WO2021189465A1 - 电极组件、包含该电极组件的电化学装置及电子装置 - Google Patents

电极组件、包含该电极组件的电化学装置及电子装置 Download PDF

Info

Publication number
WO2021189465A1
WO2021189465A1 PCT/CN2020/081820 CN2020081820W WO2021189465A1 WO 2021189465 A1 WO2021189465 A1 WO 2021189465A1 CN 2020081820 W CN2020081820 W CN 2020081820W WO 2021189465 A1 WO2021189465 A1 WO 2021189465A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation layer
lithium
thickness
pole piece
electrochemical device
Prior art date
Application number
PCT/CN2020/081820
Other languages
English (en)
French (fr)
Inventor
魏红梅
张益博
胡乔舒
王斌
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080035663.0A priority Critical patent/CN113826252A/zh
Priority to PCT/CN2020/081820 priority patent/WO2021189465A1/zh
Publication of WO2021189465A1 publication Critical patent/WO2021189465A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of batteries, in particular to an electrode assembly, an electrochemical device and an electronic device including the electrode assembly.
  • Lithium-ion batteries have the characteristics of large specific energy, high working voltage, low self-discharge rate, small size, light weight, etc., and have a wide range of applications in the field of consumer electronics. With the rapid development of electric vehicles and portable electronic devices, people have higher and higher performance requirements for lithium-ion batteries. For example, lithium-ion batteries are required to have higher energy density, safety, and cycle performance.
  • the separator of the existing lithium ion battery usually exists in the electrode assembly in an integral structure, and mainly functions to isolate the positive electrode and the negative electrode, thereby preventing the direct contact between the positive electrode and the negative electrode and causing a short circuit, which may lead to battery failure.
  • a wound battery has one active electrode in the electrode assembly sandwiched between two separators and is wound with another active electrode.
  • the thickness of the entire lithium-ion battery is uneven, which makes the pressure distribution uneven during the thermocompression forming or activation process of the lithium-ion battery, resulting in uneven film formation, and the electrode assembly is prone to lithium evolution in parts of the electrode assembly, which affects safety .
  • the purpose of the present application is to provide an electrode assembly, an electrochemical device and an electronic device including the electrode assembly, so as to improve the safety of the lithium ion battery.
  • the specific technical solutions are as follows:
  • the first aspect of the present application provides an electrode assembly, which includes an electrode pole piece and a fiber isolation layer on at least one surface of the electrode pole piece, wherein the thickness of the fiber isolation layer varies with the electrode pole piece.
  • the thickness of the electrochemical device changes, so that the overall thickness difference of the electrochemical device is less than 5 ⁇ m.
  • the electrochemical device includes a tab section, a first section, a second section, and a third section, and the total thickness of the fiber isolation layer in each section corresponds to the electrode electrode of each section.
  • the difference of the total thickness of the sheet is less than 5 ⁇ m.
  • the thickness of the fiber isolation layer in each layer of the electrode assembly changes with the thickness of the electrode pads in the layer, so that the sum of the thickness differences of the layers is less than 5 ⁇ m.
  • the thickness of the fiber isolation layer in the tab section, the first section, the second section and the third section are 5 to 30 ⁇ m, 80 to 150 ⁇ m, 105 to 180 ⁇ m, 105 to 180 ⁇ m, respectively. 180 ⁇ m.
  • the fiber isolation layer comprises a polymer
  • the polymer includes polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile, polyethylene glycol, polyethylene oxide, Polyphenylene ether, polypropylene carbonate, polymethyl methacrylate, polyethylene terephthalate, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-co-chlorotrifluoroethylene or the above At least one of substance derivatives.
  • the fiber diameter of the fiber isolation layer is 15 nm to 5 ⁇ m, and the porosity of the fiber isolation layer is 20% to 90%.
  • the porosity of the fiber isolation layer increases as the thickness of the polymer fiber porous matrix increases.
  • the fiber isolation layer further comprises inorganic particles, and the inorganic substances of the inorganic particles include hafnium oxide, strontium titanate, tin dioxide, cesium oxide, magnesium oxide, nickel oxide, and calcium oxide.
  • the inorganic substances of the inorganic particles include hafnium oxide, strontium titanate, tin dioxide, cesium oxide, magnesium oxide, nickel oxide, and calcium oxide.
  • the average particle diameter of the inorganic particles is 15 nm to 10 ⁇ m.
  • the second aspect of the present application provides an electrochemical device, which includes the electrode assembly described in the first aspect.
  • a third aspect of the present application provides an electronic device, which includes the electrochemical device described in the second aspect.
  • the electrode assembly, the electrochemical device and the electronic device including the electrode assembly provided in the present application because the thickness of the fiber isolation layer varies with the thickness of the electrode pole piece, the overall thickness difference of the lithium ion battery is less than 5 ⁇ m, so that the lithium ion battery In the process of thermocompression formation or activation, the pressure is uniformly distributed, which reduces internal short circuits caused by the partial lithium evolution of the electrode assembly, thereby improving the safety of lithium-ion batteries (electrochemical devices) and electronic devices.
  • Fig. 1a is a schematic diagram of a structure of an electrode assembly in an embodiment of the application
  • Figure 1b is a schematic diagram of the empty foil area under the tabs in an embodiment of the application.
  • FIG. 2 is a schematic diagram of the structure of an electrode assembly in an embodiment of the application.
  • FIG. 3 is a schematic diagram of the structure of an electrode pad with a fiber isolation layer provided on a single side coating in an embodiment of the application;
  • FIG. 4 is a schematic diagram of the structure of a positive pole piece coated on both sides with a fiber isolation layer in an embodiment of the application;
  • FIG. 5 is a schematic diagram of the structure of a negative pole piece coated on both sides with a fiber isolation layer in an embodiment of the application;
  • Figure 6 is a schematic diagram of a structure of a spinning device in an embodiment of the application.
  • Fig. 7 is a schematic diagram of another structure of a spinning device in an embodiment of the application.
  • a lithium ion battery is used as an example of an electrochemical device to realize an electrochemical device, but the electrochemical device is not limited to a lithium ion battery.
  • This application provides an electrode assembly, as shown in FIG. 1a, which includes an electrode pole piece 1 and a fiber isolation layer 2 on at least one surface of the electrode pole piece.
  • the electrode pole piece and the fiber isolation layer are wound to form an electrode assembly, Among them, the thickness of the fiber isolation layer changes with the thickness of the electrode pole pieces, so that the overall thickness difference of the lithium ion battery is less than 5 ⁇ m, so that the overall thickness of the lithium ion battery is consistent.
  • the thickness of the fibrous isolation layer when the thickness of a certain section of the electrode pad in the electrode assembly decreases, the thickness of the fibrous isolation layer there increases, and when the thickness of a certain section of the electrode pad in the electrode assembly increases, the thickness of the electrode pad increases.
  • the thickness of the fiber isolation layer is reduced, so that the difference between the maximum thickness and the minimum thickness of the lithium-ion battery is less than 5 ⁇ m.
  • the electrode assembly includes a tab section 3, a first section 4, a second section 5 and a third section 6, wherein the total thickness of the isolation layer in each section and the phase The difference of the sum of the total thickness of the corresponding electrode pole pieces is less than 5 ⁇ m.
  • the wound electrode assembly can be divided into multiple sections, and because the thickness of different sections is different, the overall thickness of the lithium-ion battery may be inconsistent.
  • some sections have uncoated pole pieces, and some sections have single-layer coating.
  • the pole pieces of the cloth some sections have double-coated pole pieces, and some sections are the sections where the tabs are located.
  • the tab section due to the thickness of the tab, in the schematic diagram of the electrode assembly structure shown in Figure 2, the height of the tab is higher than the side area of the tab, which causes the lithium ion transmission path to grow, making the surface potential of the negative electrode lower than 0V.
  • the phenomenon of lithium evolution occurs, which further leads to the increase of battery polarization, and finally the phenomenon of lithium evolution occurs in the thickness change area, and the electrode assembly poses a safety risk.
  • the present application can divide the electrode assembly into multiple segments, as shown in FIG.
  • the ears are generally thicker than the other sections of the electrode assembly.
  • the electrode containing the double-sided coated active material in the first section 4 is also thicker, while the second section 5 and the third section 6 are thinner.
  • the first uncoated area 8 of the first section 4 is located between the third and fourth separated dotted lines in Figure 1a, and the first uncoated area can be seen 8 Compared with the missing thickness of the tab section, it is one tab thickness; the second uncoated area 9 of the second section 5 is located between the second and third separation dotted lines.
  • the thickness of two layers of electrode active material is less; the single-sided coating area 11 of the third section 6 is located between the first and second separated dotted lines, and two single-sided coating areas 11 can be seen Compared with the second section 5, the thickness of the electrode active material is reduced by one layer, that is, the thickness of the electrode active material is reduced by two layers.
  • the fiber isolation layer of the present application may have different thicknesses in different sections, so that the difference between the total thickness of the fiber isolation layer in each section and the total thickness of the electrode pads of the corresponding sections is less than 5 ⁇ m.
  • the right side of the electrode assembly is similar in structure to the left side, and can also have the above-mentioned tab section 3, first section 4, second section 5 and third section 6, which will not be repeated in this application.
  • the thickness of the isolation layer in the tab section, the first section, the second section, and the third section are 5 to 30 ⁇ m, 80 to 150 ⁇ m, 105 to 180 ⁇ m, 105 to 180 ⁇ m, respectively.
  • the wound electrode assembly is a multilayer electrode assembly
  • the thickness of the isolation layer in each layer of the multilayer electrode assembly varies with the thickness of the electrode pads in the layer, so that The sum of the thickness differences of the layers is less than 5 ⁇ m.
  • the area located in the second stage 5 includes the second uncoated area 9
  • the area located in the third stage 6 includes the third uncoated area 10. Therefore, the thickness of the fiber isolation layer in the second uncoated area 9 and the third uncoated area 10 of the second section 5 and the third section 6 of the layer is increased, so that the overall thickness of the electrode assembly is uniform.
  • the electrode assembly may further include a fourth section 7, which is located between the two pole ears, and there is a fourth uncoated area 13 in this section, that is, between the fifth and sixth separated dotted lines Between areas.
  • the electrode assembly further includes an empty foil region 14 under the tabs, and the thickness of the isolation layer in the empty foil region is 80 to 150 ⁇ m.
  • the thickness of the isolation layer in the empty foil region is 80 to 150 ⁇ m.
  • the positive electrode tab of the electrode assembly is an aluminum tab
  • the negative electrode tab is a nickel tab
  • the thickness of the separation layer in the empty foil area below the aluminum tab is 80 to 100 ⁇ m
  • the separation layer is The thickness in the empty foil area below the nickel tab is 80 to 150 ⁇ m.
  • the aluminum tab is usually slightly thinner than the nickel tab, so the formed empty foil area is slightly thinner.
  • those skilled in the art can reasonably set the thickness of the isolation layer according to the thickness of the empty foil area under the tabs, as long as the overall thickness of the electrode assembly can be ensured to be consistent.
  • the fiber isolation layer comprises a polymer
  • the polymer includes polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile, polyethylene glycol, polyethylene oxide, polyethylene oxide, Polyphenylene ether, polypropylene carbonate, polymethyl methacrylate, polyethylene terephthalate, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-co-chlorotrifluoroethylene or the above
  • At least one of the substance derivatives is preferably polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polypropylene carbonate, and polyethylene oxide.
  • any lithium ion conductor material can be used as the polymer in the fiber isolation layer of the present application.
  • the fiber diameter of the fiber isolation layer is 15nm to 5 ⁇ m, preferably 15nm to 2 ⁇ m, more preferably 30nm to 2 ⁇ m, more preferably 30nm to 500nm;
  • the porosity of the fiber isolation layer is 20% to 90%, preferably 30% to 80%, more preferably 30% to 70%, more preferably 35% to 70%. This is due to the high porosity and insufficient puncture resistance of the fiber isolation layer, which easily causes short circuits in lithium-ion batteries , While increasing the self-discharge of lithium-ion battery; low porosity, ion transmission is blocked, affecting the cycle performance of lithium-ion battery.
  • the porosity of the fiber isolation layer increases as the thickness of the polymer fiber porous matrix increases, thereby ensuring the dynamic performance of the overall lithium ion battery.
  • the fiber isolation layer further comprises inorganic particles, and the inorganic substances of the inorganic particles include hafnium oxide, strontium titanate, tin dioxide, cesium oxide, magnesium oxide, nickel oxide, calcium oxide, Barium oxide, zinc oxide, zirconium oxide, yttrium oxide, aluminum oxide, titanium oxide, silicon dioxide, boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum Titanate, lithium germanium thiophosphate, lithium nitride, SiS 2 glass, P 2 S 5 glass, lithium oxide, lithium fluoride, lithium hydroxide, lithium carbonate, lithium metaaluminate, lithium germanium phosphorous sulfur ceramics or At least one of garnet ceramics.
  • the inorganic substances of the inorganic particles include hafnium oxide, strontium titanate, tin dioxide, cesium oxide, magnesium oxide, nickel oxide, calcium oxide, Barium oxide, zinc oxide, zirconium oxide, y
  • the general formula of lithium titanium phosphate may be (Li x Ti y (PO 4 ) 3 , where 0 ⁇ x ⁇ 2 and 0 ⁇ y ⁇ 3;
  • lithium aluminum titanium phosphate can be (Li x Al y Ti z (PO 4 ) 3 , where 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 3;
  • lithium lanthanum titanate can be Li x La y TiO 3 , where 0 ⁇ x ⁇ 2 and 0 ⁇ y ⁇ 3;
  • lithium germanium thiophosphate can be Li x N y , where 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 2;
  • SiS 2 glass can be Li x Si y S z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, and 0 ⁇ z ⁇ 4;
  • P 2 S 5 glass can be Li x P y S z , where 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 3, and 0 ⁇ z ⁇ 7;
  • lithium germanium phosphorous sulfur ceramics can be Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 ;
  • the general formula of garnet ceramics may be Li 3 +xLa 3 M 2 O 12 , where 0 ⁇ x ⁇ 5, and M includes at least one of Te, Nb, or Zr.
  • the inorganic particles may also include the following compounds: Li 1+x+y (Al,Ga) x (Ti,Ge) 2-x Si y P 3-y O 12 , where 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1.
  • the average particle diameter of the inorganic particles is 15 nm to 10 ⁇ m.
  • the fiber isolation layer can be provided on a single-sided coated electrode pole piece, or can be provided on a double-sided coated electrode pole piece.
  • the structure of the fiber isolation layer on a single-sided coated electrode pole piece, from top to bottom is the positive electrode current collector, the positive electrode active material, the fiber separation layer, the negative electrode active material, and the negative electrode current collector; 4 shows the structure of the fiber separator layer on the double-sided coated positive pole piece, and both sides of the current collector are coated with active materials; as shown in Figure 5, the fiber separator layer is placed on the double-sided coated negative pole piece.
  • the structure of the current collector is coated with active materials on both sides.
  • the present application provides an electrode assembly. Because the thickness of the fiber isolation layer changes with the thickness of the electrode pole pieces, the overall thickness difference of the lithium ion battery is less than 5 ⁇ m, so that the pressure distribution of the lithium ion battery is uniform during the thermocompression forming or activation process , Reduce the internal short circuit caused by the partial precipitation of lithium in the electrode assembly, thereby improving the safety of the lithium-ion battery.
  • This application also provides a method for preparing a lithium ion battery, including:
  • the negative electrode active material is mixed with deionized water and then mixed into a slurry.
  • the slurry is uniformly coated on the negative electrode current collector and dried to obtain a single-sided coated negative electrode piece. If it is necessary to prepare a double-sided coated negative electrode piece, Repeat the above steps on the back of the pole piece to obtain a negative pole piece with double-sided coating.
  • the pole piece is cut into a 76mm ⁇ 851mm sheet for use.
  • the positive electrode active materials are mixed, the solvent is added, and the slurry is prepared, and the slurry is uniformly coated on the aluminum foil and dried to obtain a single-sided coated positive electrode piece.
  • slurry A Disperse the polymer in an organic solvent and stir evenly until the viscosity of the slurry is stable to obtain slurry A, then disperse the inorganic particles in the organic solvent and stir evenly until the viscosity of the slurry is stable to obtain slurry B.
  • the slurry A is sprayed through the spinning device 50 to obtain a spinning layer with uniform thickness, as shown in FIG.
  • the slurry B is sprayed onto the surface of the fiber isolation layer by the electrospray device 60 to form a fiber isolation layer , And then spray slurry A and then slurry B on the tab area, double-sided coating area, single-sided coating area and uncoated area of the electrode pole piece to obtain fiber isolation layers with different thicknesses, so that the lithium ion battery
  • the overall thickness difference is less than 5 ⁇ m, wherein both the spinning equipment 50 and the electrospray equipment 60 are connected with a voltage stabilizer 70.
  • slurry C disperse the polymer and inorganic particles in an organic solvent to obtain slurry C.
  • a fiber isolation layer with uniform thickness is prepared by a blending device 90, and then the electrode
  • the tab area, double-sided coated area, single-sided coated area, and uncoated area of the pole piece are sprayed to obtain fiber isolation layers of different thicknesses, so that the overall thickness difference of the lithium ion battery is less than 5 ⁇ m.
  • the blending equipment 90 is uniform.
  • a high-pressure supply unit 80 is connected.
  • pole piece If it is necessary to prepare a double-sided coated positive pole piece, repeat the above steps on the back of the pole piece to obtain a double-sided thickened fiber separator positive pole piece. After the coating is completed, the pole piece is cut into a sheet with a size of 74mm ⁇ 867mm for use.
  • the negative pole piece and the positive pole piece are stacked and wound into an electrode assembly.
  • the end of the winding structure, the lugs, and the positive electrode head area are glued, placed in the aluminum plastic film, sealed by the top side, and filled with liquid , After packaging, finally get a lithium-ion battery.
  • each area when spraying fiber isolation layers with different thicknesses, each area can be sprayed once to achieve a predetermined thickness.
  • each area when spraying fiber isolation layers of different thicknesses, each area may be sprayed multiple times, so that the sum of the thickness of the multiple spraying reaches the predetermined thickness of the area.
  • the fiber separation layer with the above-mentioned different thickness can be prepared on the surface of the positive pole piece, or the fiber separation layer with the above-mentioned different thickness can be prepared on the surface of the negative pole piece. Of course, it can also be used on the positive and negative pole pieces.
  • the above-mentioned fiber isolation layers with different thicknesses are prepared on the surface at the same time, as long as the overall thickness of the battery electrode assembly is uniform, and these should fall within the protection scope of the present application.
  • the above-mentioned fiber separation layer can be sprayed on one side of the positive electrode, or the above-mentioned fiber separation layer can be sprayed on one side of the negative electrode, or the above-mentioned fiber separation layer can be sprayed on both sides of the positive electrode, or on the negative electrode. Both sides of the sheet are sprayed with the above-mentioned fiber separation layer, or one side of the positive pole piece and one side of the negative pole piece are sprayed with the above-mentioned fiber separation layer, as long as the overall thickness of the battery electrode assembly is uniform.
  • This application provides a method for preparing a lithium ion battery.
  • the tab area, the double-sided coating area, the single-sided coating area and the uncoated area of the electrode pole piece are sprayed to obtain fibrous isolation layers with different thicknesses, so that the electrode assembly
  • the overall thickness difference of the electrode assembly is less than 5 ⁇ m, which can make the pressure distribution of the electrode assembly of the lithium ion battery during the thermocompression forming or activation process uniform, reduce the internal short circuit caused by the partial lithium evolution of the electrode assembly, thereby improving the safety of the electrode assembly.
  • An embodiment of the present application also provides an electronic device, including the lithium ion battery described in the above embodiment.
  • the lithium ion battery and electrode assembly used can be formed or activated by thermocompression. During the process, the pressure is evenly distributed, reducing internal short circuits caused by the partial lithium evolution of the electrode assembly, thereby improving the safety of the electronic device.
  • the positive pole piece in this application is not particularly limited, and any positive pole piece known in the art can be used.
  • a positive pole piece containing lithium cobaltate, a positive pole piece containing lithium manganate, a positive pole piece containing lithium iron phosphate, or a positive pole piece containing lithium nickel cobalt manganate or lithium nickel cobalt aluminate is not particularly limited, and any positive pole piece known in the art.
  • a positive pole piece containing lithium cobaltate a positive pole piece containing lithium manganate, a positive pole piece containing lithium iron phosphate, or a positive pole piece containing lithium nickel cobalt manganate or lithium nickel cobalt aluminate.
  • a negative pole piece in this application is not particularly limited, as long as it can achieve the purpose of this application.
  • a negative pole piece usually includes a negative current collector and a negative active material layer.
  • the negative electrode current collector is not particularly limited, and any negative electrode current collector known in the art can be used, such as copper foil, aluminum foil, aluminum alloy foil, and composite current collectors.
  • the negative electrode active material layer includes a negative electrode active material, and the negative electrode active material is not particularly limited, and any negative electrode active material known in the art can be used.
  • it may include at least one of artificial graphite, natural graphite, mesocarbon microspheres, soft carbon, hard carbon, silicon, silicon carbon, or lithium titanate.
  • the electrolyte is not particularly limited, and any electrolyte known in the art can be used, for example, it can be any of a gel state, a solid state, and a liquid state.
  • the liquid electrolyte solution can include lithium salt and non-aqueous. Solvent.
  • the lithium salt is not particularly limited, and any lithium salt known in the art can be used as long as the purpose of the application can be achieved.
  • the lithium salt may include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 At least one of CF 3 ) 3 or LiPO 2 F 2.
  • LiPF 6 can be used as the lithium salt.
  • the non-aqueous solvent is not particularly limited as long as it can achieve the purpose of the present application.
  • the non-aqueous solvent may include at least one of carbonate compounds, carboxylate compounds, ether compounds, nitrile compounds, or other organic solvents.
  • the carbonate compound may include diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), methyl ethyl carbonate Ester (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate (FEC), carbonic acid 1 ,2-Difluoroethylene, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1 -Fluoro-2-methylethylene, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluorocarbonate- At least one of 2-methylethylene or trifluoromethylethylene carbonate.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropy
  • the material of the current collector of the present application is not particularly limited, and materials well known to those skilled in the art can be used.
  • the material of the current collector may include, but is not limited to: at least one of copper, nickel, titanium, molybdenum, aluminum, iron, zinc, or stainless steel.
  • One, or a conductive inorganic material for example, at least one of carbon or graphene.
  • the negative electrode active material graphite, conductive carbon black, and styrene-butadiene rubber are mixed according to a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir it evenly.
  • the slurry is uniformly coated on the copper foil of the negative electrode current collector and dried at 110° C. to obtain a negative electrode piece coated on one side.
  • the same method is used to complete these steps on the back of the pole piece to obtain a negative pole piece with double-sided coating.
  • the pole piece is cut into a sheet of 76mm to 851mm for use.
  • the positive active material lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone was added as a solvent to prepare a slurry with a solid content of 0.75. Stir well. Then, the slurry is uniformly coated on the positive electrode current collector aluminum foil, and dried at 90° C. to obtain a single-sided coated positive pole piece.
  • the polymer is polyvinylidene fluoride, and the inorganic particles are boehmite.
  • the slurry A is sprayed through the spinning equipment to obtain a spinning layer with uniform thickness, and then the slurry B is sprayed on the surface of the fiber isolation layer by the electrospray equipment to form the fiber isolation layer, and then in the figure
  • the second section 5 of the positive pole piece of the electrode assembly shown in 1a was sprayed with slurry A and then with slurry B to obtain a fibrous isolation layer with a thickness of 50 ⁇ m.
  • the same spraying method was used in the first section 4, 4 of the electrode assembly shown in Figure 1a.
  • a fiber isolation layer with a thickness of 100 ⁇ m is added, and a fiber isolation layer with a thickness of 150 ⁇ m is added in the empty foil area under the tabs.
  • the filling ratio of inorganic particles in the fiber isolation layer is 10%.
  • the spinning diameter of the fiber isolation layer is 100 nm, and the porosity of the fiber isolation layer is 55%.
  • the prepared negative pole piece and positive pole piece are stacked and wound into an electrode assembly.
  • the end of the winding structure, the lugs, and the positive electrode head area are glued, placed in an aluminum plastic film, and sealed by the top side. After liquid injection and packaging, a lithium ion battery is obtained.
  • the inorganic particles in the slurry B are selected from alumina and the preparation process of the slurry B is different, the rest is the same as the embodiment 1.
  • the preparation process of slurry B is: mixing aluminum oxide and polyvinylidene fluoride in a weight ratio of 90:10, and then adding N-methylpyrrolidone as a solvent to prepare a slurry with a solid content of 0.4.
  • the filling ratio of the inorganic particles in the fiber isolation layer is 4%, and the average particle size of the inorganic particles is 500 nm.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 15 nm, and the porosity of the fiber isolation layer is 30%, the rest is the same as Example 2.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 50 nm, and the porosity of the fiber isolation layer is 42%, the rest is the same as Example 2.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 2000 nm, and the porosity of the fiber isolation layer is 38%, the rest is the same as Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, the average particle size of inorganic particles is 15nm, and the porosity of the fiber isolation layer is 35%, the rest Same as Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, the average particle size of inorganic particles is 800nm, and the porosity of the fiber isolation layer is 38%, the rest Same as Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, the average particle size of inorganic particles is 1000nm, and the porosity of the fiber isolation layer is 35%, the rest Same as Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, the average particle size of inorganic particles is 500nm, and the fiber Except that the porosity of the isolation layer is 42%, the rest is the same as in Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, the average particle size of inorganic particles is 500nm, and the fiber isolation
  • the porosity of the layer is the same as in Example 2 except that the porosity is 40%.
  • a mixture of polyimide and polyvinylidene fluoride is selected, the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, and the average particle size of inorganic particles It is the same as in Example 2 except that it is 500 nm and the porosity of the fiber isolation layer is 42%. Among them, the volume ratio of polyimide and polyvinylidene fluoride is 30:70.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500 nm, and the porosity of the fiber isolation layer is 80%, the rest is the same as Example 2.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 5000 nm, and the porosity of the fiber isolation layer is 70%, the rest is the same as Example 2.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500 nm, and the porosity of the fiber isolation layer is 30%, the rest is the same as Example 2.
  • the negative active material graphite, conductive carbon black, and styrene-butadiene rubber are mixed according to a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir uniformly to obtain a negative active material.
  • the negative electrode active material is uniformly coated on the negative electrode current collector copper foil and dried at 110° C. to obtain a negative electrode piece coated on one side.
  • the polymer is polyvinylidene fluoride, and the inorganic particles are alumina.
  • the slurry A is sprayed through the spinning equipment to obtain a spinning layer with uniform thickness, and then the slurry B is sprayed on the surface of the fiber separation layer by the electrospray equipment to form a fiber separation layer, and then the negative electrode
  • the part of the sheet where the negative electrode exceeds the positive electrode, that is, the overhang area (width 0.5 to 1.5mm) first spray slurry A and then slurry B to obtain a fibrous separation layer with a thickness greater than 150 ⁇ m relative to other areas, where the inorganic particles are separated by the fiber
  • the filling ratio in the layer is 80%, the spinning diameter of the fiber isolation layer is 500 nm, and the porosity of the fiber isolation layer is 55%.
  • the positive active material lithium cobaltate, conductive carbon black, and polyvinylidene fluoride are mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone is added as a solvent to prepare a slurry with a solid content of 0.75, and stir it evenly. Then, the slurry is uniformly coated on the positive electrode current collector aluminum foil, and dried at 90° C. to obtain a single-sided coated positive pole piece.
  • the addition amount of LiFSI in the mixed solvent is 1 mol/L
  • the addition amount of LiNO 3 in the mixed solvent is 1 wt%.
  • the negative pole piece and the positive pole piece are stacked to form a laminate, and then the four corners of the entire laminate structure are fixed with tape, and placed in the aluminum plastic film. After sealing on the top side, injecting electrolyte, and encapsulating, lithium is obtained. Ion laminated battery.
  • the filling ratio of alumina in the slurry B in the fiber isolation layer is 80%, and the spinning diameter of the fiber isolation layer is 500 nm, the rest is the same as in Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, and the spinning diameter of the fiber isolation layer is 500 nm, the rest is the same as in Example 2.
  • the negative active material graphite, conductive carbon black, and styrene-butadiene rubber are mixed according to a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir uniformly to obtain a negative active material.
  • the negative electrode active material is uniformly coated on the negative electrode current collector copper foil and dried at 110° C. to obtain a negative electrode piece coated on one side.
  • the polymer is polyvinylidene fluoride, and the inorganic particles are boehmite.
  • the slurry A is sprayed through the spinning equipment to obtain a spinning layer with uniform thickness, and then the slurry B is sprayed on the surface of the fiber isolation layer by the electrospray equipment to form the fiber isolation layer, and then in the figure
  • the second section 5 of the negative pole piece of the electrode assembly shown in 1a was sprayed with slurry A and then with slurry B to obtain a fibrous isolation layer with a thickness of 50 ⁇ m.
  • the same spraying method was used in the first section 4, 4 of the electrode assembly shown in Figure 1a.
  • a fiber isolation layer with a thickness of 100 ⁇ m is added, and a fiber isolation layer with a thickness of 150 ⁇ m is added in the empty foil area under the tabs.
  • the filling ratio of inorganic particles in the fiber isolation layer is 10%.
  • the spinning diameter of the fiber isolation layer is 100 nm, and the porosity of the fiber isolation layer is 55%.
  • the positive active material lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone was added as a solvent to prepare a slurry with a solid content of 0.75. Stir well. Then, the slurry is uniformly coated on the positive electrode current collector aluminum foil, and dried at 90° C. to obtain a single-sided coated positive pole piece.
  • the same method is used to complete these steps on the back of the pole piece to obtain a positive pole piece with double-sided coating.
  • the pole piece is cut into a sheet of 76mm to 851mm for use.
  • the prepared negative pole piece and positive pole piece are stacked and wound into an electrode assembly.
  • the end of the winding structure, the lugs, and the positive electrode head area are glued, placed in an aluminum plastic film, and sealed by the top side. After liquid injection and packaging, a lithium ion battery is obtained.
  • the negative electrode active material graphite, conductive carbon black, and styrene-butadiene rubber are mixed according to a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir it evenly.
  • the slurry is uniformly coated on the copper foil of the negative electrode current collector and dried at 110° C. to obtain a negative electrode piece coated on one side.
  • the same method is used to complete these steps on the back of the pole piece to obtain a negative pole piece with double-sided coating.
  • the pole piece is cut into a sheet of 76mm to 851mm for use.
  • the positive active material lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone was added as a solvent to prepare a slurry with a solid content of 0.75. Stir well. Then, the slurry is uniformly coated on the positive electrode current collector aluminum foil, and dried at 90° C. to obtain a single-sided coated positive pole piece.
  • the polymer is polyvinylidene fluoride, and the inorganic particles are boehmite.
  • the slurry A is sprayed through the spinning equipment to obtain a spinning layer with uniform thickness, and then the slurry B is sprayed on the surface of the fiber isolation layer by the electrospray equipment to form the fiber isolation layer, and then in the figure
  • the second section 5 of the positive pole piece shown in 1a is sprayed with slurry A and then with slurry B to obtain a fiber isolation layer with a thickness of 50 ⁇ m.
  • the spinning diameter of the fiber isolation layer is 100nm, and the porosity of the fiber isolation layer is 55%. .
  • the prepared negative pole piece and positive pole piece are stacked and wound into an electrode assembly.
  • the end of the winding structure, the lugs, and the positive electrode head area are glued, placed in an aluminum plastic film, and sealed by the top side. After liquid injection and packaging, a lithium ion battery is obtained.
  • Comparative Example 1 It is the same as Comparative Example 1 except that the fiber isolation layer with a thickness of 100 ⁇ m is added in the first section 4, the third section 6 and the fourth section 7 shown in FIG. 1a.
  • the negative electrode active material graphite, conductive carbon black, and styrene-butadiene rubber are mixed according to a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir it evenly.
  • the slurry is uniformly coated on the copper foil of the negative electrode current collector and dried at 110° C. to obtain a negative electrode piece coated on one side.
  • the same method is used to complete these steps on the back of the pole piece to obtain a negative pole piece with double-sided coating.
  • the pole piece is cut into a sheet of 76mm to 851mm for use.
  • the positive electrode active material lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride are mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone is added as a solvent to prepare a slurry with a solid content of 0.75, and stir it evenly. Then, the slurry is uniformly coated on the positive electrode current collector aluminum foil, and dried at 90° C. to obtain a single-sided coated positive pole piece.
  • the prepared negative pole piece and positive pole piece are opposed and stacked to form an electrode assembly, and the positive and negative pole pieces are wound into a battery by using polyethylene (PE) as a separator between them.
  • PE polyethylene
  • the end of the winding structure, the tabs, and the positive electrode head area are glued and placed in an aluminum plastic film. After top-side sealing, liquid injection, and encapsulation, a lithium-ion battery is finally obtained.
  • the negative electrode active material graphite, conductive carbon black, and styrene-butadiene rubber are mixed according to a weight ratio of 96:1.5:2.5, and deionized water is added as a solvent to prepare a slurry with a solid content of 0.7, and stir it evenly.
  • the slurry is uniformly coated on the copper foil of the negative electrode current collector and dried at 110° C. to obtain a negative electrode piece coated on one side.
  • the same method is used to complete these steps on the back of the pole piece to obtain a negative pole piece with double-sided coating.
  • the pole piece is cut into a sheet of 76mm to 851mm for use.
  • the positive electrode active material lithium cobalt oxide, conductive carbon black, and polyvinylidene fluoride are mixed in a weight ratio of 97.5:1.0:1.5, and N-methylpyrrolidone is added as a solvent to prepare a slurry with a solid content of 0.75, and stir it evenly. Then, the slurry is uniformly coated on the positive electrode current collector aluminum foil, and dried at 90° C. to obtain a single-sided coated positive pole piece.
  • the polymer is polyvinylidene fluoride, and the inorganic particles are boehmite.
  • the slurry A is sprayed through the spinning equipment to obtain a spinning layer with uniform thickness, and then the slurry B is sprayed on the surface of the fiber isolation layer by the electrospray equipment to form a fiber isolation layer.
  • the thickness of the fiber isolation layer is 10 ⁇ m.
  • the prepared negative pole piece and positive pole piece are stacked and wound into an electrode assembly.
  • the end of the winding structure, the lugs, and the positive electrode head area are glued, placed in an aluminum plastic film, and sealed by the top side. After liquid injection and packaging, a lithium ion battery is obtained.
  • Example 2 Except that the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 10 nm, and the porosity of the fiber isolation layer is 30%, the rest is the same as Example 2.
  • the filling ratio of alumina in the fiber isolation layer in slurry B is 80%, the spinning diameter of the fiber isolation layer is 500nm, the average particle size of inorganic particles is 10nm, and the porosity of the fiber isolation layer is 35%, the rest Same as Example 2.
  • the standard for evaluating whether the thickness of the lithium ion battery is uniform is: when the hot pressing of the lithium ion battery is completed, whether the difference between the maximum thickness and the minimum thickness of the overall lithium ion battery is less than 5 ⁇ m, if less than 5 ⁇ m, the thickness of the lithium ion battery is uniform, if it is greater than or equal to 5 ⁇ m indicates that the thickness of the lithium-ion battery is uneven.
  • the method of measuring the maximum thickness of lithium-ion battery is: applying 50g, using a PPG thickness gauge or a micrometer to measure the thickness of the highest point of the lithium-ion battery; measuring the minimum thickness of lithium-ion battery: using a micrometer to measure the thickness of the lowest area of the lithium-ion battery.
  • the lithium-ion battery is charged to 1C first, then fully charged to the cut-off voltage, and discharged to the cut-off voltage at 0.7C. After this test process is cycled for 15 times, the lithium-ion battery is fully charged with 1C current to end the charging process.
  • Examples 1 to 23 are compared with Comparative Examples 1 to 2, that is, only in the electrode assembly tab area, double-sided coating area, single-sided coating area or uncoated area.
  • the fiber isolation layer of different thickness is provided for each section of the electrode assembly at the same time, so that the overall thickness of the lithium ion battery is uniform, and the lithium ion battery can be prevented from lithium evolution, thereby improving the safety of the lithium ion battery.
  • Examples 1 to 23 are compared with Comparative Examples 3 to 6, that is, the thickness of the fiber isolation layer is compared with the selection of uniform thickness non-woven fabric, uniform thickness non-woven fabric cross-linked ceramic particles, and uniform thickness fiber isolation layer as the isolation membrane. After changing with the thickness of the electrode pole piece, the overall thickness of the lithium-ion battery is made uniform, which can prevent the lithium-ion battery from lithium evolution.

Abstract

一种电极组件、包含该电极组件的电化学装置及电子装置,其中电极组件包括电极极片(1)以及在所述电极极片(1)的至少一个表面上的纤维隔离层(2),所述电极极片(1)和所述纤维隔离层(2)卷绕形成电极组件,其中,所述纤维隔离层(2)的厚度随所述电极极片(1)的厚度变化而变化,使得锂离子电池的整体厚度差小于5μm。能够使得锂离子电池在热压化成或者激活过程中压力分布均匀,减少因电极组件局部析锂而导致的锂离子电池内部短路,从而提高锂离子电池及电子装置的安全性。

Description

电极组件、包含该电极组件的电化学装置及电子装置 技术领域
本申请涉及电池领域,具体涉及一种电极组件、包含该电极组件的电化学装置及电子装置。
背景技术
锂离子电池具有比能量大、工作电压高、自放电率低、体积小、重量轻等特点,在消费电子领域具有广泛的应用。随着电动汽车和可移动电子设备的高速发展,人们对锂离子电池的性能需求也越来越高,例如,需要锂离子电池具有更高的能量密度、安全性、循环性能等。
现有锂离子电池的隔膜通常以整体结构存在于电极组件中,主要起到隔离正极和负极的作用,从而防止正极和负极直接接触造成短路,导致电池失效。卷绕电池作为锂离子电池的一种,其电极组件中的一片活性电极夹在两片隔膜之间,与另外一片活性电极进行卷绕,由于电极组件中存在单双面区域及极耳焊接区,锂离子电池封装完成后,整个锂离子电池厚度不均匀,使得锂离子电池热压化成或者激活过程中压力分布不均匀,导致成膜不均匀,电极组件局部容易出现析锂,进而影响安全性。
发明内容
本申请的目的在于提供一种电极组件、包含该电极组件的电化学装置及电子装置,以提高锂离子电池的安全性。具体技术方案如下:
本申请的第一方面提供了一种电极组件,其包括电极极片以及在所述电极极片的至少一个表面上的纤维隔离层,其中,所述纤维隔离层的厚度随所述电极极片的厚度变化而变化,使得电化学装置的整体厚度差小于5μm。
在本申请的一种实施方案中,所述电化学装置包括极耳段、第一段、第二段和第三段,各段中的纤维隔离层总厚度与相对应的各段的电极极片总厚度之和的差值小于5μm。
在本申请的一种实施方案中,所述电极组件的每一层中纤维隔离层的厚度随着该层中电极极片的厚度变化而变化,使得各层的厚度差之和小于5μm。
在本申请的一种实施方案中,所述纤维隔离层在极耳段、第一段、第二段和第三段中的厚度分别为5至30μm、80至150μm、105至180μm、105至180μm。
在本申请的一种实施方案中,所述纤维隔离层包含聚合物,所述聚合物包括聚偏氟乙 烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚氧化乙烯、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯,聚偏氟乙烯-六氟丙烯、聚偏二氟乙烯-共-三氟氯乙烯或上述物质衍生物中的至少一种。
在本申请的一种实施方案中,所述纤维隔离层的纤维直径为15nm至5μm,所述纤维隔离层的孔隙率为20%至90%。
在本申请的一种实施方案中,述纤维隔离层的孔隙率随聚合物纤维多孔基体的厚度增加而增加。
在本申请的一种实施方案中,所述纤维隔离层还包含无机颗粒,所述无机颗粒的无机物包括氧化铪、钛酸锶、二氧化锡、氧化铯、氧化镁、氧化镍、氧化钙、氧化钡、氧化锌、氧化锆、氧化钇、氧化铝、氧化钛、二氧化硅、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、氧化锂、氟化锂、氢氧化锂、碳酸锂、偏铝酸锂、锂锗磷硫陶瓷或石榴石陶瓷中的至少一种。
在本申请的一种实施方案中,所述无机颗粒的平均粒径为15nm至10μm。
本申请的第二方面提供了一种电化学装置,其包含上述第一方面所述的电极组件。
本申请的第三方面提供了一种电子装置,其包含上述第二方面所述的电化学装置。
本申请提供的电极组件、包含该电极组件的电化学装置及电子装置,由于纤维隔离层的厚度随电极极片的厚度变化而变化,使得锂离子电池的整体厚度差小于5μm,使得锂离子电池在热压化成或者激活过程中压力分布均匀,减少因电极组件局部析锂而导致的内部短路,从而提高锂离子电池(电化学装置)及电子装置的安全性。
附图说明
为了更清楚地说明本申请和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的技术方案。
图1a为本申请的一种实施方案中电极组件的一种结构示意图;
图1b为本申请的一种实施方案中极耳下方空箔区的一种示意图;
图2为本申请的一种实施方案中电极组件结构示意图;
图3为本申请的一种实施方案中纤维隔离层设置于单面涂布的电极极片的结构示意图;
图4为本申请的一种实施方案中纤维隔离层设置于双面涂布的正极极片的结构示意图;
图5为本申请的一种实施方案中纤维隔离层设置于双面涂布的负极极片的结构示意图;
图6为本申请的一种实施方案中纺丝设备的一种结构示意图;
图7为本申请的一种实施方案中纺丝设备的另一种结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他技术方案,都属于本申请保护的范围。
需要说明的是,本申请的具体实施方式中,以锂离子电池作为电化学装置的例子来实现电化学装置,但是该电化学装置并不仅限于锂离子电池。
本申请提供了一种电极组件,如图1a所示,其包括电极极片1以及在电极极片的至少一个表面上的纤维隔离层2,电极极片和纤维隔离层卷绕形成电极组件,其中,纤维隔离层的厚度随电极极片的厚度变化而变化,使得锂离子电池的整体厚度差小于5μm,从而使锂离子电池整体厚度一致。
本申请的一种实施方案中,当电极组件中某一段电极极片的厚度降低时,该处的纤维隔离层的厚度升高,当电极组件中某一段电极极片的厚度升高时,该处的纤维隔离层的厚度降低,从而使锂离子电池的最大厚度与最小厚度之差小于5μm。
本申请的一种实施方案中,如图1a所示,电极组件包括极耳段3、第一段4、第二段5和第三段6,其中,各段中的隔离层总厚度与相对应的各段的电极极片总厚度之和的差值小于5μm。
可以理解,卷绕电极组件可以划分为多个段,而由于不同段厚度不同,可能导致锂离子电池整体厚度不一致,例如,有的段存在未涂布的极片,有的段存在单层涂布的极片,有的段存在双层涂布的极片,有的段为极耳所在的段。对于极耳段,由于极耳具有厚度,如图2所示的电极组件结构示意图中,极耳处高度高于极耳侧边区域,导致锂离子传输路径增长,使得负极表面电位低于0V,产生析锂现象,进一步导致电池极化增大,最后在厚度变化区域出现析锂现象,电极组件存在安全风险。
基于此,本申请可以将电极组件划分为多个段,如图1a所示,包括极耳段3、第一段4、第二段5和第三段6,其中,极耳段3由于极耳的存在通常会比电极组件的其他段更厚, 第一段4中包含双面涂布活性材料的电极也较厚,而第二段5和第三段6较薄。参考图1a,按照各分隔虚线从左向右的顺序,第一段4的第一未涂布区8位于图1a中第三条和第四条分隔虚线之间,可见第一未涂布区8相较于极耳段缺少的厚度为一个极耳厚度;第二段5的第二未涂布区9位于第二条和第三条分隔虚线之间,可见第二未涂布区9相较于第一段4又少了两层电极活性材料的厚度;第三段6的单面涂布区11位于第一条和第二条分隔虚线之间,可见两个单面涂布区11相较于第二段5又各少了一层电极活性材料的厚度,即共少了两层电极活性材料的厚度。
因此,本申请的纤维隔离层可以在不同的段中具有不同的厚度,从而使得各段中的纤维隔离层总厚度与相对应的各段的电极极片总厚度之和的差值小于5μm。
如图1a所示,电极组件的右侧与左侧结构相似,同样可以具有上述极耳段3、第一段4、第二段5和第三段6,本申请在此不再赘述。
本申请的一种实施方案中,隔离层在极耳段、第一段、第二段和第三段中的厚度分别为5至30μm、80至150μm、105至180μm、105至180μm。
本申请的一种实施方案中,由于卷绕电极组件为多层电极组件,因此该多层电极组件的每一层中隔离层的厚度随着该层中电极极片的厚度变化而变化,使得各层的厚度差之和小于5μm。
例如,在图1a所示的双面涂布起始层12中,位于第二段5的区域包含第二未涂布区9,位于第三段6的区域包含第三未涂布区10,因此,纤维隔离层在该层第二段5和第三段6的第二未涂布区9和第三未涂布区10,厚度均增加,从而使电极组件整体厚度一致。
本申请的一种实施方案中,电极组件还可以包括第四段7,第四段位于两极耳之间,该段存在第四未涂布区13,即第五条和第六条分隔虚线之间的区域。
本申请的一种实施方案中,如图1b所示,电极组件还包括极耳下方的空箔区14,隔离层在该空箔区中的厚度为80至150μm。在焊接极耳时,通常只焊接到电极组件高度的一半,因此极耳的下方会形成空箔区,可以理解,该区域缺少的厚度为一个极耳的厚度。
本申请的一种实施方案中,电极组件的正极极耳为铝极耳,负极极耳为镍极耳,隔离层在铝极耳下方的空箔区中的厚度为80至100μm,隔离层在镍极耳下方的空箔区中的厚度为80至150μm,这是由于铝极耳通常比镍极耳稍薄,因此形成的空箔区稍薄。当然,本领域技术人员可以根据极耳下方空箔区的厚度合理设置隔离层的厚度,只要能保证电极组件整体厚度一致即可。
本申请的一种实施方案中,纤维隔离层包含聚合物,聚合物包括聚偏氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚氧化乙烯、聚氧化乙烷、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯,聚偏氟乙烯-六氟丙烯、聚偏二氟乙烯-共-三氟氯乙烯或上述物质衍生物中的至少一种,优选聚偏氟乙烯-六氟丙烯、聚偏氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚碳酸亚丙酯、聚氧化乙烷。当然,只要是锂离子导体材料均可以作为本申请纤维隔离层中的聚合物。
本申请的一种实施方案中,纤维隔离层的纤维直径为15nm至5μm,优选为15nm至2μm,进一步优选为30nm至2μm,更优选为30nm至500nm;纤维隔离层的孔隙率为20%至90%,优选为30%至80%,进一步优选为30%至70%,更优选为35%至70%,这是由于孔隙率高,纤维隔离层抗穿刺强度不足,易造成锂离子电池短路,同时增大锂离子电池自放电;孔隙率低,离子传输受阻,影响锂离子电池循环性能。
本申请的一种实施方案中,纤维隔离层的孔隙率随聚合物纤维多孔基体的厚度增加而增加,从而保证整体锂离子电池的动力学性能。
本申请的一种实施方案中,所述纤维隔离层还包含无机颗粒,所述无机颗粒的无机物包括氧化铪、钛酸锶、二氧化锡、氧化铯、氧化镁、氧化镍、氧化钙、氧化钡、氧化锌、氧化锆、氧化钇、氧化铝、氧化钛、二氧化硅、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、氧化锂、氟化锂、氢氧化锂、碳酸锂、偏铝酸锂、锂锗磷硫陶瓷或石榴石陶瓷中的至少一种。
本申请的一种实施方案中,锂钛磷酸盐的通式可以为(Li xTi y(PO 4) 3,其中0<x<2且0<y<3;
锂铝钛磷酸盐的通式可以为(Li xAl yTi z(PO 4) 3,其中0<x<2,0<y<1,且0<z<3;
锂镧钛酸盐的通式可以为Li xLa yTiO 3,其中0<x<2且0<y<3;
锂锗硫代磷酸盐的通式可以为Li xN y,其中0<x<4,0<y<2;
SiS 2玻璃的通式可以为Li xSi yS z,其中0≤x<3,0<y<2,且0<z<4;
P 2S 5玻璃的通式可以为Li xP yS z,其中0≤x<3,0<y<3,且0<z<7;
锂锗磷硫陶瓷的通式可以为Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2
石榴石陶瓷的通式可以为Li 3+xLa 3M 2O 12,其中0≤x≤5,且M包括Te、Nb或Zr中的至少一种。
当然,无机颗粒还可以包括以下化合物:Li 1+x+y(Al,Ga) x(Ti,Ge) 2-xSi yP 3-yO 12,其中0≤x≤1且0≤y≤1。
本申请的一种实施方案中,无机颗粒的平均粒径为15nm至10μm。
本申请的一种实施方案中,纤维隔离层可以设置于单面涂布的电极极片上,也可以设置于双面涂布的电极极片上。如图3所示为纤维隔离层设置于单面涂布的电极极片的结构,由上至下依次为正极集流体、正极活性材料、纤维隔离层、负极活性材料、负极集流体;如图4所示为纤维隔离层设置于双面涂布的正极极片的结构,集流体两侧均涂布有活性材料;如图5所示为纤维隔离层设置于双面涂布的负极极片的结构,集流体两侧均涂布有活性材料。
本申请提供一种电极组件,由于纤维隔离层的厚度随电极极片的厚度变化而变化,使得锂离子电池的整体厚度差小于5μm,使得锂离子电池在热压化成或者激活过程中压力分布均匀,减少因电极组件局部析锂而导致的内部短路,从而提高锂离子电池的安全性。
本申请还提供了一种锂离子电池的制备方法,包括:
负极极片的制备:
将负极活性材料与去离子水混合后调配成为浆料,将浆料均匀涂覆在负极集流体上,烘干得到单面涂布负极极片,若需要制备双面涂布负极极片,则在极片背面重复上述步骤,即得到双面涂布完成的负极极片。极片裁切成规格为76mm×851mm的片材待用。
正极极片的制备:
正极活性材料的涂布:
将正极活性材料混合,加入溶剂,调配成浆料,将浆料均匀涂覆在铝箔上烘干,得到单面涂布的正极极片。
纤维隔离层的制备:
将聚合物分散在有机溶剂中,并搅拌均匀至浆料粘度稳定,得到浆料A,然后将无机颗粒分散在有机溶剂中,并搅拌均匀至浆料粘度稳定,得到浆料B,在正极极片表面,利用浆料A通过纺丝设备50喷涂得到一层厚度均匀的纺丝层,如图6所示,再通过电喷雾设备60将浆料B喷涂到该纤维隔离层表面形成纤维隔离层,然后在电极极片的极耳区、双面涂布区、单面涂布区和未涂布区分别先喷涂浆料A再喷涂浆料B得到差异厚度的纤维隔离层,使得锂离子电池的整体厚度差小于5μm,其中,纺丝设备50和电喷雾设备60均 连接有稳压器70。
或者,将聚合物和无机颗粒分散在有机溶剂中,得到浆料C,如图7所示,利用浆料C作为原料,通过混纺设备90制备得到一层厚度均匀的纤维隔离层,然后在电极极片的极耳区、双面涂布区、单面涂布区和未涂布区分别喷涂得到差异厚度的纤维隔离层,使得锂离子电池的整体厚度差小于5μm,其中,混纺设备90均连接有高压供给单元80。
若需要制备双面涂布正极极片,则在极片背面重复上述步骤,即得到双面增厚纤维隔离层正极极片。涂布完成后,将极片裁切成规格为74mm×867mm的片材待用。
锂离子电池的制备:
将负极极片和正极极片相对并叠好卷绕成电极组件,卷绕结构收尾处、极耳处、正极头部区域贴胶后,置入铝塑膜中,经顶侧封、注液、封装后,最终得到锂离子电池。
本申请的一种实施方案中,在喷涂差异厚度的纤维隔离层时,可以对各区域喷涂一次从而达到预定厚度。
本申请的一种实施方案中,在喷涂差异厚度的纤维隔离层时,可以对各区域喷涂多次,使多次喷涂的厚度之和达到该区域的预定厚度。
本领域技术人员应当理解,本申请可以在正极极片表面制备上述差异厚度的纤维隔离层,也可以在负极极片表面制备上述差异厚度的纤维隔离层,当然,还可以在正、负极极片表面同时制备上述差异厚度的纤维隔离层,只要保证电池电极组件的整体厚度均匀即可,这些都应当属于本申请的保护范围。
示例性地,可以在正极极片的其中一面喷涂上述纤维隔离层,或者在负极极片的其中一面喷涂上述纤维隔离层,或者在正极极片的两面均喷涂上述纤维隔离层,或者在负极极片的两面均喷涂上述纤维隔离层,或者在正极极片的其中一面和负极极片的其中一面喷涂上述纤维隔离层,只要保证电池电极组件的整体厚度均匀即可。
本申请提供一种锂离子电池的制备方法,在电极极片的极耳区、双面涂布区、单面涂布区和未涂布区分别喷涂得到差异厚度的纤维隔离层,使得电极组件的整体厚度差小于5μm,能够使锂离子电池电极组件在热压化成或者激活过程中压力分布均匀,减少因电极组件局部析锂而导致的内部短路,从而提高电极组件的安全性。
本申请的一种实施方案中还提供了一种电子装置,包括上述实施方案中所述的锂离子电池,该电子装置中,所使用的锂离子电池及电极组件,能够在热压化成或者激活过程中压力分布均匀,减少因电极组件局部析锂而导致的内部短路,从而提高电子装置的安全性。
本申请中的正极极片没有特别限制,可以采用本领域公知的任何正极极片。例如,含有钴酸锂的正极极片,含有锰酸锂的正极极片,含有磷酸铁锂的正极极片,或含有镍钴锰酸锂或镍钴铝酸锂的正极极片。
本申请中的负极极片没有特别限制,只要能够实现本申请目的即可。例如,负极极片通常包含负极集流体和负极活性材料层。其中,负极集流体没有特别限制,可以使用本领域公知的任何负极集流体,例如铜箔、铝箔、铝合金箔以及复合集流体等。负极活性材料层包括负极活性材料,负极活性材料没有特别限制,可以使用本领域公知的任何负极活性材料。例如,可以包括人造石墨、天然石墨、中间相碳微球、软碳、硬碳、硅、硅碳或钛酸锂中的至少一种。
本申请中,所述电解液没有特别限制,可以使用本领域公知的任何电解液,例如可以是凝胶态、固态和液态中的任一种,例如,液态电解液可以包括锂盐和非水溶剂。
锂盐没有特别限制,可以使用本领域公知的任何锂盐,只要能实现本申请的目的即可。例如,锂盐可以包括LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3或LiPO 2F 2中的至少一种。例如,锂盐可选用LiPF 6
非水溶剂没有特别限定,只要能实现本申请的目的即可。例如,非水溶剂可以包括碳酸酯化合物、羧酸酯化合物、醚化合物、腈化合物或其它有机溶剂中的至少一种。
例如,碳酸酯化合物可以包括碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)、碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯或碳酸三氟甲基亚乙酯中的至少一种。
本申请的集流体的材料没有特别限制,可以采用本领域技术人员熟知的材料,例如集流体的材料可以包括但不限于:铜、镍、钛、钼、铝、铁、锌或不锈钢中的至少一种,或者使用导电无机材料,例如,碳或石墨烯中的至少一种。
以下,举出实施例及比较例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。另外,只要无特别说明,“份”、“%”为重量基准。
实施例1
<负极极片的制备>
将负极活性材料石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体铜箔上,110℃条件下烘干,得到单面涂布的负极极片。
以上步骤完成后,采用同样的方法在该极片背面也完成这些步骤,即得到双面涂布完成的负极极片。涂布完成后,将极片裁切成规格为76mm至851mm的片材待用。
<正极极片的制备>
a)正极活性材料的涂布
将正极活性材料钴酸锂、导电炭黑、聚偏氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。然后将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到单面涂布的正极极片。
b)差异厚度纤维隔离层的制备
聚合物选用聚偏氟乙烯,无机颗粒选用勃姆石。
将95%的聚偏氟乙烯,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,搅拌均匀至浆料粘度稳定,得到质量分数为25%的浆料A;然后将95%的勃姆石,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,并搅拌均匀至浆料粘度稳定,得到质量分数为40%的浆料B。在正极极片表面,利用浆料A通过纺丝设备喷涂得到一层厚度均匀的纺丝层,再通过电喷雾设备将浆料B喷涂到该纤维隔离层表面形成纤维隔离层,然后在如图1a所示电极组件的正极极片的第二段5分别先喷涂浆料A再喷涂浆料B得到厚度50μm的纤维隔离层,采用同样喷涂方法在图1a所示电极组件的第一段4、第三段6以及第四段7增加厚度100μm的纤维隔离层,以及在极耳下方的空箔区增加厚度150μm的纤维隔离层,其中,无机颗粒在纤维隔离层中的填充比例为10%,纤维隔离层的纺丝直径为100nm,纤维隔离层的孔隙率为55%。
c)双面涂布极片的制备
在极片背面重复上述步骤,然后在40℃条件下真空烘干去除DMF等分散剂,随后升高温度至80℃热处理6h(小时)以完成交联过程,即得到双面增厚纤维隔离层的正极极片,该正极极片的未涂布区中纤维隔离层的厚度共增加100μm,然后将极片裁切成规格为74mm至867mm的片材待用。
<电解液的制备>
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯以质量比EC:EMC:DEC=30:50:20混合得到有机溶液,然后向有机溶剂中加入锂盐六氟磷酸锂溶解并混合均匀,得到锂盐的浓度为1.15Mol/L的电解液。
<锂离子电池的制备>
将制备的负极极片和正极极片相对并叠好卷绕成电极组件,卷绕结构收尾处、极耳处,正极头部区域贴胶后,置入铝塑膜中,经顶侧封、注液、封装后,得到锂离子电池。
实施例2
除浆料B中的无机颗粒选用氧化铝、浆料B制备过程不同以外,其余与实施例1相同。
其中,浆料B制备过程为:将三氧化二铝和聚偏氟乙烯按照重量比90:10进行混合,然后加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.4的浆料。无机颗粒在纤维隔离层中的填充比例为4%、无机颗粒的平均粒径为500nm。
实施例3
除浆料B中氧化铝在纤维隔离层中的填充比例为10%、纤维隔离层的孔隙率为50%以外,其余与实施例2相同。
实施例4
除浆料B中氧化铝在纤维隔离层中的填充比例为50%、纤维隔离层的孔隙率为45%以外,其余与实施例2相同。
实施例5
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的孔隙率为40%以外,其余与实施例2相同。
实施例6
除浆料B中氧化铝在纤维隔离层中的填充比例为95%、纤维隔离层的孔隙率为43%以外,其余与实施例2相同。
实施例7
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为15nm、纤维隔离层的孔隙率为30%以外,其余与实施例2相同。
实施例8
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为50nm、纤维隔离层的孔隙率为42%以外,其余与实施例2相同。
实施例9
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、纤维隔离层的孔隙率为42%以外,其余与实施例2相同。
实施例10
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为2000nm、纤维隔离层的孔隙率为38%以外,其余与实施例2相同。
实施例11
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为15nm、纤维隔离层的孔隙率为35%以外,其余与实施例2相同。
实施例12
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为800nm、纤维隔离层的孔隙率为38%以外,其余与实施例2相同。
实施例13
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为1000nm、纤维隔离层的孔隙率为35%以外,其余与实施例2相同。
实施例14
除聚合物选用聚酰亚胺(PI)、浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为500nm、纤维隔离层的孔隙率为42%以外,其余与实施例2相同。
实施例15
除聚合物选用聚氧化乙烯(PEO)、浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为500nm、纤维隔离层的孔隙率为40%以外,其余与实施例2相同。
实施例16
除聚合物选用聚酰亚胺和聚偏氟乙烯的混合物、浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为500nm、纤维隔 离层的孔隙率为42%以外,其余与实施例2相同。其中,聚酰亚胺和聚偏氟乙烯的体积比为30:70。
实施例17
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、纤维隔离层的孔隙率为80%以外,其余与实施例2相同。
实施例18
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为5000nm、纤维隔离层的孔隙率为70%以外,其余与实施例2相同。
实施例19
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、纤维隔离层的孔隙率为30%以外,其余与实施例2相同。
实施例20
<负极极片的制备>
a)负极活性材料的涂布
将负极活性材料石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀,得到负极活性材料。将负极活性材料均匀涂覆在负极集流体铜箔上,110℃条件下烘干,得到单面涂布的负极极片。
b)纤维隔离层的制备
聚合物选用聚偏氟乙烯,无机颗粒选用氧化铝。
将95%的聚偏氟乙烯,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,搅拌均匀至浆料粘度稳定,得到质量分数为25%的浆料A;然后将95%的氧化铝,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,并搅拌均匀至浆料粘度稳定,得到质量分数为40%的浆料B。在负极极片表面,利用浆料A通过纺丝设备喷涂得到一层厚度均匀的纺丝层,再通过电喷雾设备将浆料B喷涂到该纤维隔离层表面形成纤维隔离层,然后在负极极片的负极超过正极的部分,即overhang区域(宽度0.5至1.5mm),分别先喷涂浆料A再喷涂浆料B得到相对于其他区域厚度大于150μm的纤维隔离层,其中,无机颗粒在纤维隔离层中的填充比例为80%,纤维隔离层的纺丝直径为500nm,纤维隔离层的孔隙率为55%。
c)双面涂布极片的制备
在极片背面重复上述步骤,然后在40℃条件下真空烘干去除DMF等分散剂,随后升高温度至80℃热处理6h(小时)以完成交联过程,即得到双面增厚纤维隔离层的负极极片,然后将极片裁切成规格为38mm*58mm的片材待用。
<正极极片的制备>
将正极活性材料钴酸锂、导电炭黑、聚偏氟乙烯按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。然后将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到单面涂布的正极极片。
以上步骤完成后,采用同样的方法在该极片背面也完成这些步骤,即得到双面涂布完成的正极极片。涂布完成后,将极片裁切成规格为36mm*56mm的片材待用。
<电解液的制备>
在干燥氩气气氛中,将有机溶剂DOL和DME以体积比DOL:DME=1:1混合,得到混合溶剂,然后向混合溶剂中加入LiFSI和LiNO 3,溶解并混合均匀后制得电解液。其中,LiFSI在混合溶剂中的添加量为1mol/L,LiNO 3在混合溶剂中的添加量为1wt%。
<锂离子叠片电池的制备>
将负极极片和正极极片相叠组成叠片,然后用胶带将整个叠片结构的四个角固定好,置入铝塑膜中,经顶侧封、注电解液、封装后,得到锂离子叠片电池。
实施例21
除负极极片选用硅体系极片、浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm以外,其余与实施例2相同。
实施例22
除负极极片选用镍钴锰酸锂极片、浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm以外,其余与实施例2相同。
实施例23
<负极极片的制备>
a)负极活性材料的涂布
将负极活性材料石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀,得到负极活性材料。将负极活性材料均匀涂覆在负极集流体铜箔上,110℃条件下烘干,得到单面涂布的负极极片。
b)差异厚度纤维隔离层的制备
聚合物选用聚偏氟乙烯,无机颗粒选用勃姆石。
将95%的聚偏氟乙烯,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,搅拌均匀至浆料粘度稳定,得到质量分数为25%的浆料A;然后将95%的勃姆石,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,并搅拌均匀至浆料粘度稳定,得到质量分数为40%的浆料B。在负极极片表面,利用浆料A通过纺丝设备喷涂得到一层厚度均匀的纺丝层,再通过电喷雾设备将浆料B喷涂到该纤维隔离层表面形成纤维隔离层,然后在如图1a所示电极组件的负极极片的第二段5分别先喷涂浆料A再喷涂浆料B得到厚度50μm的纤维隔离层,采用同样喷涂方法在图1a所示电极组件的第一段4、第三段6以及第四段7增加厚度100μm的纤维隔离层,以及在极耳下方的空箔区增加厚度150μm的纤维隔离层,其中,无机颗粒在纤维隔离层中的填充比例为10%,纤维隔离层的纺丝直径为100nm,纤维隔离层的孔隙率为55%。
c)双面涂布极片的制备
在极片背面重复上述步骤,然后在40℃条件下真空烘干去除DMF等分散剂,随后升高温度至80℃热处理6h(小时)以完成交联过程,即得到双面增厚纤维隔离层的负极极片,该负极极片的未涂布区中纤维隔离层的厚度共增加100μm,然后将极片裁切成规格为74mm至867mm的片材待用。
<正极极片的制备>
将正极活性材料钴酸锂、导电炭黑、聚偏氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。然后将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到单面涂布的正极极片。
以上步骤完成后,采用同样的方法在该极片背面也完成这些步骤,即得到双面涂布完成的正极极片。涂布完成后,将极片裁切成规格为76mm至851mm的片材待用。
<电解液的制备>
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯以质量比EC:EMC:DEC=30:50:20混合得到有机溶液,然后向有机溶剂中加入锂盐六氟磷酸锂溶解并混合均匀,得到锂盐的浓度为1.15Mol/L的电解液。
<锂离子电池的制备>
将制备的负极极片和正极极片相对并叠好卷绕成电极组件,卷绕结构收尾处、极耳处,正极头部区域贴胶后,置入铝塑膜中,经顶侧封、注液、封装后,得到锂离子电池。
对比例1
<负极极片的制备>
将负极活性材料石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体铜箔上,110℃条件下烘干,得到单面涂布的负极极片。
以上步骤完成后,采用同样的方法在该极片背面也完成这些步骤,即得到双面涂布完成的负极极片。涂布完成后,将极片裁切成规格为76mm至851mm的片材待用。
<正极极片的制备>
a)正极活性材料的涂布
将正极活性材料钴酸锂、导电炭黑、聚偏氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。然后将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到单面涂布的正极极片。
b)差异厚度纤维隔离层的制备
聚合物选用聚偏氟乙烯,无机颗粒选用勃姆石。
将95%的聚偏氟乙烯,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,搅拌均匀至浆料粘度稳定,得到质量分数为25%的浆料A;然后将95%的勃姆石,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,并搅拌均匀至浆料粘度稳定,得到质量分数为40%的浆料B。在正极极片表面,利用浆料A通过纺丝设备喷涂得到一层厚度均匀的纺丝层,再通过电喷雾设备将浆料B喷涂到该纤维隔离层表面形成纤维隔离层,然后在如图1a所示的正极极片的第二段5分别先喷涂浆料A再喷涂浆料B得到厚度50μm的纤维隔离层,纤维隔离层的纺丝直径为100nm,纤维隔离层的孔隙率为55%。
c)双面涂布极片的制备
在极片背面重复上述步骤,然后在40℃条件下真空烘干去除DMF等分散剂,随后升高温度至80℃热处理6h(小时)以完成交联过程,即得到双面增厚纤维隔离层的正极极片,该正极极片的未涂布区中纤维隔离层的厚度共增加100μm,然后将极片裁切成规格为74mm至867mm的片材待用。
<电解液的制备>
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯以质量比EC:EMC:DEC=30:50:20混合得到有机溶液,然后向有机溶剂中加入锂盐六氟磷酸锂溶解并混合均匀,得到锂盐的浓度为1.15Mol/L的电解液。
<锂离子电池的制备>
将制备的负极极片和正极极片相对并叠好卷绕成电极组件,卷绕结构收尾处、极耳处,正极头部区域贴胶后,置入铝塑膜中,经顶侧封、注液、封装后,得到锂离子电池。
对比例2
除了在图1a所示的第一段4、第三段6以及第四段7增加厚度100μm的纤维隔离层以外,其余与对比例1相同。
对比例3
<负极极片的制备>
将负极活性材料石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体铜箔上,110℃条件下烘干,得到单面涂布的负极极片。
以上步骤完成后,采用同样的方法在该极片背面也完成这些步骤,即得到双面涂布完成的负极极片。涂布完成后,将极片裁切成规格为76mm至851mm的片材待用。
<正极极片的制备>
a)正极活性材料的涂布
将正极活性材料钴酸锂、导电炭黑、聚偏氟乙烯按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。然后将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到单面涂布的正极极片。
c)双面涂布极片的制备
在极片背面重复上述步骤,得到双面涂布的正极极片,然后将极片裁切成规格为74mm至867mm的片材待用。
<电解液的制备>
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯以质量比EC:EMC:DEC=30:50:20混合得到有机溶液,然后向有机溶剂中加入锂盐六氟磷酸锂溶解并混合均匀,得到锂盐的浓度为1.15Mol/L的电解液。
<锂离子电池的制备>
将制备的负极极片和正极极片相对并叠好卷绕成电极组件,正、负极片中间使用聚乙烯(PE)作为隔离膜,卷绕成电池。卷绕结构收尾处、极耳处,正极头部区域贴胶后,置入铝塑膜中,经顶侧封、注液、封装后,最终得到锂离子电池。
对比例4
除隔离膜选用无纺布外,其余与对比例3相同。
对比例5
除隔离膜选用无纺布交联陶瓷颗粒的隔膜外,其余与对比例3相同。
对比例6
<负极极片的制备>
将负极活性材料石墨、导电炭黑、丁苯橡胶按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体铜箔上,110℃条件下烘干,得到单面涂布的负极极片。
以上步骤完成后,采用同样的方法在该极片背面也完成这些步骤,即得到双面涂布完成的负极极片。涂布完成后,将极片裁切成规格为76mm至851mm的片材待用。
<正极极片的制备>
a)正极活性材料的涂布
将正极活性材料钴酸锂、导电炭黑、聚偏氟乙烯按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。然后将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到单面涂布的正极极片。
b)厚度均匀纤维隔离层的制备
聚合物选用聚偏氟乙烯,无机颗粒选用勃姆石。
将95%的聚偏氟乙烯,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,搅拌均匀至浆料粘度稳定,得到质量分数为25%的浆料A;然后将95%的勃姆石,4.5%丙烯腈和0.5%三氟化硼分散在二甲基甲酰胺/丙酮=7:3的混合溶剂中,并搅拌均匀至浆料粘度稳定,得到质量分数为40%的浆料B。在正极极片表面,利用浆料A通过纺丝设备喷涂得到一层厚度均匀的纺丝层,再通过电喷雾设备将浆料B喷涂到该纤维隔离层表面形成纤维隔离层,纤维隔离层厚度10μm。
c)双面涂布极片的制备
在极片背面重复上述步骤,然后在40℃条件下真空烘干去除DMF等分散剂,随后升 高温度至80℃热处理6h(小时)以完成交联过程,即得到双面均匀纤维隔离层的正极极片,然后将极片裁切成规格为74mm至867mm的片材待用。
<电解液的制备>
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯以质量比EC:EMC:DEC=30:50:20混合得到有机溶液,然后向有机溶剂中加入锂盐六氟磷酸锂溶解并混合均匀,得到锂盐的浓度为1.15Mol/L的电解液。
<锂离子电池的制备>
将制备的负极极片和正极极片相对并叠好卷绕成电极组件,卷绕结构收尾处、极耳处,正极头部区域贴胶后,置入铝塑膜中,经顶侧封、注液、封装后,得到锂离子电池。
对比例7
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为10nm、纤维隔离层的孔隙率为30%以外,其余与实施例2相同。
对比例8
除浆料B中氧化铝在纤维隔离层中的填充比例为80%、纤维隔离层的纺丝直径为500nm、无机颗粒的平均粒径为10nm、纤维隔离层的孔隙率为35%以外,其余与实施例2相同。
<性能测试>
使用下述方法对实施例1至23及对比例1至8制得的锂离子电池进行测试:
锂离子电池厚度是否均匀的评价标准为:当锂离子电池热压完成后,整体锂离子电池最大厚度与最小厚度的差值是否小于5μm,若小于5μm表明锂离子电池厚度均匀,若大于或等于5μm表明锂离子电池厚度不均匀。
锂离子电池最大厚度测量方式为:施加50g,使用PPG测厚机或千分尺测量锂离子电池最高点厚度;锂离子电池最小厚度测量方式:使用千分尺测厚,测试锂离子电池最低区域的厚度。
锂离子电池是否析锂的判断:
15℃下,锂离子电池先使用1C,然后满充至截止电压,以0.7C放电至截止电压,以此测试流程循环15圈后,锂离子电池再以1C电流满充,结束充电流程。
电池满充后,进行拆解,观察负极表面靠近极耳区域是否存在灰白色或白色固体物质,若无,表明锂离子电池未析锂,锂离子电池正常;如有,则表明电池存在析锂现象,存在 安全风险。
实施例1至23和对比例1至8的测试参数以及相应的实验结果如下表1所示:
Figure PCTCN2020081820-appb-000001
Figure PCTCN2020081820-appb-000002
从表1中可以看出,实施例1至23与对比例1至2相比较,即分别与只在电极组件极耳区、双面涂布区、单面涂布区或未涂布区设置差异厚度纤维隔离层相比,同时对电极组件的各个段设置差异厚度的纤维隔离层,从而使锂离子电池整体厚度均匀,能够避免锂离子电池析锂,从而提高锂离子电池的安全性。
实施例1至23与对比例3至6相比较,即分别与选用均匀厚度无纺布、均匀厚度无纺布交联陶瓷颗粒以及均匀厚度纤维隔离层作为隔离膜相比,纤维隔离层的厚度随电极极片的厚度变化而变化后,使锂离子电池整体厚度均匀,能够避免锂离子电池析锂。
通过对比例7和8可知,锂离子电池是否析锂与纤维隔离层纤维直径、无机颗粒粒径有关,其中,纤维隔离层纤维直径越小,纤维之间孔隙越小,透气度降低,影响电池动力学,锂离子电池更容易析锂;无机颗粒粒径尺寸过小,无机颗粒填充纤维隔离层纤维大部分孔隙,影响锂离子电池动力学,锂离子电池更容易析锂。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (11)

  1. 一种电化学装置,其包括电极极片以及在所述电极极片的至少一个表面上的纤维隔离层,其中,所述纤维隔离层的厚度随所述电极极片的厚度变化而变化,使得电化学装置的整体厚度差小于5μm。
  2. 根据权利要求1所述的电化学装置,其中,所述电化学装置包括极耳段(3)、第一段(4)、第二段(5)和第三段(6),各段中的纤维隔离层总厚度与相对应的各段的电极极片总厚度之和的差值小于5μm。
  3. 根据权利要求1所述的电化学装置,其中,所述电化学装置的每一层中纤维隔离层的厚度随着该层中电极极片的厚度变化而变化,使得各层的厚度差之和小于5μm。
  4. 根据权利要求2所述的电化学装置,所述纤维隔离层在极耳段(3)、第一段(4)、第二段(5)和第三段(6)中的厚度分别为5至30μm、80至150μm、105至180μm、105至180μm。
  5. 根据权利要求1所述的电化学装置,所述纤维隔离层包含聚合物,所述聚合物包括聚偏氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚氧化乙烯、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯,聚偏氟乙烯-六氟丙烯、聚偏二氟乙烯-共-三氟氯乙烯或上述物质衍生物中的至少一种。
  6. 根据权利要求1所述的电化学装置,所述纤维隔离层的纤维直径为15nm至5μm,所述纤维隔离层的孔隙率为20%至90%。
  7. 根据权利要求6所述的电化学装置,所述纤维隔离层的孔隙率随聚合物纤维多孔基体的厚度增加而增加。
  8. 根据权利要求1所述的电化学装置,其中,所述纤维隔离层还包含无机颗粒,所述无机颗粒的无机物包括氧化铪、钛酸锶、二氧化锡、氧化铯、氧化镁、氧化镍、氧化钙、氧化钡、氧化锌、氧化锆、氧化钇、氧化铝、氧化钛、二氧化硅、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、氧化锂、氟化锂、氢氧化锂、碳酸锂、偏铝酸锂、锂锗磷硫陶瓷或石榴石陶瓷中的至少一种。
  9. 根据权利要求8所述的电化学装置,所述无机颗粒的平均粒径为15nm至10μm。
  10. 一种电化学装置,其包含权利要求1-9的任一项所述的电化学装置。
  11. 一种电子装置,其包含权利要求10中所述的电化学装置。
PCT/CN2020/081820 2020-03-27 2020-03-27 电极组件、包含该电极组件的电化学装置及电子装置 WO2021189465A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080035663.0A CN113826252A (zh) 2020-03-27 2020-03-27 电极组件、包含该电极组件的电化学装置及电子装置
PCT/CN2020/081820 WO2021189465A1 (zh) 2020-03-27 2020-03-27 电极组件、包含该电极组件的电化学装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081820 WO2021189465A1 (zh) 2020-03-27 2020-03-27 电极组件、包含该电极组件的电化学装置及电子装置

Publications (1)

Publication Number Publication Date
WO2021189465A1 true WO2021189465A1 (zh) 2021-09-30

Family

ID=77891526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081820 WO2021189465A1 (zh) 2020-03-27 2020-03-27 电极组件、包含该电极组件的电化学装置及电子装置

Country Status (2)

Country Link
CN (1) CN113826252A (zh)
WO (1) WO2021189465A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972422A (zh) * 2021-10-22 2022-01-25 宁德新能源科技有限公司 电化学装置和电子装置
CN114188591A (zh) * 2021-11-19 2022-03-15 宁德新能源科技有限公司 一种电芯、电池及电子设备
CN114530575A (zh) * 2022-01-29 2022-05-24 宁德新能源科技有限公司 电化学装置和用电装置
WO2024083167A1 (zh) * 2022-10-18 2024-04-25 珠海冠宇动力电池有限公司 一种电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124414A (zh) * 2013-04-28 2014-10-29 华为技术有限公司 一种锂离子电池复合电极片及其制备方法和锂离子电池
CN105449262A (zh) * 2014-06-30 2016-03-30 东莞新能源科技有限公司 柔性锂离子电池及其制备方法
CN207368124U (zh) * 2017-07-28 2018-05-15 东莞市新瑞能源技术有限公司 一种软包装锂离子电池
CN110165287A (zh) * 2019-06-11 2019-08-23 东莞塔菲尔新能源科技有限公司 一种电芯卷绕装置、电芯生产方法及动力电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124414A (zh) * 2013-04-28 2014-10-29 华为技术有限公司 一种锂离子电池复合电极片及其制备方法和锂离子电池
CN105449262A (zh) * 2014-06-30 2016-03-30 东莞新能源科技有限公司 柔性锂离子电池及其制备方法
CN207368124U (zh) * 2017-07-28 2018-05-15 东莞市新瑞能源技术有限公司 一种软包装锂离子电池
CN110165287A (zh) * 2019-06-11 2019-08-23 东莞塔菲尔新能源科技有限公司 一种电芯卷绕装置、电芯生产方法及动力电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972422A (zh) * 2021-10-22 2022-01-25 宁德新能源科技有限公司 电化学装置和电子装置
CN114188591A (zh) * 2021-11-19 2022-03-15 宁德新能源科技有限公司 一种电芯、电池及电子设备
CN114530575A (zh) * 2022-01-29 2022-05-24 宁德新能源科技有限公司 电化学装置和用电装置
CN114530575B (zh) * 2022-01-29 2024-04-05 宁德新能源科技有限公司 电化学装置和用电装置
WO2024083167A1 (zh) * 2022-10-18 2024-04-25 珠海冠宇动力电池有限公司 一种电池

Also Published As

Publication number Publication date
CN113826252A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2021189465A1 (zh) 电极组件、包含该电极组件的电化学装置及电子装置
JP5326036B2 (ja) リチウム二次電池
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
KR101592355B1 (ko) 플렉시블 집전체를 이용한 이차전지 및 플렉시블 집전체의 제조방법
JP2017084822A (ja) セパレータおよび電池
US9831480B2 (en) Fiber-containing polymer film and method of manufacturing same, and electrochemical device and method of manufacturing same
JP3980505B2 (ja) 薄型リチウムイオン二次電池
WO2021189454A1 (zh) 一种电极组件及包含其的电化学装置和电子装置
JP2014017264A (ja) 電池用セパレータ、電池用セパレータの製造方法およびリチウム二次電池
KR102390657B1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2023098311A1 (zh) 一种电化学装置和电子装置
WO2022205136A1 (zh) 一种负极极片、包含该负极极片的电化学装置及电子装置
WO2021189459A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2022141508A1 (zh) 一种电化学装置和电子装置
KR20220034064A (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2022120651A1 (zh) 一种卷绕式电极组件、电化学装置及电子装置
US20240079592A1 (en) Electrochemical Apparatus and Electronic Apparatus
CN111354904A (zh) 一种锂离子电池隔膜、锂离子电池电极和锂离子电池
JP2018147769A (ja) 電気化学素子用セパレータおよび非水電解質電池
JP3351765B2 (ja) 非水電解液二次電池
WO2021189469A1 (zh) 电化学装置
WO2021189476A1 (zh) 电化学装置
CN115088127B (zh) 电化学装置
US20240047828A1 (en) Non-aqueous electrolyte secondary battery
CN110603684A (zh) 锂离子二次电池元件及锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927125

Country of ref document: EP

Kind code of ref document: A1