过该第一消息指示至少一个子带中每个子带的第一调制阶数。
具体地,若至少存在一个子带的第一调制阶数与该子带的第二调制阶数不一致;或,第一调制阶数与第二调制阶数不一致的子带的数量相对于该至少一个子带的占比大于阈值,则确定子带的第一调制阶数和第二调制阶数不同,即通过第二消息指示的第二调制阶数与当前时间单元内的信道质量不匹配,需要重新指示该至少一个子带的调制阶数。
由于,DCI信令的延迟较低,故DCI的传输可以看做是实时传输的。因此,在第二消息指示的第二调制阶数与信道质量不匹配的情况下,网络设备通过DCI重新指示终端设备每个子带的第一调制阶数,可准确的匹配信道质量,进而提高传输效率。
可选的,该第一消息包括第一调制阶数的索引,即通过索引的方式直接指示每个子带的第一调制阶数;或者,该第一消息包括第一调制阶数相对于第二调制阶数的调整量,即通过调整量的方式间接指示每个子带的第一调制阶数,终端设备根据每个子带的调整量对第二调制阶数进行调整,得到每个子带的第一调制阶数。
可选的,每个子带的第一调制阶数相对于第二调制阶数的调整量,可以为将每个子带的第二调制阶数调整为相邻的调制阶数,即将第二调制阶数提高或降低一个调制阶数。也可以为指示调整几个调制阶数。例如,00指示提高一个调制阶数,11指示提高两个调制阶数。本申请对调整量的方式不做限定。
其中,指示每个子带的第一调制阶数相对于第二调制阶数的调整量,也可以通过bitmap的方式来实现,不再叙述。
此外,子带的调制阶数与发送功率相关。因此,该第一信息还可用于指示该至少一个子带中每个子带的发送功率的调整量,通过每个子带的发送功率的调整量来隐式指示对每个子带的第二调制阶数的调整量。
举例来说,若该第一信息用于指示提高某个子带的发送功率,则可将该子带的调制阶数阶数提高一个级别,即将该子带的第二调制阶数提高一个调制阶数,例如,若该第二调制阶数为2,则将该子带的调制阶数调整为4;若该第一信息用于指示降低某个子带的发送 功率,则可将该子带的调制阶数阶数降低一个级别,即该子带的第二调制阶数降低一个调制阶数,例如,若该第二调制阶数为4,则将该子带的调制阶数调整为2。
在一种可能的实施方式中,在该第一消息包括第一调制阶数相对于第二调制阶数的调整量的情况下,该第一消息包括第一信息,该第一信息用于指示每个子带的第一调制阶数相对于第二调制阶数的调整量。
可选的,该第一信息可以为DCI中的TPC字段,通过该TPC字段指示第一调制阶数相对于第二调制阶数的调整量。例如,若TPC字段的取值为正数,指示第一调制阶数相对于第二调制阶数的调整量为将提高一个调制阶数,若第二调制阶数为4,则需要将第二调制阶数调整为6;若TPC字段的取值为负数,指示第一调制阶数相对于第二调制阶数的调整量为将第二调制阶数降低一个调制阶数,若第二调制阶数为4,则需要将第二调制阶数调整为2。
在实际应用中,可以设置调整量与TPC字段取值的映射关系;根据TPC字段的取值以及该映射关系,指示第一调制阶数相对于第二调制阶数的调整量。例如,若TPC字段的取值大于第一阈值,但小于第二阈值,则将第二调制阶数提高一个调制级别;若TPC字段的取值大于第二阈值,但小于第三阈值,则将第二调制阶数提高两个调制级别;若TPC字段的取值大于第三阈值,将第二调制阶数调整为最高调制级别。
其中,网络设备还可通过TPC字段指示每个子带的发送功率的调整量,其中,指示每个子带的发送功率的调整量的实现方式在后续进行详细说明,在此不做过多描述。
可以理解,若在当前时间单元内确定出的每个子带的第一调制阶数与通过第二消息指示的第二调制阶数一致,则无需执行步骤602,即无需向终端设备发送第一消息,指示每个子带的第一调制阶数。
需要说明,上述指示每个子带的第一调制阶数,可以是重新指示该至少一个子带中全部或部分子带的第一调制阶数。具体地,在当前时间单元内,并不是所有子带的信道质量与前一个或前几个时间单元内的信道质量不匹配,故可能只有部分子带的第二调制阶数与第一调制阶数不一致,也就是说,只有部分子带的调制阶数需要改变。因此,可通过第一消息指示该部分子带的第一调制阶数。此时,该该第一消息包括该分部子带的第一调制阶数的索引或者该部分子带的第一调制阶数相对于第二调制阶数的调整量。当然,即使在只有部分子带的第二调制阶数需要调整的情况下,也可以指示所有子带的第一调制阶数,对于需要进行调制的子带,继续指示原有的调制阶数或者指示其调整量为零。
603:终端设备根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数。
可选的,若该第一消息包括每个子带的第一调制阶数的索引,则终端设备根据该索引确定每个子带的第一调制阶数;可选的,若该第一消息包括第一调制阶数相对于第二调制阶数的调整量,则根据该调整量对每个子带的第二调制阶数进行调整,得到每个子带的第一调制阶数。具体使用上述哪种可选的方式,是由终端设备和网络设备预先约定的。
604:终端设备根据所述第一调制阶数,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
可以看出,在本申请实施例中,网络设备通过RRC消息指示各个子带的第二调制阶数,并在进行数据传输的过程中确定第二调制阶数与信道质量匹配的情况下,通过DCI消息重 新指示各个子带的调制阶数为第一调制阶数,从而实现将每个子带的第一调制阶数成功指示给终端设备,并且提高了指示各个子带的调制阶数的灵活性;另外,网络设备和终端设备之间,根据各个子带的第一调制阶数进行数据传输,而各个子带的第一调制阶数是根据各个子带的信道质量确定的,从而在进行数据传输时,充分考虑各个子带的信道衰落特性,满足各个子带对调制阶数的需求,进而提高数据的传输效率。
参阅图7,图7为本申请实施例提供的一种通信方法的流程示意图。本实施例中与图2和图6所示的实施例相同的内容,在此不再重复描述。本实施例方法包括如下步骤:
701:网络设备向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率。
可选的,该第三消息包括至少一个子带中每个子带的目标发送功率的索引,即直接指示P 0(j)的索引j。即通过该索引直接指示出终端设备当前需要使用的目标发送功率。
可选的,该第三消息包括每个子带的发送功率的调整量,该调整量包括绝对调整量或相对调整量。终端设备可根据该调整量确定功率状态偏移值,并根据该功率状态偏移值调整发送功率。
具体地,若该tpc-Accumulation是非使能的,确定每个子带的发送功率的状态偏移值f(l)为该调整量δ(l)(绝对调整量),即将每个子带的发送功率的调整量直接作用到每个子带的发送功率上,来调整每个子带的发送功率;若tpc-Accumulation是使能的,确定每个子带的发送功率的状态偏移值f(l)需要结合前一次发送数据时的发送功率以及该调整量δ(l)来确定,即f(l)=f(l-1)+δ(l)。此时,对发送功率的调整需要使用该f(l)进行调整。
同样,指示每个子带的目标发送功率的索引值或者每个子带的发送功率的调整量,也可以通过bitmap的方式实现,不再叙述。
其中,该第三消息为DCI或RRC消息。
702:网络设备根据所述发送功率,使用至少一个子带从终端设备接收数据或者向终端设备发送数据。
在进行上行传输过程中,网络设备使用该至少一个子带接收终端设备发送的上行数据,该上行数据是终端设备根据每个子带的发送功率进行发送的;在下行传输中,网络设备根据每个子带的发送功率向终端设备发送数据。
可以看出,在本申请实施例中,网络设备通过第三消息指示每个子带的发送功率,实现成功向终端设备指示每个子带的发送功率;网络设备和终端设备之间,根据各个子带的发送功率进行数据传输,实现进行数据传输时,充分考虑各个子带的信道衰落特性,满足每个子带对发送功率的需求,进而提高数据的传输效率。
参阅图8,图8为本申请实施例提供的一种确定调制阶数和发送功率的方法的流程示意图。本实施例方法包括如下步骤:
801:网络设备根据至少一个子带中每个子带的第二调制阶数以及为每个子带分配的第二发送功率确定每个子带的功率差额,并根据每个子带的功率差额得到总剩余功率。
其中,每个子带的第二调制阶为终端设备使用每个子带上次进行数据传输时,每个子 带的调制阶数。
网络设备根据当前的信道质量,确定出每个子带应该使用的第一调制阶数。根据每个子带应该使用的第一调制阶确定出每个子带应该使用的第一发送功率;根据为每个子带分配的第二发送功率,即网络设备为每个子带分配初始发送功率,以及每个子带应该使用的第一发送功率,确定每个子带对应的功率差额;根据每个子带对应的功率差额,得到功率差额矩阵;将功率差额矩阵所有元素进行累加,得到该至少一个子带对应的总剩余功率。
802:网络设备根据每个子带的第二调制阶数以及所述总剩余功率确定每个子带的第一发送功率以及第一调制阶数。
网络设备确定该至少一个子带中的目标子带,并基于该总剩余功率确定该目标子带的第一发送功率以及第一调制阶数,其中,该目标子带为该至少一个子带中的功率差额与总剩余功率最接近的子带。
具体地,网络设备确定出该目标子带后,将该目标子带的调制阶数设置为第一调制阶数,并从该总剩余功率中分配出该目标子带所需的功率差额,以使该目标子带的发送功率为第一发送功率,得到剩余的总功率;然后,基于该剩余的总功率,对该至少一个子带中除该目标子带的之外的所有子带重复执行上述调制阶数设置和功率分配过程,得到每个子带的第一发送功率以及第一调制阶数。
可以看出,在本申请实施例中,网络设备根据每个子带对应的信道衰落情况,确定每个子带的第一调制阶数和发送功率,实现以子带的粒度满足对调制阶数和发送功率的要求,从而在使用每个子带的第一调制阶数和发送功率与终端设备进行数据传输过程中,考虑到了每个子带的信道衰落特性,进而提高数据的传输效率。
参阅图9,图9为本申请实施例提供的一种网络设备的结构示意图。网络设备900包括处理单元901和收发单元902;其中:
收发单元902,用于向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;
处理单元901,用于根据所述第一调制阶数,控制所述收发单元使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引。
在一些可能的实施方式中,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
在一些可能的实施方式中,在向终端设备发送所述第一消息之前,收发单元902,还用于:
向所述终端设备发送第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
在一些可能的实施方式中,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引。
在一些可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
在一些可能的实施方式中,所述第一消息为DCI,所述第二消息为RRC消息。
参阅图10,图10为本申请实施例提供的一种网络设备的结构示意图。网络设备1000包括存储器1001、处理器1002和收发器1003。它们之间通过总线1004连接。存储器1001用于存储相关指令和数据,并可与将存储的数据传输给处理器1002。
处理器1002用于读取存储器1001中的相关指令执行以下操作:
控制收发器1003向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;
根据所述第一调制阶数,控制收发器1003使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
具体地,上述处理器1002可以为图9所示的实施例的网络设备900的处理单元901,上述收发器1003可为图9所述的实施例的网络设备900的收发单元902。
参阅图11,图11为本申请实施例提供的一种用户设备的结构示意图。用户设备1100包括处理单元1101和收发单元1102;其中:
收发单元1102,用于从网络设备接收第一消息;
处理单元1101,用于根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数;
处理单元1101,还用于根据所述第一调制阶数,控制收发单元1102使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引。
在一些可能的实施方式中,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
在一些可能的实施方式中,在从所述网络设备接收第一消息之前,收发单元1101,还用于:
从所述网络设备接收第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
在一些可能的实施方式中,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
在一些可能的实施方式中,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引;
在根据所述第一消息确定所述第一调制阶数方面,处理单元1102,具体用于:
根据所述第一消息和所述第二消息确定所述第一调制阶数。
在一些可能的实施方式中,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调 整量。
在一些可能的实施方式中,所述第一消息为DCI,所述第二消息为RRC消息。
参阅图12,图12为本申请实施例提供的一种用户设备的结构示意图。用户设备1200包括存储器1201、处理器1202和收发器1203。它们之间通过总线1204连接。存储器1201用于存储相关指令和数据,并可与将存储的数据传输给处理器1202。
处理器1202用于读取存储器1201中的相关指令执行以下操作:
控制收发器1203从网络设备接收第一消息;
根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数;
根据所述第一调制阶数,控制收发器1203使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
具体地,上述处理器1202可以为图11所示的实施例的用户设备1100的处理单元1101,上述收发器1203可为图11所述的实施例的用户设备1100的收发单元1102。
参阅图13,图13为本申请实施例提供了一种网络设备的结构示意图。网络设备1300包括处理单元1301和收发单元1302;其中,
收发单元1302,用于向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;
处理单元1301,用于根据所述发送功率,控制收发单元1302使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
在一些可能的实施方式中,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
在一些可能的实施方式中,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
在一些可能的实施方式中,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
参阅图14,图14为本申请实施例提供的一种网络设备的结构示意图。网络设备1400包括存储器1401、处理器1402和收发器1403。它们之间通过总线1404连接。存储器1401用于存储相关指令和数据,并可与将存储的数据传输给处理器1402。
处理器1402用于读取存储器1401中的相关指令执行以下操作:
控制收发器1403向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;
根据所述发送功率,控制收发器1403使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
具体地,上述处理器1402可以为图13所示的实施例的网络设备1300的处理单元1301,上述收发器1403可为图13所述的实施例的网络设备1300的收发单元1302。
参阅图15,图15为本申请实施例提供的一种终端设备的结构示意图。终端设备1500包括处理单元1501和收发单元1502;其中,
收发单元1502,用于从网络设备接收第三消息;
处理单元1501,用于根据所述第三消息确定所述至少一个子带中的每个子带的发送功率;
所述处理单元1502,还用于根据所述发送功率,控制收发单元1502,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
在一些可能的实施方式中,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
在一些可能的实施方式中,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
在一些可能的实施方式中,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
参阅图16,图16为本申请实施例提供的一种终端设备的结构示意图。终端设备1600包括存储器1601、处理器1602和收发器1603。它们之间通过总线1604连接。存储器1601用于存储相关指令和数据,并可与将存储的数据传输给处理器1602。
处理器1602用于读取存储器1601中的相关指令执行以下操作:
控制收发器1603向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;
根据所述发送功率,控制收发器1603使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
具体地,上述处理器1602可以为图15所示的实施例的终端设备1500的处理单元1501,上述收发器1603可为图15所述的实施例的终端设备1500的收发单元1502。
参见图17,图17为本申请实施例提供了本申请提供的一种芯片的结构示意图。芯片1700包括:处理器1701,以及耦合于处理器1701的一个或多个接口1702。
示例性的,处理器1701可用于读取和执行计算机可读指令。具体实现中,处理器1701可主要包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1101的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS)架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者NP架构等等。处理器1701可以是单核的,也可以是多核的。
示例性的,接口1702可用于输入待处理的数据至处理器1701,并且可以向外输出处理器1701的处理结果。具体实现中,接口1702可以是通用输入输出(general purpose input  output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块等等)连接。接口1702通过总线1703与处理器1701相连。
在一些可能的实施方式中,处理器1701可用于从存储器中调用本申请的一个或多个实施例提供的信号发送、接收方法在网络设备或终端设备侧的实现程序或者数据,使得该芯片可以实现前述图2、图6和图7所示的通信方法以及图8所示的调制阶数和发送功率。存储器可以和处理器1701集成在一起,也可以通过接口1702与芯片1700相耦合,也就是说存储器可以是芯片1700的一部分,也可以独立于该芯片1700。接口1702可用于输出处理器1701的执行结果。示例信息的,本申请中,接口1702可具体用于输出处理器1701确定出的调制阶数。关于本申请的一个或多个实施例提供的信号发送、接收方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1701、接口1702各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器 件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (50)

  1. 一种通信方法,其特征在于,包括:
    向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;
    根据所述第一调制阶数,使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括所述第一调制阶数的索引。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
  4. 根据权利要求1所述的方法,其特征在于,在向终端设备发送所述第一消息之前,所述方法还包括:
    向所述终端设备发送第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
  6. 根据权利要求4所述的方法,其特征在于,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引。
  7. 根据权利要求6所述的方法,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,所述第一消息为DCI,所述第二消息为RRC消息。
  9. 一种通信方法,其特征在于,包括:
    从网络设备接收第一消息;
    根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数;
    根据所述第一调制阶数,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
  10. 根据权利要求9所述的方法,其特征在于,所述第一消息包括所述第一调制阶数的索引。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
  12. 根据权利要求9所述的方法,其特征在于,在从所述网络设备接收第一消息之前,所述方法还包括:
    从所述网络设备接收第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
  13. 根据权利要求12所述的方法,其特征在于,所述第一消息包括所述第一调制阶数 的索引,所述第二消息包括所述第二调制阶数的索引。
  14. 根据权利要求12所述的方法,其特征在于,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引;
    其中,根据所述第一消息确定所述第一调制阶数,包括:
    根据所述第一消息和所述第二消息确定所述第一调制阶数。
  15. 根据权利要求14所述的方法,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述第一消息为DCI,所述第二消息为RRC消息。
  17. 一种通信方法,其特征在于,包括:
    向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;
    根据所述发送功率,使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
  18. 根据权利要求17所述的方法,其特征在于,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
  19. 根据权利要求17所述的方法,其特征在于,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
  21. 一种通信方法,其特征在于,包括:
    从网络设备接收第三消息;
    根据所述第三消息确定所述至少一个子带中的每个子带的发送功率;
    根据所述发送功率,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
  22. 根据权利要求21所述的方法,其特征在于,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
  23. 根据权利要求21所述的方法,其特征在于,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
  25. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端设备发送第一消息,所述第一消息用于指示至少一个子带中每个子带的第一调制阶数;
    处理单元,用于根据所述第一调制阶数,控制所述收发单元使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
  26. 根据权利要求25所述的设备,其特征在于,所述第一消息包括所述第一调制阶数的索引。
  27. 根据权利要求25或26所述的设备,其特征在于,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
  28. 根据权利要求25所述的设备,其特征在于,在向终端设备发送所述第一消息之前,所述收发单元,还用于:
    向所述终端设备发送第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
  29. 根据权利要求28所述的设备,其特征在于,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
  30. 根据权利要求28所述的设备,其特征在于,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引。
  31. 根据权利要求30所述的设备,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
  32. 根据权利要求28-31中任一项所述的设备,其特征在于,所述第一消息为DCI,所述第二消息为RRC消息。
  33. 一种终端设备,其特征在于,包括:
    收发单元,用于从网络设备接收第一消息;
    处理单元,用于根据所述第一消息确定所述至少一个子带中每个子带的第一调制阶数;
    所述处理单元,还用于根据所述第一调制阶数,控制所述收发单元使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
  34. 根据权利要求33所述的设备,其特征在于,所述第一消息包括所述第一调制阶数的索引。
  35. 根据权利要求33或34所述的设备,其特征在于,所述第一消息为下行控制信息DCI或无线资源控制RRC消息。
  36. 根据权利要求33所述的设备,其特征在于,在从所述网络设备接收第一消息之前,所述收发单元,还用于:
    从所述网络设备接收第二消息,所述第二消息用于指示至少一个子带中每个子带的第二调制阶数。
  37. 根据权利要求36所述的设备,其特征在于,所述第一消息包括所述第一调制阶数的索引,所述第二消息包括所述第二调制阶数的索引。
  38. 根据权利要求36所述的设备,其特征在于,所述第一消息用于指示所述第一调制阶数相对于所述第二调制阶数的调整量,所述第二消息包括所述第二调制阶数的索引;
    在根据所述第一消息确定所述第一调制阶数方面,所述处理单元,具体用于:
    根据所述第一消息和所述第二消息确定所述第一调制阶数。
  39. 根据权利要求38所述的设备,其特征在于,所述第一消息包括第一信息,所述第一信息用于指示所述至少一个子带的发送功率的调整量、以及所述第一调制阶数相对于所述第二调制阶数的调整量。
  40. 根据权利要求36-39中任一项所述的设备,其特征在于,所述第一消息为DCI,所述第二消息为RRC消息。
  41. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端设备发送第三消息,所述第三消息用于指示至少一个子带中每个子带的发送功率;
    处理单元,用于根据所述发送功率,控制所述收发单元使用所述至少一个子带从所述终端设备接收数据或者向所述终端设备发送数据。
  42. 根据权利要求41所述的设备,其特征在于,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
  43. 根据权利要求41所述的设备,其特征在于,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
  44. 根据权利要求41-43中任一项所述的设备,其特征在于,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
  45. 一种终端设备,其特征在于,包括:
    收发单元,用于从网络设备接收第三消息;
    处理单元,用于根据所述第三消息确定所述至少一个子带中的每个子带的发送功率;
    所述处理单元,还用于根据所述发送功率,控制所述收发单元,使用所述至少一个子带从所述网络设备接收数据或者向所述网络设备发送数据。
  46. 根据权利要求45所述的设备,其特征在于,所述第三消息包括所述至少一个子带中每个子带的目标发送功率的索引值。
  47. 根据权利要求45所述的设备,其特征在于,所述第三消息用于指示所述至少一个子带中每个子带的发送功率的调整量。
  48. 根据权利要求45至47中任一项所述的设备,其特征在于,所述第三消息为下行控制信息DCI或无线资源控制RRC消息。
  49. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至24中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至24中任一项所述的方法。
PCT/CN2020/081885 2020-03-27 2020-03-27 通信方法及相关产品 WO2021189499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/081885 WO2021189499A1 (zh) 2020-03-27 2020-03-27 通信方法及相关产品
CN202080098857.5A CN115336362A (zh) 2020-03-27 2020-03-27 通信方法及相关产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081885 WO2021189499A1 (zh) 2020-03-27 2020-03-27 通信方法及相关产品

Publications (1)

Publication Number Publication Date
WO2021189499A1 true WO2021189499A1 (zh) 2021-09-30

Family

ID=77890863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081885 WO2021189499A1 (zh) 2020-03-27 2020-03-27 通信方法及相关产品

Country Status (2)

Country Link
CN (1) CN115336362A (zh)
WO (1) WO2021189499A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468920A (zh) * 2010-11-01 2012-05-23 华为技术有限公司 自适应编码调制的方法、装置及系统
WO2016119752A1 (en) * 2015-01-30 2016-08-04 Huawei Technologies Co., Ltd. System and method for resource allocation
CN107431955A (zh) * 2015-11-06 2017-12-01 联发科技股份有限公司 用于对干扰消除友好的具有速率分裂的速率指定
CN110249701A (zh) * 2017-02-06 2019-09-17 高通股份有限公司 使用共享射频频谱的自主上行链路传输技术

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468920A (zh) * 2010-11-01 2012-05-23 华为技术有限公司 自适应编码调制的方法、装置及系统
WO2016119752A1 (en) * 2015-01-30 2016-08-04 Huawei Technologies Co., Ltd. System and method for resource allocation
CN107431955A (zh) * 2015-11-06 2017-12-01 联发科技股份有限公司 用于对干扰消除友好的具有速率分裂的速率指定
CN110249701A (zh) * 2017-02-06 2019-09-17 高通股份有限公司 使用共享射频频谱的自主上行链路传输技术

Also Published As

Publication number Publication date
CN115336362A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US11903010B2 (en) Sidelink quality measurement method and communications apparatus
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
CN107534527B (zh) 用于对harq反馈进行压缩的方法和用户设备
EP3553980B1 (en) Method for transmitting data, terminal device and network device
US20140211767A1 (en) Scheduling Communications
WO2019047828A1 (zh) 一种数据传输的方法、装置及系统
CN109151979B (zh) 功率余量的确定方法及网络设备
US20220053489A1 (en) Communication method and communication apparatus
CN111345055B (zh) 用于重复传输的方法和装置
WO2020143441A1 (zh) 通信方法、通信装置及存储介质
WO2016161656A1 (zh) 一种信道状态信息的上报方法、用户设备和基站
WO2018210095A1 (zh) 一种功率控制方法及设备
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2018202041A1 (zh) 信息发送的方法及其装置和信息接收的方法及其装置
WO2020233370A1 (zh) 一种通信方法及设备
JP6664415B2 (ja) 電力制御方法、端末、および基地局
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2023280051A1 (zh) 通信方法及相关设备
WO2021189499A1 (zh) 通信方法及相关产品
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2019052370A1 (zh) 用于进行数据传输的方法和装置
CN115567890A (zh) 通信方法和通信装置
CN114501492B (zh) 移动通信中信道质量指示报告的增强方法及装置
WO2022206283A1 (zh) 一种通信方法和设备
WO2022077510A1 (zh) 一种解调参考信号dmrs的资源确定方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927164

Country of ref document: EP

Kind code of ref document: A1