WO2021189212A1 - 光电扫描装置、电机以及自动驾驶汽车 - Google Patents

光电扫描装置、电机以及自动驾驶汽车 Download PDF

Info

Publication number
WO2021189212A1
WO2021189212A1 PCT/CN2020/080746 CN2020080746W WO2021189212A1 WO 2021189212 A1 WO2021189212 A1 WO 2021189212A1 CN 2020080746 W CN2020080746 W CN 2020080746W WO 2021189212 A1 WO2021189212 A1 WO 2021189212A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotor
base
photoelectric scanning
motor
Prior art date
Application number
PCT/CN2020/080746
Other languages
English (en)
French (fr)
Inventor
李明贵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/080746 priority Critical patent/WO2021189212A1/zh
Priority to EP20928008.0A priority patent/EP4113169A4/en
Priority to CN202080097632.8A priority patent/CN115176173A/zh
Publication of WO2021189212A1 publication Critical patent/WO2021189212A1/zh
Priority to US17/950,622 priority patent/US20230016536A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/38Electric signal transmission systems using dynamo-electric devices
    • G08C19/46Electric signal transmission systems using dynamo-electric devices of which both rotor and stator carry windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93273Sensor installation details on the top of the vehicles

Definitions

  • This application relates to the technical field of photoelectric scanning equipment, and in particular to a photoelectric scanning device, a motor, and an autonomous vehicle.
  • the photoelectric scanning device generally includes a radar and a motor.
  • the motor is generally a separate motor.
  • the motor includes a stator (not shown), a rotor (not shown), a fixed shaft 300 and a rotating body 200.
  • the rotating body 200 is rotatably sleeved on the outside of the fixed shaft 300; the stator is installed on the fixed shaft 300, and the rotor is installed on the rotating body 200.
  • the radar is installed at one end of the rotating body 200 and rotates with the rotating body to increase the recognition range of the radar.
  • the power and control signals required by the radar are transmitted wirelessly.
  • the power signal is transmitted to the radar by a power transmission component installed at one end of the motor, and the control signal is transmitted to the radar by a signal transmission component installed at the other end of the motor.
  • the power transmission component includes a power transmission inner ring 121 and a power transmission outer ring 122.
  • the signal transmission component includes a signal inner ring 131 and a signal outer ring 132.
  • the power transmission inner ring 121 is mounted on the fixed shaft 300 through the first adapter 400
  • the power transfer outer ring 122 is installed on the rotating body 200 through the second adapter 500, and the power transfer inner ring 121 realizes wireless power transfer to the power transfer outer ring 122 through magnetic coupling.
  • the signal inner ring 131 is sleeved on the fixed shaft 300, the signal outer ring 132 is installed on the rotating body 200 and sleeved outside the signal inner ring 131, and the signal inner ring 131 realizes wireless signal transmission to the signal outer ring 132 through magnetic coupling.
  • the above-mentioned photoelectric scanning device includes many parts and the structure is complicated; in addition, the above-mentioned photoelectric scanning device has a complicated assembly process and requires multiple assembly times, resulting in a large cumulative assembly tolerance, which in turn leads to coupling failure of the electrical transmission component and/or the signal transmission component. The probability is high.
  • an embodiment of the present application provides a photoelectric scanning device.
  • the photoelectric scanning device includes a motor, a wireless transmission component, and an environment detection device.
  • the motor includes a stator, a rotor, and a base.
  • the stator is fixedly mounted on the base, and the rotor sleeve
  • the wireless transmission component includes a first coil and a second coil.
  • the first coil and the environment detection device are respectively installed on the rotor, and the first coil is electrically connected with the environment detection device, and the second coil is installed on the base.
  • the two coils are electrically connected with the control host; the first coil and the second coil are magnetically coupled to realize wireless signal and/or power transmission between the control host and the environment detection device.
  • the first coil is installed on the rotor, and the second coil is installed on the base.
  • the motor is used to realize the installation of the wireless transmission component.
  • the adapter is omitted; in addition, the environment
  • the detection device is installed on the rotor, which realizes the direct drive of the motor to the environment detection device.
  • the outer circumferential surface of the rotor is provided with a first installation slot, and the first coil is installed in the first installation slot.
  • the first installation slot By providing the first installation slot, the first coil can be prevented from sliding on the outer circumferential surface of the rotor, thereby ensuring the reliability of the installation of the first coil and the accuracy of the installation position.
  • the rotor caused by the installation of the first coil on the rotor can be avoided.
  • the increase in volume is conducive to reducing the overall volume of the motor.
  • the inner wall surface of the annular side wall is provided with a second installation groove, and the second coil is installed in the second installation groove.
  • Such a design can prevent the second coil from sliding on the inner wall surface of the circular side wall, thereby ensuring the reliability of the installation of the second coil and the accuracy of the installation position, and in addition, avoiding the installation of the second coil on the circular side wall This affects the rotation of the rotor and avoids the increase in the overall volume of the motor caused by the installation of the second coil on the annular side wall.
  • the first coil and the second coil are located in the side wall space, and the first coil is installed on the bottom end surface of the rotor facing the bottom plate;
  • the second coil is installed on the bottom plate in the annular side wall.
  • the bottom end surface of the rotor is provided with a third installation slot, and the first coil is installed in the third installation slot.
  • the first coil can be prevented from sliding on the bottom end surface, thereby ensuring the reliability of the installation of the first coil and the accuracy of the installation position.
  • it can avoid the increase in the volume of the rotor after the first coil is installed on the rotor. , Which is beneficial to reduce the overall volume of the motor.
  • a side surface of the bottom plate facing the rotor is provided with a fourth installation slot, and the second coil is installed in the fourth installation slot.
  • This design can prevent the second coil from sliding on the inner wall of the circular side wall, thereby ensuring the reliability of the second coil installation and the accuracy of the installation position, and avoiding the second coil from affecting the rotation of the rotor after the second coil is installed on the bottom plate , And avoid the increase of the overall volume of the motor after the second coil is installed on the bottom plate.
  • stator and the base are connected by a first flange.
  • the connection between the stator and the base is realized through the first flange, which is convenient, reliable, easy to disassemble and assemble, and convenient to maintain the inside of the motor.
  • stator and the base are an integral structure.
  • the stator and the base are designed into an integrated structure, so that the motor is further integrated, eliminating the assembly steps of the stator and the base, reducing the number of assembly times in the motor assembly process, thereby reducing the cumulative tolerance caused by multiple assembly.
  • the first coil is disposed on the outer circumferential surface of the rotor, the second coil is disposed on the base and coaxially sleeved outside the first coil; the third coil The coil is arranged on the bottom end surface of the rotor facing the base, and the fourth coil is installed on the base.
  • the first coil and the third coil are both disposed on the outer circumferential surface of the rotor; the second coil is disposed on the base and coaxially sleeved on the first coil. Outside of the coil, the fourth coil is arranged on the base and coaxially sleeved on the outside of the third coil.
  • the first coil and the third coil are arranged in the same surface of the rotor, which makes the installation of the first coil and the third coil more convenient.
  • the first coil and the third coil are both disposed on the bottom end surface of the rotor facing the base, and the second coil and the fourth coil are mounted on the base .
  • the first coil and the third coil are arranged in the same surface of the rotor, which makes the installation of the first coil and the third coil more convenient.
  • the first coil and the third coil are arranged closer to the connection position of the base and the stator, and the assembly tolerance between the base and the stator has a smaller effect on the installation tolerance of the first coil and the third coil.
  • a magnetic isolation member is provided between the first coil and the rotor.
  • the signal transmission component further includes a signal inner magnetic ring and a signal outer magnetic ring, the third coil is wound on the signal inner magnetic ring, and the fourth coil is wound on the signal inner magnetic ring.
  • the signal is on the outer magnetic ring.
  • the environment detection device includes a lidar, an infrared radar, a millimeter wave radar, or a camera.
  • inventions of the present application provide a motor for driving an environment detection device.
  • the motor includes a stator, a rotor, a base, and a wireless transmission assembly; the stator is fixedly installed on the base, the rotor is sleeved on the stator, and the wireless transmission assembly includes a first A coil and a second coil, the first coil is installed on the rotor, and the second coil is installed on the base; the environment detecting device is installed on the rotor, and the environment detecting device is electrically connected to the first coil; the second coil is connected to the control environment detecting device The control host is electrically connected; the wireless signal and/or power transmission is realized between the control host and the environment detection device through the magnetic coupling between the first coil and the second coil.
  • the first coil is installed on the rotor, and the second coil is installed on the base.
  • the motor is used to realize the installation of the wireless transmission component, which eliminates the need for adapters compared with related technologies; in addition, the environment detection device is installed Due to the rotor, the direct drive of the motor to the environment detection device is realized. Compared with the related technology, the fixed shaft and the rotating body are omitted.
  • the omission of the adapter, the fixed shaft and the rotating body makes the motor structure simpler, which is beneficial to Realize the miniaturization of the motor, which in turn helps to reduce the overall volume of the photoelectric scanning device; in addition, the simple structure of the motor reduces the number of assembly times during the motor assembly process, thereby reducing the cumulative tolerance caused by multiple assembly and reducing the number of wireless transmission components.
  • Figure 1 is a cross-sectional view of a motor in the related art
  • FIG. 2 is a schematic structural diagram of an autonomous vehicle provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a photoelectric scanning device provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a motor provided by an embodiment of the application.
  • Figure 5 is an exploded view of the motor in Figure 4.
  • Figure 6 is a front view of the rotor and stator in Figure 5;
  • Figure 7 is a cross-sectional view of the base in Figure 5;
  • Fig. 9 is a cross-sectional view of another embodiment of the motor in Fig. 4.
  • Figure 10 is a front view of the stator and rotor in Figure 9;
  • Figure 11 is a cross-sectional view of the base in Figure 9;
  • Figure 12 is a cross-sectional view of another embodiment of the motor in Figure 4.
  • Figure 15 is an exploded view of the motor in Figure 14;
  • this article uses the Y-axis coordinate directions marked in the drawings as the upper and lower directions to describe the motor structure.
  • the upper and lower directions are based on the orientation or positional relationship shown in the drawings, and are only for convenience. Describe this application and simplify the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the application.
  • the power transmission inner ring 121 is installed on the fixed shaft 300 through the first adapter 400, and the power transmission outer ring 122 is installed on the rotating body 200 through the second adapter 500.
  • the second adapter 500 can be installed on the rotating body 200. And is located between the first adapter 400 and the rotating body 200.
  • One end of the first power transfer lead is connected to the power transfer inner ring 121, and the other end extends from the bottom of the motor to connect to an external power source.
  • One end of the second power transfer lead is connected to the power transfer outer ring 122, and the other end passes through the opening in the fixed shaft 300
  • the central hole extends from the top of the rotating body 200 and is connected to the radar.
  • the working current is transmitted from the first power transmission lead to the power transmission inner ring 121.
  • the power transmission inner ring 121 realizes wireless power transmission to the power transmission outer ring 122 through magnetic coupling, and the power transmission outer ring 122 transfers the working current It is transmitted to the radar through the second transmission lead.
  • the second power transmission lead needs to pass through the central hole of the fixed shaft 300
  • the first signal lead needs to pass through the central hole of the fixed shaft 300
  • the fixed shaft 300 is longer, which makes it difficult to process the central hole of the fixed shaft 300
  • the longer fixed shaft 300 makes the second current transfer lead and the first signal lead that pass through the fixed shaft 300 longer, which increases the cost and is likely to cause safety hazards if the first signal lead is too long.
  • the environment detection device and the wireless transmission component are installed in the motor, and the installation of the wireless transmission component is realized by using the motor structure.
  • the adapter is omitted;
  • the environment detection device is directly driven, and compared with the related art, the fixed shaft 300 and the rotating body 200 are omitted.
  • the omission of the adapter, the fixed shaft 300 and the rotating body 200 makes the structure of the photoelectric scanning device simpler; in addition, since the number of parts included in the photoelectric scanning device is reduced, the number of assembly times is reduced, thereby reducing the accumulation caused by multiple assembly Tolerance reduces the probability of coupling failure between the coupling coils in the wireless transmission assembly; in addition, the first signal lead and the second current transmission lead do not need to penetrate the central hole of the fixed shaft 300, and there is no need to perforate shaft parts, which reduces Difficulty in wiring.
  • FIG. 2 is a schematic diagram of the structure of an autonomous vehicle provided by an embodiment of the application.
  • autonomous vehicles autonomous vehicles in English
  • the self-driving car includes a vehicle body 1, a control host, and a photoelectric scanning device 2.
  • the vehicle body 1 includes a body, a chassis, and a power device, which is similar to a traditional automobile, and will not be repeated here.
  • the photoelectric scanning device 2 is placed on the top of the vehicle body or other locations with no field of view.
  • the control host is installed in the vehicle body 1.
  • the control host includes a power supply and a control device.
  • the power supply provides power for the photoelectric scanning device 2.
  • the control device and the photoelectric scanning device 2 Control signal transmission is performed between them, so as to control the photoelectric scanning device 2 to detect and recognize the surrounding environment, and then make behavior decisions based on the obtained environmental information to realize automatic driving.
  • FIG. 3 is a schematic structural diagram of a photoelectric scanning device provided by an embodiment of the application. As shown in FIG. Radar, millimeter wave radar or camera. The environment detection device 3 rotates under the drive of the motor 4 to obtain a larger scanning range, so as to increase the recognition range of the photoelectric scanning device 2.
  • the motor 4 is used to drive the environment detection device 3 to rotate, and the motor 4 includes a stator and a rotor.
  • the stationary part of the motor 4 is collectively called the stator, and the main function of the stator is to generate a magnetic field.
  • the rotating part of the motor 4 is collectively called the rotor.
  • the main function of the rotor is to generate electromagnetic torque and induced electromotive force. It is the hub of the motor 4 for energy conversion.
  • FIG 4 is a schematic structural diagram of a motor provided by an embodiment of the application.
  • Figure 5 is an exploded view of the motor in Figure 4.
  • the motor 4 includes a stator 11, a rotor 5, a base 6 and wireless transmission.
  • the wireless transmission component 8 includes a first coil 81 and a second coil 82.
  • the second coil 82 and the second coil 82 are coaxial ring-shaped structures, and the two realize wireless transmission of control signals and/or operating currents through magnetic coupling.
  • the wireless transmission component 8 also includes a first lead 83 connected to the first coil 81, and a second lead 84 connected to the second coil 82; the first lead 83 extends upward and extends from the top of the rotor 5.
  • the second lead 84 Used to connect with the environment detection device 3 installed on the motor 4; the second lead 84 extends downward and extends from the bottom of the base 6 for connecting with the control host.
  • Fig. 6 is a front view of the rotor 5 and the stator 11 in Fig. 5.
  • the motor 4 is generally placed vertically, and the central axis of the stator 11 is defined as the first axis.
  • the first axis is The vertical straight line, that is, the first axis is parallel to the Y axis of the coordinate system in FIG. 6.
  • the rotor 5 is sleeved and installed on the stator 11 and can rotate around the first axis.
  • the lower end of the stator 11 extends out of the bottom end surface 54 of the rotor 5.
  • the stator 11 is also connected with a motor lead 10 for controlling the normal operation of the motor 4.
  • the bottom end of the stator 11 is connected with a first flange, and the base 6 is arranged under the stator 11 and is connected to the stator 11 through the first flange, so that the base 6 and the stator 11 are fixedly installed.
  • the base 6 and the stator 11 are an integral structure, that is, a book, and the base 6 is a part of the stator 11. This design eliminates the first flange and the fasteners passing through the first flange. This enables the motor 4 to be further integrated, reduces the number of assembling times during the assembling process of the motor 4, and reduces the cumulative tolerance of multiple assembling.
  • the rotor 5 is a revolving structure with the first axis as the central axis, a mounting hole is provided in the middle of the rotor 5, and the rotor 5 is sleeved on the stator 11.
  • the rotor 5 includes a vertically extending outer circumferential surface 53 and horizontally extending top and bottom end surfaces 54.
  • the outer circumferential surface 53 is provided with a first mounting groove 52.
  • the first mounting groove 52 is an annular groove surrounding the first axis.
  • the center line coincides with the first axis.
  • the first mounting slot 52 has a slot bottom surface.
  • the first coil 81 is mounted in the first mounting slot 52.
  • a magnetic isolation member 9 is provided between the first coil 81 and the slot bottom surface of the first mounting slot 52.
  • Fig. 7 is a cross-sectional view of the base 6 in Fig. 5.
  • the base 6 is a structural member arranged coaxially with the stator 11.
  • the base 6 may be a disc structure with an opening at the top. It coincides with the axis of the stator 11.
  • the base 6 includes a bottom plate 62 and an annular side wall 61 mounted on the bottom plate 62.
  • the bottom plate 62 may be a circular plate with a first axis as the central axis.
  • the bottom plate 62 is provided with a middle hole 621 at a position corresponding to the first axis. The lower end of 11 is inserted in the middle hole 621.
  • the annular side wall 61 is an annular side wall with the first axis as the central axis, the annular side wall 61 extends upward from the bottom plate 62, and the space surrounded by the annular side wall 61 can be defined as the side wall space 63.
  • the stator 11 and the bottom plate 62 are connected, the stator 11 and the rotor 5 are both located in the side wall space 63, the top of the rotor 5 is slightly higher than the top of the circular side wall 61, the bottom end 54 of the rotor 5 is opposite to the bottom plate 62, and the rotor 5
  • the outer peripheral surface 53 is opposite to the inner wall surface of the circular ring-shaped side wall 61. From the above description, it can be known that the stator 11 and the rotor 5 are located in the side wall space 63, and the base 6 protects the stator 11 and the rotor 5 to avoid interference of foreign objects on the movement of the rotor 5.
  • the inner wall surface of the circular annular side wall 61 is provided with a second installation groove 611.
  • the second installation groove 611 may be an annular groove body formed on the inner wall surface of the circular annular side wall 61.
  • the center line of the annular groove body and the first axis are Overlapping, the opening of the second installation groove 611 is opposite to the opening of the first installation groove 52 and faces the first axis.
  • the second installation groove 611 has a groove bottom surface, the groove bottom surface is an annular surface surrounding the first axis; and upper and lower sides respectively located on both sides of the groove bottom surface, that is, the upper side, the lower side and the groove bottom surface constitute the second installation groove 611.
  • the upper side surface of the second installation groove 611 is removable, that is, the second installation groove 611 includes a groove bottom surface and a lower side surface.
  • a plane passing through the first axis is taken as a cross section.
  • the shape is L-shaped. Such a design facilitates the installation of the second coil 82 from above the base 6.
  • Figure 8 is a cross-sectional view of the motor in Figure 5, as shown in Figure 8, the first coil 81 is installed in the first installation slot 52, the second coil 82 is installed in the second installation slot 611, the first installation slot 52 and the second The installation slot 611 is arranged coaxially, and the second coil 82 is located outside the first coil 81.
  • a magnetic coupling may be formed between the first coil 81 and the second coil 82, and the coupled electromagnetic field is used as a medium to realize wireless transmission of electric energy and/or signals.
  • the first coil 81 and the second coil 82 are magnetically coupled to realize wireless transmission of electric energy or realize wireless transmission of control signals, or alternatively, realize simultaneous transmission of electric energy and control signals.
  • the first coil 81 and the second coil 82 are not limited to be provided at the above-mentioned positions.
  • the first coil 81 and the second coil 82 may also be provided between the rotor 5 and the bottom plate 62.
  • Fig. 9 is a cross-sectional view of another embodiment of the motor in Fig. 4, and Fig. 10 is a front view of the stator and rotor in Fig. 9; as shown in Figs. 9 and 10, in a possible embodiment, the bottom of the rotor 5
  • the end surface 54 is provided with a third installation groove 55.
  • the third installation groove 55 may be an annular groove surrounding the first axis, and the annular groove opens toward the bottom plate 62.
  • the first coil 81 is installed in the third installation slot 55, for example, it can be installed in the third installation slot 55 by bonding, embedding or snapping.
  • FIG. 11 is a cross-sectional view of the base in FIG. 9.
  • the bottom plate 62 is provided with a fourth mounting groove 622 surrounding the first axis on the surface facing the rotor 5, and the fourth mounting groove 622 is opposite to the third mounting groove 55.
  • the opening faces the rotor 5.
  • the fourth installation groove 622 is coaxial with the third installation groove 55, and the fourth installation groove 622 is located directly below the third installation groove 55.
  • the second coil 82 is installed in the fourth installation slot 622, for example, it can be installed in the fourth installation slot 622 by bonding, embedding or snapping.
  • the second coil 82 and the first coil 81 are coaxially arranged, and the second coil 82 is located below the first coil 81.
  • the first coil 81 and the second coil 82 are arranged between the bottom end surface 54 of the rotor 5 and the bottom plate 62, so as to be closer to the connection position of the base 6 and the stator 11, and the first coil 81 and the second coil 82
  • the relative position accuracy between the two is easier to ensure, thereby further reducing the probability of coupling failure between the first coil 81 and the second coil 82.
  • the positions of the first coil 81 and the second coil 82 can be fixed easily, and the first coil 81 and the second coil 82 can be fixed.
  • the bottom end surface 54 of the rotor 5 does not need to be provided with a third mounting slot 55
  • the bottom plate 62 does not need to be provided with a fourth mounting slot 622
  • the first coil 81 is mounted on the bottom end surface 54 of the rotor 5 by means of adhesive glue or connectors.
  • the second coil 82 is mounted on the bottom plate 62 by means of adhesive glue or connectors.
  • the working principle of the motor 4 is: when the motor 4 works, the rotor 5 rotates on the stator 11 around the first axis, thereby driving the environment detection device 3 to rotate, controlling the power supply current of the power supply in the host and/or controlling the control of the control device in the host
  • the signal enters the second coil 82 through the second lead 84.
  • the second coil 82 wirelessly transmits the power supply current and/or control signal to the first coil 81 through the magnetic coupling between the coils, and then further transmits the power supply current and/or control signal to the first coil 81 through the first lead 83.
  • the environment detection device 3 of the motor 4 realizes control or power supply to the environment detection device 3.
  • Figures 14 to 18 show another type of motor 4 provided by an embodiment of the present application.
  • the motor 4 includes a stator 11, a rotor 5, a base 6 and two wireless transmission components.
  • the structural composition, installation mode or connection mode of the stator 11, the rotor 5 and the base 6 are the same as those of the stator 11, the rotor 5 and the base 6 in the above scenario 1.
  • the difference between this embodiment and the above-mentioned embodiments is that it includes two wireless transmission components, namely a power transmission component 12 for power transmission and a signal transmission component 13 for signal transmission.
  • FIG. 14 is a schematic structural diagram of a motor provided by another embodiment of the application. As shown in FIG. 14, the top surface of the rotor 5 is provided with a first extension port 57 and a second extension port 56, the first extension port 57 and The second extension opening 56 is used for extension of the lead wires in the wireless transmission assembly of the motor 4.
  • the top of the rotor 5 is provided with a connection interface and a code disc 7, wherein the connection interface includes a waist-shaped mounting block 51 symmetrically arranged with respect to the first axis.
  • the waist-shaped mounting block 51 is provided with at least one mounting hole, and the mounting hole is a threaded hole,
  • the environment detection device 3 is installed on the rotor 5 of the motor 4 by threaded fasteners penetrating through the threaded holes. With such a design, the environment detection device 3 and the motor 4 can be directly connected and installed, which improves the convenience of disassembly and assembly of the environment detection device 3.
  • the code disc 7 includes a circular plate, and a plurality of rectangular holes are equally divided on the circular plate.
  • the encoder disc 7 and the rotor 5 are arranged coaxially. When the motor 4 rotates, the encoder disc 7 rotates at the same speed as the motor 4.
  • the encoder disc 7 can detect the speed and angle of rotation of the motor 4, so as to realize the adjustment of the speed and angle of the motor 4
  • the photoelectric scanning device 2 controls the rotation speed and orientation of the environment detection device 3 by controlling the motor 4.
  • FIG 15 is an exploded view of the motor in Figure 14. Please refer to Figure 15.
  • the power transmission assembly 12 includes a power transmission inner ring 121 and a power transmission outer ring 122.
  • the power transmission inner ring 121 includes a power transmission inner magnetic ring and a first coil. A coil is wound on the inner magnetic ring of the power transmission.
  • the power transmission outer ring 122 includes a power transmission outer magnetic ring and a second coil, and the second coil is wound around the power transmission outer magnetic ring.
  • the signal transmission component 13 includes a signal inner ring 131 and a signal outer ring 132.
  • the signal inner ring 131 includes a signal inner magnetic ring and a third coil, and the third coil is wound around the signal inner magnetic ring.
  • the signal outer ring 132 includes a signal outer magnetic ring and a fourth coil, and the fourth coil is wound around the signal inner magnetic ring.
  • the power transmission inner magnetic ring, the power transmission outer magnetic ring, the signal inner magnetic ring and the signal inner magnetic ring have the same function and similar structure.
  • the power transmission inner magnetic ring is made of a permeable magnet Ring structure
  • the inner magnetic ring of the power transmission is an anti-interference element, used to suppress high-frequency noise, and can support the first coil.
  • Both the power transmission component 12 and the signal transmission component 13 further include lead wires.
  • the lead wires include a first current transmission lead 123 connected to the first coil, a second current transmission lead 124 connected to the second coil, and a first current transmission lead connected to the third coil.
  • the signal lead 133, and the second signal lead 134 connected to the fourth coil.
  • the first power transfer lead 123 and the first signal lead 133 extend upward
  • the first power transfer lead 123 extends from the first extension opening 57 on the top surface of the rotor 5 and is connected to the environment detection device 3
  • the first signal lead 133 extends from The second extension opening 56 on the top surface of the rotor 5 is extended and connected to the environment detection device 3.
  • the first power transfer lead 123 and the first signal lead 133 are connected to the connecting terminal provided on the top surface of the rotor 5, and the environment detection device 3 is connected with a mating terminal that is plug-in-fitted with the connecting terminal.
  • the plug-in cooperation of the terminal and the mating terminal can realize the connection between the first power lead 123 and the first signal lead 133 and the environmental detection device 3, and the wiring terminal and the mating terminal can be repeatedly disassembled and used, so the design is more convenient for environmental detection
  • the docking installation of the device 3 and the motor 4 facilitates the disassembly, replacement and maintenance of the environmental detection device 3 relative to the motor 4.
  • the second power transfer lead 124 and the second signal lead 134 extend downward and extend from the bottom of the base 6.
  • the second power transfer lead 124 is connected to the power supply in the control host to receive the power provided by the power supply.
  • the second signal lead 134 is connected to the control device in the control host to receive the control signal sent by the control device for controlling the environment scanning device.
  • FIG. 16 is a bottom view of the motor in FIG. 14. Please refer to FIG. 16.
  • two notches are provided at the edge of the bottom plate 62, and the two notches are the motor lead extension opening 624 and the third extension respectively.
  • Outlet 625 where the motor lead extension port 624 corresponds to the position of the motor lead 10 and allows the motor lead 10 to extend.
  • the third extension port 625 is used to extend the second signal lead 134, which is from the bottom of the base 6. Connect with the control device after extending.
  • the annular side wall 61 is provided with a fourth extension opening 612 facing the outside of the bottom plate 62.
  • the second power transmission lead 124 extends from the fourth extension opening 612 and the edge of the bottom plate 62 to below the bottom of the base 6.
  • the second power transmission lead 124 Connect to an external power source after extending.
  • the second power transmission lead 124 and the second signal lead 134 can also be connected to the wiring terminals provided at the bottom of the base 6, and the power supply and the control device can be connected to cables with mating terminals through the wiring terminals and
  • the plug-in coordination of the matching terminals can realize the connection of the second power lead 124 and the power supply, the connection of the second signal lead 134 and the control device, and the connection terminal and the matching terminal can be repeatedly disassembled and used. This design is more convenient for the motor 4 It is connected to the power supply and control device, and facilitates disassembly, replacement, and maintenance.
  • FIG. 17 is a cross-sectional view of the base in FIG. 14, and FIG. 18 is a cross-sectional view of the motor in FIG. 14.
  • the fourth mounting groove 622 is an annular groove that opens toward the rotor 5 and surrounds the first axis. A plane passing through the first axis is taken as a cross section.
  • the cross-sectional shape of the fourth mounting groove 622 may be a rectangle.
  • the inner wall surface of the circular side wall 61 is provided with a second installation groove 611, the second installation groove 611 is close to the top of the circular side wall 61, and the second installation groove 611 may surround the second installation groove 611 along the inner wall surface of the circular side wall 61.
  • An axis extends to form an annular groove.
  • the upper side surface of the second installation groove 611 penetrates the top of the circular annular side wall 61, and the cross-section of the plane passing through the first axis is taken as the cross section.
  • the cross-sectional shape of the second installation groove 611 is L-shaped.
  • the outer circumferential surface 53 of the rotor 5 and the second installation groove 611 are provided with a first installation groove 52 at a position opposite to the second installation groove 611.
  • the first installation groove 52 may be an annular groove surrounding the first axis. The first axis coincides, and the opening of the first installation slot 52 is horizontal and away from the first axis.
  • the first installation groove 52 and the second installation groove 611 are coaxially arranged.
  • the bottom end surface 54 of the rotor 5 is provided with a third installation groove 55 at a position opposite to the fourth installation groove 622.
  • the third installation groove 55 may be an annular groove surrounding the first axis. The opening of the annular groove faces the fourth installation groove 622.
  • the third installation groove 55 is coaxial with the fourth installation groove 622, and the third installation groove 55 is located directly above the fourth installation groove 622.
  • the power transmission inner ring 121 is installed in the first installation groove 52, and the power transmission inner magnetic ring is attached to the bottom surface of the first installation groove 52.
  • the power transmission outer ring is disposed in the second installation groove 611, and the power transmission outer magnetic ring is attached to the vertical wall in the second installation groove 611.
  • a magnetic isolation member 9 is provided between the power transmission inner ring 121 and the first installation slot 52 to avoid the interference of the magnetic field generated by the motor 4 on the power transmission assembly 12, and the magnetic isolation member 9 is attached to the first installation slot.
  • the annular structure on the bottom surface of the groove 52 may include, for example, two semicircular magnetic isolation tiles that are connected or spliced.
  • the central axes of the power transfer outer ring 122 and the power transfer inner ring 121 both coincide with the first axis, and the power transfer outer ring 122 is sleeved on the outside of the power transfer inner ring 121.
  • the power transmission principle of the power transmission component 12 is based on electromagnetic induction, and the first coil and the second coil use the coupled electromagnetic field as a medium to realize the wireless transmission of electric energy.
  • the inner magnetic ring and outer magnetic ring of the current transmission component 12 can be omitted, and only the first coil and the second coil are retained. This design can reduce the weight and weight of the current transmission component 12 Parts, further reduce the cost of the motor 4 using the power transfer assembly 12, and at the same time improve the integration of the motor 4 using the power transfer assembly 12.
  • the signal inner ring 131 is disposed in the third mounting groove 55, and the signal inner magnetic ring is a ring-shaped structure attached to the bottom surface of the third mounting groove 55.
  • the signal outer ring 132 is disposed in the fourth mounting groove 622, and the signal outer magnetic ring is a ring structure that is attached to the bottom surface of the fourth mounting groove 622. From the above description, it can be seen that the central axes of the signal inner ring 131 and the signal outer ring 132 both coincide with the first axis, and the signal inner ring 131 is located above the signal outer ring 132.
  • the working principle of the motor 4 is: the rotor 5 rotates on the stator 11 around the first axis, thereby driving the environment detection device 3 to rotate, the power supply current of the external power supply enters the power transmission outer ring 122 through the second power transmission lead 124, and the control device
  • the working signal enters the signal outer ring 132 through the second signal lead 134, and wirelessly transmits the magnetic coupling between the coils between the signal inner ring 131 and the signal outer ring 132 through the power transmission outer ring 122 and the power transmission inner ring 121.
  • the electrical inner ring 121 and the signal inner ring 131, the electrical transmission inner ring 121 then transmits the operating current to the environment detection device 3 installed in the motor 4 through the first electrical transmission lead 123, and the signal inner ring 131 then passes the first signal lead 133 to The control signal is transmitted to the environment detection device 3 installed in the motor 4.
  • the motor 4 in this embodiment directly fixes the power transmission inner ring 121 and the signal inner ring 131 on the rotor 5, and the power transmission outer ring 122 and the signal outer ring 132 are fixed on the base 6 coaxial with the stator 11.
  • Such a design reduces the number of adapters, fixed shafts and rotating bodies compared with related technologies, and makes the structure of the motor 4 simpler, which is conducive to the miniaturization of the motor 4, thereby helping to reduce the overall volume of the photoelectric scanning device
  • the simple structure of the motor reduces the number of assembly times during the motor assembly process, thereby reducing the cumulative tolerance caused by multiple transfers, and reducing the probability of failure of the magnetic coupling between the coupling coils in the wireless transmission assembly.
  • the assembly tolerance between the stator 11 and the rotor 5 is much smaller than the maximum coupling tolerance allowed between the first coil 81 and the second coil 82 in the wireless transmission assembly 8. Therefore, it is generally ensured that the base 6 and the stator 11 The tolerance can meet the design requirements. It can be understood that the coaxiality tolerance between the base 6 and the stator 11 is easier to implement than the coaxiality tolerance between the fixed shaft 300 and the rotating body 200 in the related art, which reduces the difficulty of processing; in addition, the wireless transmission component is arranged in the assembly On the latter stator 11 and rotor 5, the first lead and the second lead in the wireless transmission assembly can be extended without passing through more fixed shafts, and the processing is relatively simple; and the power transmission and signal transmission are completed by separate components. The transmission efficiency is higher and the reliability is better.
  • the power transmission assembly 12 is located on the outer peripheral surface 53 and the circular side wall 61 of the rotor 5
  • the signal transmission assembly 13 is located on the bottom end 54 and the bottom plate 62 of the rotor 5
  • the power transmission assembly 12 and the signal transmission assembly 13 are separately provided in In different planes, and the distance is relatively long, so the interference between the power transmission component 12 and the signal transmission component 13 can be avoided.
  • the setting positions of the power transmission component 12 and the signal transmission component 13 can be reversed.
  • the power transmission inner ring 121 and the signal inner ring 141 are both sleeved on the outer peripheral surface 53 of the rotor 5.
  • the power transmission outer ring 122 and the signal outer ring 132 are both mounted on the ring
  • the inner surface of the shaped side wall 61 for example, the outer peripheral surface 53 of the rotor 5 is provided with a first mounting groove 52 and a third mounting groove 55, and the first mounting groove 52 and the third mounting groove 55 may be annular grooves surrounding the first axis.
  • the opening directions of the first mounting groove 52 and the third mounting groove 55 are both horizontal and away from the first axis.
  • the annular side wall 61 is provided with a second installation groove 611 at a position corresponding to the first installation groove 52, and a fourth installation groove 622 is provided at a position corresponding to the third installation groove 55.
  • the power transmission inner ring 121 and the signal inner ring 131 can also be both arranged on the bottom end surface 54 of the rotor 5.
  • the power transmission outer ring 122 and the signal outer ring 132 are both installed on the bottom plate 62 of the base 6, for example,
  • the bottom end surface 54 of the rotor 5 is provided with a first installation groove 52 and a third installation groove 55.
  • the first installation groove 52 and the third installation groove 55 may be annular grooves surrounding the first axis, and a plane passing through the first axis is taken as a cross section.
  • the cross section of the annular tank is rectangular.
  • the opening directions of the first installation groove 52 and the third installation groove 55 are both vertical and face the bottom plate 62.
  • the bottom plate 62 defines a second installation groove 611 at a position corresponding to the first installation groove 52, and a fourth installation groove 622 at a position corresponding to the third installation groove 55.

Abstract

本申请实施例提供了一种光电扫描装置、电机以及自动驾驶汽车,涉及光电扫描设备技术领域,用于简化光电扫描装置的结构,以及降低光电扫描装置的无线传输组件中线圈之间耦合失效的概率。该光电扫描装置包括电机、无线传输组件和环境探测装置,其中,电机包括定子、转子和底座,定子固定安装于底座上,转子套设于定子上;无线传输组件包括第一线圈和第二线圈,第一线圈与环境探测装置分别安装于转子上,且第一线圈与环境探测装置电连接,第二线圈安装于底座上,第二线圈和与控制主机电连接;第一线圈与第二线圈之间磁耦合以实现控制主机和环境探测装置之间的无线信号和/或电力传输。

Description

光电扫描装置、电机以及自动驾驶汽车 技术领域
本申请涉及光电扫描设备技术领域,尤其涉及一种光电扫描装置、电机以及自动驾驶汽车。
背景技术
自动驾驶汽车在进行自主行驶时,一般通过车上安装的光电扫描装置来对周围环境探测和识别,进而根据所得到的环境信息作出行为决策。
相关技术中,光电扫描装置一般包括雷达和电机,电机一般为分离式电机,如图1所示,电机包括定子(未示出)、转子(未示出)、固定轴300和旋转体200,旋转体200可转动套设于固定轴300外侧;定子安装在固定轴300上,转子安装在旋转体200上。雷达安装于旋转体200的一端,并随旋转体一起转动,以增大雷达的识别范围。雷达工作时所需要的电力和控制信号均无线传输,例如,电力信号由设置于电机一端的传电组件传输给雷达,控制信号由设置于电机另一端的传信号组件传输给雷达。传电组件包括传电内环121和传电外环122,传信号组件包括信号内环131和信号外环132,其中,传电内环121通过第一转接件400安装在固定轴300上,传电外环122通过第二转接件500安装于旋转体200上,传电内环121通过磁耦合实现对传电外环122的无线传电。信号内环131套设在固定轴300上,信号外环132安装于旋转体200,并套设于信号内环131外侧,信号内环131通过磁耦合实现对信号外环132的无线信号传输。
然而,上述光电扫描装置包括的部件较多,结构复杂;另外,上述光电扫描装置装配过程复杂,需要多次装配,导致装配累计公差大,进而导致传电组件和/或传信号组件的耦合失效概率大。
发明内容
本申请实施例提供了一种光电扫描装置、电机以及自动驾驶汽车,用于简化光电扫描装置的结构,以及降低光电扫描装置中传电组件和/或传信号组件的耦合失效的概率。
第一方面,本申请实施例提供了一种光电扫描装置,该光电扫描装置包括电机、无线传输组件和环境探测装置,其中,电机包括定子、转子和底座,定子固定安装于底座上,转子套设于定子上;无线传输组件包括第一线圈和第二线圈,第一线圈与环境探测装置分别安装于转子上,且第一线圈与环境探测装置电连接,第二线圈安装于底座上,第二线圈和与控制主机电连接;第一线圈与第二线圈之间磁耦合以实现控制主机和环境探测装置之间的无线信号和/或电力传输。
采用本实施例提供的光电扫描装置,第一线圈安装于转子,第二线圈安装于底座上,利用电机实现无线传输组件的安装,与相关技术相比,省去了转接件;另外,环境探测装置安装于转子,实现了电机对环境探测装置的直接驱动,与相关技术相比,省去了固定轴和旋转体,而转接件、固定轴和旋转体的省去使光电扫描装置中结构更为简单,有助于缩小光电扫描装置整体的体积;另外,光电扫描装置结构简单使得光电扫描装置组装过程中,装配次数减少,从而降低了多次装配导致的累计公差,降低了无线传输组件中第一线圈和第二线圈之间磁耦合的失效概率。
在一种可能的实施方式中,所述底座包括底板和设置于所述底板上的圆环形侧壁,所述圆环形侧壁与所述定子同轴,所述定子和所述转子位于所述圆环形侧壁围成的侧壁空间内。如此设计,将定子和转子设置在侧壁空间内,可以保护定子和转子,避免外物对转子的运动产生影响。
在一种可能的实施方式中,所述第一线圈安装在所述转子的外周面上,所述第二线圈安装在所述圆环形侧壁的内壁面上,所述第二线圈同轴套设于所述第一线圈外侧。
在另一种可能的实施方式中,所述转子的外周面设有第一安装槽,所述第一线圈安装在所述第一安装槽内。通过设置第一安装槽,可以避免对第一线圈在转子外周面上滑动,从而保证第一线圈安装的可靠性以及安装位置的准确性,另外,避免了第一线圈安装于转子后导致的转子体积增加,有利于减小电机的整体体积。
在一种可能的实施方式中,所述圆环形侧壁的内壁面开设有第二安装槽,所述第二线圈安装在所述第二安装槽内。如此设计,可以避免第二线圈在圆环形侧壁的内壁面上滑动,从而保证第二线圈安装的可靠性以及安装位置的准确性,另外,避免了第二线圈安装于圆环形侧壁后影响转子的转动,以及避免第二线圈安装于圆环形侧壁后导致的电机整体体积的增加。
在另一种可能的实施方式中,所述第一线圈和所述第二线圈位于所述侧壁空间内,且所述第一线圈安装在所述转子朝向所述底板的底部端面上;所述第二线圈安装位于所述圆环形侧壁内的所述底板上。如此设置,第一线圈和第二线圈的设置位置更靠近底座与定子的连接位置,底座与定子之间的装配公差对第一线圈和第二线圈之间的耦合公差影响更小,从而降低第一线圈和第二线圈之间磁耦合的失效概率。
在一种可能的实施方式中,所述转子的所述底部端面设有第三安装槽,所述第一线圈安装在所述第三安装槽内。通过设置第三安装槽,可以避免第一线圈在底部端面上滑动,从而保证第一线圈安装的可靠性以及安装位置的准确性,另外,可以避免第一线圈安装于转子后导致转子的体积增加,有利于减小电机的整体体积。
在一种可能的实施方式中,所述底板朝向所述转子的侧面设有第四安装槽,所述第二线圈安装在所述第四安装槽内。如此设计,可以避免第二线圈在圆环形侧壁的内壁面上滑动,从而保证第二线圈安装的可靠性以及安装位置的准确性,另外,避免第二线圈安装于底板后影响转子的转动,以及避免第二线圈安装于底板后导致电机的整体体积增加。
在一种可能的实施方式中,所述定子和所述底座之间通过第一法兰连接。通过第一法兰实现定子与底座之间的连接,方便,可靠,而且便于拆装,方便对电机内部的维修。
在一种可能的实施方式中,所述定子和所述底座为一体结构。将定子与底座设计成一体结构,使得电机进一步集成,省去了定子与底座的装配步骤,减少电机组装过程中的装配次数,从而减小多次装配导致的累计公差。
在一种可能的实施方式中,所述无线传输组件还包括第三线圈和第四线圈,所述第三线圈安装于所述转子上,所述第四线圈安装于所述底座上;所述控制主机和所述环境探测装置通过所述第一线圈与所述第二线圈之间的磁耦合实现无线电力传输,所述控制主机和所述环境探测装置通过所述第三线圈与所述第四线圈之间的磁耦合实现无线信号传输。采用第一线圈与第二线圈用于无线电力传输,采用第三线圈和第四线圈用于无线信号传输,无线信号和无线电力均采用独立的线圈进行传输,传输效率更高,可靠性更好。
在一种可能的实施方式中,所述第一线圈设置于所述转子的外周面,所述第二线圈设置于所述底座且同轴套设于所述第一线圈外侧;所述第三线圈设置于所述转子朝向所述底座的底部端面,所述第四线圈安装于所述底座。通过将用于无线信号传输的第一线圈与第二线圈,以及,用于无线电力传输的第三线圈和第四线圈设置于不同的位置,可避免无线信号传输和无线电力传输之间的相互干扰。
在一种可能的实施方式中,所述第一线圈和所述第三线圈均设置于所述转子的外周面;所述第二线圈设置于所述底座且同轴套设于所述第一线圈外侧,所述第四线圈设置于所述底座且同轴套设于所述第三线圈外侧。如此设计,将第一线圈和所述第三线圈设置于转子的同一面内,如此更方便第一线圈和所述第三线圈的安装。
在一种可能的实施方式中,所述第一线圈和所述第三线圈均设置于所述转子朝向所述底座的底部端面,所述第二线圈和所述第四线圈安装于所述底座。如此设计,将第一线圈和第三线圈设置于转子的同一面内,如此更方便第一线圈和所述第三线圈的安装。而且,第一线圈和所述第三线圈的设置位置更靠近底座与定子的连接位置,底座与定子之间的装配公差对第一线圈和所述第三线圈安装公差影响更小。
在一种可能的实施方式中,所述第一线圈与所述转子之间设置有隔磁件。通过设置隔磁件,可避免电机工作时产生的磁场对无线电力传输的干扰。
在一种可能的实施方式中,所述传信号组件还包括信号内磁环和信号外磁环,所述第三线圈缠绕在所述信号内磁环上,所述第四线圈缠绕在所述信号外磁环上。通过设置信号内磁环和信号外磁环,可以为第三线圈和第四线圈提供安装基础,支撑为第三线圈和第四线圈,并且信号内磁环和信号外磁环均为由导磁体制成的环状结构,具有抗干扰的作用。
在一种可能的实施方式中,所述转子的一端设置有用于安装环境探测装置的连接接口。如此设计,利用连接接口能够实现环境探测装置与转子直接对接安装,方便环境探测装置的拆装更换。
在一种可能的实施方式中,所述连接接口包括相对所述转子的轴线对称设置的安装块,所述安装块设置有安装孔。如此设计,环境探测装置可通过穿过安装孔的螺栓直接安装于电机,简单方便,而且安装块与安装孔加工简单,容易实现。
在一种可能的实施方式中,所述环境探测装置包括激光雷达、红外雷达、毫米波雷达或摄像头。
第二方面,本申请实施例提供了一种电机,用于驱动环境探测装置,电机包括定子、转子、底座和无线传输组件;定子固定安装于底座,转子套设于定子,无线传输组件包括第一线圈和第二线圈,第一线圈安装于转子上,第二线圈安装于底座上;环境探测装置安装于转子,且环境探测装置与第一线圈电性连接;第二线圈与控制环境探测装置的控制主机电性连接;控制主机与环境探测装置之间通过第一线圈和第二线圈之间的磁耦合实现无线信号和/或电力传输。
采用本实施例提供的电机,第一线圈安装于转子,第二线圈安装于底座上,利用电机实现无线传输组件的安装,与相关技术相比省去了转接件;另外,环境探测装置安装于转子,实现了电机对环境探测装置的直接驱动,与相关技术相比省去了固定轴和旋转体,而转接件、固定轴和旋转体的省去使电机结构更为简单,有利于实现电机的小型化,进而有助于缩小光电扫描装置整体的体积;另外,电机结构简单使得电机组装过程中,装配次数减少,从而降低了多次装配导致的累计公差,降低了无线传输组件中第一线圈和第二线圈之间磁耦合的失效概率。
第三方面,本申请实施例提供了一种自动驾驶汽车,包括车辆本体,以及安装在所述车辆本体上如第一方面所述的光电扫描装置,或,如第二方面所述的电机。由于自动驾驶汽车包括上述第一方面所述的光电扫描装置,或,上述第二方面所述的电机,使得自动驾驶汽车也具有上述光电扫描装置或电机的优点,具体可参见上面相关描述,在此不再赘述。
附图说明
图1为相关技术中一种电机的剖视图;
图2为本申请实施例提供的一种自动驾驶汽车的结构示意图;
图3为本申请实施例提供的一种光电扫描装置的结构示意图;
图4为本申请实施例提供的一种电机的结构示意图;
图5为图4中电机的爆炸图;
图6为图5中转子与定子的主视图;
图7为图5中底座的剖视图;
图8为图5中电机的剖视图;
图9为图4中电机另一种实施方式的剖视图;
图10为图9中定子和转子的主视图;
图11为图9中底座的剖视图;
图12为图4中电机另一种实施方式的剖视图;
图13为图12中底座的剖视图;
图14为本申请另一种实施例提供的一种电机的结构示意图;
图15为图14中电机的爆炸图;
图16为图14中电机的仰视图;
图17为图14中底座的剖视图;
图18为图14中电机的剖视图。
具体实施方式
需要说明的是,为了描述方便,本文以附图中标注的Y轴坐标方向为上、下方向描述电机结构,显然该上、下为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在相关技术中,光电扫描装置包括雷达和电机,其中电机选用分离式电机,如图1所示,电机包括定子、转子、固定轴300和旋转体200,旋转体200的中部设有轴孔,固定轴300穿装于轴孔中,固定轴300和轴孔内壁之间设置有轴承。定子安装在固定轴300上,转子安装在旋转体200上,雷达安装于旋转体200,并随旋转体200一起转动,以增大雷达的识别范围。电机还包括无线传输组件,无线传输组件包括传电组件和传信号组件,其中,传电组件用于雷达工作时所需要的电力无线传输,传信号组件则用于雷达工作时所需的信号无线传输。传电组件包括传电内环121、传电外环122、第一传电引线(图中未示出)和第二传电引线(图中未示出),传信号组件包括信号内环131、信号外环132、第一信号引线(图中未示出)以及第二信号引线(图中未示出)。
传电内环121通过第一转接件400安装在固定轴300上,传电外环122通过第二转接件500安装于旋转体200上,第二转接件500可设置于旋转体200的一端,且位于第一转接件400和旋转体200之间。第一传电引线一端与传电内环121相连,另一端自电机底部伸出与外界电源连接,第二传电引线一端与传电外环122相连,另一端穿过固定轴300中开设的中心孔,自旋转体200顶部伸出与雷达相连。光电扫描装置工作时,工作电流自第一传电引线传输至传电内环121,传电内环121通过磁耦合实现对传电外环122的无线传电,传电外环122将工作电流通过第二传电引线传输至雷达。
信号内环131套设在固定轴300上,并靠近固定轴300的顶端,信号外环132安装于旋转体200轴孔内,并与轴孔内壁过盈配合;第一信号引线一端与信号内环131相连,另一端穿过固定轴300向下延伸,自固定轴300底部伸出与控制装置。第二信号引线一端与信号外环132连接,另一端伸出旋转体200与雷达相连。光电扫描装置工作时,控制信号自第一信号引线传输至信号内环131,信号内环131通过磁耦合实现对信号外环132的无线信号传输,信号外环132将控制信号通过第二信号引线传输至雷达。
上述电机在装配时,一般先将第一转接件400、信号内环131以及定子安装于固定轴300,将传电内环121安装于第一转接件400;接下来将第一信号引线的一端与信号内环131相连,另一端穿过固定轴300的中心孔向下延伸,超过旋转体200自固定轴300底部伸出,完成第一信号引线的布线;之后将第二转接件500、轴承、转子以及信号外环132安装于旋转体200的轴孔,将传电外环122安装于第二转接件500;接下来将第二传电引线的一端与传电外环122相连,另一端穿过固定轴300的中心孔向上延伸,自固定轴300和旋转体200顶端伸出,完成第二传电引线的布线;然后,将组装好的固定轴300装配插入旋转体200的轴孔中。
上述相关技术的电机中,电机包括的部件较多,结构较为复杂;此外,通过电机 的装配过程可以看出,由于电机为分离式设计,在组合装配形成电机过程中需要多次装配,而多次装配会导致累计公差较大,影响传电内环121和传电外环122之间的相对位置精度,以及信号内环131和信号外环132之间的相对位置精度,从而导致传电内环121和传电外环122之间,以及信号内环131和信号外环132之间磁耦合的失效概率增大。另外,第二传电引线需穿过固定轴300的中心孔,以及,第一信号引线需穿过固定轴300的中心孔,且固定轴300较长,导致固定轴300的中心孔加工难度大,较长的固定轴300使得穿过固定轴300的第二传电引线和第一信号引线也较长,增加成本以及过长的第一信号引线易引发安全隐患。
鉴于此,在本申请实施例提供的光电扫描装置中,环境探测装置和无线传输组件安装于电机,利用电机结构实现无线传输组件的安装,与相关技术相比省去了转接件;电机对环境探测装置直接驱动,与相关技术相比省去了固定轴300和旋转体200。转接件、固定轴300和旋转体200的省去使光电扫描装置中结构更为简单;此外,由于光电扫描装置包括的部件数量减少,使得装配次数减少,从而降低了多次装配导致的累计公差,降低了无线传输组件中耦合线圈之间的耦合失效的概率;另外,第一信号引线和第二传电引线无需贯穿固定轴300的中心孔,无需对轴类零件进行穿孔加工,降低了布线难度。
为了使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
图2为本申请实施例提供的一种自动驾驶汽车的结构示意图,如图2所示,自动驾驶汽车(英文全称为Autonomous vehicles)又称为无人驾驶汽车,是一种通过电脑系统实现无人驾驶的智能汽车。本实施例中,自动驾驶汽车包括车辆本体1、控制主机和光电扫描装置2。车辆本体1包括车身、底盘和动力装置,与传统汽车相似,此处不再赘述。光电扫描装置2放置于车身顶部或其他无视野遮挡的位置,控制主机安装在车辆本体1内,控制主机包括电源和控制装置,电源为光电扫描装置2提供电力,控制装置与光电扫描装置2之间进行控制信号传输,从而控制光电扫描装置2对周围环境探测和识别,进而根据所得到的环境信息做出行为决策,实现自动驾驶。
图3为本申请实施例提供的一种光电扫描装置的结构示意图,如图3所示,该光电扫描装置2包括电机4和环境探测装置3,环境探测装置3包括但不限于激光雷达、红外雷达、毫米波雷达或摄像头。环境探测装置3在电机4的驱动下旋转,从而获得更大扫描范围,以提高光电扫描装置2的识别范围。
在本实施例中,电机4用于驱动环境探测装置3旋转,电机4包括定子和转子。一般情况下,电机4运行时静止不动的部分统称为定子,定子的主要作用是产生磁场。电机4运行时转动的部分统称为转子,转子主要作用是产生电磁转矩和感应电动势,是电机4进行能量转换的枢纽。
场景一
图4为本申请实施例提供的一种电机的结构示意图,图5为图4中电机的爆炸图,如图4和图5所示,电机4包括定子11、转子5、底座6以及无线传输组件8。无线传输组件8包括第一线圈81和第二线圈82,第二线圈82和第二线圈82为同轴的环状结构,两者通过磁耦合实现控制信号和/或工作电流的无线传输。请参考图5,无线传输组件8还包括与第一线圈81相连的第一引线83,以及与第二线圈82相连的第二引线84;第一引线83向上延伸,并自转子5顶部伸出,用于与安装于电机4上的环境探测装置3连接;第二引线84向下延伸,并自底座6的底部伸出,用于与控制主机相连。
图6为图5中转子5与定子11的主视图,如图6所示,一般情况下电机4竖直放置,定子11的中轴线定义为第一轴线,在本实施例中第一轴线为竖直直线,即第一轴线平行于图6中坐标系的Y轴。转子5套设安装于定子11上,并可绕第一轴线转动,定子11的下端伸出转子5的底部端面54,定子11上还连接有控制电机4正常工作的电机引线10。定子11的底端连接有第一法兰,底座6设置于定子11下方,并通过第一法兰与定子11连接,从而实现底座6与定子11的固定安装。本实施方式中,通过设置第一法兰,便于实现定子11与底座6之间的连接与拆卸,方便对电机4的维修。在一种可能的实现方式中,底座6和定子11为一体结构,也就是书,底座6为定子11的一部分,如此设计,省略第一法兰以及穿过第一法兰的紧固件,使得电机4进一步集成,减少电机4装配过程中的装配次数,降低多次装配的累计公差。
如图6所示,转子5为以第一轴线为中轴线的回转结构,转子5的中部设置有安装孔,转子5套装在定子11上。转子5包括竖直延伸的外周面53以及水平延伸的顶面与底部端面54,外周面53设置有第一安装槽52,第一安装槽52为环绕第一轴线的环形槽,该环形槽的中心线与第一轴线重合。第一安装槽52具有槽底面,第一线圈81安装于第一安装槽52中,第一线圈81和第一安装槽52的槽底面之间设置有隔磁件9,隔磁件9用于避免电机4工作时产生的磁场对无线传输组件8的干扰。隔磁件9为贴合在第一安装槽52的槽底面上的环形结构,例如可以包括两个相对接或拼接的半圆形隔磁瓦。
图7为图5中底座6的剖视图,如图7所示,底座6为与定子11同轴设置的结构件,例如,底座6可以为顶部具有开口的圆盘结构,该圆盘结构的轴线与定子11的轴线重合。底座6包括底板62和安装于底板62的圆环形侧壁61,其中,底板62可以为以第一轴线为中轴线的圆形板,底板62对应第一轴线位置设有中间孔621,定子11的下端穿装在中间孔621中。
圆环形侧壁61为以第一轴线为中轴线的环形侧壁,圆环形侧壁61自底板62向上延伸,圆环形侧壁61包围形成的空间可以定义为侧壁空间63。定子11与底板62连接后,定子11和转子5均位于侧壁空间63中,转子5的顶部略高于圆环形侧壁61的顶端,转子5的底部端面54与底板62相对,转子5的外周面53与圆环形侧壁61的内壁面相对。通过上述描述可知,定子11和转子5位于侧壁空间63中,底座6对定子11和转子5起到保护作用,避免外物对转子5运动的干扰。
圆环形侧壁61的内壁面设置有第二安装槽611,第二安装槽611可以为在圆环形侧壁61的内壁面形成的环形槽体,环形槽体的中心线与第一轴线重合,第二安装槽 611开口与第一安装槽52开口相对,朝向第一轴线。第二安装槽611具有槽底面,该槽底面为环绕第一轴线的环形面;以及分别位于槽底面的两侧的上侧面和下侧面,即上侧面、下侧面和槽底面构成第二安装槽611。
在一种可能的实施方式中,第二安装槽611的上侧面可移除,即第二安装槽611包括槽底面和下侧面,以经过第一轴线的平面为截面,第二安装槽的截面形状为L形。如此设计,便于第二线圈82自底座6的上方装入。
图8为图5中电机的剖视图,如图8所示,第一线圈81安装于第一安装槽52中,第二线圈82安装于第二安装槽611中,第一安装槽52和第二安装槽611同轴设置,且第二线圈82位于第一线圈81外侧。第一线圈81和第二线圈82之间可以形成磁耦合,以耦合的电磁场为媒介实现电能和/或信号的无线传输。本实施例中的电机4,可以通过磁耦合的第一线圈81和第二线圈82,实现电能的无线传输或者实现控制信号的无线传输,再或者是,实现电能和控制信号的同时传输。
第一线圈81和第二线圈82不限于设置于上述位置,例如,如图9至图11所示,第一线圈81和第二线圈82还可以设置于转子5和底板62之间。
图9为图4中电机另一种实施方式的剖视图,图10为图9中定子和转子的主视图;如图9和图10所示,在一种可能的实施方式中,转子5的底部端面54设置有第三安装槽55,第三安装槽55可以为环绕第一轴线的环形槽,该环形槽开口朝向底板62。第一线圈81安装于第三安装槽55,例如可以通过粘结方式、嵌入方式或卡合方式安装在第三安装槽55中。
图11为图9中底座的剖视图,如图11所示,底板62朝向转子5的表面设置有环绕第一轴线设置的第四安装槽622,第四安装槽622与第三安装槽55开口相对,开口朝向转子5。第四安装槽622与第三安装槽55同轴,且第四安装槽622位于第三安装槽55的正下方。第二线圈82安装于第四安装槽622,例如可以通过粘结方式、嵌入方式或卡合方式安装在第四安装槽622中。第二线圈82和第一线圈81同轴设置,且第二线圈82位于第一线圈81的下方。
本实施方式中,第一线圈81和第二线圈82设置于转子5的底部端面54和底板62之间,如此更靠近底座6与定子11的连接位置,第一线圈81和第二线圈82之间的相对位置精度更容易保证,从而进一步降低第一线圈81和第二线圈82之间耦合失效的概率。
上述实施方式中,通过设置第一安装槽52与第二安装槽611,以及,第三安装槽55与第四安装槽622,便于第一线圈81和第二线圈82的位置固定,能够保证第一线圈81和第二线圈82安装位置的准确性;另外,第一线圈81容纳于转子5中,第二线圈82容纳于底座6中,从而使得第一线圈81和第二线圈82不会额外增加电机体积,便于电机4体积的进一步缩小。
图12至图13示出了本申请提供的电机4另一种实施方式的结构示意图,如图12和图13所示,在本实施例中,转子5的外周面53不需要设置第一安装槽52,底座6不需要设置第二安装槽611,电机4中的第一线圈81直接套设于转子5的外周面53,第二线圈82通过粘结胶、连接件或过盈配合等方式直接安装于圆环形侧壁61。
在一种可能的实施方式中,转子5的底部端面54不需要设置第三安装槽55,底 板62不需要设置第四安装槽622,第一线圈81通过粘结胶或连接件等方式安装于转子5的底部端面54,第二线圈82通过粘结胶或连接件等方式安装于底板62。
该电机4的作用原理为:电机4工作时,转子5在定子11上绕第一轴线转动,从而带动环境探测装置3转动,控制主机中电源的供电电流和/或控制主机中控制装置的控制信号通过第二引线84进入第二线圈82,第二线圈82通过线圈间的磁耦合将供电电流和/或控制信号无线传输到与第一线圈81,再通过第一引线83进一步传输到安装于电机4的环境探测装置3,实现对环境探测装置3的控制或供电。
场景二
图14至图18示出了本申请实施例提供的另一种电机4,从图14和图18中可以看出,电机4包括定子11、转子5、底座6以及两个无线传输组件,其中,定子11、转子5与底座6的结构组成、安装方式或连接方式与上述场景一中的定子11、转子5与底座6相同,参见上述场景一中的相关描述即可,因此不再赘述。本实施例与上述实施例的不同之处在于包括两个无线传输组件,分别为用于电力传输的传电组件12和用于信号传输的传信号组件13。
图14为本申请另一种实施例提供的一种电机的结构示意图,如图14所示,转子5的顶面开设有第一伸出口57和第二伸出口56,第一伸出口57和第二伸出口56用于电机4中无线传输组件中引线的伸出。
转子5顶部设置有连接接口和码盘7,其中,连接接口包括相对于第一轴线对称设置的腰形安装块51,腰形安装块51上设置有至少一个安装孔,安装孔为螺纹孔,环境探测装置3通过穿设于螺纹孔的螺纹紧固件安装于电机4的转子5。如此设计,环境探测装置3与电机4可直接对接安装,提高了环境探测装置3拆装的便捷性。
码盘7包括圆板,圆板上等分地设有若干个长方形孔。码盘7与转子5同轴设置,在电机4旋转时,码盘7与电机4同速旋转,利用码盘7可以检测电机4的转速和转动角度,从而可实现对电机4转速和转动角度的控制,光电扫描装置2通过控制电机4控制环境探测装置3转动速度和朝向。
图15为图14中电机的爆炸图,请参考图15,传电组件12包括传电内环121和传电外环122,传电内环121包括传电内磁环和第一线圈,第一线圈缠绕于传电内磁环。传电外环122包括传电外磁环和第二线圈,第二线圈缠绕于传电外磁环。传信号组件13包括信号内环131和信号外环132,信号内环131包括信号内磁环和第三线圈,第三线圈缠绕于信号内磁环。信号外环132包括信号外磁环和第四线圈,第四线圈缠绕于信号内磁环。其中,传电内磁环、传电外磁环、信号内磁环和信号内磁环的作用相同,结构相似,以传电内磁环为例,传电内磁环为导磁体制成的环状结构,传电内磁环为抗干扰元件,用于抑制高频噪声,并可支撑第一线圈。
传电组件12和传信号组件13均还包括引线,引线包括与第一线圈相连的第一传电引线123,与第二线圈相连的第二传电引线124,与第三线圈相连的第一信号引线133,以及与第四线圈相连的第二信号引线134。其中,第一传电引线123和第一信号引线133向上延伸,第一传电引线123自转子5顶面的第一伸出口57伸出后与环境探测装置3连接,第一信号引线133自转子5顶面的第二伸出口56伸出后与环境探测装 置3连接。在一种可行的实施方式中,第一传电引线123和第一信号引线133连接至转子5顶面设置的接线端子,环境探测装置3连接有与接线端子插接配合的配合端子,通过接线端子和配合端子的插接配合,即可实现第一传电引线123和第一信号引线133与环境探测装置3的连接,并且接线端子和配合端子可反复拆装使用,如此设计更方便环境探测装置3与电机4的对接安装,有助于环境探测装置3相对于电机4拆装更换与维护。
请参考图15,第二传电引线124和第二信号引线134向下延伸,并自底座6的底部伸出,第二传电引线124与控制主机中电源连接,以接收电源提供的用于使环境扫描装置工作的电能;第二信号引线134与控制主机中控制装置相连,以接收控制装置发出的用于控制环境扫描装置的控制信号。
图16为图14中电机的仰视图,请参考图16,在一种可能的实施方式中,底板62的边缘位置设有两个缺口,两个缺口分别为电机引线伸出口624和第三伸出口625,其中,电机引线伸出口624与电机引线10位置对应,允许电机引线10伸出,第三伸出口625用于第二信号引线134的伸出,第二信号引线134自底座6的底部伸出后与控制装置连接。圆环形侧壁61上设有朝向底板62外的第四伸出口612,第二传电引线124自第四伸出口612和底板62边缘延伸至底座6的底部下方,第二传电引线124伸出后与外部电源连接。在一种可能的实施方式中,第二传电引线124和第二信号引线134也可连接至底座6底部设置的接线端子,电源和控制装置可连接具有配合端子的线缆,通过接线端子和配合端子的插接配合,即可实现第二传电引线124与电源的连接,第二信号引线134与控制装置的连接,并且接线端子和配合端子可反复拆装使用,如此设计更方便电机4与电源和控制装置的连接,并且有利于拆装更换与维护。
请参考图16,底板62的边缘位置设置有向外突出的若干个装配支脚623,用于电机4的安装和固定,装配支脚623上设置有与螺纹紧固件配合的连接孔,通过穿过连接孔的螺纹紧固件将底板62固定安装在车辆本体上。
图17为图14中底座的剖视图,图18为图14中电机的剖视图,如图17和图18所示,底板62朝向转子5的表面设置有环绕第一轴线设置的第四安装槽622,第四安装槽622为开口朝向转子5并环绕第一轴线的环形槽,以经过第一轴线的平面为截面,第四安装槽622的截面形状可以为矩形。
圆环形侧壁61的内壁面设置有第二安装槽611,第二安装槽611靠近圆环形侧壁61的顶部,第二安装槽611可以为沿圆环形侧壁61内壁面环绕第一轴线延伸形成环形槽。在一种可能的实施方式中,第二安装槽611的上侧面与圆环形侧壁61的顶部贯通,以经过第一轴线的平面为截面,第二安装槽611的截面形状为L形。
请参考图18,转子5的外周面53与第二安装槽611相对的位置设有第一安装槽52,第一安装槽52可以为环绕第一轴线的环形槽,该环形槽的中心线与第一轴线重合,第一安装槽52开口为水平方向,且背离第一轴线。第一安装槽52和第二安装槽611同轴设置。
转子5的底部端面54与第四安装槽622相对的位置开设有第三安装槽55,第三安装槽55可以为环绕第一轴线的环形槽,该环形槽开口朝向第四安装槽622,第三安装槽55与第四安装槽622同轴,且第三安装槽55位于第四安装槽622的正上方。
传电内环121安装在第一安装槽52中,传电内磁环贴合于第一安装槽52的槽底面。传电外环设置于第二安装槽611中,传电外磁环贴合于第二安装槽611中的竖直壁面。传电内环121和第一安装槽52之间设置有隔磁件9,用于避免电机4工作时产生的磁场对传电组件12的干扰,隔磁件9为贴合在第一安装槽52的槽底面上的环形结构,例如可以包括两个相对接或拼接的半圆形隔磁瓦。根据上述描述可知,传电外环122与传电内环121的中轴线均与第一轴线重合,且传电外环122套设于传电内环121的外侧。
传电组件12的传电原理基于电磁感应,第一线圈和第二线圈以耦合的电磁场为媒介实现电能的无线传输。在一种可能的实现方式中,传电组件12中可省去传电内磁环和传电外磁环,只保留第一线圈和第二线圈,如此设计,可减少传电组件12重量和零件,进一步降低了采用该传电组件12的电机4的成本,同时提高采用该传电组件12的电机4的集成度。
信号内环131设置于第三安装槽55,信号内磁环为贴合于第三安装槽55槽底面的环状结构。信号外环132设置于第四安装槽622中,信号外磁环为贴合于第四安装槽622槽底面的环状结构。通过上述描述可知,信号内环131和信号外环132的中轴线均与第一轴线重合,信号内环131位于信号外环132的上方。
电机4的工作原理为:转子5在定子11上绕第一轴线转动,从而带动环境探测装置3转动,外部电源的供电电流通过第二传电引线124进入传电外环122,控制装置中的工作信号通过第二信号引线134进入信号外环132,通过传电外环122和传电内环121之间,以及,信号内环131和信号外环132之间线圈间磁耦合无线传输到传电内环121和信号内环131,传电内环121再通过第一传电引线123将工作电流传输至安装于电机4的环境探测装置3,信号内环131再通过第一信号引线133将控制信号传输到安装于电机4的环境探测装置3。
根据上述描述可知,本实施中的电机4将传电内环121和信号内环131直接固定在转子5上,传电外环122和信号外环132固定在与定子11同轴的底座6上,如此设计,与相关技术相比,减少了转接件、固定轴和旋转体,使电机4结构更为简单,有利于实现电机4的小型化,进而有助于缩小光电扫描装置整体的体积;另外,电机结构简单使得电机组装过程中,装配次数减少,从而降低了多次转接导致的累计公差,降低了无线传输组件中耦合线圈之间磁耦合耦合失效的概率。
另外,定子11和转子5之间的装配后公差要远小于无线传输组件8中第一线圈81、第二线圈82之间所允许的最大耦合公差,因此,一般保证底座6与定子11之间的公差即可达到设计需求。可以理解的,底座6和定子11之间的同轴度公差较相关技术中固定轴300和旋转体200之间的同轴度公差容易实现,降低了加工难度;另外,无线传输组件设置于装配后的定子11和转子5上,无线传输组件中的第一引线和第二引线无需贯穿较多固定轴即可伸出,加工较为简单;并且,电力传输和信号传输采用各自独立的组件完成,传输效率更高,可靠性更好。
通过上述描述可知,传电组件12位于转子5的外周面53和圆环形侧壁61,传信号组件13位于转子5的底部端面54和底板62,传电组件12和传信号组件13分设在不同面内,且距离较远,因此可以避免传电组件12和传信号组件13之间的干扰。显 然,传电组件12和传信号组件13的设置位置可以对调。
在一种可能的实现方式中,传电内环121和信号内环141均套设于转子5的外周面53,与之对应的,传电外环122和信号外环132均安装于圆环形侧壁61的内侧面,例如,转子5的外周面53设置有第一安装槽52和第三安装槽55,第一安装槽52和第三安装槽55可以为环绕第一轴线的环形槽,第一安装槽52和第三安装槽55的开口方向均为水平方向,且背离第一轴线。圆环形侧壁61对应第一安装槽52的位置设有第二安装槽611,对应第三安装槽55的位置设有第四安装槽622。
另外,传电内环121和信号内环131还可均设置于转子5的底部端面54,与之对应的,传电外环122和信号外环132均安装于底座6的底板62,例如,转子5底部端面54设置有第一安装槽52和第三安装槽55,第一安装槽52和第三安装槽55可以为环绕第一轴线的环形槽,以经过第一轴线的平面为截面,环形槽体的截面为矩形。第一安装槽52和第三安装槽55的开口方向均为竖直方向,且朝向底板62。底板62对应第一安装槽52的位置开设有第二安装槽611,对应第三安装槽55的位置开设有第四安装槽622。
需要说明的是,本实施例提供的光电扫描装置2并不局限于自动驾驶汽车技术领域,还可应用于城市监控等领域。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种光电扫描装置,其特征在于,包括电机、无线传输组件和环境探测装置,所述电机包括定子、转子和底座,所述定子固定安装于所述底座上,所述转子套设于所述定子上;所述无线传输组件包括第一线圈和第二线圈,所述第一线圈与所述环境探测装置分别安装于所述转子上,且所述第一线圈与所述环境探测装置电连接,所述第二线圈安装于所述底座上;所述第二线圈和与控制主机电连接;所述第一线圈与所述第二线圈之间磁耦合以实现所述控制主机和所述环境探测装置之间的无线信号和/或电力传输。
  2. 根据权利要求1所述的光电扫描装置,其特征在于,所述底座包括底板和设置于所述底板上的圆环形侧壁,所述圆环形侧壁与所述定子同轴,所述定子和所述转子位于所述圆环形侧壁围成的侧壁空间内。
  3. 根据权利要求2所述的光电扫描装置,其特征在于,所述第一线圈安装在所述转子的外周面上,所述第二线圈安装在所述圆环形侧壁的内壁面上,所述第二线圈同轴套设于所述第一线圈外侧。
  4. 根据权利要求3所述的光电扫描装置,其特征在于,所述转子的外周面设置有第一安装槽,所述第一线圈安装在所述第一安装槽内,和/或,所述圆环形侧壁的内壁面设置有第二安装槽,所述第二线圈安装在所述第二安装槽内。
  5. 根据权利要求2所述的光电扫描装置,其特征在于,所述第一线圈和所述第二线圈位于所述侧壁空间内,且所述第一线圈安装在所述转子朝向所述底板的底部端面上,所述第二线圈安装在位于所述侧壁空间内的所述底板上。
  6. 根据权利要求5所述的光电扫描装置,其特征在于,所述转子的所述底部端面设有第三安装槽,所述第一线圈安装在所述第三安装槽内,和/或,所述底板朝向所述转子的侧面设有第四安装槽,所述第二线圈安装在所述第四安装槽内。
  7. 根据权利要求1-6中任一项所述的光电扫描装置,其特征在于,所述无线传输组件还包括第三线圈和第四线圈,所述第三线圈安装于所述转子上,所述第四线圈安装于所述底座上;所述控制主机和所述环境探测装置通过所述第一线圈与所述第二线圈之间的磁耦合实现无线电力传输;所述控制主机和所述环境探测装置通过所述第三线圈与所述第四线圈之间的磁耦合实现无线信号传输。
  8. 根据权利要求7所述的光电扫描装置,其特征在于,所述第一线圈设置于所述转子的外周面,所述第二线圈设置于所述底座且同轴套设于所述第一线圈外侧;所述第三线圈设置于所述转子朝向所述底座的底部端面,所述第四线圈安装于所述底座。
  9. 根据权利要求7所述的光电扫描装置,其特征在于,所述第一线圈和所述第三线圈均设置于所述转子的外周面;所述第二线圈设置于所述底座且同轴套设于所述第一线圈外侧,所述第四线圈设置于所述底座且同轴套设于所述第三线圈外侧。
  10. 根据权利要求7所述的光电扫描装置,其特征在于,所述第一线圈和所述第三线圈均设置于所述转子朝向所述底座的底部端面,所述第二线圈和所述第四线圈安装于所述底座。
  11. 根据权利要求7-10中任一项所述的光电扫描装置,其特征在于,所述第一线圈与所述转子之间设置有隔磁件。
  12. 根据权利要求7-11中任一项所述的光电扫描装置,其特征在于,所述无线传输组件还包括信号内磁环和信号外磁环,所述第三线圈缠绕在所述信号内磁环上,所述第四线圈缠绕在所述信号外磁环上。
  13. 根据权利要求1所述的光电扫描装置,其特征在于,所述转子的一端设置有用于安装环境探测装置的连接接口,所述连接接口包括相对所述转子的轴线对称设置的两个安装块,所述安装块设置有安装孔。
  14. 根据权利要求1所述的光电扫描装置,其特征在于,所述环境探测装置包括激光雷达、红外雷达、毫米波雷达或摄像头。
  15. 一种电机,用于驱动环境探测装置,其特征在于,所述电机包括定子、转子、底座和无线传输组件;所述定子固定安装于所述底座,所述转子套设于所述定子,所述无线传输组件包括第一线圈和第二线圈,所述第一线圈安装于所述转子上,所述第二线圈安装于所述底座上;所述环境探测装置安装于所述转子且与所述第一线圈电性连接;所述第二线圈与控制所述环境探测装置的控制主机电性连接;所述控制主机与所述环境探测装置之间通过所述第一线圈和所述第二线圈之间的磁耦合实现无线信号和/或电力传输。
  16. 一种自动驾驶汽车,其特征在于,包括车辆本体,以及安装在所述车辆本体上如权利要求1-14中任一项所述的光电扫描装置,或,如权利要求15所述的电机。
PCT/CN2020/080746 2020-03-23 2020-03-23 光电扫描装置、电机以及自动驾驶汽车 WO2021189212A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/080746 WO2021189212A1 (zh) 2020-03-23 2020-03-23 光电扫描装置、电机以及自动驾驶汽车
EP20928008.0A EP4113169A4 (en) 2020-03-23 2020-03-23 PHOTOELECTRIC SCANNER, ELECTRIC MOTOR AND SELF-DRIVING AUTOMOBILE
CN202080097632.8A CN115176173A (zh) 2020-03-23 2020-03-23 光电扫描装置、电机以及自动驾驶汽车
US17/950,622 US20230016536A1 (en) 2020-03-23 2022-09-22 Photoelectric scanning apparatus, motor, and autonomous vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080746 WO2021189212A1 (zh) 2020-03-23 2020-03-23 光电扫描装置、电机以及自动驾驶汽车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/950,622 Continuation US20230016536A1 (en) 2020-03-23 2022-09-22 Photoelectric scanning apparatus, motor, and autonomous vehicle

Publications (1)

Publication Number Publication Date
WO2021189212A1 true WO2021189212A1 (zh) 2021-09-30

Family

ID=77890920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080746 WO2021189212A1 (zh) 2020-03-23 2020-03-23 光电扫描装置、电机以及自动驾驶汽车

Country Status (4)

Country Link
US (1) US20230016536A1 (zh)
EP (1) EP4113169A4 (zh)
CN (1) CN115176173A (zh)
WO (1) WO2021189212A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785383A (zh) * 2016-05-19 2016-07-20 上海思岚科技有限公司 一种激光扫描测距装置
CN206411271U (zh) * 2017-01-17 2017-08-15 西安交通大学 基于盘式转子电机的线扫描激光雷达
CN108828610A (zh) * 2017-03-16 2018-11-16 日立-Lg数据存储韩国公司 旋转距离测量设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292370A (ja) * 2007-05-25 2008-12-04 Topcon Corp 距離測定装置
CN106249248A (zh) * 2016-08-31 2016-12-21 北京创想智控科技有限公司 旋转光学扫描测距装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785383A (zh) * 2016-05-19 2016-07-20 上海思岚科技有限公司 一种激光扫描测距装置
CN206411271U (zh) * 2017-01-17 2017-08-15 西安交通大学 基于盘式转子电机的线扫描激光雷达
CN108828610A (zh) * 2017-03-16 2018-11-16 日立-Lg数据存储韩国公司 旋转距离测量设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113169A4 *

Also Published As

Publication number Publication date
US20230016536A1 (en) 2023-01-19
EP4113169A1 (en) 2023-01-04
CN115176173A (zh) 2022-10-11
EP4113169A4 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
EP3690294A1 (en) Electronic expansion valve
WO2019119242A1 (zh) 雷达装置及无人飞行器
KR102611782B1 (ko) Bldc 모터를 구비한 구동모터 및 이를 이용한 스위블 액추에이터
EP1187152B1 (en) Rotary contactless connector
EP3852235A1 (en) Contactless power supply and data communication device, and system having rotation-drive unit, using same
CN111884385A (zh) 一种空心杯无刷直流电机
WO2021189212A1 (zh) 光电扫描装置、电机以及自动驾驶汽车
CN209860673U (zh) 一种无接触式旋转导电滑环
US20140132095A1 (en) Motor
CN105865407B (zh) 一种激光测距装置
KR102636715B1 (ko) 무접점 전력공급 및 데이터통신 장치와 이를 이용하는 회전구동 라이다 시스템
JP7420418B2 (ja) 非接触給電およびデータ通信装置、並びにこれを用いた回転駆動ライダーシステム
JP3533375B2 (ja) 回転型非接触コネクタ
CN114341663A (zh) 驱动电机、扫描模组及激光雷达
JP6626212B2 (ja) 自動車用電動式流体ポンプ
CN108808993B (zh) 一种步进电机滑环装置
WO2020103257A1 (zh) 电机、动力装置及机器人
CN217494312U (zh) 机械臂关节
CN115066827A (zh) 电机
CN216285699U (zh) 一种激光雷达
CN212909141U (zh) 一种空心杯无刷直流电机
WO2018153136A1 (zh) 电机及电机固定结构
CN112510924B (zh) 电机及激光雷达
CN217213137U (zh) 雷达及无人车
CN216781829U (zh) 驱动装置及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020928008

Country of ref document: EP

Effective date: 20220929

NENP Non-entry into the national phase

Ref country code: DE