WO2021187813A1 - 변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물 - Google Patents

변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물 Download PDF

Info

Publication number
WO2021187813A1
WO2021187813A1 PCT/KR2021/003095 KR2021003095W WO2021187813A1 WO 2021187813 A1 WO2021187813 A1 WO 2021187813A1 KR 2021003095 W KR2021003095 W KR 2021003095W WO 2021187813 A1 WO2021187813 A1 WO 2021187813A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
hydrogel
caprolactone
lactide
antibody
Prior art date
Application number
PCT/KR2021/003095
Other languages
English (en)
French (fr)
Inventor
김종성
채윤진
Original Assignee
주식회사 스칼라팍스트롯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200172631A external-priority patent/KR20210116194A/ko
Application filed by 주식회사 스칼라팍스트롯 filed Critical 주식회사 스칼라팍스트롯
Priority to CN202180021424.4A priority Critical patent/CN115297842A/zh
Priority to EP21772135.6A priority patent/EP4122446A4/en
Priority to US17/911,626 priority patent/US20230172851A1/en
Publication of WO2021187813A1 publication Critical patent/WO2021187813A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • This invention was made with government support under research project number HI14C 3477 granted by the Ministry of Health and Welfare.
  • the present invention relates to deformable hydrogel particles capable of preventing the immune system evasion mechanism of cancer cells, and to a pharmaceutical composition for treating cancer comprising the same.
  • the body's immune system is composed of various organs and special cells and substances that have an immune effect. Immune cells and immune substances suppress inflammation caused by antigens that stimulate immune responses such as foreign substances or bacteria that are not derived from the human body, and are responsible for suppressing cancer cells. T-cells and B-cells are representative cells responsible for immunity. Depending on the type, T-cells either directly attack the antigen or help B-cells to function. B-cells clear the antigen by secreting antibodies that can attack the antigen.
  • Immune checkpoint protein is a protein that activates or deactivates immune cells in our body, and is a mediator that the immune system distinguishes between cancer cells and normal cells.
  • Representative checkpoint proteins are PD-1 (Programmed Death 1) and CTLA-4 (Cytotoxic T-Lymphocyte-associated Antigen 4) on the T cell surface. When they meet proteins on the surface of normal cells (eg, PD-L1, B7), they inactivate T cells to prevent attack on normal cells. Cancer cells evade attack by the immune system by expressing checkpoint proteins such as PD-L1 and B7.
  • Immunocancer drugs inhibit cancer cells from evading the surveillance of the immune system or enhance the action of immune cells so that immune cells can attack cancer cells more effectively.
  • Anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, etc. have been approved by FDA and are being used in clinical practice.
  • antibody-based immunotherapy requires a large amount to be administered to regulate immune checkpoint molecular functions, which not only causes toxicity and side effects, but also accompanies high treatment costs.
  • CAR Chimeric Antigen Receptor
  • bi- or triple-antibody technologies are being developed.
  • the double antibody and the triple antibody exhibit superior cancer cell killing activity compared to a single antibody through the function of two or more antibodies.
  • recombinant protein technology is used, and this process takes a lot of time and money.
  • hydrogels are a three-dimensional structure composed of a network of hydrophilic polymers, and more than 90% of its components are water. Hydrogels are attracting attention as a drug delivery means in the pharmaceutical field because of their properties similar to biological tissues, such as high water content, porous structure, relatively soft physical properties, and biocompatibility.
  • the hydrogel may exhibit various properties depending on the type of polymer used as the main chain and the crosslinking method. For example, by using a stimuli-responsive polymer, a hydrogel that responds to a specific stimulus can be formed. By using a polymer having a lot of ionizing functional groups, it is possible to form a hydrogel whose physical properties can be changed by a change in pH. This changing hydrogel formation is possible. It is the crosslinking method that affects the properties of the hydrogel as much as the type of polymer used. Even if the same polymer is used as the main chain, hydrogels with completely different properties can be obtained if the crosslinking methods are different. The method of crosslinking the hydrogel is largely divided into two types of physical and chemical crosslinking methods.
  • Physical crosslinking methods include ionic interactions, hydrophobic interactions, hydrogen bonds, and structurally reversible crosslinking methods due to molecular entanglement. Through these cross-linking methods, it is possible to easily induce the formation of a three-dimensional network internal structure without the need for a separate chemical additive or complicated process for cross-linking.
  • the chemical crosslinking method is generally an irreversible method by covalent bonding and forms a stable network compared to the physical crosslinking method.
  • hydrogels incorporating a crosslinker that is structurally deformed or decomposed by stimuli such as pH change, temperature, light or ultrasound can control the physical properties of the gel by external stimuli.
  • Korean Patent Registration No. 10-1754774 discloses a biochip using a hydrogel whose physical properties are changed by a specific stimulus.
  • a binding-mediated substrate is formed on the surface of the hydrogel, and when the binding-mediated substrate binds to a target protein, de-swelling occurs in the hydrogel, which results in physical properties of the hydrogel (eg, refractive index, volume). etc.) is changed.
  • the changed physical properties are transmitted to the analysis equipment as a corresponding displacement signal, and the amount of multiple bonds between the target protein and the binding-mediated substrate can be measured by analyzing the displacement signal, thereby functioning as a biochip.
  • this document does not disclose the use of the described hydrogel as a drug delivery agent or an anticancer therapeutic agent using the same.
  • Patent Document 1 Republic of Korea Patent No. 10-1754774
  • Non-Patent Document 1 Jisoo Shin et al., "Functional Hydrogel for the Application of Drug Delivery and Tissue Engineering", KIC News, Vol. 18, No. 6, (2015): pages 2-3.
  • the present inventors have developed a hydrogel-based, deformable artificial, capable of preventing the immune system evasion mechanism of cancer cells by binding to and blocking the interaction between cancer cells and/or T-cells.
  • an object of the present invention is a protein capable of binding to a cell surface component of cancer cells and/or T-cells is bound to the surface and is deformable, characterized in that hydrogel particles and immunity containing the same To provide an anticancer agent or a pharmaceutical composition for treating cancer.
  • One aspect of the present invention relates to a hydrogel particle, characterized in that a protein capable of binding to a cell surface component of a cancer cell and/or a T-cell is bound to the surface and is deformable.
  • the cell surface component is CD2, CD3, CD19, CD24, CD27, CD28, CD31, CD34, CD45, CD46, CD80, CD86, CD133, CD134, CD135, CD137, CD160, CD335, CD337, CD40L, ICOS , GITR, HVEM, Galectin 9, TIM-1, LFA-1, PD-L1, PD-L2, B7-H3, B7-H4, ILT3, ILT4, PD-1, CTLA-4, BTLA, MHC-I , MHC-II, TGF- ⁇ receptor, latent TGF- ⁇ -binding protein (LTBP), delta-like ligand (eg, DLL-Fc, DLL-1 or DLL-4), WNT3, stem cell factor and thrombopoietin one or more species selected from
  • the cell surface component of the cancer cell may be PD-L1 protein, and the cell surface component of the T-cell may be selected from the group consisting of PD-1 protein, CTLA-4 protein, and CD137 protein. .
  • the protein bound to the hydrogel surface may be an antibody, a recombinant protein, or a combination thereof.
  • the antibody may be an anti-PD-1 antibody, an anti-PD-L1 antibody, an anti-CD137 antibody, an anti-CTLA-4 antibody, or a combination thereof.
  • the recombinant protein is a group consisting of a protein, an aptamer, or a combination thereof, which can target and bind one or more of PD-L1 protein, PD-1 protein, CTLA-4 protein, and CD137 protein. It may be at least one selected from.
  • the hydrogel is a nanoparticle.
  • the diameter of the hydrogel in deionized water is about 50 nm to about 3,000 nm, for example, about 100 nm to about 2500 nm, or about 300 nm to about 2000 nm, preferably at least about 440 nm, more preferably at least about 540 nm, even more preferably at least about 700 nm, and may range, for example, from about 700 nm to about 1300 nm.
  • the hydrogel may include a synthetic copolymer consisting of a main monomer and a comonomer.
  • the main monomer is N-isopropylacrylamide, N-acryloylglycinamide, hydroxypropylcellulose, vinylcaprolactam, N-vinylpyrrolidone (N-vinyl pyrrolidone), 2-hydroxyethyl methacrylate, ethylene glycol; amino acids such as aspartic acid, glutamic acid, and L-lysine; may be selected from the group consisting of caprolactone and vinyl methyl ether, and the comonomer is allylamine (AA), dimethylaminoethyl methacrylate (DMAEMA), dimethylaminoethyl acrylate ( DMAEA), acrylic acid (AAc), ethylene glycol (EG), and methacrylic acid (MAAc).
  • AA allylamine
  • DMAEMA dimethylaminoethyl methacrylate
  • the hydrogel may include a synthetic homopolymer composed of a single monomer.
  • exemplary homopolymers include poly(ethylene glycol) (PEG), poly(2-methyl-2-oxazoline) (PMOXA), poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and poly( acrylamide) (PAAm), poly(n-butylacrylate), poly-( ⁇ -ester), poly(glycolic acid) (PGA), polyaspartate, polyglutamate, polylactide, poly(N-isopropyl) acrylamide) (pNIPAAM), poly(caprolactone), and polyvinylmethyl ether.
  • the hydrogel may further include a crosslinking agent.
  • the crosslinking agent is N,N'-methylene-bis-diacrylamide (MBA), polyethylene glycol (PEG) dihydroxyl (PEG dihydrocyl), PEG diamine (PEG diamine), PEG dioxyamine (PEG dioxyamine), PEG PEG dichloride, PEG dibromide, PEG diazide, PEG dithiol, PEG dialdehyde, PEG diepoxide, PEG PEG diacrylate, PEG dimethacrylate, PEG diacetic acid, PEG disuccinic acid, PEG discuccinimidyl carboxymethyl ester methyl ester), poly( ⁇ -caprolactone)diacrylate [poly( ⁇ -caprolactone)diacrylate], poly( ⁇ -caprolactone)dimethacrylate [poly( ⁇ -caprolactone)dimethacrylate], polylactide diacrylate Polylactide diacrylate, polylact
  • the hydrogel includes a synthetic copolymer obtained by copolymerizing a main monomer, a comonomer and a crosslinking agent, for example, 50 to 97.9% by weight of the main monomer, 2 to 40% by weight of the comonomer, and a crosslinking agent 0.1 to 10% by weight may be included.
  • the hydrogel is, poly(N-isopropyl acrylamide-co-allylamine) [poly(N-isopropylacrylamide-co-allylamine): poly(NIPAM-co-AA)], poly(N- Isopropyl acrylamide-co-2-(dimethylamino)ethyl methacrylate) [poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl methacrylate): poly(NIPAM-co-DMAEMA)], poly(N -Isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate) [poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate): poly(NIPAM-co-DMAEA)], poly(N -Isopropyl acrylamide-co-acrylic acid) [poly(N-iso)
  • the hydrogel may include a natural polymer.
  • natural polymers include alginate, agarose, carrageenan, chitosan, dextran, carboxymethylcellulose, heparin, hyaluronic acid, polyamino acids, collagen, gelatin, fibrin, fibrous protein-based biopolymers (eg, silk, keratin, elastin and resillin) and combinations thereof.
  • the protein bound to the hydrogel surface is carbodiimide cross-linking, Schiff base cross-linking, Azlactone cross-linking, carbonyl diimidazole (CDI) surface of the hydrogel by at least one bond selected from the group consisting of cross-linking, iodoacetyl cross-linking, hydrazide cross-linking, Mannich cross-linking, and maleimide cross-linking.
  • CDI carbonyl diimidazole
  • the protein bound to the surface of the hydrogel is at least one selected from the group consisting of another protein, an aptamer, or a combination thereof capable of targeting and binding one or more cell surface components, Protein A: Fc interaction (protein A:Fc interaction), protein G:Fc interaction (protein G:Fc interaction), protein A/G:Fc interaction (protein A/G:Fc interaction), or maleimide/thiol and EDC They may also be bound using standard binding methods such as /NHS binding.
  • Another embodiment of the present invention relates to a method for preparing a hydrogel particle capable of binding to a cell surface component of cancer cells and/or T-cells, wherein the protein is bound to the surface and deformable, the method comprising:
  • a further embodiment of the present invention relates to a therapeutically effective amount of an immuno-oncology agent or a pharmaceutical composition for treating cancer comprising the deformable hydrogel particles, and a method of treating cancer by administering the pharmaceutical composition to a patient.
  • the deformable particle according to the present disclosure is based on a soft hydrogel, to which a protein capable of binding to a cell surface component of cancer cells and/or T-cells, in particular an immune checkpoint protein, is bound to the surface of the hydrogel.
  • a protein capable of binding to a cell surface component of cancer cells and/or T-cells in particular an immune checkpoint protein
  • the deformable particles according to the present disclosure attach to the cancer cells and/or T-cells and block the interaction between the two cells. Therefore, it can prevent cancer cells from evading immune system surveillance and promote cancer cell death.
  • the present invention due to the mechanical softness of the soft hydrogel due to the components constituting the hydrogel, when the hydrogel comes into contact with the cell, the physical shape deformation of the hydrogel occurs, covering the cell surface and contacting the cell surface. Since the area is increased, it is possible to greatly reduce the possibility of binding of immune checkpoint proteins of cancer cells and T-cells with a smaller amount of antibody than conventional immunotherapy by area inhibition.
  • 1 is a schematic diagram showing the mechanism of the existing immunotherapy.
  • Figure 2 shows that the deformable particle according to the present disclosure binds to the cancer cell surface and inhibits the region covering the cancer cell surface protein, thereby blocking the interaction between the cancer cell surface protein and the T-cell surface protein, thereby preventing immune evasion of cancer cells. It is a schematic diagram showing prevention.
  • FIG 3 is a view showing a comparison of the anticancer mechanism using the existing immuno-oncology agent and the deformable particle according to the present disclosure.
  • FIG 4 is a view showing a comparison between the existing anticancer mechanism using a single or double antibody (left figure) and the anticancer mechanism using the deformable particle according to the present disclosure (right figure).
  • FIGS. 5a to 5d relates to the survival rate of breast cancer cells
  • 5a is an anti-PD-L1 antibody, an anti-PD-1 antibody, an anti-CD137 antibody, and an anti-CTLA-4 antibody, each treated alone, or a particle size of 700 nm
  • Figure 5b compares the cases in which two of the antibodies were treated together or treated by binding to the deformable particle
  • Figure 5c shows three of the four antibodies (left figure: anti-PD-L1 antibody, CD137 antibody and anti-CTLA-4 antibody; right figure: anti-PD-1 antibody, anti-CD137 antibody and anti-CTLA antibody).
  • FIG. 5G compares the cases in which the anti-PD-L1 antibody and the anti-CTLA-4 antibody were treated together alone or treated by binding to deformable particles having a particle size of 700 nm.
  • Figure 6 confirms the cancer cell killing effect according to the size of the deformable particles according to the present disclosure:
  • Figure 6a is cancer cells by binding an anti-CTLA-4 antibody to a hydrogel having a diameter of 440, 540, 700, or 1300 nm, respectively The killing effect was confirmed.
  • FIG. 6b shows the cancer cell killing effect by binding an anti-PD-L1 antibody and an anti-CTLA-4 antibody to a hydrogel having a diameter of 440, 540, 700, or 1300 nm.
  • FIG. 7 shows the case where the anti-PD-L1 antibody and the anti-CTLA-4 antibody were treated together alone, and the anti-PD-L1 antibody and the anti-CTLA-4 antibody were treated with deformable particles according to the present disclosure (with a diameter of 700 Alternatively, when binding to 1300 nm hydrogel particles) and non-transformable polystyrene beads (810 and 1230 nm diameter particles), respectively, it is the result of confirming the cancer cell killing effect according to the antibody concentration.
  • FIG. 8 is a view illustrating the survival rate of cancer cells according to the concentration of hydrogel particles when incubated with immune cells without binding an antibody to the deformable hydrogel particles according to the present disclosure.
  • FIG. 9 is a result of evaluating the anticancer efficacy of the deformable hydrogel particles according to the present disclosure in a mouse model, a mouse group treated only with PBS without an antibody or hydrogel injection (control group); a group of mice treated with anti-PD-L1 antibody and anti-CTLA-4 antibody alone; and on days 0, 4, 8, and 12 after antibody injection in a group of mice treated by binding an anti-PD-L1 antibody and an anti-CTLA-4 antibody to deformable particles (700 nm in diameter) according to the present disclosure. and the fluorescence expression level of cancer cells on day 16.
  • a protein capable of binding to a cell surface component of cancer cells and/or T-cells is bound to the surface, and hydrogel particles are provided, characterized in that they are deformable. .
  • cell surface component refers to a protein located in a cell membrane and capable of binding or interacting with a component outside the cell.
  • Exemplary cell surface components include CD2, CD3, CD19, CD24, CD27, CD28, CD31, CD34, CD45, CD46, CD80, CD86, CD133, CD134, CD135, CD137, CD160, CD335, CD337, CD40L, ICOS, GITR, HVEM, Galectin 9, TIM-1, LFA-1, PD-L1, PD-L2, B7-H3, B7-H4, ILT3, ILT4, PD-1, CTLA-4, BTLA, MHC-I, MHC- II, TGF- ⁇ receptor, latent TGF- ⁇ -binding protein (LTBP), delta-like ligand (eg, DLL-Fc, DLL-1 or DLL-4), WNT3, stem cell factor and one selected from thrombopoietin More than one species can be mentioned. More specifically, immune checkpoint proteins
  • deformable means that the physical shape of the particle can be changed, and the hydrogel according to the present disclosure can spontaneously change the shape of the particle when it comes into contact with a cell due to its softness. means character.
  • body fluid body fluid
  • hydrogel which was maintained in a spherical shape, stretches thinly and widely without being broken or destroyed when in contact with other cells, and covers the cells like a blanket.
  • the degree of deformability of the hydrogel according to the present disclosure may be determined by measuring the change in diameter before and after the hydrogel particles contact the cell. Compared with the diameter (D) of the height axis of the hydrogel in a spherical state (horizontal X-axis, vertical Y-axis, and height Z-axis) before contact with the cell, the height axis when the hydrogel contacts the cell and covers the cell like a blanket
  • the diameter is reduced by about 30 to about 99% (that is, the height axis diameter after contact is 0.01D to 0.7D)
  • the height axis diameter after contacting of the hydrogel is reduced by about 30 to about 90% compared to before contacting (ie, the diameter after contacting is from about 0.1D to about 0.7D).
  • a hydrogel according to the present disclosure has an appropriate softness and/or (visco)elastic modulus to be deformable at the cell surface.
  • the hydrogel according to the present disclosure is soft, that is, has high ductility, and for this purpose, in one embodiment, the elastic modulus of the hydrogel particles at 25° C. may be in the range of 0.01 Pa to 100 Pa ( For further discussion of ductility, see the following literature, which is incorporated herein by reference in its entirety: Mattias Karg et al ., Langmuir 2019, 35, 6231-6255).
  • the diameter of the hydrogel according to the present disclosure is about 50 nm to about 3,000 nm, for example, about 100 nm to about 2500 nm, or about 300 nm to about 2000 nm, preferably about 440 nm or more, more preferably is greater than or equal to about 540 nm, even more preferably greater than or equal to about 700 nm, and may range, for example, from about 700 nm to about 1300 nm.
  • the diameter of the hydrogel can be measured by a conventional method known to those skilled in the art, for example, dynamic light scattering (light correlation spectroscopy, laser diffraction, low-angle laser light scattering (LALLS) and medium-angle laser light scattering (MALLS)), Light obscuration methods (such as the Coulter analysis method), or other methods (such as rheology, and light or electron microscopy) can be used.
  • dynamic light scattering light correlation spectroscopy, laser diffraction, low-angle laser light scattering (LALLS) and medium-angle laser light scattering (MALLS)
  • Light obscuration methods such as the Coulter analysis method
  • other methods such as rheology, and light or electron microscopy
  • Protein refers to a polymer formed by peptide bonds of several amino acids, and includes an antibody, a recombinant protein, a peptide, a polypeptide, and a glycoprotein. (glycoprotein), lipoprotein (lipoprotein), synthetic protein (synthetic protein), and the like, but are not limited thereto.
  • Antibody refers to an immunoglobulin molecule having immunological reactivity with a specific antigen, and refers to a protein molecule serving as a receptor specifically recognizing an antigen, whole antibody and It is a concept encompassing all antibody fragments such as antigen-binding fragments.
  • treating an antibody alone refers to treatment by diluting an isolated antibody in PBS, etc. without binding to a surface such as a hydrogel when the antibody is treated with cancer cells or the like.
  • Recombinant protein refers to a protein expressed from DNA engineered through recombinant DNA technology, and in particular, it is expressed by cloning the recombinant DNA in an expression system such as a vector.
  • Hydrogel refers to a three-dimensional network formed by crosslinking a hydrophilic polymer chain as known per se in the art, for example, a Korean Patent Registration and hydrogels disclosed in No. 10-1754774.
  • the surface of the hydrogel particle according to the present disclosure may be modified so that a protein may be bound to the surface thereof.
  • the particle surface can be modified using standard binding methods including maleimide/thiol and EDC/NHS bonding. More specifically, the linkage is a carbodiimide crosslink, a Schiff base crosslink, an azlactone crosslink, a carbonyl diimidazole (CDI) crosslink, iodoacetyl ) crosslinking, hydrazide crosslinking, Mannich crosslinking, and maleimide crosslinking.
  • CDI carbonyl diimidazole
  • iodoacetyl iodoacetyl
  • a pharmaceutical composition for treating cancer comprising the deformable particle, and a method of treating cancer by administering the pharmaceutical composition to a patient are provided.
  • cancer includes all cancers, and includes lung cancer, esophageal cancer, thymus cancer, breast cancer, liver cancer, stomach cancer, colorectal cancer, pancreatic cancer, cervical cancer, skin cancer, prostate cancer, ovarian cancer, thyroid cancer, bladder cancer, two Examples include, but are not limited to, cervical cancer, bone marrow cancer, and biliary tract cancer.
  • treatment may be construed to include any act of improving or benefiting cancer symptoms by administering the pharmaceutical composition of the present invention to a patient, but is not particularly limited thereto.
  • the pharmaceutical composition of the present invention may further include suitable carriers, excipients and diluents commonly used in the preparation of pharmaceutical compositions, which carriers may be non-natural carriers.
  • the carrier, excipient and diluent include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the pharmaceutical composition of the present invention is formulated in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions according to conventional methods, respectively.
  • oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions according to conventional methods, respectively.
  • diluents, excipients, or carriers such as fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or may be administered in combination with other therapeutic agents, and may be administered sequentially or simultaneously with conventional therapeutic agents. and may be administered single or multiple. Taking all of the above factors into consideration, it is important to administer an amount capable of obtaining the maximum effect with a minimum amount without side effects.
  • the term "administration” refers to introducing the pharmaceutical composition of the present invention to a subject by any suitable method, and the administration route may be administered through various routes as long as it can reach the target tissue.
  • parenteral injection includes intramuscularly, intraarticular, intrathecal, and spinal dura
  • parenteral administration methods are included, such as intraperitoneal, intravenous, intradermally, intraperitoneal, intratumorally or subcutaneous administration.
  • parenteral administration of the composition it is preferable to prepare a unit dose formulation by mixing a pharmaceutically acceptable carrier, that is, nontoxic to the receptor at the concentration and dosage used, and miscible with other formulation ingredients, under the desired purity. may be desirable.
  • the pharmaceutical composition of the present invention includes “an immunologically effective amount”, “an anti-tumor effective amount”, “a tumor-inhibiting effective amount”, Or it may be administered in a “therapeutically effective amount”, and the exact amount of the composition of the present invention to be administered depends on the age, weight, tumor size, degree of infection or metastasis, and the condition of the patient (subject). It can be decided by the physician taking into account individual differences.
  • the pharmaceutical composition of the present invention comprises a dose of about 0.01 to about 20 mg/kg (patient body weight), a dose of about 0.01 to about 3 mg/kg, about 0.05 to about once with an administration cycle of 2 to 3 weeks.
  • a dose of 2 mg/kg a dose of about 0.1 to about 2 mg/kg, a dose of about 0.1 to about 1 mg/kg, a dose of about 1 to about 2 mg/kg, or a dose of about 2 to about 20 mg/kg
  • it may be administered to a patient at a dose, it is possible to administer a much smaller effective amount of the immuno-oncology agent compared to the case where the existing immuno-oncology agent is administered alone without binding to the hydrogel according to the present invention.
  • the optimal dosage and dosing regimen for a particular patient can be readily determined by one of ordinary skill in the pharmaceutical arts by monitoring the patient for signs of disease and adjusting treatment accordingly.
  • the immuno-oncology agent includes an anti-PD-L1 and/or an anti-CTLA-4 antibody.
  • the anti-PD-L1 antibody binds to the PD-L1 protein on the cancer cell surface and blocks the binding of PD-L1 and PD-1
  • the anti-CTLA-4 antibody binds to the CTLA-4 protein of T-cells and binds to the CTLA-
  • the existing immuno-oncology drugs should contain more or a similar number of antibodies than the PD-L1 protein on the cancer cell surface or the CTLA-4 protein on T-cells.
  • the deformable particles according to the present disclosure can more effectively prevent immune evasion of cancer cells with a small amount of antibody by using the softness of the hydrogel.
  • the deformable particle according to the present disclosure contains a relatively small number of anti-PD-L1 antibodies ( FIG. 2 , left) compared to the conventional immuno-oncology agent ( FIG. 1 ).
  • the anti-PD-L1 antibody on the surface of the deformable particle binds to the PD-L1 protein on the surface of cancer cells. prevent binding to PD-L1 protein (region inhibition) (right side view of FIG. 2).
  • the flexible hydrogel deforms when attached to cancer cells and increases the contact area with cancer cells, so even with a small amount of antibody, the possibility of binding of the checkpoint protein of the cancer cell to the checkpoint protein of the T-cell is reduced. It can significantly lower the immune evasion ability of cancer cells can be effectively suppressed.
  • FIG. 3 is a comparison between a cancer cell therapeutic agent using the deformable particle according to the present disclosure and the existing technology.
  • Existing immuno-oncology drugs use antibodies to suppress the immune evasion ability of cancer cells. For effective blocking, existing immuno-oncology drugs should contain more or a similar number of anti-PD-L1 antibodies than PD-L1 protein on the surface of cancer cells. (middle of Fig. 3).
  • the deformable particles according to the present disclosure contain antibodies to immune checkpoint proteins such as PD-1, PD-L1, CTLA-4, and/or CD137, and thus cancer cells and/or T-cells via these antibodies.
  • immune checkpoint proteins such as PD-1, PD-L1, CTLA-4, and/or CD137
  • the soft hydrogel In addition to being able to adhere to the cell, due to the properties of the soft hydrogel, it can be attached to a larger area of the cell while changing its shape when attached to the cell (right side of FIG. 3).
  • Soft hydrogels attached to large areas of cancer cells and/or T-cell surfaces by themselves can prevent inactivation of checkpoint proteins in T-cells.
  • the deformable particles according to the present disclosure may contain immune checkpoint proteins PD-1, PD-L1, and CTLA-4 targeting antibodies and T-cell activating receptor CD137(4-1BB) targeting antibodies alone in a hydrogel.
  • two or more of these antibodies can be combined to bind to the hydrogel together, so that the effect of a multi-antibody such as a bi- or tri-antibody can be achieved (right side of FIG. 4 ). That is, since the deformable particle according to the present disclosure can easily produce a hydrogel with multispecificity using existing antibodies, the development time and cost of multi-antibody synthesis can be significantly reduced.
  • the hydrogel constituting the deformable particles according to the present disclosure can generally be prepared through the following steps: 50 to 97.9% by weight of the main monomer, 2 to 40% by weight of the comonomer, and 0.1 to 10% by weight of a crosslinking agent mixing so that the sum of the three components is 100% by weight; heating an aqueous solution containing the monomer to 55 to 80°C; initiating the polymerization reaction with or without addition of an initiator; obtaining an aqueous hydrogel solution produced according to the reaction; and dialysis of the hydrogel aqueous solution with purified water for about 2 weeks.
  • the main monomer, comonomer and crosslinking agent may be mixed in a content range of 50 to 97.9% by weight, 2 to 40% by weight, and 0.1 to 10% by weight, respectively.
  • content of the main monomer is less than 50% by weight, polymerization reactivity This may decrease, so that polymerization may not occur well, and if it is more than 97.9% by weight, it may be difficult to bind a required protein (eg, EDC/NHS coupling through acrylic acid) due to the lack of active groups provided by the comonomer.
  • a required protein eg, EDC/NHS coupling through acrylic acid
  • the content of the comonomer is less than 2% by weight or more than 40% by weight, there is a technical difficulty in binding the protein using the active group of the comonomer, respectively, or there is a difficulty in polymerizing uniform hydrogel particles.
  • the content of the crosslinking agent is less than 0.1% by weight, it may be difficult to form a hydrogel, and if it is more than 10% by weight, the ductility of the hydrogel may be inhibited.
  • One selected from the group consisting of caprolactone and vinyl methyl ether may be used, and as the comonomer, allylamine (AA), dimethylaminoethylmethacrylate (DMAEMA), dimethylaminoethylacryl
  • DMAEMA dimethylaminoethylacryl
  • DAEA dimethylaminoethylmethacrylate
  • MAAc methacrylic acid
  • N-isopropyl acrylamide may be used as the main monomer, and acrylic acid may be used as the comonomer.
  • the crosslinking agent may be MBA (N, N'-methylene-bis-acrylamide).
  • the hydrogel comprises: poly(N-isopropylacrylamide-co-allylamine)[poly(N-isopropylacrylamide-co-allylamine): poly(NIPAM-co-AA)], poly(N- Isopropylacrylamide -co-2-(dimethylamino)ethyl methacrylate) [poly(N-isopropyl acrylamide-co-2- (dimethylamino)ethyl methacrylate): poly(NIPAM-co-DMAEMA)], poly(N -Isopropylacrylamide-co-2-(dimethylamino)ethyl acrylate) [poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl acrylate): poly(NIPAM-co-DMAEA)], poly(N- Isopropyl acrylamide-co-acrylic acid) [poly(N-isopropyl)[poly(
  • Ammonium persulfate may be used as the initiator, but may be appropriately selected according to known techniques according to the type of monomer used.
  • the hydrogel according to the present disclosure is the ductility of the hydrogel particles prepared by controlling the type and content of the monomer, cross-linking agent and/or surfactant or controlling the temperature during polymerization initiation and polymerization according to common knowledge in the field of hydrogel manufacturing, etc.
  • the properties and size can be adjusted. For example, as the content of acrylic acid in the polymer is high and the content of BIS is low, the degree of diswelling of the prepared hydrogel particles tends to increase. In addition, if the content of BIS is too high, a hydrogel having a large particle size is not formed.
  • the particle size of the hydrogel according to the present disclosure is about 440 nm or more, and the size of the prepared particles is adjusted by adjusting the amount and type of the surfactant and the crosslinking agent in the manufacturing process, or by controlling the temperature during polymerization initiation and polymerization. It is possible to adjust in the above range.
  • the polymerization reaction was completed by injecting argon gas while mixing the solution well using a magnetic bar for 6 hours and maintaining the reaction temperature at 70° C. through heating. After removing the unreacted monomers and surfactants by dialysis by exchanging purified water twice a day for 2 weeks, the resulting aqueous hydrogel aqueous solution was removed using a freeze dryer to prepare hydrogel particles in powder form. The freeze-dried hydrogel particles were used by dissolving them in a solution (buffer or purified water) after measuring the mass in each experiment.
  • the size of the prepared hydrogel was measured by diluting the hydrogel in deionized water and then calculating the average value of the values obtained by repeating measurement at 25° C. 5 times using a dynamic light scattering (DLS) equipment.
  • DLS dynamic light scattering
  • the polymerization reaction was completed by injecting argon gas while mixing the solution well using a magnetic bar for 6 hours and maintaining the reaction temperature at 70° C. through heating. After removing the unreacted monomers and surfactants by dialysis by exchanging purified water twice a day for 2 weeks, the formed hydrogel aqueous solution was prepared using a lyophilizer to prepare powder-type hydrogel particles. The freeze-dried hydrogel particles were used by dissolving them in a solution (buffer or purified water) after measuring the mass in each experiment.
  • the size of the prepared hydrogel was obtained by diluting the hydrogel in deionized water in the same manner as in Spherical Preparation Example 1, and then repeatedly measuring at 25° C. 5 times using a dynamic light scattering (DLS) equipment. It was measured by calculating the average value of these.
  • DLS dynamic light scattering
  • Example 2 Modification of the surface of hydrogel particles: EDC / NHS coupling (EDC / NHS coupling)
  • EDC/NHS coupling was performed so that the antibody could be bound to the hydrogel particles obtained in Example 1 above.
  • EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride)
  • NHS N-Hydroxysuccinimide
  • crosslinking agents As a crosslinking agent solvent, 0.1M MES buffer (2-[N-morpholino]ethanesulfonic acid buffer) (Biosolution; Cat. BM020-5.5) was used.
  • the sample was centrifuged at 8000 rpm for 2 minutes at room temperature, the supernatant was removed in a clean bench, and 500 ⁇ M PBS (WEL GENE; LB001-02) was added to wash the sample. The centrifugation and PBS washing steps were repeated 5 or more times to remove all of the MES buffer and unreacted substances (EDC, NHS, protein A) in the sample. After the last centrifugation, the supernatant was removed, and the sample was suspended in 800 ⁇ M PBS, and the sample was stored at 4°C.
  • Antibodies used were anti-PD-L1 antibody (Sino Biological; Cat. 10084-R639); anti-PD-1 antibody (Sino Biological; Cat. 10377-HN94); anti-CD137 antibody (Sino Biological; Cat. 10041-RP01); Anti-CTLA-4 antibody (Bioxcell; Cat. BE0190, Lot. 744719s1), all human antibodies.
  • the antibody was added to the protein A-modified hydrogel particles to a concentration of 8 ⁇ M, and incubated at 4° C. for 1 hour to induce binding of the hydrogel particles to the antibody.
  • DMEM WEL GENE; Cat. LM001-11; 10% FBS and 1% antibiotic
  • the top concentration of antibody is 400 nM when cells are treated with antibody-binding hydrogel (ie, deformable particles according to the present disclosure).
  • -antimycotic (containing A ⁇ A) was added.
  • the final concentrations of antibody added to the cells are 200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, and 3.125 nM.
  • the total concentration of the antibody is prepared as above, but the ratio of each antibody is equal (ie, 1:1 ratio).
  • the PBS group was prepared at a concentration of 10% v/v (DMEM 360 ⁇ l + PBS 40 ⁇ M) as a control that did not contain both the antibody and the hydrogel
  • the antibody -The unbound hydrogel group is the same volume as the hydrogel volume used to match the highest concentration of antibody (200 nM) in the process of preparing the deformable particles described above (that is, in the process of binding the antibody to the hydrogel). It was prepared by mixing PBS without antibody.
  • the antibody group not bound to the hydrogel is prepared at a concentration of 400 nM, 200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM, or 6.25 nM by diluting the antibody in DMEM, and then the cells are treated with 100 ⁇ l each, as described above. As a result, the antibody concentration was diluted in half by the medium contained in each well. Therefore, the concentration of the antibody finally added to the cells was 200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, 3.125 nM.
  • a breast cancer cell line MCF-7 (Korea Cell Line Bank, Seoul National University) was prepared.
  • the existing medium was removed from the T75 flask in which MCF-7 was cultured, and the remaining medium was washed with 10 ml of PBS, and then the PBS was removed by suction.
  • DMEM supplemented with 10% Fetal bovine serum (FBS) (Gibco; Lot. 1985900) and 1% Antibiotic-antimycotic (A A) (Gibco; REF.
  • the cancer cells separated from the bottom of the flask were harvested and transferred to a 15 ml tube. Then, centrifugation was carried out for 3 minutes at 24° C. and 1300 rpm. After removing the supernatant from the centrifuged sample, 5 ml of DMEM was added to suspend the cell pellet, and inoculated into a 48-well plate at a concentration of 1 ⁇ 10 4 cells/100 ⁇ l/well. Cells were incubated overnight at 37°C.
  • each well was treated with 100 ⁇ l of the transformable particles bound to various concentrations of the antibody prepared in Example 3, and incubated at 37° C. for 2 hours.
  • (i) PBS group, (ii) antibody-unbound hydrogel group, and (iii) hydrogel-not-bound antibody group prepared in Example 3 were also treated at 100 ⁇ l per well and cultured under the same conditions. .
  • peripheral blood mononuclear cells composed of T-cells, B-cells, NK cells, etc.
  • Zenbio Cat. SER-PBMC-200P-F
  • PBMC peripheral blood mononuclear cells
  • RPMI medium Gibco; Lot. 2145483 (10% FBS and 1% A) ⁇ A was added
  • PBMCs prepared in cancer cells after the treatment of the transformable hydrogel particles were treated at a concentration of 1 ⁇ 10 4 cells/100 ⁇ l/well. Each well was treated with 10 ⁇ l of FBS, and cultured in an incubator at 37° C. and 5% CO 2 conditions for 4 days. 20 ⁇ l of DMEM and 10 ⁇ l of FBS were added to each well every other day during incubation.
  • a fluorescent staining reagent was prepared by mixing 5 ⁇ l of Calcein AM (Invitrogen; Lot. 2049068) per 10 ml of PBS.
  • the medium was removed from the cancer cells that had been incubated with the transformable particles and PBMC, washed with PBS, and then removed by suction with PBS. 200 ⁇ l of the prepared fluorescent staining reagent was treated in each well. Then, the 48-well plate was wrapped in foil to block light, and incubated at 37°C for 15 minutes. After incubation, the fluorescence staining reagent was removed, and after washing with PBS, 200 ⁇ l of DMEM medium was added per well, and fluorescence imaging was performed using a fluorescence microscope (Nikon; Ti2-E).
  • the captured fluorescence photos were analyzed using Image J program (provided by the National Institutes of Health, USA).
  • the area stained with Calcein AM compared to the total area was calculated and expressed as the cancer cell survival rate.
  • the cancer cell killing effect of the deformable particles according to the present disclosure is compared with that of a conventional antibody-based immunotherapy (that is, by treating the antibody alone), and the hydrogel size and softness of the deformable particles are related to the cancer cell killing effect. Check whether it has any effect.
  • MCF7 a breast cancer cell
  • an antibody alone that is, the antibody is present in a free state without being bound to a deformable particle
  • Antibody + GEL group a deformable particle according to the present disclosure
  • FIGS. 5a to 5d the survival rate of MCF7 after incubation with immune cells, PBMCs.
  • Figure 5a shows the cancer cell survival rate according to the antibody concentration when each of the above four antibodies is treated alone or by binding each antibody to a deformable particle according to the present disclosure.
  • the antibody group and the antibody + GEL group showed cancer cell survival rates of 0.93 and 0.95.
  • the difference in the survival rate of cancer cells between the two groups increased when the antibody concentration was 12.5 nM or higher.
  • the cancer cell survival rate of the antibody group was 0.5, whereas the antibody + GEL group had a significantly lower rate of 0.05.
  • Figure 5b shows the survival rate of cancer cells according to the antibody concentration when two of the above four antibodies are treated alone or by binding them together to a deformable particle.
  • the antibody group maintained the cancer cell survival rate at 0.9 until the concentration of 25 nM, but showed a sharp decrease from 50 nM.
  • the cancer cell survival rate of the antibody + GEL group was 0.55, which was lower than that of the antibody group, and the survival rate was significantly reduced in a concentration-dependent manner.
  • the concentration with the greatest difference in survival rate between the antibody group and the antibody+GEL group was 25nM and 50nM.
  • the antibody group showed a survival rate of 0.3, whereas the antibody+GEL group showed a survival rate of 0.04.
  • the antibody group showed a survival rate of 0.98 at a concentration of 3.125 nM, and it was confirmed that it maintained 0.7 even at 200 nM.
  • the cancer cell survival rate was 0.6 at 3.125 nM and decreased to 0.05 at 200 nM.
  • the cancer cell survival rate at 3.125 nM in the antibody+GEL group was lower than the cancer cell survival rate at 200 nM in the antibody group.
  • the antibody group showed a survival rate of 0.97 at a concentration of 3.125 nM and maintained at 0.6 at 200 nM.
  • the antibody + GEL group showed a significantly lower survival rate of 0.9 at 3.125 nM and 0.02 at 200 nM.
  • the antibody group showed a survival rate of 0.9 at 3.125 nM and maintained a survival rate of 0.7 even at 200 nM.
  • the cancer cell survival rate at 3.125 nM in the antibody+GEL group was 0.7, similar to the cancer cell survival rate at 200 nM in the antibody group, and at 200 nM, the survival rate was significantly lower at 0.06.
  • the antibody group showed a survival rate of 0.9 at a concentration of 3.125 nM and maintained a survival rate of 0.7 even at 200 nM.
  • the cancer cell survival rate at 3.125 nM of the antibody+GEL group was 0.6, which was lower than the cancer cell survival rate at 200 nM of the antibody group, and was significantly lower at 0.05 at 200 nM.
  • the concentration at which the survival rate of the two groups differed the most was 25 nM, and a 9-fold difference was observed.
  • Figure 5c shows the survival rate of cancer cells according to the antibody concentration when three of the four antibodies are treated alone or by binding them together to a deformable particle.
  • the antibody group showed a viability of 0.9 at a concentration of 3.125 nM, and maintained a viability of 0.6 even at 200 nM. did.
  • the antibody + GEL group already showed a survival rate of 0.7 at 3.125 nM, and the survival rate was significantly reduced to 0.1 at 200 nM.
  • the antibody group showed a survival rate of 0.9 at 3.125 nM, and maintained a similar survival rate even up to 100 nM, and then at 200 nM The survival rate dropped sharply to 0.4.
  • the antibody + GEL group already showed a viability of 0.24 at 3.125 nM, and the viability decreased significantly to 0.02 at 200 nM.
  • Figure 5d shows the survival rate of cancer cells according to the antibody concentration when all of the above four antibodies are treated alone or by binding them together to deformable particles.
  • the antibody group showed a survival rate of 0.99 at 3.125 nM and a survival rate of 0.5 cancer cells at 200 nM.
  • the antibody + GEL group already showed a survival rate of 0.6 at 3.125 nM, particularly when the antibody concentration was 12.5 nM or higher, a sharp decrease in survival rate, and a survival rate of 0.06 at 200 nM.
  • the cancer cell survival rate was significantly reduced when bound to transformable particles rather than treated with the antibody alone.
  • the cancer cell killing effect of the deformable particles was more excellent when two or more antibodies were bound together than when a single antibody was bound. This proves that the deformable particles according to the present disclosure can promote cancer cell death by using a small amount of antibody compared to conventional immuno-oncology agents, as well as achieve the effect of multiple antibodies through a relatively simple manufacturing process.
  • the survival rate of cancer cells was almost unchanged.
  • the hydrogel itself does not significantly affect cancer cells or immune cells, but when combined with an antibody, it prevents immune evasion of cancer cells by blocking the interaction between the cancer cells and immune cells through the binding of the antibody to the surface proteins of the cells.
  • the hydrogel particles of the present invention do not simply act as a drug delivery means, but function as artificial T-cells like immune cells.
  • the IC 50 for the cancer cell survival rate of the group treated with the antibody alone (antibody group) and the group treated by binding to the transformable particles (antibody + GEL group) are shown in Table 1 below.
  • liver cancer cells HepG2
  • the hydrogel particles according to the present disclosure had a cancer cell killing effect similar to that in breast cancer cells.
  • the results are shown in Figs. 5e to 5g.
  • the diameter of the hydrogel to be described below is measured in deionized water, and is the diameter of the hydrogel in a spherical state that is not bound to cells.
  • the size of the hydrogel affects the cancer cell viability in the deformable particles bound with a single antibody (FIG. 6a).
  • Cancer cells were treated by binding an anti-CTLA-4 antibody to a hydrogel having a diameter of 440 nm, 540 nm, 700 nm or 1300 nm, and the cancer cell survival rate was compared with the case of treatment with the anti-CTLA-4 antibody alone.
  • the cancer cell survival rate was slightly lowered compared to when the anti-CTLA-4 antibody was treated alone, but the cancer cell survival rate was not significantly lowered.
  • the diameter was 540 nm or more, it was confirmed that the survival rate of cancer cells in the antibody + GEL group was significantly lower than that of the antibody group by 20% or more at the same antibody concentration.
  • the diameter of the hydrogel particles affects the cancer cell killing effect of the deformable particles according to the present disclosure. That is, the diameter of the hydrogel particles for the deformable particles according to the present disclosure to have superior cancer cell killing ability compared to conventional immuno-cancer agents is 440 nm or more, preferably 540 nm or more, and more preferably 700 nm or more.
  • Anti-PD-L1 antibody and anti-CTLA-4 antibody were bound to polystyrene beads having a particle size of 1230 nm [polystyrene beads, product name: CP-10-10 (Spherotech, Lake Forest, IL, USA)], and the same antibody
  • the transformable particles (1300 nm) of the present disclosure bound to were compared with cancer cell killing ability.
  • Polystyrene beads are made of an aromatic hydrocarbon polymer, and unlike the deformable particles according to the present disclosure, are spherical, non-deformable hard beads that have no ductility.
  • the cancer cell survival rate was sharply decreased compared to the case of treating the antibody alone, but when treated by binding to polystyrene beads, at a low concentration There was no significant difference with the antibody group, and even at the highest concentration (200 nM), the cancer cell survival rate was as high as 0.6.
  • the survival rate of cancer cells according to the concentration of the hydrogel particles was confirmed ( FIG. 8 ).
  • the ability to kill cancer cells was insignificant.
  • This is a protein capable of binding to a cell surface component of cancer cells or T-cells (ideally, an immune checkpoint regulatory protein, an immune cell activating protein, or a protein involved in cancer cell regulation) in order for the hydrogel particles according to the present disclosure to have a cancer cell killing effect.
  • the hydrogel particles according to the present disclosure act as artificial T-cells that mimic the function of T-cells to maintain the activity of immune cells in the human body and improve the immune evasion mechanism of cancer cells. This suggests that effective suppression.
  • Example 7 Evaluation of anticancer efficacy of deformable hydrogel particles in a mouse model
  • the anticancer efficacy of the deformable hydrogel particles according to the present disclosure was evaluated in a mouse model. This experiment was conducted after receiving approval from Korea University IACUC (KOREA-2020-0203). Mice were purchased from Orient Bio (located in Jungwon-gu, Seongnam-si, Gyeonggi-do), and 6-week-old females were used as C57BL/6 species. After being brought into the animal room, the experiment was carried out after a stabilization period for one week. For engraftment of cancer cells, cyclosporine (Cyclosporine, Chong Kun Dang, Cat.
  • EG001, 450 ug/15 g was administered by intramuscular injection (IM) from 2 days before cell inoculation, and ketoconazole (Ketoconazole, Eagle Bet, Cat. 170432001, 2.5) was administered to drinking water. ug/ul) was mixed and administered.
  • Human breast cancer cell line MCF-7-luc2 (ATCC, HTB-22-LUC2) 2.5x10 ⁇ 6 cells were mixed with 100ul serum free RPMI 1640 (Gibco, Cat. 11875093) + 100ul Matrigel (Corning, Lot. 0062015) 4 times.
  • the nipple was inoculated by subcutaneous injection (SC). Cyclosporine was additionally administered intramuscularly for 2 days after inoculation.
  • the duration of the experiment was 16 days, and fluorescence imaging was taken a total of 5 times.
  • the day of cancer cell inoculation was counted as day 0, and fluorescence imaging was performed on day 0, day 4, day 8, day 12, and day 16, respectively.
  • the experimental group consisted of a total of three control groups (the group injected with only cancer cells: PBS group, no hydrogel); a double antibody group (a group in which cancer cells were treated with a non-hydrogel-bound PD-L1 antibody and a CTLA4 antibody); and a group treated with a double antibody-conjugated hydrogel (a group treated with a hydrogel conjugated with a PD-L1 antibody and a CTLA4 antibody - hAC with PD-L1 ab + CTLA-4 ab prepared in Example 3) do.
  • mice 3 or 4 mice, respectively, were used for each experimental group.
  • the control group was injected with PBS every 4 days
  • the treatment group was treated with a double antibody or hydrogel conjugated with a double antibody every 4 days, and fluorescence imaging was performed without PBS or drug injection for the last 16 days. After that, the tissues were collected by sacrificing using CO 2 .
  • the fluorescence photograph taken was extracted as the bioluminescence expression level (ph/s) from the program in the Indigo analysis equipment, and was corrected for each individual and group based on the bioluminescence expression level on the 4th day after the start of drug treatment.
  • the sample concentration of the sample-treated group is as follows.
  • the amount of fluorescence emitted by cancer cells analyzed from the fluorescence photograph is shown in FIG. 9 .
  • the control group in which only cancer cells were injected and no antibody or hydrogel sample was injected the left diagram in FIG. 9
  • the average amount of fluorescence of cancer cells increased on the 4th day after inoculation of the cancer cells, but on the 8th day after cancer cell inoculation, It was confirmed that the amount of fluorescence emitted by cancer cells decreased and then increased again on the 12th day.
  • the double antibody group (middle diagram in FIG.
  • the fluorescence amount of cancer cells was greatly reduced to 0.1 on the 4th day after inoculation of the cancer cells, and the fluorescence emission of the cancer cells decreased to 0.02 on the 8th day of inoculation, but on the 12th day of inoculation, the fluorescence emission of cancer cells was reduced to 8
  • the amount of fluorescence emission was similar to that of the first day, and the amount of fluorescence emission did not decrease any more.
  • the fluorescence emission of cancer cells is dramatically reduced to 0.04 on the 4th day after inoculation of the cancer cells, and the fluorescence emission of the cancer cells is reduced to 0.004 on the 8th day of inoculation.
  • the amount of fluorescence decreased to 0.001, and it was confirmed that cancer cells were significantly reduced, such as no cancer cells observed in some individuals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명의 목적은 암세포 및/또는 T-세포의 세포 표면 성분에 결합할 수 있는 단백질이 표면에 결합되어 있고 변형가능한(deformable) 것을 특징으로 하는 하이드로젤(hydrogel) 입자 및 이를 포함하는 암 치료용 약학 조성물을 제공하는 것이다.

Description

변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물
정부 지원을 받은 연구 및 개발에 관한 서술
본 발명은 보건복지부에 의해 부여된 연구과제번호 HI14C 3477 하에 정부 지원으로 이루어졌다.
본 발명은 암세포의 면역체계 회피 기작을 방지할 수 있는, 변형가능한 하이드로젤 입자(hydrogel particles) 및 이를 포함하는 암 치료용 약학 조성물에 관한 것이다.
인체의 면역체계는 여러 장기와, 면역 효과를 갖는 특별한 세포 및 물질로 구성되어 있다. 면역 세포들과 면역 물질들은 인체에서 유래하지 않은 외부 물질이나 세균 같은 면역반응을 자극하는 항원으로 인해 일어나는 염증을 억제하며, 암세포를 억제하는 기능을 담당한다. T-세포와 B-세포는 면역을 담당하는 대표적인 세포들이다. T-세포는 종류에 따라 항원을 직접 공격하거나, B-세포가 작용할 수 있도록 돕는다. B-세포는 항원을 공격할 수 있는 항체를 분비하여 항원을 제거한다.
암세포는 면역 체크포인트(immune checkpoint)를 이용하여 면역체계의 감시를 회피할 수 있다. 면역 체크포인트 단백질은 우리 몸의 면역세포를 활성화 또는 비활성화 시키는 단백질로, 면역체계가 암세포와 정상세포를 구별하는 매개체이다. 대표적인 체크포인트 단백질은 T 세포 표면의 PD-1(Programmed Death 1) 및 CTLA-4(Cytotoxic T-Lymphocyte-associated Antigen 4)이다. 이들은 정상세포의 표면에 있는 단백질(예컨대, PD-L1, B7)과 만나면 T 세포를 불활성화하여 정상세포에 대한 공격을 방지한다. 암세포는 PD-L1이나 B7과 같은 체크포인트 단백질을 발현하여 면역체계의 공격을 회피한다.
면역항암제는 암세포가 면역체계의 감시를 회피하는 것을 억제하거나 면역세포의 작용을 강화하여 면역세포가 암세포를 더욱 효과적으로 공격할 수 있게 한다. 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체 등이 FDA 승인을 받고 임상에서 활용되고 있다. 그러나 이러한 항체 기반 면역항암제는 면역 체크포인트 분자 기능 조절을 위해 많은 양을 투여하여야 하는데, 이는 독성 및 부작용의 원인이 될 뿐만 아니라 고가의 치료비를 동반한다.
다른 면역요법 기반 암 치료방법으로, 환자의 혈액으로부터 분리한 T-세포에 암세포를 인식하고 T세포의 면역 활성 신호를 주도록 설계된 유전자(CAR; Chimeric Antigen Receptor)를 주입하는 치료제가 FDA 승인을 받았다. 완성된 카-티(CAR-T) 세포들은 수백만 개로 증식시킨 후 다시 환자에게 투여하게 되는데, 이 과정에 많은 시간이 소요될 뿐 아니라, 감염의 위험성과 그 비용 또한 상당하다.
카-티(CAR-T)를 이용한 면역 항암치료법의 장점을 가지면서도 CAR-T와 비교해 상대적으로 저렴한 단일항체 기반 면역 항암치료제의 장점을 이용하기 위하여 이중항체 혹은 삼중항체 기술이 개발되고 있다. 이중항체 및 삼중항체는 2개 이상의 항체 기능을 통해 단일 항체에 비해 우수한 암세포 사멸 활성을 나타낸다. 하지만 이를 구현하기 위해 재조합 단백질 기술이 사용되며, 이 과정에 많은 시간과 비용이 소요된다.
한편, 하이드로젤을 약물 전달 수단으로 이용하기 위한 연구가 활발하다. 하이드로젤은 친수성 고분자의 네트워크로 이루어진 삼차원 구조체이며, 구성요소 중90% 이상이 수분으로 이루어져 있다. 하이드로젤은 높은 수분함량, 다공성 구조, 상대적으로 부드러운 물성, 그리고 생체적합성 등 생체조직과 유사한 특성들 때문에 의약분야에서 약물 전달 수단으로 주목되고 있다.
하이드로겔은 주사슬로 사용되는 고분자의 종류 및 가교방식에 따라 다양한 성질을 나타낼 수 있다. 예를 들어, 자극 감응성 고분자(stimuli-responsive polymer)를 이용하면 특정 자극에 반응하는 하이드로젤을 형성할 수 있다. 이온화 작용기를 많이 가지고 있는 고분자를 이용하여 pH 변화에 의해 물리적 성질이 변할 수 있는 하이드로젤 형성이 가능하며, 온도 또는 빛 등 특정 자극에 의해 구조적 변형이 일어나는 고분자를 이용하면 자극에 반응하여 물리 화학적 거동이 변화하는 하이드로젤 형성이 가능하다. 사용되는 고분자 종류만큼이나 하이드로젤의 특성에 영향을 주는 것은 가교방식이다. 같은 고분자를 주사슬로 사용하여도 가교방식이 다르면 전혀 다른 특성의 하이드로젤이 얻어질 수 있다. 하이드로젤을 가교시키는 방식은 크게 물리적 및 화학적 가교방식 두 가지로 나누어진다. 물리적 가교방식으로는 이온결합(ionic interaction), 소수성 상호작용(hydrophobic interaction), 수소결합(hydrogen bond), 그리고 구조적으로 분자의 얽힘에 의한 가역적 가교방식 등이 있다. 이 가교방식들을 통해 가교를 위한 별도의 화학첨가제 혹은 복잡한 과정이 필요없이 용이하게 삼차원 망상 내부 구조 형성을 유도할 수 있다. 반면, 화학적 가교방식은 일반적으로 공유결합에 의한 비가역적 방식이며 물리적 가교방식에 비해 안정적인 네트워크를 형성한다. 자극 감응성 고분자와 마찬가지로 pH 변화, 온도, 빛 또는 초음파 등 자극에 의해 구조적으로 변형이 일어나거나 분해가 되는 가교제(crosslinker)를 도입시킨 하이드로젤은 외부에서 주어진 자극에 의해 젤의 물리적 성질이 조절될 수 있다(Jisoo Shin et al., "Functional Hydrogel for the Application of Drug Delivery and Tissue Engineering", KIC News, Vol. 18, No. 6, (2015): pages 2-3).
대한민국 등록특허 제10-1754774호는 특정 자극에 의해 물리적 특성이 변화하는 하이드로젤(hydrogel)을 이용한 바이오칩을 개시한다. 상기 하이드로젤 표면에는 결합 매개 기재가 형성되어 있는데, 상기 결합 매개 기재가 타겟 단백질과 결합하면 하이드로젤에서 디스웰링(de-swelling)이 발생하고, 이로 인해 하이드로젤의 물리적 특성(예: 굴절률, 볼륨 등)이 변화한다. 변화된 물리적 특성은 대응하는 변위(displacement) 신호로 분석 장비로 전달되며, 변위신호를 분석함으로써 타겟 단백질과 결합매개 기재 간의 다중결합의 양을 측정할 수 있게 되므로 바이오칩으로서 기능하게 된다. 하지만, 이 문헌은 기술된 하이드로젤을 약물 전달제로 이용하거나 이를 이용한 항암 치료제에 대한 내용은 개시하고 있지 않다.
선행기술문헌
특허문헌
(특허문헌 1) 대한민국 등록특허 제10-1754774호
비특허문헌
(비특허문헌1) Jisoo Shin et al., "Functional Hydrogel for the Application of Drug Delivery and Tissue Engineering", KIC News, Vol. 18, No. 6, (2015): pages 2-3.
이러한 기술적 배경하에, 본 발명자들은 암세포 및/또는 T-세포에 결합하여 둘 사이의 상호작용을 차단함으로써 암세포의 면역체계 회피 기작을 방지할 수 있는, 하이드로젤-기반의 변형가능하고(deformable) 인공 T-셀과 같이 작용하는 면역항암제 입자를 개발하였다.
따라서, 본 발명의 목적은 암세포 및/또는 T-세포의 세포 표면 성분에 결합할 수 있는 단백질이 표면에 결합되어 있고 변형가능한(deformable) 것을 특징으로 하는 하이드로젤(hydrogel) 입자 및 이를 포함하는 면역항암제 또는 암 치료용 약학 조성물을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 한 양태는, 암세포 및/또는 T-세포의 세포 표면 성분에 결합할 수 있는 단백질이 표면에 결합되어 있고 변형가능한(deformable) 것을 특징으로 하는, 하이드로젤(hydrogel) 입자에 관한 것이다.
일부 실시양태에서, 세포 표면 성분은 CD2, CD3, CD19, CD24, CD27, CD28, CD31, CD34, CD45, CD46, CD80, CD86, CD133, CD134, CD135, CD137, CD160, CD335, CD337, CD40L, ICOS, GITR, HVEM, 갈렉틴 9, TIM-1, LFA-1, PD-L1, PD-L2, B7-H3, B7-H4, ILT3, ILT4, PD-1, CTLA-4, BTLA, MHC-I, MHC-II, TGF-β receptor, latent TGF-β-binding protein (LTBP), 델타유사리간드 (예컨대, DLL-Fc, DLL-1 또는 DLL-4), WNT3, 줄기세포인자 및 트롬보포이에틴 중에서 선택된 한 종 이상이다.
일 측면에 따르면, 상기 암세포의 세포 표면 성분은 PD-L1 단백질일 수 있고, 상기 T-세포의 세포 표면 성분은 PD-1 단백질, CTLA-4 단백질, 및 CD137 단백질로 이루어진 군에서 선택될 수 있다.
일 측면에 따르면, 상기 하이드로젤 표면에 결합된 단백질은 항체, 재조합 단백질, 또는 이들의 조합일 수 있다.
일 측면에 따르면, 상기 항체는 항-PD-1 항체, 항-PD-L1 항체, 항-CD137 항체, 항-CTLA-4 항체, 또는 이들의 조합일 수 있다.
일 측면에 따르면, 상기 재조합 단백질은 PD-L1 단백질, PD-1 단백질, CTLA-4 단백질 및 CD137 단백질 중 하나 이상을 표적으로 하여 결합할 수 있는, 단백질, 앱타머, 또는 이들의 조합으로 이루어진 군에서 선택된 적어도 하나일 수 있다.
일 측면에 따르면, 상기 하이드로젤은 나노입자이다. 구체적으로, 탈이온수(deionized water) 내에서 상기 하이드로젤의 직경은 약 50 nm 내지 약 3,000 nm, 예를 들어, 약 100 nm 내지 약 2500 nm, 또는 약 300 nm 내지 약 2000 nm이며, 바람직하게는 약 440 nm 이상, 더 바람직하게는 약 540 nm 이상, 보다 더 바람직하게는 약 700 nm 이상이며, 예를 들면, 약 700 nm 내지 약 1300 nm의 범위일 수 있다.
일 측면에 따르면, 상기 하이드로젤은 메인단량체 및 공단량체로 이루어진 합성 공중합체를 포함할 수 있다. 예를 들어, 상기 메인단량체는, N-이소프로필아크릴아미드, N-아크릴로일글리신아미드(N-acryloylglycinamide), 하이드록시프로필셀룰로오스(hydroxypropylcellulose), 비닐카프로락탐(vinylcaprolactame), N-비닐피롤리돈(N-vinyl pyrrolidone), 2-하이드록시에틸 메타크릴레이트(2-hydrocyethyl methacrylate), 에틸렌글리콜(ethylene glycol); 아스파르트산, 글루탐산, L-라이신 등의 아미노산; 카프로락톤(caprolactone) 및 비닐메틸 에테르(vinyl methyl ether)로 이루어진 군으로부터 선택될 수 있고, 상기 공단량체는, 알릴아민(AA), 디메틸아미노에틸메타크릴레이트(DMAEMA), 디메틸아미노에틸아크릴레이트(DMAEA), 아크릴산(AAc), 에틸렌글리콜(EG), 및 메타크릴산(MAAc)으로 이루어진 군으로부터 선택될 수 있다.
일 측면에 따르면, 상기 하이드로젤은 단일 단량체로 이루어진 합성 호모중합체를 포함할 수 있다. 예시적인 호모중합체로는 폴리(에틸렌글리콜)(PEG), 폴리(2-메틸-2-옥사졸린)(PMOXA), 폴리(에틸렌옥사이드)(PEO), 폴리(비닐알코올) (PVA) 및 폴리(아크릴아미드)(PAAm), 폴리(n-부틸아크릴레이트), 폴리-(α-에스테르), 폴리(글리콜산)(PGA), 폴리아스파테이트, 폴리글루타메이트, 폴리락타이드, 폴리(N-이소프로필아크릴아미드)(pNIPAAM), 폴리(카프로락톤), 및 폴리비닐메틸 에테르 등을 들 수 있다.
일 측면에 따르면, 상기 하이드로젤은 가교제를 더 포함할 수 있다. 상기 가교제는, N, N'-메틸렌-비스-디아크릴아미드(MBA), 폴리에틸렌 글리콜(PEG) 디하이드록실(PEG dihydrocyl), PEG 디아민(PEG diamine), PEG 디옥시아민(PEG dioxyamine), PEG 디클로라이드(PEG dichloride), PEG 디브로마이드(PEG dibromide), PEG 디아지드(PEG diazide), PEG 디싸이올(PEG dithiol), PEG 디알데하이드(PEG dialdehyde), PEG 디에폭사이드(PEG diepoxide), PEG 디아크릴레이트(PEG diacrylate), PEG 디메타크릴레이트(PEG dimethacrylate), PEG 디아세틱엑시드(PEG diacetic acid), PEG 디석시닉엑시드(PEG disuccinic acid), PEG 디석시미딜카복시메틸에스터(PEG discuccinimidyl carboxy methyl ester), 폴리(ε-카프로락톤)디아크릴레이트[poly(ε-caprolactone)diacrylate],폴리(ε-카프로락톤)디메타릴레이트[poly(ε-caprolactone)dimethacrylate], 폴리락티드디아크릴레이트(polylactide diacrylate), 폴리락티드디메타크릴레이트(polylactide dimethacrylate), 폴리(락티드-co-글리콜리드)디아크릴레이트[poly(lactide-co-glycolide)diacrylate], 폴리(락티드-co-글리콜리드)디메타크릴레이트[poly(lactide-co-glycolide)dimethacrylate], 폴리(ε-카프로락톤-b-에틸렌 글리콜-b-ε-카프로락톤)디아크릴레이트[poly(ε-caprolactone-b-ethylene glycol-b-ε-caprolactone)diacrylate], 폴리(ε-카프로락톤-b-에틸렌 글리콜-b-ε-카프로락톤)디메타크릴레이트[poly(ε-caprolactone-b-ethylene glycol-b-ε-caprolactone)dimethacrylate], 폴리(락티드-b-에틸렌 글리콜-b-락티드)디아크릴레이트[poly(lactide-b-ethylene glycol-b-lactide)diacrylate], 폴리(락티드-b-에틸렌 글리콜-b-락티드)디메타크릴레이트[poly(lactide-b-ethylene glycol-b-lactide)dimethacrylate], 폴리[(락티드-co-글리콜리드)-b-에틸렌 글리콜-b-(락티드-co-글리콜리드)]디아크릴레이트{poly[(lactide-co-clycolide)-b-ethylene glycol-b-(lactide-co-glycolide)] diacrylate}, 폴리[(락티드-co-글리콜리드)-b-에틸렌 글리콜-b-(락티드-co-글리콜리드)]디메타크릴레이트{poly[(lactide-co-clycolide)-b-ethylene glycol-b-(lactide-co-glycolide)] dimethacrylate}, 폴리(ε-카프로락톤-co-락티드)-디아크릴에이트[poly(ε-caprolactone-co-lactide)-diacrylate], 폴리(ε-카프로락톤-co-락티드)-디메타크릴에이트[poly(ε-caprolactone-co-lactide)-dimethacrylate], 폴리(ε-카프로락톤-co-글리콜리드)-디아크릴에이트[poly(ε-caprolactone-co-glycolide)-diacrylate], 폴리(ε-카프로락톤-co-글리콜리드)-디메타크릴에이트[poly(ε-caprolactone-co-glycolide)-dimethacrylate], 폴리[(카프로락톤-co-락티드)-b-에틸렌 글리콜-b-(카프로락톤-co-락티드)]디아크릴에이트{poly[(caprolactone-co-lactide)-b-ethylene glycol-b-(caprolactone-co-lactide)]diacrylate}, 폴리[(카프로락톤-co-락티드)-b-에틸렌 글리콜-b-(카프로락톤-co-락티드)]디메타크릴에이트{poly[(caprolactone-co-lactide)-b-ethylene glycol-b-(caprolactone-co-lactide)]dimethacrylate}, 폴리[(카프로락톤-co-글리콜리드)-b-에틸렌 글리콜-b-(카프로락톤-co-글리콜리드)]디아크릴에이트{poly[(caprolactone-co-glycolide)-b-ethylene glycol-b-(caprolactone-co-glycolide)]diacrylate}, 폴리[(카프로락톤-co-글리콜리드)-b-에틸렌 글리콜-b-(카프로락톤-co-글리콜리드)]디메타크릴에이트{poly[(caprolactone-co-glycolide)-b-ethylene glycol-b-(caprolactone-co-glycolide)]dimethacrylate} 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다.
일 측면에 따르면, 상기 하이드로젤은 메인 단량체, 공단량체 및 가교제를 공중합시켜 수득한 합성 공중합체를 포함하고, 예를 들어, 메인단량체 50 내지 97.9중량%, 공단량체 2 내지 40중량%, 및 가교제 0.1 내지 10중량%를 포함할 수 있다.
일 측면에 따르면, 상기 하이드로젤은, 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isoprophylacrylamide-co-allylamine): poly(NIPAM-co-AA)], 폴리(N-이소프로필아크릴아미드-co-2-(디메틸아미노)에틸메타크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl methacrylate): poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필아크릴아미드-co-2-(디메틸아미노)에틸아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate): poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co-acrylic acid): poly(NIPAM-co-AAc)], 폴리(N-이소프로필아크릴아미드-co-폴리에틸렌글리콜-아크릴산)[poly(N-isopropyl acrylamide-co-polyethylene glycol-acrylic acid): poly(NIPAM-co-PEG-AAc)], 및 폴리(N-이소프로필아크릴아미드-co-메타크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid): poly(NIPAM-co-MAAc)]로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
일 측면에 따르면, 상기 하이드로젤은 천연 중합체를 포함할 수 있다. 예시적인 천연중합체로는 알기네이트, 아가로스, 카라기난, 키토산, 덱스트란, 카복시메틸셀룰로오스, 헤파린, 히알루론산, 폴리아미노산, 콜라겐, 젤라틴, 피브린, 섬유성 단백질계 생체고분자(예컨대, 실크, 케라틴, 엘라스틴 및 레실린) 및 이들의 조합을 들 수 있다.
일 측면에 따르면, 상기 하이드로젤 표면에 결합된 단백질은 카르보디이미드(Carbodiimide) 교차결합, 시프 염기(Schiff base) 교차결합, 아즐락톤(Azlactone) 교차결합, 카보닐디이미다졸(Carbonyl diimidazole: CDI) 교차결합, 아이오도아세틸(Iodoacetyl) 교차결합, 하이드라지드(Hydrazide) 교차결합, 만니히(Mannich) 교차결합, 및 말레이미드(maleimide) 교차결합으로 이루어진 군에서 선택된 하나 이상의 결합에 의해 하이드로젤 표면에 결합될 수 있다.
일 측면에 따르면, 상기 하이드로젤 표면에 결합된 단백질은, 하나 이상의 세포 표면 성분을 표적으로 하여 결합할 수 있는 또 다른 단백질, 앱타머, 또는 이들의 조합으로 이루어진 군에서 선택된 적어도 하나에 단백질 A:Fc 상호작용(protein A:Fc interaction), 단백질 G:Fc 상호작용(protein G:Fc interaction), 단백질 A/G:Fc 상호작용(protein A/G:Fc interaction), 또는 말레이미드/티올 및 EDC/NHS 결합 같은 표준 결합 방법을 이용해 결합될 수도 있다.
본 발명의 다른 실시양태는, 암세포 및/또는 T-세포의 세포 표면 성분에 결합할 수 있는 단백질이 표면에 결합되어 있고 변형가능한 하이드로젤 입자의 제조방법에 관한 것으로서, 상기 방법은,
(i) 하이드로젤 입자를 제조하는 단계,
(ii) 하이드로젤 입자의 표면에 단백질이 결합할 수 있도록 하이드로젤 표면을 개질하는 단계, 및
(iii) 표면 개질된 하이드로젤 입자에 단백질을 첨가하여 입자 표면에 단백질을 결합시키는 단계를 포함할 수 있다.
본 발명의 추가의 실시양태는, 치료학적으로 유효한 양의, 상기 변형가능한 하이드로젤 입자를 포함하는 면역항암제 또는 암 치료용 약학 조성물, 및 상기 약학 조성물을 환자에 투여하여 암을 치료하는 방법에 관한 것이다.
본 개시에 따른 변형가능한 입자는 연성 하이드로젤에 기반한 것으로서, 하이드로젤의 표면에는 암세포 및/또는 T-세포의 세포 표면 성분, 특히 면역 체크포인트 단백질에 결합할 수 있는 단백질이 결합되어 있다. 상기 하이드로젤 표면에 결합된 단백질이 암세포 및/또는 T-세포의 세포 표면 성분에 결합하면, 본 개시에 따른 변형가능한 입자가 암세포 및/또는 T-세포에 부착하여 두 세포 사이의 상호작용을 차단하기 때문에 암세포의 면역체계 감시 회피 기작을 방지하고 암세포 사멸을 촉진할 수 있다.
특히 본 발명은 연성 하이드로젤이 하이드로젤을 구성하는 성분에 기인한 기계적 유연성(mechanical softness)으로 인해, 하이드로젤이 세포에 접촉할 때 하이드로젤의 물리적 형태 변형(deformation)이 일어나 세포 표면을 덮고 접촉 면적이 커지기 때문에, 영역 억제(area inhibition) 작용에 의해 기존 면역항암제보다 적은 양의 항체로 암세포 및 T-세포의 면역 체크포인트 단백질이 결합할 가능성을 크게 낮출 수 있다.
또한 본 발명의 변형가능한 입자에는 단일 항체뿐만 아니라 두 가지 이상의 항체를 결합시킬 수 있으므로, 재조합 단백질 기술에 비해 간단한 제조과정을 통해 다중항체의 효과를 달성할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 기존 면역항암제의 기전을 나타내는 모식도이다.
도 2는 본 개시에 따른 변형가능한 입자가 암세포 표면에 결합하여 암세포 표면 단백질을 커버하는 영역 억제 작용을 하고 이로 인해 암세포 표면 단백질과 T-세포 표면 단백질과의 상호작용을 차단함으로써 암세포의 면역회피를 방지하는 것을 보여주는 모식도이다.
도 3은 기존 면역항암제 및 본 개시에 따른 변형가능한 입자를 이용한 항암 기전의 비교를 나타내는 도면이다.
도 4는 기존의 단일 또는 이중항체를 이용한 항암기전(좌측 도면) 및 본 개시에 따른 변형가능한 입자를 이용한 항암기전(우측 도면)의 비교를 나타내는 도면이다.
도 5는 암세포에 항체를 단독으로 처리하거나 본 개시에 따른 변형가능한 입자에 항체를 결합시켜 처리한 후 면역세포와 함께 배양하였을 때, 처리된 항체 농도에 따른 암세포의 생존율을 확인한 것이다: 도 5a 내지 5d는 유방암세포의 생존율에 관한 것으로, 도 5a는 항-PD-L1 항체, 항-PD-1 항체, 항-CD137 항체 및 항-CTLA-4 항체를 각각 단독으로 처리하거나, 입자크기 700 nm의 본 개시에 따른 변형가능한 입자에 결합시켜 처리한 경우를 비교한 것이다; 도 5b는 상기 항체들 중 두 가지를 함께 단독으로 처리하거나, 상기 변형가능한 입자에 결합시켜 처리한 경우를 비교한 것이다; 도 5c는 상기 네 가지 항체 중 세 가지를(좌측 도면:항-PD-L1 항체,CD137 항체 및 항-CTLA-4 항체; 우측 도면:항-PD-1 항체, 항-CD137 항체 및 항-CTLA-4 항체) 함께 단독으로 처리하거나, 상기 변형가능한 입자에 결합시켜 처리한 경우를 비교한 것이다; 도 5d는 상기 네 가지 항체를 모두 단독으로 처리하거나, 상기 변형가능한 입자에 모두 결합시켜 처리한 경우를 비교한 것이다. 도 5e 내지 도g는 간암세포의 생존률에 관한 것으로, 도 5e 및 도 5f는 항-PD-L1 항체 및 항-CTLA-4 항체를 각각 단독으로 처리하거나, 각 항체를 본 개시에 따른 변형가능한 입자에 결합시켜 처리한 경우를 비교한 것이다; 도 5g는 항-PD-L1 항체 및 항-CTLA-4 항체를 함께 단독으로 처리하거나, 입자크기 700 nm의 변형가능한 입자에 결합시켜 처리한 경우를 비교한 것이다.
도 6은 본 개시에 따른 변형가능한 입자의 크기에 따른 암세포 사멸 효과를 확인한 것이다: 도 6a는 직경이 각각 440, 540, 700, 또는 1300 nm인 하이드로젤에 항-CTLA-4 항체를 결합시켜 암세포 사멸 효과를 확인한 것이다. 도 6b는 직경이 440, 540, 700, 또는 1300 nm인 하이드로젤에 항-PD-L1 항체 및 항-CTLA-4 항체를 결합시켜 암세포 사멸 효과를 확인한 것이다.
도 7은 항-PD-L1 항체 및 항-CTLA-4 항체를 함께 단독으로 처리한 경우와, 항-PD-L1 항체 및 항-CTLA-4 항체를 본 개시에 따른 변형가능한 입자(직경이 700 또는 1300 nm인 하이드로젤 입자)와 변형불가능한 폴리스타이렌 비즈(polystyrene beads)(직경이 810 및 1230 nm 인 입자)에 각각 결합시킨 경우, 항체 농도에 따른 암세포 사멸효과를 확인한 결과이다.
도 8은 본 개시에 따른 변형가능한 하이드로젤 입자에 항체를 결합시킴이 없이 면역세포와 함께 배양하였을 때 하이드로젤 입자의 농도에 따른 암세포의 생존율을 확인한 것이다.
도 9는 본 개시에 따른 변형가능한 하이드로젤 입자의 항암 효능을 마우스 모델에서 평가한 결과로서, 항체나 하이드로젤의 주입 없이 PBS만을 처리한 마우스 그룹(대조군); 항-PD-L1 항체 및 항-CTLA-4 항체를 함께 단독으로 처리한 마우스 그룹; 및 항-PD-L1 항체 및 항-CTLA-4 항체를 본 개시에 따른 변형가능한 입자(직경이 700 nm)에 결합시켜 처리한 마우스 그룹에서 항체 주입 후 0일째, 4일째, 8일째, 12일째 및 16일째에 암세포의 형광 발현량을 도시한 것이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안 된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
어느 하나의 실시예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시예에 기재한 설명은 다른 실시예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
본 명세서 전반에 걸쳐 제시된 모든 수치 범위는 이의 상한 및 하한 값, 및 상기 범위에 속하는 모든 각각의 수치 및 더 좁은 수치 범위를 포함하고, 이러한 각각의 수치 및 더 좁은 수치 범위는 모두 본원에 명확히 그리고 구체적으로 기재된 것으로 간주된다.
본 발명의 한 양태에 따르면, 암세포 및/또는 T-세포의 세포 표면 성분에 결합할 수 있는 단백질이 표면에 결합되어 있고, 변형가능한(deformable) 것을 특징으로 하는 하이드로젤(hydrogel) 입자가 제공된다.
본 개시에 따른 용어 "세포 표면 성분"은 세포막 (cell membrane)에 위치한 단백질로서 세포 바깥의 성분과 결합 또는 상호작용할 수 있는 단백질을 의미한다. 예시적인 세포 표면 성분으로서는 CD2, CD3, CD19, CD24, CD27, CD28, CD31, CD34, CD45, CD46, CD80, CD86, CD133, CD134, CD135, CD137, CD160, CD335, CD337, CD40L, ICOS, GITR, HVEM, 갈렉틴 9, TIM-1, LFA-1, PD-L1, PD-L2, B7-H3, B7-H4, ILT3, ILT4, PD-1, CTLA-4, BTLA, MHC-I, MHC-II, TGF-β receptor, latent TGF-β-binding protein (LTBP), 델타유사리간드 (예컨대, DLL-Fc, DLL-1 또는 DLL-4), WNT3, 줄기세포인자 및 트롬보포이에틴 중에서 선택된 한 종 이상을 들 수 있다. 보다 구체적으로는, T-세포 표면의 PD-1 및 CTLA-4 단백질, 암세포 표면의 PD-L1 및 B7과 같은 면역 체크포인트 단백질을 예로 들 수 있다.
본 개시에 따른 용어 "변형 가능(deformable)"은 입자의 물리적인 형태가 변화가능한 것을 의미하는 것으로, 본 개시에 따른 하이드로젤이 이의 연성으로 인해 세포에 접촉시 자발적으로 입자의 형태가 변할 수 있는 성질을 의미한다. 특히, 체액(body fluid)에서는 구형을 유지하던 하이드로젤이 다른 세포에 접촉했을 때 부서지거나 파괴됨이 없이 얇고 넓게 늘어나 세포를 이불(blanket)처럼 덮는(cover) 형태가 되는 것을 의미한다.
본 개시에 따른 하이드로젤의 변형 가능한 정도는 하이드로젤 입자가 세포에 접촉하기 전과 후의 직경 변화를 측정함으로써 결정될 수 있다. 세포에 접촉하기 전 구형 상태(가로 X축, 세로 Y축, 높이 Z축)의 하이드로젤의 높이축 직경(D)과 비교해, 하이드로젤이 세포에 접촉하여 세포를 이불처럼 덮은 상태에서의 높이축 직경이 약 30 내지 약 99% 감소되는 경우(즉, 접촉 후 높이축 직경이 0.01D 내지 0.7D), 변형가능한 것으로 판단한다. 바람직하게는, 하이드로젤의 접촉 후 높이축 직경은 접촉 전과 비교해 약 30 내지 약 90% 감소한다(즉, 접촉 후 직경이 약 0.1D 내지 약 0.7D).
본 개시에 따른 하이드로젤은 세포 표면에서 변형가능하기 위해 적절한 연성(softness) 및/또는 (점)탄성 모듈러스를 갖는다. 본 개시에 따른 하이드로젤은 소프트(soft)한 편, 즉, 연성이 높은 편이며, 이를 위해 한 양태에서, 25℃에서 하이드로젤 입자의 탄성 모듈러스는 0.01Pa 내지 100Pa 범위 일 수 있다(하이드로젤의 연성에 대한 추가의 논의는 본 명세서에 이의 전체가 참고로 포함되는 하기 문헌을 참고한다: Mattias Karg et al., Langmuir 2019, 35, 6231-6255).
본 개시에 따른 하이드로젤의 직경은 약 50 nm 내지 약 3,000 nm, 예를 들어, 약 100 nm 내지 약 2500 nm, 또는 약 300 nm 내지 약 2000 nm이며, 바람직하게는 약 440 nm 이상, 더 바람직하게는 약 540 nm 이상, 보다 더 바람직하게는 약 700 nm 이상이며, 예를 들면, 약 700 nm 내지 약 1300 nm의 범위일 수 있다.
상기 하이드로젤의 직경은 당업자에게 알려진 통상의 방법으로 측정할 수 있으며, 예를 들어, 동적 광 산란(광 상관 분광법, 레이저 회절, 저각 레이저 광 산란(LALLS) 및 중각 레이저 광 산란(MALLS)), 광 차폐법(light obscuration methods)(쿨터 분석법(Coulter analysis method)과 같은), 또는 기타 방법(레올로지, 및 광 또는 전자 현미경과 같은)을 이용할 수 있다.
본 개시에 따른 "단백질 (protein)"은 여러 개의 아미노산이 펩타이드 결합을 하여 이루어진 고분자를 의미하며, 항체 (antibody), 재조합 단백질 (recombinant protein), 펩타이드 (peptide), 폴리펩타이드 (polypeptide), 당단백질 (glycoprotein), 지질단백질 (lipoprotein), 합성단백질 (synthetic protein) 등을 포함하지만, 이에 한정되지 않는다.
본 개시에 따른 "항체 (antibody)"는 특정 항원과 면역학적 반응성을 가지는 면역글로불린 (immunoglobulin) 분자로, 항원을 특이적으로 인식하는 수용체 역할의 단백질 분자를 의미하며, 전체 항체 (whole antibody) 및 항원 결합 단편 같은 항체 단편 (antibody fragment)를 모두 포괄하는 개념이다.
본 명세서에서 항체를 "단독으로 처리한다"는 것은 항체를 암세포 등에 처리할 때 하이드로젤 등의 표면에 결합시키지 않고, 단리된 (isolated) 항체를 PBS 등에 희석하여 처리하는 것을 의미한다.
본 개시에 따른 "재조합 단백질 (recombinant protein)"은 재조합 DNA 기술을 통해 조작된 DNA로부터 발현된 단백질을 의미하며, 특히 벡터(vector)와 같은 발현 시스템에 재조합 DNA를 클로닝(cloning)하여 발현시킨 것일 수 있다.
본 개시에 따른 "하이드로젤(hydrogel)"은 본 기술분야에 그 자체로 공지된 것으로서 친수성 폴리머 사슬(polymer chain)이 가교되어(crosslinked) 형성된 3차원 네트워크를 의미하며, 예를 들면, 대한민국 등록특허 제10-1754774호에 개시된 수화젤을 들 수 있다.
본 개시에 따른 하이드로젤 입자는 이의 표면에 단백질이 결합될 수 있도록 표면이 개질될 수 있다. 한 예로, 입자 표면은 말레이미드/티올 및 EDC/NHS 결합을 비롯한 표준 결합 방법을 이용해 개질될 수 있다. 보다 상세히, 상기 결합은 카르보디이미드(carbodiimide) 교차결합, 시프 염기(Schiff base) 교차결합, 아즐락톤(azlactone) 교차결합, 카보닐디이미다졸(carbonyl diimidazole: CDI) 교차결합, 아이오도아세틸(iodoacetyl) 교차결합, 하이드라지드(hydrazide) 교차결합, 만니히(Mannich) 교차결합, 및 말레이미드(maleimide) 교차결합 중에서 선택된 하나 이상의 반응에 의해 형성되는 것을 포함할 수 있다. 하이드로젤 입자에 대한 기타 유용한 결합 방법들은 본 명세서에 이의 전체가 참조로 포함되는 하기 문헌: Hermanson et al., (2013) Bioconjugate Techniques: Academic Press에 기술되어 있다.
본 발명의 또다른 양태에 따르면, 상기 변형가능한 입자를 포함하는, 암 치료용 약학 조성물, 및 상기 약학 조성물을 환자에 투여하여 암을 치료하는 방법이 제공된다.
여기서, "암(cancer)"은 모든 암을 포함하는 것으로, 폐암, 식도암, 흉선암, 유방암, 간암, 위암, 대장암, 췌장암, 자궁경부암, 피부암, 전립선암, 난소암, 갑상선암, 방광암, 두경부암, 골수암, 담도암 등을 예로 들 수 있으나 이에 한정되는 것은 아니다.
본 개시에 따른 용어 "치료"는 본 발명의 약학 조성물을 환자에 투여하여 암 증세가 호전되도록 하거나 이롭게 되도록 하는 모든 행위를 포함하는 것으로 해석될 수 있으나, 특별히 이에 제한되지는 않는다.
본 발명의 약학 조성물은 약학 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 추가로 포함할 수 있는데, 상기 담체는 비자연적인 담체일 수도 있다.
상기 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸셀룰로즈, 미정질셀룰로스, 폴리비닐피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
한편, 본 발명의 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁제, 에멀젼, 시럽제 등의 경구형 제형, 에어로졸제, 외용제, 좌제또는 멸균 주사용액의 형태로 제제화하여 사용될 수 있다. 제제화할 경우에는 보통사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제, 부형제 또는 담체와 함께 제제화된다.
본 발명의 약학 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.
한편, 본 명세서에서 용어, "투여"는 어떠한 적절한 방법으로 대상에게 본발명의 약학 조성물을 도입하는 것을 말하며, 투여 경로는 목적 조직에 도달할 수 있는 한 다양한 경로를 통하여 투여될 수 있다.
투여 경로의 예로는 경구, 비경구, 피하(subcutaneously), 복강 내(intraperitoneally), 폐 내, 또는 비강 내로 투여될 수 있으며, 비경구 주입에는 근육 내(intramuscularly), 관절강 내, 척수강 내, 척추 경막외공간 내, 정맥 내, 피부 내(intradermally), 복강 내, 종양 내(intratumorally) 또는 피하투여 같은 통상의 비경구 투여 방법이 포함된다. 상기 조성물의 비경구 투여는 바람직한 순도 하에 약제학적으로 허용 가능한 담체, 즉 사용되는 농도와 투여량에서 수용체에 비독성이고 다른 제제 성분과 혼화 될 수 있는 것을 혼합하여 단위 투여량의 제형으로 조제하는 것이 바람직할 수 있다.
본 발명의 약학 조성물은 "면역학적으로 유효한 양(an immunologically effective amount)", "항-종양 유효량(an anti-tumor effective amount)", "종양-저해 유효량(an tumor-inhibiting effective amount)", 또는 "치료적으로 유효한 양(therapeutically effective amount)"으로 투여될 수 있으며, 투여될 본 발명의 조성물의 정확한 양은 나이, 몸무게, 종양 크기, 감염 또는 전이의 정도, 및 환자(피험자)의 상태에 있어서 개별적인 차이를 숙고하여 의사에 의해 결정될 수 있다. 한 실시양태에서, 본 발명의 약학 조성물은 2주 내지 3주의 투여 주기로 1회에 약 0.01 내지 약 20mg/kg(환자 체중)의 용량, 약 0.01 내지 약 3 mg/kg의 용량, 약 0.05 내지 약 2 mg/kg의 용량, 약 0.1 내지 약 2 mg/kg의 용량, 약 0.1 내지 약 1 mg/kg의 용량, 약 1 내지 약 2 mg/kg의 용량, 또는 약 2 내지 약 20 mg/kg의 용량으로 환자에게 투여될 수 있으나, 기존 면역항암제를 본 발명에 따른 하이드로젤에 결합시키지 않고 단독으로 투여하는 경우에 비해, 훨씬 적은 유효량의 면역항암제를 투여하는 것이 가능하다. 특정 환자에 대한 최적의 투여량 및 투여 요법은 질환의 징후에 대해 환자를 모니터링하고 그에 따라 치료를 조절함으로써, 약학 분야의 통상의 기술자에 의해 용이하게 결정될 수 있다.
이하에서는 첨부된 도면을 참조하여 본 개시에 따른 변형가능한 입자의 기작을 보다 상세히 설명하기로 한다.
도 1은 기존 면역항암제의 기작을 설명하는 도면이다. 암세포 표면에는 면역체크포인트 단백질인 PD-L1 및 B7 단백질이 다수 존재한다. 암세포 표면의 PD-L1또는 B7이 T-세포 표면의 PD-1 또는 CTLA-4 단백질과 결합하면 T-세포의 면역기능이 억제되고 암세포가 면역 감시체계를 회피한다. 면역항암제는 T-세포가 비활성화 되는 것을 막고 T-세포가 암세포를 공격하게 하여 암세포의 면역기능 회피 기작을 방지한다. 이를 위해 면역항암제는 항-PD-L1 및/또는 항-CTLA-4 항체(antibody)를 포함한다. 항-PD-L1 항체는 암세포 표면의 PD-L1 단백질과 결합하여 PD-L1 및 PD-1의 결합을 차단하고, 항-CTLA-4 항체는 T-세포의 CTLA-4 단백질과 결합하여 CTLA-4 및 B7의 결합을 차단하므로, 이들 면역 체크포인트 단백질들에 의한 T-세포의 불활성화는 방지되고, 대신 면역 기능이 활성화되어 T-세포가 암세포를 공격하게 된다. 그러나 기존의 면역항암제가 암세포의 면역기능 회피를 효과적으로 방지하기 위해서는, 암세포 표면의 PD-L1 단백질 또는 T-세포의 CTLA-4 단백질보다 많거나 비슷한 개수의 항체를 포함해야 한다.
반면, 본 개시에 따른 변형가능한 입자는 하이드로젤의 연성을 이용하여 적은 양의 항체로 암세포의 면역 회피를 더 효과적으로 방지할 수 있다. 본 개시에 따른 변형가능한 입자는 기존 면역항암제(도 1)와 비교하여 상대적으로 적은 개수의 항-PD-L1 항체를 포함한다(도 2, 좌측). 상기 변형가능한 입자표면의 항-PD-L1 항체는 암세포 표면의 PD-L1 단백질과 결합하는데, 결합과 동시에 하이드로젤이 암세포 표면을 마치 이불처럼 덮어, T-세포의 PD-1 단백질이 암세포 표면의 PD-L1 단백질과 결합하지 못하게 한다(영역 억제)(도 2의 우측 도면). 즉, 연성 하이드로젤은 암세포에 부착될 때 형태가 변하여(deformation) 암세포와의 접촉 면적이 커지기 때문에, 적은 양의 항체로도 암세포의 체크포인트 단백질과 T-세포의 체크포인트 단백질이 결합할 가능성을 크게 낮출 수 있어, 암세포의 면역회피능을 효과적으로 억제할 수 있다.
도 3은 본 개시에 따른 변형가능한 입자를 이용한 암세포 치료제와 기존 기술을 대비한 것이다. 암세포 표면에는 다수의 PD-L1 및 B7 단백질이 존재하며, 이들이 T-세포 표면의 PD-1 또는 CTLA-4 단백질과 결합하면 T-세포의 면역기능이 억제되어 암세포가 면역 감시체계를 회피한다(도 3의 좌측). 기존의 면역항암제는 항체를 이용하여 암세포의 면역회피능을 억제하는데, 효과적인 차단을 위해 기존의 면역항암제는 암세포 표면의 PD-L1 단백질보다 많거나 비슷한 개수의 항-PD-L1 항체를 포함해야 한다(도 3의 중간). 반면, 본 개시에 따른 변형가능한 입자는 PD-1, PD-L1, CTLA-4, 및/또는 CD137 등의 면역 체크포인트 단백질에 대한 항체를 포함하고 있으므로 이들 항체를 통해 암세포 및/또는 T-세포에 부착될 수 있을 뿐만 아니라, 연성 하이드로젤의 특성으로 인해 세포에 부착될 때 형태가 변하면서 세포의 보다 넓은 면적에 부착될 수 있다 (도 3의 우측). 암세포 및/또는 T-세포 표면의 넓은 영역에 부착된 연성 하이드로젤은 그 자체로도 T-세포의 체크포인트 단백질의 비활성화를 방지할 수 있다.
나아가 본 개시에 따른 변형가능한 입자는 하이드로젤에 면역 체크포인트 단백질 PD-1, PD-L1, 및 CTLA-4 표적화(targeting) 항체와 T-세포 활성화 수용체 CD137(4-1BB) 표적화 항체 등을 단독으로 결합시킬 수 있을 뿐만 아니라, 이들 항체 중 2 이상을 조합하여 함께 하이드로젤에 결합시킬 수 있으므로 이중항체 또는 삼중항체와 같은 다중항체의 효과를 달성할 수 있다(도 4의 우측). 즉, 본 개시에 따른 변형가능한 입자는 다중 특이성을 가진 하이드로젤을 기존 항체들을 이용해 손쉽게 제작할 수 있으므로, 다중항체 합성의 개발 시간 및 비용을 현저히 낮출 수 있다.
이하에서는 암세포에 항체를 단독으로 처리하거나 본 개시에 따른 변형가능한 입자에 결합시켜 처리한 후, 면역세포인 말초혈액단핵세포(peripheral blood mononuclear cell, PBMC)를 함께 배양했을 때 암세포 생존율을 비교하기 위한 실험 과정 및 그 결과를 설명한다. 하기 실시예는 본 발명을 예시하기 위한 목적으로 기술된 것으로서, 본 발명의 범위가 이에 한정되는 것은 아니다.
실시예
실시예 1: 하이드로젤의 제조
하이드로젤의 제조방법은 한국 등록특허 제10-1754774호를 참조한다. 상기 문헌의 내용은 전체로서 본 명세서에 참조로 포함된다.
본 개시에 따른 변형가능한 입자를 구성하는 하이드로젤은 다음의 단계를 통해 일반적으로 제조할 수 있다: 메인단량체 50 내지 97.9중량%, 공단량체 2 내지 40중량%, 및 가교제 0.1 내지 10중량%를 포함하여 3 성분의 합이 100중량%가 되도록 혼합하는 단계; 상기 단량체를 포함하는 수용액을 55 내지 80℃로 가열하는 단계; 개시제를 추가하거나 추가함이 없이 중합반응을 개시(initiate)하는 단계; 상기 반응에 따라 생성된 하이드로젤 수용액을 얻는 단계; 및 상기 하이드로젤 수용액을 약 2주 동안 정제수로 투석(dialysis)하는 단계.
상기 메인단량체, 공단량체 및 가교제는 각각 50 내지 97.9중량%, 2 내지 40중량%, 및 0.1내지 10중량%의 함량 범위에서 혼합될 수 있는데, 메인단량체의 함량이 50중량% 미만인 경우에는 중합 반응성이 저하되어 중합이 잘 일어나지 않을 수 있고, 97.9중량% 초과인 경우에는 공단량체에서 제공되는 활성기 부족으로 인해 필요한 단백질을 결합(예: 아크릴산을 통한 EDC/NHS 커플링)시키는데 어려움이 생길 수 있다. 공단량체의 함량이 2중량% 미만 또는 40중량% 초과인 경우에는 각각 공단량체의 활성기를 이용한 단백질을 결합시키는데 기술적 어려움이 있거나 균일한 하이드로젤 입자를 중합하는데 어려움이 있다. 또한, 가교제의 함량이 0.1중량% 미만인 경우에는 하이드로젤의 형성이 어려울 수 있고, 10중량% 초과인 경우에는 하이드로젤의 연성이 저해될 수 있다.
한 제조예에서, 상기 메인단량체로서는, N-이소프로필아크릴아미드, N-아크릴로일글리신아미드(N-acryloylglycinamide), 하이드록시프로필셀룰로오스(hydroxypropylcellulose), 비닐카프로락탐(vinylcaprolactame), N-비닐피롤리돈(N-vinyl pyrrolidone), 2-하이드록시에틸 메타크릴레이트(2-hydrocyethyl methacrylate), 에틸렌글리콜(ethylene glycol); 아스파르트산, 글루탐산, L-라이신등의 아미노산; 카프로락톤(caprolactone) 및 비닐메틸 에테르(vinyl methyl ether)로 이루어진 군으로부터 선택된 하나가 사용될 수 있고, 상기 공단량체로서는, 알릴아민(AA), 디메틸아미노에틸메타크릴레이트(DMAEMA), 디메틸아미노에틸아크릴레이트(DMAEA), 아크릴산 (AAc), 에틸렌글리콜(EG), 및 메타크릴산 (MAAc)으로 이루어진 군으로부터 선택된 하나가 사용될 수 있다.
또 다른 제조예에서, 상기 메인단량체로 N-이소프로필아크릴아미드가 사용될 수 있고, 상기 공단량체로서 아크릴산이 사용될 수 있다. 이 경우, 가교제는 MBA (N, N'-methylene-bis-acrylamide)일 수 있다.
추가의 제조예에서, 하이드로젤은, 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isoprophylacrylamide-co-allylamine): poly(NIPAM-co-AA)], 폴리(N-이소프로필아크릴아미드 -co-2-(디메틸아미노)에틸메타크릴레이트)[poly(N-isopropyl acrylamide-co-2- (dimethylamino)ethyl methacrylate): poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필아크릴아미드-co-2-(디메틸아미노)에틸아크릴레이트)[poly(N-isopropylacrylamide-co-2-(dimethylamino)ethyl acrylate): poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필아크릴아미드-co-아크릴산)[poly(N-isopropyl acrylamide-co- acrylic acid): poly(NIPAM-co-Aac)], 폴리(N-이소프로필아크릴아미드-co-폴리에틸렌글리콜-아크릴산)[poly(N-isopropyl acrylamide-co-polyethylene glycol- acrylic acid): poly(NIPAM-co-PEG-Aac)], 및 폴리(N-이소프로필아크릴아미드-co-메타아크릴산)[poly(N-isopropyl acrylamide-co-methacrylic acid): poly(NIPAM-co-MAAc)]로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 개시제로는 암모늄 퍼설페이트 (ammonium persulfate: APS)가 사용될 수 있으나, 사용되는 단량체의 종류에 따라 공지 기술에 따라 적절히 선택될 수 있다.
본 개시에 따른 하이드로젤은, 하이드로젤 제조분야의 통상의 지식에 따라 단량체, 가교제 및/또는 계면활성제의 종류 및 함량을 조절하거나 중합 개시 및 중합시 온도를 조절함으로써 제조된 하이드로젤 입자의 연성 등 물성과 크기를 조절할 수 있다. 예를 들어, 중합체 중 아크릴산의 함량이 높고 BIS의 함량이 낮을수록 제조되는 하이드로젤 입자의 디스웰링 정도가 증가하는 경향이 있다. 또한, BIS의 함량이 너무 높으면 입자 크기가 큰 하이드로젤이 형성되지 않는다. 특히, 본 개시에 따른 하이드로젤의 입자 크기는 약 440 nm 이상인 것이 바람직한데, 상기 제조과정에서 계면활성제 및 가교제의 양과 종류를 조정하거나, 중합 개시 및 중합 시 온도를 조절함으로써 제조된 입자의 크기를 상기 범위로 조절하는 것이 가능하다.
구체 제조예 1
폴리(N-이소프로필아크릴아미드-co-아크릴산) 하이드로젤 700 nm 입자의 제조
N-이소프로필아크릴아미드 996 mg, BIS 30.8 mg, Tween80 65.5 mg을 증류수 100 ml에 실온에서 용해시킨 후, 250 mL 크기의 3구 유리반응조에 넣고 1시간동안 아르곤가스주입을 통해 용액내 산소를 제거하면서, 동시에 가열기를 이용하여 반응온도인 70℃까지 가열하였다. 이어서, 아크릴산 72 mg을 반응조내 용액에 첨가하고 10분 동안 아르곤가스 주입 및 70℃까지 가열을 진행한 후, 암모늄 퍼설페이트 22.8 mg을 추가하여 중합반응을 개시하였다. 6시간 동안 마그네틱바를 이용해 용액을 잘 혼합하면서 아르곤가스를 주입하고 가열을 통해 반응 온도를 70℃로 유지하여 중합반응을 완료하였다. 생성된 하이드로젤 수용액을 2주 동안 하루에 2번씩 정제수를 교환하는 방법으로 투석(dialysis)하여 미반응단량체 및 계면활성제 등을 제거한 후에 동결건조기를 이용해 파우더 형태의 하이드로젤 입자를 제조하였다. 동결 건조된 하이드로젤 입자는 각 실험 시 질량을 측정한 후에 용액(버퍼 혹은 정제수)에 녹여 사용하였다.
제조된 하이드로젤 입자의 크기 측정
제조된 하이드로젤의 크기는 탈이온수에 하이드로젤을 희석시킨 후, 동적 광 산란(dynamic light scattering: DLS) 장비를 이용해 25℃에서 5번 반복 측정하여 얻어진 값들의 평균값을 계산함으로써 측정하였다.
구체 제조예 2
폴리(N-이소프로필아크릴아미드-co-아크릴산) 하이드로젤 440 nm 입자의 제조
N-이소프로필 아크릴아미드 996 mg, BIS 30.8 mg, SDS 28.8 mg을 실온에서 증류수 100 ml에 용해시킨 후, 250 mL 크기의 3구 유리반응조에 넣고 1시간동안 아르곤 가스 주입을 통해 용액내 산소를 제거하면서, 동시에 가열기를 이용하여 반응온도인 70℃로 가열하였다. 이어서, 아크릴산 72 mg을 반응조내 용액에 첨가하고 10분 동안 아르곤가스 주입 및 70℃까지 가열을 진행한 후, 암모늄 퍼설페이트 22.8 mg을 추가하여 중합반응을 개시하였다. 6시간 동안 마그네틱바를 이용해 용액을 잘 혼합하면서 아르곤가스를 주입하고 가열을 통해 70℃로 반응온도를 유지하여 중합반응을 완료하였다. 형성된 하이드로젤 수용액을 2주 동안 하루에 2번씩 정제수를 교환하는 방법으로 투석(dialysis)하여 미반응 단량체 및 계면활성제 등을 제거한 후 동결건조기를 이용해 파우더 형태의 하이드로젤 입자를 제조하였다. 동결 건조된 하이드로젤 입자는 각 실험 시 질량을 측정한 후에 용액(버퍼 혹은 정제수)에 녹여 사용하였다.
제조된 하이드로젤 입자의 크기 측정
제조된 하이드로젤의 크기는 구체 제조예 1에서와 동일한 방식으로, 탈이온수에 하이드로젤을 희석시킨 후, 동적 광 산란(dynamic light scattering: DLS) 장비를 이용해 25℃에서 5번 반복 측정하여 얻어진 값들의 평균값을 계산함으로써 측정하였다.
실시예 2: 하이드로젤 입자 표면의 개질: EDC/NHS 커플링 (EDC/NHS coupling)
상술한 실시예 1에서 수득한 하이드로젤 입자에 항체를 결합시킬 수 있도록 EDC/NHS 커플링을 수행하였다. 가교제로 EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (SIGMA-ALDRICH;Cat. E7750-25G) 및 NHS (N-Hydroxysuccinimide)(SIGMA-ALDRICH;Cat. 130672-25G)를 사용하였으며, 가교제 용매는 0.1M의 MES 버퍼 (2-[N-morpholino]ethanesulfonic acid buffer)(Biosolution; Cat. BM020-5.5)를 사용하였다.
5 mg의 폴리(N-이소프로필아크릴아미드-co-아크릴산)하이드로젤 입자(아크릴산 함량 10%)를 500μl의 0.1M MES 버퍼와 혼합하여 하이드로젤 혼합액을 제조하고, 4mg의 EDC와 8mg의 NHS를 200μl의 0.1M MES 버퍼에 각각 용해시켰다. 이어서 400μl의 하이드로젤 혼합액, 200μl의 EDC 용해액 및 200μl의 NHS 용해액을 모두 합하고, 5분 동안 실온에서 배양하였다. 배양 후 500μM의 Protein A (Sino Biological Inc.; LC12NO0802) 16μl를 첨가하여 혼합하고, 샘플이 들어있는 튜브를 뒤집어가며(inverting) 실온에서 1시간 더 배양하였다.
배양을 마친 샘플을 8000rpm에서 2분 동안 실온에서 원심분리하고, 클린벤치(Clean bench)내에서 상층액을 제거한 후 500μM의 PBS (WEL GENE; LB001-02)를 첨가하여 샘플을 세척했다. 상기 원심분리 및 PBS 세척 단계를 5번이상 반복하여 샘플중의 MES 버퍼 및 미반응 물질들을(EDC, NHS, protein A) 모두 제거하였다. 마지막 원심분리후 상층액을 제거하고 나서 800μM의 PBS에 샘플을 현탁시킨 후, 4℃에서 상기 샘플을 보관하였다.
실시예 3: 하이드로젤 입자에 항체 결합
실시예 2에서 얻은 표면 개질된 하이드로젤 입자에 항체를 결합하여 본 개시의 변형가능한 입자를 완성하는 과정을 기술한다. 사용한 항체는 항-PD-L1 항체 (Sino Biological; Cat. 10084-R639); 항-PD-1 항체(Sino Biological; Cat. 10377-HN94); 항-CD137 항체(Sino Biological; Cat. 10041-RP01); 항-CTLA-4 항체(Bioxcell; Cat. BE0190, Lot. 744719s1)이며, 모두 인간 항체이다.
Protein A로 개질된 하이드로젤 입자에 항체를 8μM의 농도가 되도록 첨가하고, 1시간 동안 4℃에서 배양하여 하이드로젤 입자와 항체의 결합을 유도했다. 세포에 항체-결합 하이드로젤 (즉, 본 개시에 따른 변형가능한 입자) 처리시 항체의 최고 농도(top concentration)가 400nM가 되도록 DMEM (WEL GENE; Cat. LM001-11; 10% FBS 및 1% antibiotic-antimycotic (A·A) 함유)을 첨가했다. 항체 농도가 서로 상이한 여러 샘플을 준비하기 위해, 최고 농도의 용액 제조시 사용된 항체 및 하이드로젤의 부피를 기준으로 하여 항체 대신 1XPBS를 추가하는 방법으로 희석하였으며, 항체 농도가 400nM, 200nM, 100nM, 50nM, 25nM, 12.5nM, 및 6.25nM이 되도록 순차적으로 희석하였다. 완성된 변형가능한 입자는 이후의 과정에서 세포에 100μl씩 처리하는데, 변형가능한 입자가 첨가되는 48웰 플레이트 (48 well plate)는 웰당 100μl의 배지가 있으므로, 첨가된 항체의 농도는 결국 반으로 희석된다. 따라서, 세포에 첨가되는 항체의 최종 농도는 200nM, 100nM, 50nM, 25nM, 12.5nM, 6.25nM, 및 3.125nM이다. 항체를 두 가지 이상 조합하여 하이드로젤 입자에 결합시키는 경우, 항체의 총 농도는 상기와 같이 준비하되 각 항체의 비율은 동등하도록(즉, 1:1의 비율로) 결합시켰다.
비교 실험을 위해 세 가지 그룹을 더 준비하였다: (i) PBS 그룹은 항체와 하이드로젤 모두 들어있지 않은 대조군으로서, 10% v/v 농도로 준비하였고(DMEM 360μl + PBS 40μM), (ii) 항체-비결합 하이드로젤 그룹은, 상술한 변형가능한 입자의 제조과정 (즉, 하이드로젤에 항체를 결합시키는 과정)에서 항체의 최고 농도(200nM)를 맞추는데 사용된 하이드로젤 부피와 동일한 부피의 하이드로젤에 항체가 없는 PBS를 혼합하여 준비하였다. (iii) 하이드로젤과 결합하지 않은 항체 그룹은 DMEM에 항체를 희석시켜 400nM, 200nM, 100nM, 50nM, 25nM, 12.5nM, 또는 6.25nM의 농도로 준비한 후 세포에 100μl씩 처리하게 되는데, 전술한 바와 같이 각 웰에 들어있는 배지에 의해 항체 농도는 결과적으로 반으로 희석되었다. 따라서, 최종적으로 세포에 첨가되는 항체의 농도는 200nM, 100nM, 50nM, 25nM, 12.5nM, 6.25nM, 3.125nM였다.
실시예 4: 암세포 생존율의 시험관내 분석
본 개시에 따른 변형가능한 하이드로젤 입자가 암세포의 면역 감시 회피를 억제하고 면역세포에 의한 암세포 사멸을 촉진시키는지 검증하기 위해, 암세포의 생존율을 확인하는 시험관내 (in-vitro) 실험을 진행하였다.
암세포 생존율 분석 실험을 위한 암세포의 준비
실험 0일차에 유방암 세포주인 MCF-7(서울대학교 한국세포주은행)을 준비했다. MCF-7을 배양중인 T75 플라스크로부터 기존 배지를 제거하고, 10 ml의 PBS로 잔여 배지를 세척한 후 PBS를 석션(suction)하여 제거하였다. 2ml의 0.25% 트립신-EDTA (Trypsin-EDTA)(Gibco; REF. 25200-056)를 처리한 후 37℃에서 2분 동안 배양하였다. 10%의 소태아혈청(Fetal bovine serum, FBS) (Gibco; Lot. 1985900) 및 1%의 항생/항진균제 (Antibiotic-antimycotic, A·A) (Gibco; REF. 15240-062)가 첨가되어 있는 DMEM 8ml을 넣어 트립신-EDTA를 중화시킨 후, 플라스크 바닥으로부터 떨어져 나온 암세포를 수확하여 15ml 튜브에 옮겼다. 이어서 24℃, 1300rpm의 조건으로 3분 동안 원심분리하였다. 원심분리된 샘플로부터 상층액을 제거한 후 DMEM 5ml을 넣어 세포 펠렛 (cell pellet)을 현탁시키고,1 Х 10 4 개 세포/100μl/웰의 농도로 48웰 플레이트에 접종하였다. 세포를 37℃에서 밤새 배양하였다.
항체가 결합된 변형가능한 입자 및 PBMC의 처리
배양을 마친 암세포로부터 배지를 100μl를 제거한 후, 앞의 실시예 3에서 제조한 다양한 농도의 항체를 결합시킨 변형가능한 입자를 각 웰에 100μl씩 처리하고 37 ℃에서 2시간 동안 배양하였다. 대조군으로서, 실시예 3에서 제조한 (i) PBS 그룹, (ii) 항체-비결합 하이드로젤 그룹, 및 (iii) 하이드로젤과 결합되지 않은 항체 그룹 역시 웰당 100μl씩 처리하였으며, 같은 조건에서 배양하였다.
암세포에 상기 변형가능한 하이드로젤 입자를 처리하는 동안, T-세포, B-세포, NK 세포 등으로 이루어진 말초혈액단핵세포(peripheral blood mononuclear cell, PBMC)(Zenbio; Cat. SER-PBMC-200P-F)를 준비하였다. -70℃에서 보관 중이던 PBMC를 37℃의 워터배스(water bath)에서 해동하고, 해동된 세포를 50 ml튜브에 옮긴 후 RPMI 배지 (Gibco; Lot. 2145483) (10%의 FBS 및 1%의 A·A가 첨가된 것)를 첨가하여 총 부피가 25ml이 되도록 하였다. 400g에서 10분 동안 19℃에서 원심분리한 후 상층액은 제거하고, 5ml의 RPMI를 첨가하여 세포 펠렛을 현탁시켰다.
상기 변형가능한 하이드로젤 입자의 처리가 끝난 암세포에 준비된 PBMC를 1 Х 10 4 개 세포/100μl/웰의 농도로 처리하였다. 각 웰에 FBS를 10μl씩 처리하고, 37℃ 및 5% CO 2 조건의 배양기에서 4일 동안 배양하였다. 배양하는 동안 격일로 20μl의 DMEM 및 10μl의 FBS를 각 웰에 첨가하였다.
형광염색을 통한 암세포 생존율의 확인
4일 동안의 배양이 끝난 후 실험 5일차에 세포 생존율을 확인하기 위한 형광염색을 진행하였다. PBS 10 ml당 5μl의 Calcein AM (Invitrogen; Lot. 2049068)을 혼합하여 형광염색 시약을 준비했다.
상기 변형가능한 입자 및 PBMC와 배양을 마친 암세포로부터 배지를 제거하고, PBS로 세척한 후 PBS도 석션하여 제거하였다. 준비된 형광염색 시약을 각 웰당 200μl씩 처리하였다. 이어서 48웰 플레이트를 호일로 감싸 빛을 차단하고, 37℃에서 15분 동안 배양하였다. 배양 후 형광염색 시약을 제거하고, PBS로 세척한 후에 웰당 200μl의 DMEM 배지를 첨가하여 형광현미경(Nikon; Ti2-E)으로 형광촬영을 진행했다.
촬영한 형광사진은 Image J 프로그램(미국 국립보건원 제공)으로 분석했다. 전체 면적 대비 Calcein AM으로 형광염색된 면적을 계산하여, 암세포 생존율로 나타내었다.
실험 결과
이하에서는 본 개시에 따른 변형가능한 입자의 암세포 사멸 효과를 기존의 항체 기반 면역항암제(즉, 항체를 단독으로 처리하는 것)와 비교하고, 상기 변형가능한 입자의 하이드로젤 크기 및 연성이 암세포 사멸 효과에 영향을 미치는지 여부를 확인한다.
기존 면역항암제 및 본 개시에 따른 변형가능한 입자의 암세포 사멸 효과 비교
유방암세포인 MCF7에 항체를 단독으로 처리하거나(즉, 항체가 변형가능한 입자에 결합되지 않고 자유 상태로 존재)(이하, 항체그룹), 본 개시에 따른 변형가능한 입자에 결합시켜 처리하고(이하, 항체+GEL그룹), 면역세포인 PBMC와 함께 배양시킨 후의 MCF7의 생존율을 비교하였다 (도 5a 내지 도 5d). 항체는 면역 체크포인트 단백질를 표적으로 하는 항-PD-L1 항체, 항-PD-1 항체, 및 항-CTLA-4 항체와 T-세포 활성화 수용체를 표적으로 하는 항-CTLA-4 항체를 사용하였다.
도 5a는 상기 네 가지 항체를 각각 단독으로 처리하거나, 각 항체를 본 개시에 따른 변형가능한 입자에 결합시켜 처리했을 때 항체 농도에 따른 암세포 생존율을 나타낸다.
항-PD-1 항체의 경우, 항체 농도가 3.125nM 일 때 항체 그룹과 항체+GEL 그룹은 0.93와 0.95의 암세포 생존율을 보였다. 그러나 항체 농도가 12.5nM 이상일 때부터 두 그룹의 암세포 생존율 차이가 벌어지는 것으로 확인되었다. 최고 농도인 200nM에서 항체 그룹의 암세포 생존율은 0.5인 반면, 항체+GEL 그룹은 0.05로 현저히 낮았다.
항-PD-L1 항체의 경우, 항체 농도가 3.125nM일 때, 항체 그룹과 항체+GEL 그룹 모두 암세포 생존율이 0.7로 비슷했다. 그러나 항체 농도가 6.25nM 이상일 때부터 세포생존율 차이가 벌어지는 것으로 확인되었다. 최고 농도인 200nM에서 항체 그룹의 암세포 생존율은 0.5인 반면 항체+GEL 그룹은 0.02였다.
항-CD137 항체의 경우, 12.5nM이하의 농도에서는 두 그룹의 암세포생존율에 큰 차이가 없는 것으로 나타났다. 그러나 항체 농도가 12.5nM 이상일 때부터 암세포 생존율이 차이가 나는 것을 확인할 수 있었으며, 100nM에서 암세포생존율이 8배로 가장 큰 차이를 나타냈다. 최고 농도인 200nM에서 암세포 생존율은 항체 그룹은 0.37인 반면, 항체+GEL 그룹은 0.04로 현저히 낮았다.
항-CTLA-4 항체의 경우, 12.5nM 이하의 농도에서는 두 그룹의 암세포생존율에 큰 차이가 없는 것으로 나타났다. 그러나 항체 농도가 12.5nM 이상일 때부터 암세포 생존율이 차이가 나는 것을 확인할 수 있었으며, 100nM에서 8배로 가장 큰 차이를 나타냈다. 최고 농도인 200nM에서 암세포생존율은 항체 그룹은 0.9인 반면, 항체+GEL 그룹은 0.15로 현저히 낮았다.
도 5b는 상기 네 가지 항체 중 두 가지 항체를 함께 단독으로 처리하거나, 변형가능한 입자에 함께 결합시켜 처리했을 때 항체 농도에 따른 암세포의 생존율을 나타낸다.
항-PD-L1 항체+ 항-PD-1 항체를 조합한 경우, 항체 그룹은 25nM의 농도까지는 암세포 생존율을 0.9로 유지하다가 50nM부터 급격한 감소를 나타냈다. 3.125nM에서 항체+GEL 그룹의 암세포 생존율은 0.55로 항체 그룹에 비해 암세포 생존율이 낮았으며, 농도-의존적으로 생존율이 크게 감소했다. 항체 그룹과 항체+GEL 그룹의 가장 크게 생존율이 차이나는 농도는 25nM과 50nM이며, 200nM에서 항체그룹은 0.3의 생존율을 보이는 반면, 항체+GEL 그룹은 0.04의 생존율을 보였다.
항-PD-L1 항체+ 항-CTLA-4 항체를 조합한 경우, 항체 그룹은 3.125nM의 농도에서 0.98의 생존율을 보이고, 200nM에서도 0.7을 유지하는 것으로 확인됐다. 반면, 항체+GEL 그룹은 3.125nM에서 암세포 생존율은 0.6이었고, 200nM에서는 0.05로 감소했다. 항체+GEL 그룹의 3.125nM에서의 암세포 생존율은 항체 그룹의 200nM에서의 암세포 생존율보다 낮았다.
항-PD-L1 항체+ 항-CD137 항체를 조합한 경우, 항체 그룹은 3.125nM의 농도에서 0.97의 생존율을 보이고, 200nM에서 0.6을 유지하는 것으로 확인됐다. 반면, 항체+GEL 그룹은 3.125nM에서 암세포 생존율은 0.9이었고, 200nM에서는 0.02로 현저히 낮은 생존율을 보였다.
항-PD-1 항체+ 항-CD137 항체를 조합한 경우, 항체 그룹은 3.125nM에서 0.9의 생존율을 보이고, 200nM에서도 0.7의 생존율을 유지하는 것으로 확인됐다. 반면 항체+GEL 그룹의 3.125nM에서의 암세포 생존율은 항체 그룹의 200nM에서의 암세포 생존율과 비슷한 0.7이었으며, 200nM에서는 0.06으로 현저히 낮은 생존율을 보였다.
항-PD-1 항체+ 항-CTLA-4 항체를 조합한 경우, 항체 그룹은 3.125nM의 농도에서 0.9의 생존율을 보이고, 200nM에서도 0.7의 생존율을 유지했다. 항체+GEL 그룹의 3.125nM에서의 암세포 생존율은 항체 그룹의 200nM에서의 암세포 생존율보다 낮은 0.6였고, 200nM에서는 0.05로 현저히 낮았다. 두 그룹의 생존율이 가장 차이나는 농도는 25nM였으며, 9배의 차이가 나타났다.
도 5c는 상기 네 가지 항체 중 세 가지 항체를 함께 단독으로 처리하거나, 변형가능한 입자에 함께 결합시켜 처리했을 때 항체 농도에 따른 암세포의 생존율을 나타낸다.
항-PD-L1 항체 + 항-CD137 항체 + 항-CTLA-4 항체를 조합한 경우 (도 5c 좌측 그래프), 항체 그룹은 3.125nM의 농도에서 0.9의 생존율을 보이고, 200nM에서도 0.6의 생존율을 유지했다. 반면 항체+GEL 그룹은 이미 3.125nM에서 0.7의 생존율을 나타내며, 200nM에서 0.1로 생존율이 크게 감소했다.
항-PD-1 항체 + 항-CD137 항체 + 항-CTLA-4 항체를 조합한 경우 (도 5c 우측 그래프), 항체 그룹은 3.125nM에서 0.9의 생존율을 나타내고, 100nM까지도 거의 유사한 생존율을 유지하다가 200nM에서는 생존율이 0.4로 급격히 떨어졌다. 반면 항체+GEL 그룹은 이미 3.125nM에서 0.24의 생존율을 나타내며, 200nM에서 0.02로 생존율이 크게 감소했다.
도 5d는 상기 네 가지 항체 모두를 함께 단독으로 처리하거나, 변형가능한 입자에 함께 결합시켜 처리했을 때 항체 농도에 따른 암세포의 생존율을 나타낸다. 항체 그룹은 3.125nM에서 0.99의 생존율을 보이고, 200nM에서 0.5의 암세포 생존율을 보였다. 반면 항체+GEL 그룹은 3.125nM에서 이미 0.6의 생존율을 보였으며, 특히 항체 농도가 12.5nM 이상일 때부터 급격한 생존율 감소를 보이고, 200nM에서 0.06의 생존율을 나타냈다.
결론적으로, 상기 네 가지 항체를 각각 처리하거나, 또는 두 가지 이상 조합하여 처리하는 경우 모두, 항체 단독으로 처리하는 것보다 변형가능한 입자에 결합시켰을 때 암세포 생존율이 현저하게 감소하는 것을 확인할 수 있었다. 특히, 단일 항체를 결합시켰을 때보다 두 가지 이상의 항체를 함께 결합시켰을 때 변형가능한 입자의 암세포 사멸 효과가 더욱 뛰어난 것을 확인할 수 있었다. 이는 본 개시에 따른 변형가능한 입자가 기존 면역항암제에 비해 적은 양의 항체를 이용하여 암세포 사멸을 촉진할 수 있을 뿐만 아니라, 비교적 간단한 제조과정을 통해 다중항체의 효과를 달성할 수 있다는 것을 입증한다.
특히, 항체 및 변형가능한 입자를 모두 처리하지 않은 그룹 (PBS 그룹)이나, 항체와 결합되지 않은 변형가능한 입자를 처리한 그룹 (항체-비결합 하이드로젤 그룹)의 경우 암세포의 생존율이 거의 변화가 없는 것을 확인할 수 있었다. 이는 하이드로젤 자체는 암세포나 면역세포에 크게 영향을 미치지 않으나, 항체와 결합시키면 상기 항체와 세포의 표면 단백질의 결합을 통해 암세포와 면역세포의 상호작용을 차단함으로써 암세포의 면역회피를 방지한다는 것을 의미하는 것으로서, 본 발명의 하이드로젤 입자가 단순히 약물전달 수단으로 작용하는 것이 아니라, 인공 T-세포로서 면역세포와 같이 기능함을 시사한다.
항체를 단독으로 처리한 그룹 (항체 그룹)과 변형가능한 입자에 결합시켜 처리한 그룹 (항체+GEL 그룹)의 암세포 생존율에 대한 IC 50은 아래 표 1에 나타냈다.
[표 1]
항체를 단독으로 처리 (항체 그룹)한 경우와 본 개시에 따른 변형가능한 입자(입자직경 700nm)에 결합시켜 처리한 경우 (항체+GEL 그룹) 암세포 생존율에 대한 IC 50 비교
Figure PCTKR2021003095-appb-img-000001
간암세포에 대한 본 개시의 하이드로젤의 사멸효과 확인
간암세포(HepG2)에 대해서도 위에 기재된 것과 동일한 실험을 실시하였고, 본 개시에 따른 하이드로젤 입자가 유방암세포에서와 유사한 암세포 사멸 효과를 가짐을 확인하였다. 그 결과를 도 5e 내지 5g에 나타낸다.
실시예 5: 하이드로젤 크기에 따른 암세포 사멸 효과 비교
본 개시에 따른 변형가능한 입자의 하이드로젤 크기가 암세포 사멸에 영향을 미치는지 확인하였다(도 6). 이하 기술하는 하이드로젤의 직경은 탈이온수 (deionized water) 내에서 측정한 것으로, 세포와 결합하지 않은 구형 상태의 하이드로젤의 직경이다.
먼저, 단일 항체를 결합시킨 변형가능한 입자에서 하이드로젤 크기가 암세포 생존율에 영향을 미치는지 확인하였다 (도 6a). 직경이 440nm, 540nm, 700nm 또는 1300nm인 하이드로젤에 항-CTLA-4 항체를 결합시켜 암세포에 처리하였으며, 항-CTLA-4 항체를 단독으로 처리한 경우와 암세포 생존율을 비교하였다. 도 6a에 도시된 바와 같이, 직경이 440nm인 하이드로젤의 경우 항-CTLA-4 항체를 단독으로 처리했을 때와 비교하여 암세포 생존율이 조금 낮아졌으나 암세포 생존율이 크게 낮아지지는 않았다. 그러나 직경이 540nm 이상이 되면, 동일한 항체 농도에서 항체 그룹에 비해 항체+GEL 그룹의 암세포의 생존율이 20% 이상 현저히 낮은 것을 확인할 수 있었다.
두 가지 항체를 함께 하이드로젤 입자에 결합시켰을 때에도 하이드로젤 입자의 크기가 암세포 생존율에 영향을 미치는지 확인하였다(도 6b). 직경이 440nm, 540nm, 700nm 또는 1300nm인 하이드로젤 입자에 항-PD-L1 항체 및 항-CTLA-4 항체를 결합시켜 암세포에 처리하였으며, 상기 두 항체를 함께 단독으로 처리한 경우와 암세포 생존율을 비교하였다. 도 6b에 나타낸 바와 같이, 두 가지 항체를 결합시킨 경우 직경이 440nm인 하이드로젤 입자도 항체 그룹에 비해 암세포 사멸 효과가 증가하는 것이 확인되었으며, 직경이 700nm 이상인 하이드로젤 입자를 이용한 경우 암세포 생존율이 현격하게 감소하는 것으로 나타났다.
이와 같은 결과는 하이드로젤 입자의 직경이 본 개시에 따른 변형가능한 입자의 암세포 사멸 효과에 영향을 미친다는 것을 보여준다. 즉, 본 개시에 따른 변형가능한 입자가 기존 면역항암제에 비해 더 뛰어난 암세포 사멸능을 갖기 위한 하이드로젤 입자의 직경은 440nm 이상이며, 바람직하게는 540nm 이상, 더 바람직하게는 700nm 이상이다.
실시예 6: 하이드로젤의 연성 유무에 따른 암세포 사멸 효과 비교
하이드로젤의 연성이 본 개시에 따른 변형가능한 입자의 암세포 사멸 효과에 영향을 미치는지 확인하였다 (도 7).
입자크기가 1230 nm인 폴리스타이렌 비즈[polystyrene beads, 제품명:CP-10-10 (Spherotech, Lake Forest, IL, USA)]에 항-PD-L1 항체 및 항-CTLA-4 항체를 결합시키고, 동일한 항체를 결합시킨 본 개시의 변형가능한 입자(1300nm)와 암세포 사멸능을 비교하였다. 폴리스타이렌 비즈는 방향족 탄화수소 폴리머로 이루어진 것으로, 본 개시에 따른 변형가능한 입자와 달리 연성이 전혀 없는, 구형의 변형가능하지 않은(non-deformable) 단단한 비즈이다.
도 7에 도시된 바와 같이, 본 개시에 따른 변형가능한 입자에 항체를 결합시켜 처리한 경우, 항체를 단독으로 처리한 경우에 비해 암세포 생존율이 급격히 감소하였으나, 폴리스타이렌 비즈에 결합시켜 처리한 경우 저농도에서 항체 그룹과 유의미한 차이가 없었으며, 최고 농도 (200 nM)에서도 0.6의 높은 암세포 생존율을 나타냈다.
동일한 항체들을 이용하고 폴리스타이렌 비즈[제품명: CP-08-10 (Spherotech, Lake Forest, IL, USA)]와 하이드로젤 입자의 입자 크기를 각각 810 nm 및 700 nm로 변경하여 동일한 실험을 반복하였고, 유사한 결과를 얻었다(도 7 하단).
이와 같은 결과는 본 개시에 따른 변형가능한 입자가 하이드로젤의 연성에 의해 세포의 더 넓은 부위를 덮음으로써 암세포와 T-세포의 상호작용을 효과적으로 차단하고, 암세포 사멸을 촉진한다는 것을 입증한다.
비교예 1: 변형가능한 하이드로젤 입자 단독의 암세포 사멸 효과 확인
본 개시에 따른 변형가능한 하이드로젤 입자에 항체를 결합시킴이 없이 면역세포와 함께 배양하였을 때 하이드로젤 입자의 농도에 따른 암세포의 생존율을 확인하였다(도 8). 도 8에서 확인되듯이, 본 개시에 따른 변형가능한 하이드로젤 입자에 항체를 결합시키지 않은 경우에는 암세포 사멸능이 미미하였다. 이는 본 개시에 따른 하이드로젤 입자가 암세포 사멸 효과를 갖기 위해서는 암세포 또는 T-세포의 세포표면성분(이상적으로는 면역관문조절 단백질, 면역세포 활성 단백질, 혹은 암세포 조절 관여 단백질)에 결합할 수 있는 단백질이 하이드로젤 표면에 존재할 것이 필수적임을 의미하며, 본 개시에 따른 하이드로젤 입자가 T-세포의 기능을 모방하는 인공 T-세포로 작용하여 인체내 면역세포의 활성을 유지하고 암세포의 면역 회피 기작을 효과적으로 억제함을 시사한다.
실시예 7: 마우스 모델에서 변형가능한 하이드로젤 입자의 항암 효능 평가
본 개시에 따른 변형가능한 하이드로젤 입자의 항암 효능을 마우스 모델에서 평가하였다. 본 실험은 고려대학교 IACUC(KOREA-2020-0203) 승인을 받은 후 진행하였다. 마우스는 오리엔트 바이오(Orient Bio; 경기도 성남시 중원구 소재)에서 구매하였고 C57BL/6 종으로 6주령 암컷을 사용하였다. 동물실 반입 후 1주일간 안정화 기간 이후 실험을 진행하였다. 암세포의 생착을 위해서 세포 접종 2일전부터 사이클로스포린(Cyclosporine, 종근당, Cat. EG001, 450ug/15g)을 근육주사(IM : Intramuscular injection)로 투여하였고, 음용수에 케토코나졸(Ketoconazole, 이글벳, Cat. 170432001, 2.5ug/ul)을 섞어서 투여하였다. 인간 유방암 세포주인 MCF-7-luc2(ATCC, HTB-22-LUC2) 2.5x10^6 cell을 100ul serum free RPMI 1640 (Gibco, Cat. 11875093) + 100ul Matrigel (Corning, Lot. 0062015)과 섞어서 4번 젖꼭지에 피하주사(SC : subcutaneous injection)로 접종하였다. 접종 후 2일간 추가적으로 사이클로스포린을 근육주사로 투여하였다. MCF-7/Luc2의 발현양을 확인하기 위해서 Indigo 분석기기로 (NightOWL II LB 983) 형광촬영을 진행하였고 촬영 15분전에 D-luciferin(Goldbio, GOLD-1G)을 SC로 1.5mg/100ul 투여 후 luminescence를 4일 간격으로 촬영하였다.
실험기간은 총 16일로 형광촬영은 총 5번 촬영했다. 암세포 접종한 날을 0일로 계산하여, 0일째, 4일째, 8일째, 12일째 및 16일째에 각각 형광촬영을 진행했다. 실험을 진행한 그룹은 총 3개로 대조 그룹(control)(암세포만 주입한 그룹: PBS 그룹, no hydrogel); 이중항체 그룹(암세포를 하이드로젤에 결합되지 않은 PD-L1 항체와 CTLA4 항체로 처리한 그룹); 및 이중항체와 결합된 하이드로젤을 처리한 그룹(PD-L1 항체와 CTLA4항체가 결합된 하이드로젤을 처리한 그룹 - 실시예 3에서 제조한 hAC with PD-L1 ab + CTLA-4 ab)으로 구분된다. 각 실험 그룹에 대해 각각 3마리 혹은 4마리의 마우스를 사용하였다. 암세포 주입 후, 대조 그룹은4일마다 PBS를 주입하였고, 처리군은 이중항체 또는 이중항체와 결합된 하이드로젤을 4일마다 각각 처리하였으며, 마지막 16일은 PBS 혹은 약물을 주입하지 않고 형광촬영을 진행한 후 CO 2를 이용하여 희생해 조직을 채취하였다.
촬영한 형광사진은 Indigo 분석장비에 있는 프로그램에서 형광 데이터 값을 생체 발광 발현량(ph/s)으로 추출하였으며, 약물 처리를 시작한 4일째 생체 발광 발현량을 기준으로 개체 및 그룹별로 보정하였다.
시료가 처리된 그룹의 시료 농도는 아래와 같다.
- 이중항체 그룹의 농도: 마우스 한 마리 당 60ug(PD-L1 항체 30ug + CTLA4항체 30ug)/20g으로 계산하여 100ul을 주입하였다.
- 이중항체와 결합된 하이드로젤 그룹: 마우스 한 마리 당 60ug(PD-L1 항체 60ug+CTLA4 항체 60ug+하이드로젤(항체가 들어가는 양과 동일하게 넣어줌))/20g으로 계산하여 100ul을 주입하였다. 이 경우는 하이드로젤의 존재로 인해 항체의 농도가 하이드로젤과 1:1의 비율로 희석되므로, 하이드로젤이 존재하지 않는 경우보다 각 항체의 농도를 2배 높여 넣어주었다.
실험결과
형광사진에서 분석된 암세포 형광 발광량을 도 9에 나타낸다. 암세포만 주입하고 항체나 하이드로젤의 시료를 주입하지 않은 대조군(Control)의 경우(도 9에서 좌측 도면), 암세포를 접종한지 4일째에 평균적으로 암세포의 형광 발광량이 증가하였으나 암세포 접종 후 8일째에는 암세포 형광 발광량이 감소하다가 12일째는 다시 증가하는 등 암세포 형광 발광량이 일정한 방향성이 없이 변동되는 것으로 확인되었다. 이중항체 그룹(도 9의 가운데 도면)의 경우, 암세포를 접종한지 4일째에 암세포의 형광 발광량이 0.1로 크게 감소하고, 접종 8일째는 암세포 형광 발광량이 0.02로 감소하였으나, 접종 12일째는 접종 8일째와 유사한 형광 발광량을 나타내어 더 이상 형광 발광량이 감소하지 않았다. 본 개시의 이중항체가 결합된 하이드로젤 그룹의 경우(도 9의 최우측), 암세포를 접종한지 4일째에 암세포의 형광 발광량이 0.04로 극적으로 감소하고, 접종 8일째 암세포 형광 발광량이 0.004로 감소하였으며, 접종 12일째는 형광 발광량이 0.001으로 감소하고, 일부 개체에서는 암세포가 전혀 관찰되지 않는 등 암세포가 현저하게 감소한 것으로 확인되었다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (20)

  1. 암세포 또는 T-세포의 세포 표면 성분에 결합할 수 있는 단백질이 표면에 결합되어 있고, 변형가능한(deformable) 것을 특징으로 하는, 하이드로젤(hydrogel) 입자.
  2. 제1항에 있어서,
    상기 세포 표면 성분은 CD2, CD3, CD19, CD24, CD27, CD28, CD31, CD34, CD45, CD46, CD80, CD86, CD133, CD134, CD135, CD137, CD160, CD335, CD337, CD40L, ICOS, GITR, HVEM, 갈렉틴 9, TIM-1, LFA-1, PD-L1, PD-L2, B7-H3, B7-H4, ILT3, ILT4, PD-1, CTLA-4, BTLA, MHC-I, MHC-II, TGF-β receptor, latent TGF-β-binding protein (LTBP); DLL-Fc, DLL-1 또는 DLL-4를 포함한 델타유사리간드, WNT3, 줄기세포인자 및 트롬보포이에틴 중에서 선택된 한 종 이상인 것인, 하이드로젤 입자.
  3. 제1항에 있어서,
    상기 암세포의 세포 표면 성분은 PD-L1 단백질이고, 상기 T-세포의 세포 표면 성분은 PD-1 단백질, CTLA-4 단백질, 및 CD137 단백질로 이루어진 군에서 선택된 것인, 하이드로젤 입자.
  4. 제1항에 있어서,
    상기 하이드로젤 표면에 결합된 단백질은 항체, 재조합 단백질, 또는 이들의 조합인 것인, 하이드로젤 입자.
  5. 제4항에 있어서,
    상기 항체는 항-PD-1 항체, 항-PD-L1 항체, 항-CD137 항체, 항-CTLA-4 항체, 또는 이들의 조합인 것인, 하이드로젤 입자.
  6. 제4항에 있어서,
    상기 재조합 단백질은 PD-L1 단백질, PD-1 단백질, CTLA-4 단백질, 및 CD137 단백질로 이루어진 군에서 선택된 적어도 하나를 표적으로 하여 결합할 수 있는, 단백질, 앱타머, 또는 이들의 조합으로 이루어진 군에서 선택된 적어도 하나인, 것인, 하이드로젤 입자.
  7. 제1항에 있어서,
    탈이온수(deionized water) 내에서 상기 하이드로젤의 직경은 440 nm 이상인 것인, 하이드로젤 입자.
  8. 제7항에 있어서,
    탈이온수 내에서 상기 하이드로젤의 직경은 540 nm 이상, 또는 700 nm 이상인 것인, 하이드로젤 입자.
  9. 제1항에 있어서,
    상기 하이드로젤은 메인단량체 및 공단량체로 이루어진 공중합체를 포함하는 것인, 하이드로젤 입자.
  10. 제9항에 있어서,
    상기 메인단량체는, N-이소프로필아크릴아미드, N-아크릴로일글리신아미드(N-acryloylglycinamide), 하이드록시프로필셀룰로오스(hydroxypropylcellulose), 비닐카프로락탐(vinylcaprolactame), N-비닐피롤리돈(N-vinyl pyrrolidone), 2-하이드록시에틸 메타크릴레이트(2-hydrocyethyl methacrylate), 에틸렌글리콜(ethylene glycol); 아스파르트산, 글루탐산, L-라이신등의 아미노산; 카프로락톤(caprolactone), 및 비닐메틸 에테르(vinyl methyl ether)로 이루어진 군으로부터 선택되고,
    상기 공단량체는, 알릴아민(AA), 디메틸아미노에틸메타크릴레이트 (DMAEMA), 디메틸아미노에틸아크릴레이트(DMAEA), 아크릴산(AAc), 폴리에틸렌글리콜(PEG), 및메타아크릴산(MAAc)으로 이루어진 군으로부터 선택되는 것인, 하이드로젤 입자.
  11. 제9항에 있어서,
    상기 하이드로젤은 가교제를 더 포함하는 것인, 하이드로젤 입자.
  12. 제11항에 있어서, 상기 가교제는, N, N'-메틸렌-비스-디아크릴아미드(MBA),폴리에틸렌 글리콜(PEG) 디하이드록실(PEG dihydrocyl), PEG 디아민(PEG diamine), PEG 디옥시아민(PEG dioxyamine), PEG 디클로라이드(PEG dichloride), PEG 디브로마이드(PEG dibromide), PEG 디아지드(PEG diazide), PEG 디싸이올(PEG dithiol), PEG 디알데하이드(PEG dialdehyde), PEG 디에폭사이드(PEG diepoxide), PEG 디아크릴레이트(PEG diacrylate), PEG 디메타크릴레이트(PEG dimethacrylate), PEG 디아세틱엑시드(PEG diacetic acid), PEG 디석시닉엑시드(PEG disuccinic acid), PEG 디석시미딜카복시메틸에스터(PEG discuccinimidyl carboxy methyl ester), 폴리(ε-카프로락톤)디아크릴레이트[poly(ε-caprolactone)diacrylate], 폴리(ε-카프로락톤)디메타릴레이트[poly(ε-caprolactone)dimethacrylate], 폴리락티드디아크릴레이트(polylactide diacrylate), 폴리락티드디메타크릴레이트(polylactide dimethacrylate), 폴리(락티드-co-글리콜리드) 디아크릴레이트[poly(lactide-co-glycolide)diacrylate], 폴리(락티드-co-글리콜리드)디메타크릴레이트[poly(lactide-co-glycolide)dimethacrylate], 폴리(ε-카프로락톤-b-에틸렌 글리콜-b- ε-카프로락톤)디아크릴레이트[poly(ε-caprolactone-b-ethylene glycol-b-ε-caprolactone)diacrylate], 폴리(ε-카프로락톤-b-에틸렌 글리콜-b- ε-카프로락톤)디메타크릴레이트[poly(ε-caprolactone-b-ethylene glycol-b-ε-caprolactone)dimethacrylate], 폴리(락티드-b-에틸렌 글리콜-b-락티드)디아크릴레이트[poly(lactide-b-ethylene glycol-b-lactide)diacrylate], 폴리(락티드-b-에틸렌 글리콜-b-락티드)디메타크릴레이트[poly(lactide-b-ethylene glycol-b-lactide)dimethacrylate], 폴리[(락티드-co-글리콜리드)-b-에틸렌 글리콜-b-(락티드-co-글리콜리드)]디아크릴레이트{poly[(lactide-co-clycolide)-b-ethylene glycol-b-(lactide-co-glycolide)] diacrylate}, 폴리[(락티드-co-글리콜리드)-b-에틸렌 글리콜-b-(락티드-co-글리콜리드)]디메타크릴레이트{poly[(lactide-co-clycolide)-b-ethylene glycol-b-(lactide-co-glycolide)] dimethacrylate}, 폴리(ε-카프로락톤-co-락티드)-디아크릴에이트[poly(ε-caprolactone-co-lactide)-diacrylate], 폴리(ε-카프로락톤-co-락티드)-디메타크릴에이트[poly(ε-caprolactone-co-lactide)-dimethacrylate], 폴리(ε-카프로락톤-co-글리콜리드)-디아크릴에이트[poly(ε-caprolactone-co-glycolide)-diacrylate], 폴리(ε-카프로락톤-co-글리콜리드)-디메타크릴에이트[poly(ε-caprolactone-co-glycolide)-dimethacrylate], 폴리[(카프로락톤-co-락티드)-b-에틸렌 글리콜-b-(카프로락톤-co-락티드)]디아크릴에이트{poly[(caprolactone-co-lactide)-b-ethylene glycol-b-(caprolactone-co-lactide)]diacrylate}, 폴리[(카프로락톤-co-락티드)-b-에틸렌 글리콜-b-(카프로락톤-co-락티드)]디메타크릴에이트{poly[(caprolactone-co-lactide)-b-ethylene glycol-b-(caprolactone-co-lactide)]dimethacrylate}, 폴리[(카프로락톤-co-글리콜리드)-b-에틸렌 글리콜-b-(카프로락톤-co-글리콜리드)]디아크릴에이트{poly[(caprolactone-co-glycolide)-b-ethylene glycol-b-(caprolactone-co-glycolide)]diacrylate}, 폴리[(카프로락톤-co-글리콜리드)-b-에틸렌 글리콜-b-(카프로락톤-co-글리콜리드)]디메타크릴에이트{poly[(caprolactone-co-glycolide)-b-ethylene glycol-b-(caprolactone-co-glycolide)]dimethacrylate} 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인,하이드로겔 입자.
  13. 제11항에 있어서,
    상기 하이드로젤은, 상기 메인단량체 50 내지 97.9중량%, 공단량체 2 내지 40중량%, 및 가교제 0.1 내지 10중량%로 이루어진 공중합체를 포함하는 것인, 하이드로젤 입자.
  14. 제1항에 있어서,
    상기 하이드로젤은, 폴리(N-이소프로필 아크릴아미드-co-알릴아민)[poly(N-isoprophylacrylamide-co-allylamine): poly(NIPAM-co-AA)], 폴리(N-이소프로필아크릴아미드-co-2-(디메틸아미노)에틸메타크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl methacrylate): poly(NIPAM-co-DMAEMA)], 폴리(N-이소프로필아크릴아미드-co-2-(디메틸아미노)에틸아크릴레이트)[poly(N-isopropyl acrylamide-co-2-(dimethylamino)ethyl acrylate), poly(NIPAM-co-DMAEA)], 폴리(N-이소프로필아크릴아미드-co-아크릴산)[poly(N-isopropylacrylamide-co- acrylic acid): poly(NIPAM-co-AAc)], 폴리(N-이소프로필아크릴아미드-co-폴리에틸렌글리콜-아크릴산)[poly(N-isopropylacrylamide-co-polyethylene glycol- acrylic acid): poly(NIPAM-co-PEG-AAc)], 및 폴리(N-이소프로필아크릴아미드-co-메타크릴산)[poly(N-isopropylacrylamide-co-methacrylic acid): poly(NIPAM-co-MAAc)]로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 것인, 하이드로젤 입자.
  15. 제13항에 있어서,
    상기 하이드로젤은, 메인단량체로서 N-이소프로필아크릴아미드, 공단량체로서 아크릴산, 및 가교제로서 MBA (N, N'-methylene-bis-acrylamide)를 사용하여 제조된 공중합체를 포함하는 것인, 하이드로젤 입자.
  16. 제1항에 기재된 변형가능한 하이드로젤 입자의 제조방법으로서, 상기 방법은,
    (i) 하이드로젤 입자를 제조하는 단계,
    (ii) 하이드로젤 입자의 표면에 단백질이 결합할 수 있도록 하이드로젤 입자의 표면을 개질하는 단계, 및
    (iii) 표면 개질된 하이드로젤 입자에 단백질을 첨가하여 하이드로젤 입자 표면에 단백질을 결합시키는 단계를 포함하는, 방법.
  17. 제16항에 있어서,
    상기 하이드로젤 입자를 제조하는 단계 (i)는,
    메인단량체 50 내지 97.9중량%, 공단량체 2 내지 40중량%, 및 가교제 0.1 내지 10중량%를 포함하여 3 성분의 합이 100중량%가 되도록 혼합하는 단계;
    생성된 혼합액을 55 내지 80 ℃로 가열하는 단계;
    개시제를 추가하거나 추가함이 없이 중합반응을 개시(initiate)하는 단계;
    상기 중합반응에 따라 생성된 하이드로젤 수용액을 얻는 단계; 및
    상기 하이드로젤 수용액을 2주 동안 정제수로 투석(dialysis)하는 단계를 포함하는 것인, 방법.
  18. 제16항에 있어서, 상기 단백질은 항체 또는 재조합 단백질인 것인, 방법.
  19. 치료학적으로 유효한 양의, 제1항 내지 제15항 중 어느 한 항의 하이드로젤 입자를 포함하는, 암 치료용 약학 조성물.
  20. 제1항 내지 제15항 중 어느 한 항의 하이드로젤 입자를 포함하는, 면역항암제.
PCT/KR2021/003095 2020-03-16 2021-03-12 변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물 WO2021187813A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180021424.4A CN115297842A (zh) 2020-03-16 2021-03-12 可变形水凝胶粒子及包括其的用于治疗癌症的药物组合物
EP21772135.6A EP4122446A4 (en) 2020-03-16 2021-03-12 DEFORMABLE HYDROGEL PARTICLES AND PHARMACEUTICAL COMPOSITION FOR CANCER TREATMENT THEREFROM
US17/911,626 US20230172851A1 (en) 2020-03-16 2021-03-12 Deformable hydrogel particles and pharmaceutical composition for cancer treatment comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200032035 2020-03-16
KR10-2020-0032035 2020-03-16
KR1020200172631A KR20210116194A (ko) 2020-03-16 2020-12-10 변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물
KR10-2020-0172631 2020-12-10

Publications (1)

Publication Number Publication Date
WO2021187813A1 true WO2021187813A1 (ko) 2021-09-23

Family

ID=77771365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003095 WO2021187813A1 (ko) 2020-03-16 2021-03-12 변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물

Country Status (4)

Country Link
US (1) US20230172851A1 (ko)
EP (1) EP4122446A4 (ko)
CN (1) CN115297842A (ko)
WO (1) WO2021187813A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170136127A1 (en) * 2014-07-01 2017-05-18 Vicus Therapeutics, Llc Hydrogels for treating and ameliorating cancers and potentiating the immune system and methods of making and using them
KR101754774B1 (ko) 2015-12-29 2017-07-06 주식회사 스칼라팍스트롯 바이오 칩 및 바이오 칩의 제조 방법
WO2017175200A1 (en) * 2016-04-08 2017-10-12 The Regents Of The University Of California Modified hyaluronic acid hydrogels and proteins for the time-controlled release of biologic agents
WO2019118686A1 (en) * 2017-12-13 2019-06-20 North Carolina State University Compositions comprising chemotherapeutic agents and checkpoint inhibitors and methods of use
KR20190138646A (ko) * 2017-03-20 2019-12-13 큐티 홀딩스 코포레이션 면역 세포의 조절을 위한 방법 및 조성물

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240311B2 (ja) * 2016-08-30 2023-03-15 ダナ-ファーバー キャンサー インスティテュート, インコーポレイテッド 薬物送達組成物およびその使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170136127A1 (en) * 2014-07-01 2017-05-18 Vicus Therapeutics, Llc Hydrogels for treating and ameliorating cancers and potentiating the immune system and methods of making and using them
KR101754774B1 (ko) 2015-12-29 2017-07-06 주식회사 스칼라팍스트롯 바이오 칩 및 바이오 칩의 제조 방법
WO2017175200A1 (en) * 2016-04-08 2017-10-12 The Regents Of The University Of California Modified hyaluronic acid hydrogels and proteins for the time-controlled release of biologic agents
KR20190138646A (ko) * 2017-03-20 2019-12-13 큐티 홀딩스 코포레이션 면역 세포의 조절을 위한 방법 및 조성물
WO2019118686A1 (en) * 2017-12-13 2019-06-20 North Carolina State University Compositions comprising chemotherapeutic agents and checkpoint inhibitors and methods of use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HERMANSON ET AL.: "Bioconjugate Techniques", 2013, ACADEMIC PRESS
JISOO SHIN ET AL.: "Functional Hydrogel for the Application of Drug Delivery and Tissue Engineering", KIC NEWS, vol. 18, no. 6, 2015, pages 2 - 3
MATTIAS KARG ET AL., LANGMUIR, vol. 35, 2019, pages 6231 - 6255
See also references of EP4122446A4

Also Published As

Publication number Publication date
CN115297842A (zh) 2022-11-04
EP4122446A4 (en) 2024-03-27
EP4122446A1 (en) 2023-01-25
US20230172851A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
Lucke et al. Engineered hybrid spider silk particles as delivery system for peptide vaccines
García-Vallejo et al. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells
KR102190890B1 (ko) 암 치료를 위한 t 세포의 활성화 방법
EP2590679B1 (en) Immunomodulatory protein constructs with a helical polymeric backbone
CN114269390A (zh) 可植入构建体及其用途
Votaw et al. Randomized peptide assemblies for enhancing immune responses to nanomaterials
WO2015026215A1 (ko) 바이구아나이드 유도체 화합물을 유효성분으로 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약제학적 조성물
RU2727900C2 (ru) Фармацевтическая композиция для предотвращения или лечения заболеваний, опосредованных регуляторными т-клетками
EP3229822B1 (en) Ligands of b7h receptor in the treatment of osteopenia and osteoporosis
WO2021187813A1 (ko) 변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물
EP3820453A1 (en) Biomolecule coated particles and films and uses thereof
WO2018128485A1 (ko) 항-코티닌 키메릭 항원 수용체를 발현하는 자연살해 세포
AU2017313806B2 (en) Tumor-targeting bead vectors and methods of using the same
Bai et al. Staphylococcal protein A-modified hydrogel facilitates in situ immunomodulation by capturing anti-HMGB1 for islet grafts
KR20210116326A (ko) 변형가능한 하이드로젤 입자 및 이를 포함하는 암 치료용 약학 조성물
Hafner et al. Surface assembly of poly (I: C) on PEGylated microspheres to shield from adverse interactions with fibroblasts
CN116829178A (zh) 小分子药物缀合物和表达car的细胞毒性淋巴细胞的组合及使用其治疗癌症的方法
WO2021054526A1 (ko) 특수 코팅된 나노입자 및 그의 이용
CA2357906A1 (en) Identification of new cd8 epitopes from hiv-1 proteins with therapeutical and vaccinal properties against hiv infections
KR20200097654A (ko) 암 치료를 위한 t 세포의 활성화 방법
Woods et al. Evidence for an involvement of T4+ cytotoxic T cells in tumor immunity
KR101506426B1 (ko) 화학적 고정화를 통해 안정화된 미세 막상 t 세포 백신 제조방법
KR100786458B1 (ko) 수상세포 전구체의 혈중 레벨의 상승제
WO2020071869A1 (ko) 표적 세포 특이적으로 결합하여 다중 면역기능이 강화된 키메라항원 및 이의용도
CN110337491A (zh) 免疫耐受性浆细胞样树突状细胞及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021772135

Country of ref document: EP

Effective date: 20221017