WO2021187530A1 - 高強度ゲル - Google Patents

高強度ゲル Download PDF

Info

Publication number
WO2021187530A1
WO2021187530A1 PCT/JP2021/010840 JP2021010840W WO2021187530A1 WO 2021187530 A1 WO2021187530 A1 WO 2021187530A1 JP 2021010840 W JP2021010840 W JP 2021010840W WO 2021187530 A1 WO2021187530 A1 WO 2021187530A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
network structure
unsaturated monomer
molecular weight
gel
Prior art date
Application number
PCT/JP2021/010840
Other languages
English (en)
French (fr)
Inventor
脩 鹿野
一詞 椋木
正法 鈴木
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022508413A priority Critical patent/JP7435738B2/ja
Publication of WO2021187530A1 publication Critical patent/WO2021187530A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof

Definitions

  • the present invention relates to high-strength gels.
  • the present application claims priority based on Japanese Patent Application No. 2020-050027 filed in Japan on March 19, 2020, the contents of which are incorporated herein by reference.
  • the gel material has been conventionally used for highly water-absorbent resins, disposable diapers, sanitary napkins, soft contact lenses, water-containing sheets for indoor greening, etc. as a material capable of holding a solvent hundreds to thousands times its own weight. .. Gel materials also have sustained release properties of drugs and are also applied to medical materials such as drug delivery systems and wound dressings. In addition, gel materials are also used as shock absorbing materials, vibration damping materials, soundproofing materials, etc., and their uses are wide-ranging. However, the gel material generally has low strength, and the structure is destroyed by a minute stress, so that it is not suitable for applications requiring strength. Therefore, in recent years, various new gel materials having significantly improved strength from the conventional gel materials have been proposed.
  • the double network gel (3) has a first network structure (A) formed by polymerizing and cross-linking the first monomer (a1) and a second network structure (A).
  • the interpenetrating network structure composed of the second network structure (B) formed in the first network structure (A) by introducing the monomer (b1) of the above and polymerizing the second monomer (b1).
  • the double network gel having this interpenetrating network structure the balance between elongation and strength can be freely designed, and it is also excellent in terms of high transparency and the like. Further, by adjusting the amount of the cross-linking agent added, a gel having higher elasticity and higher strength can be obtained.
  • An object of the present invention is to provide a gel material having high strength, which makes it difficult for the internal solvent to freeze even at a low temperature, and which can maintain flexibility.
  • the present inventors have conducted diligent studies and found that in a double network gel, a monomer having a polyalkylene glycol in the side chain, a specific monomer is used as the first monomer, and a monomer having a specific molecular weight range is used as the second monomer.
  • the present invention has been completed by finding that when used as a monomer, a gel material can be obtained in which flexibility and transparency are maintained without freezing the internal solvent even at a low temperature while maintaining high strength.
  • the present invention has the following aspects. [1] In a gel having an interpenetrating network structure including a first network structure (A) and a second network structure (B) formed in the first network structure (A).
  • the first network structure (A) is derived from at least the first monomer (a1).
  • the second network structure (B) is derived from at least the second monomer (b1).
  • the first monomer (a1) is an anionic unsaturated monomer and / or a cationic unsaturated monomer.
  • the second monomer (b1) is an electrically neutral monofunctional unsaturated monomer having a polyalkylene glycol structure represented by the following formula (1).
  • the second monomer (b1) has a molecular weight of more than 300 and has a molecular weight of more than 300.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms
  • n is an integer.
  • a first network structure (A) formed by polymerizing and cross-linking the first monomer (a1) and a second monomer (b1) are introduced into the first network structure (A).
  • the first monomer (a1) is an anionic unsaturated monomer and / or a cationic unsaturated monomer.
  • the second monomer (b1) is an electrically neutral monofunctional unsaturated monomer having a polyalkylene glycol structure represented by the following formula (1).
  • the second monomer (b1) has a molecular weight of more than 300 and has a molecular weight of more than 300.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms
  • n is an integer.
  • the first monomer (a1) is an anionic unsaturated monomer and / or a cationic unsaturated monomer.
  • the second monomer (b1) is an electrically neutral monofunctional unsaturated monomer having a polyalkylene glycol structure represented by the following formula (1).
  • the second monomer (b1) has a molecular weight of more than 300 and has a molecular weight of more than 300.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms
  • n is an integer.
  • a first network structure (A) formed by polymerizing and cross-linking the first monomer (a1) and a second monomer (b1) are introduced into the first network structure (A).
  • the first monomer (a1) is an anionic unsaturated monomer and / or a cationic unsaturated monomer.
  • the second monomer (b1) is an electrically neutral monofunctional unsaturated monomer having a polyalkylene glycol structure represented by the following formula (1).
  • the second monomer (b1) has a molecular weight of more than 300 and has a molecular weight of more than 300.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms
  • n is an integer.
  • a scaffold material for regenerative medicine containing the high-strength gel according to any one of [1] to [8].
  • a soil modifier containing the high-strength gel according to any one of [1] to [8].
  • a 3D printer model containing the high-strength gel according to any one of [1] to [8].
  • the present invention it is possible to provide a gel material having high strength, which makes it difficult for the internal solvent to freeze even at a low temperature, and which can maintain flexibility.
  • FIG. 1 is a schematic view of a gel having an interpenetrating network structure of the present invention.
  • FIG. 2 is a schematic view of a gel having a semi-interpenetrating network structure of the present invention.
  • the "monofunctional unsaturated monomer” means a monomer having one carbon-carbon unsaturated double bond in one molecule.
  • the "polyfunctional unsaturated monomer” means an unsaturated monomer having two or more polymerizable functional groups.
  • the "polymerizable functional group” is a functional group that can react during polymerization, and when two or more polymerizable functional groups in the polyfunctional unsaturated monomer react with each other, a cross-linking point is formed and a network structure is formed.
  • NS (Meta) acrylate” is a general term for acrylate and methacrylate.
  • the "mesh structure” means a net-like structure stretched three-dimensionally by cross-linking polymers formed by polymerizing unsaturated monomers.
  • the structure is different from linear polymers in that it can retain the solvent in the network.
  • “Hydrogel” means a gel in which water is incorporated as a solvent in a network structure composed of a polymer.
  • High-strength gel examples of the high-strength gel of the present invention include the following two types of gels (i) and (ii).
  • the mutual intrusion network structure means a structure in which two network structures, a first network structure (A) and a second network structure (B), are overlapped and intertwined with each other.
  • the first network structure (A) and the linear second polymer (B') having no cross-linking point do not exist separately but are intertwined with each other.
  • these may be collectively referred to as "(semi) interpenetrating network structure”.
  • interpenetrating network structure hydrogel means that other network structures are uniformly entwined with the base network structure throughout the gel, and as a result, a plurality of network structures are formed in the gel.
  • this type of gel is composed of a first network structure (A) having a plurality of cross-linking points 1 and a second network structure (B) having a plurality of cross-linking points 2.
  • the first network structure (A) and the second network structure (B) are physically intertwined with each other via the network.
  • "Semi-interpenetrating network structure hydrogel” means that a linear polymer is uniformly entwined with the base network structure throughout the gel, and as a result, multiple network structures are formed in the gel.
  • a gel For example, as shown in FIG.
  • this type of gel is composed of a first network structure (A) having a plurality of cross-linking points 3 and a linear second polymer (B').
  • the first network structure (A) and the linear second polymer (B') are physically intertwined with each other through the network.
  • the high-strength gel according to the first aspect of the present invention has an interpenetrating network structure including a first network structure (A) and a second network structure (B).
  • the first network structure (A) is derived from at least the first monomer (a1).
  • the first network structure (A) is preferably a network structure formed by polymerizing and cross-linking the first monomer (a1).
  • the first monomer (a1) is a monofunctional unsaturated monomer.
  • an anionic unsaturated monomer (a1-1) and / or a cationic unsaturated monomer (a1-2) are used as the first monomer (a1).
  • an anionic unsaturated monomer (a1-1) and / or a cationic unsaturated monomer (a1-2) are used. By using an anionic unsaturated monomer and / or a cationic unsaturated monomer, the strength of the gel is increased.
  • the anionic unsaturated monomer means a monomer that is negatively charged in water among monofunctional unsaturated monomers.
  • first network structure (A) is immersed in a solution of the second monomer (b1) (hereinafter referred to as "second monomer solution")
  • second monomer solution a solution of the second monomer (b1)
  • the anionic unsaturated monomer in the first network structure (A) When the acidic group of the unit derived from (a1-1) is dissociated, the anions repel each other and the first network structure (A) exhibits a swelling behavior, and the second monomer (b1) becomes the first. It becomes easy to introduce into the network structure (A).
  • anionic unsaturated monomer (a1-1) examples include unsaturated monomers having a sulfonic acid group (2-acrylamide-2-methylpropanesulfonic acid, p-styrenesulfonic acid, vinylsulfonic acid, etc.); carboxylic acid group.
  • unsaturated monomers having (acrylic acid, methacrylic acid, maleic acid, succinic acid, itaconic acid, etc.); unsaturated monomers having a phosphoric acid group (methacryloxyethyl trimeric acid, etc.); salts thereof and the like can be mentioned.
  • an unsaturated monomer having a sulfonic acid group and an unsaturated monomer having a carboxylic acid group are preferable, and an unsaturated monomer having a sulfonic acid group is preferable because the acidity is high and the acidic group is more easily dissociated in water. More preferred.
  • These anionic unsaturated monomers (a1-1) may be used alone or in combination of two or more.
  • the lower limit of the content of the anionic unsaturated monomer (a1-1) in the first monomer (a1) is not particularly limited, but 5 mol% or more of the 100 mol% of the first monomer (a1) is Preferably, 10 mol% or more is more preferable, and 20 mol% or more is further preferable.
  • the upper limit of the content of the anionic unsaturated monomer (a1-1) in the first monomer (a1) is not particularly limited, but is usually 100 mol% out of 100 mol% of the first monomer (a1). It is as follows. When the content of the anionic unsaturated monomer (a1-1) is equal to or higher than the lower limit, the swelling behavior of the first network structure (A) is likely to occur, and it is easy to obtain a gel having sufficient mechanical strength. become.
  • the cationic unsaturated monomer means a monomer that is positively charged in water among monofunctional unsaturated monomers.
  • examples of the cationic unsaturated monomer (a1-2) include unsaturated quaternary ammonium salts such as methacrylamide propyltrimethylammonium chloride.
  • unsaturated quaternary ammonium salts such as methacrylamide propyltrimethylammonium chloride.
  • the cationic unsaturated monomer (a1-2) one type may be used alone, or two or more types may be used in combination.
  • Anionic unsaturated monomers (a1-1) and cationic unsaturated monomers (a1-2) may be used in combination.
  • Anionic unsaturated monomers are preferable to cationic unsaturated monomers from the viewpoint of easiness of developing the swelling behavior of the first network structure (A).
  • the first network structure (A) does not necessarily have to be formed of a component composed of the first monomer (a1), and contains other unsaturated monomers in addition to the first monomer (a1). It may be formed from components.
  • the other unsaturated monomer include nonionic unsaturated monomers.
  • the nonionic unsaturated monomer means a monofunctional unsaturated monomer that is neither positively or negatively charged in water and is extremely weak even if charged.
  • the type of nonionic unsaturated monomer is not particularly limited as long as it is soluble in a solvent.
  • the nonionic unsaturated monomer include known monomers.
  • the nonionic unsaturated monomer include acrylamide derivatives (acrylamide, dimethylacrylamide, N-isopropylacrylamide, N-methylolacrylamide, acryloylmorpholine, etc.) and methacrylicamide derivatives (methacrylicamide, dimethylmethacrylicamide, N-isopropylmethacrylicamide, etc.).
  • the first network structure (A) is a network structure formed by using a polyfunctional unsaturated monomer (a2) as a cross-linking agent. During the polymerization of the first monomer (a1), two or more polymerizable functional groups in the polyfunctional unsaturated monomer (a2) react to form a cross-linking point, and the first network structure (A) is formed. ..
  • Examples of the polyfunctional unsaturated monomer (a2) include known polyfunctional unsaturated monomers.
  • Examples of the bifunctional unsaturated monomer include N, N'-methylenebisacrylamide, N, N'-methylenebisacrylamide, monoethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and monopropylene glycol di (meth). Examples thereof include acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate.
  • trifunctional unsaturated monomer examples include ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, ethoxylated propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated pentaerythritol tri (meth) acrylate.
  • tetrafunctional unsaturated monomer examples include ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, and ethoxylated ditrimethylolpropane tetra (meth).
  • examples thereof include acrylates and propoxylated ditrimethylolpropane tetra (meth) acrylates.
  • a bifunctional unsaturated monomer and a trifunctional unsaturated monomer are preferable, and a bifunctional unsaturated monomer is more preferable, because the first network structure tends to swell.
  • These polyfunctional unsaturated monomers (a2) may be used alone or in combination of two or more.
  • the amount of the polyfunctional unsaturated monomer (a2) added is preferably 0.5 to 20 mol%, more preferably 1 to 15 mol%, and 2 to 12 with respect to 100 mol% of the first monomer (a1). Mol% is more preferred.
  • the amount of the polyfunctional unsaturated monomer (a2) added is equal to or greater than the lower limit, the shape of the gel having the first network structure (A) can be easily maintained, and the second monomer (b1) is introduced. The handling of one mesh structure (A) becomes easy.
  • the amount of the polyfunctional unsaturated monomer (a2) added is not more than the upper limit value, the first network structure (A) is likely to swell sufficiently, and the second monomer (b1) is added to the first network structure (A). ) Sufficiently absorbed.
  • the second network structure (B) is derived from at least the second monomer (b1).
  • the second network structure (B) is preferably the first by introducing a second monomer (b1) into the first network structure (A) and polymerizing and cross-linking the second monomer (b1). It is a network structure formed in the network structure (A) of.
  • the second network structure (B) is formed of a component containing the second monomer (b1) and the cross-linking agent (b2).
  • the second monomer (b1) is an electrically neutral monofunctional unsaturated monomer.
  • Examples of the second monomer (b1) include nonionic monofunctional unsaturated monomers.
  • the nonionic monofunctional unsaturated monomer is a monofunctional unsaturated monomer that is neither positively or negatively charged in water and is extremely weak even if charged.
  • the second monomer (b1) is a monomer represented by the following formula (1).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms
  • n is an integer.
  • n is preferably 4 to 43, more preferably 4 to 30, and even more preferably 4 to 15.
  • the molecular weight of the second monomer (b1) tends to be more than 300 and 2000 or less.
  • the molecular weight of the second monomer (b1) is more than 300, preferably 400 or more, and more preferably 450 or more. When the molecular weight of the second monomer (b1) exceeds the lower limit, it is difficult to freeze even at a low temperature, and a gel maintaining flexibility can be obtained.
  • the molecular weight of the second monomer (b1) is not particularly limited with respect to the upper limit value, but is preferably 2000 or less, more preferably 1500 or less, and further preferably 1000 or less, for example. When the molecular weight of the second monomer (b1) is equal to or less than the upper limit value, the second monomer easily invades the first network when the first network structure (A) is immersed in the second monomer solution. Therefore, it becomes easy to obtain a transparent and high-strength gel.
  • Examples of the monomer represented by the formula (1) include polyethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate, and ethoxypolyethylene glycol mono (meth) acrylate.
  • polyethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate or ethoxypolyethylene glycol mono (meth) acrylate is preferable, and polyethylene glycol mono (meth) acrylate or methoxypolyethylene glycol mono (meth) acrylate is more preferable.
  • polyethylene glycol mono (meth) acrylate is even more preferred.
  • Examples of the monomer represented by the formula (1) having a molecular weight of more than 300 include trade names “AM-90G", “AM-230G", “Blemmer AE400” and the like.
  • the second monomer (b1) one type may be used alone, or two or more types may be used in combination.
  • the second network structure (B) does not necessarily have to be formed of a component consisting only of the second monomer (b1) and the cross-linking agent (b2), but the second monomer (b1) and the cross-linking agent (b2). In addition, it may be formed from a component further containing other unsaturated monomers.
  • a monomer having a side chain having a large molecular weight as represented by the above formula (1) has a low motility, so that the polymerization reaction proceeds slowly. Therefore, other unsaturated monomers may be contained in order to accelerate the progress of the polymerization reaction. Examples of other unsaturated monomers include the monomers exemplified as the nonionic unsaturated monomer.
  • the content of the second monomer (b1) is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass, out of 100% by mass of all the monomers used for forming the second network structure (B). The above is more preferable.
  • the content of the second monomer (b1) is at least the above lower limit value, it is easy to obtain a hydrogel that maintains flexibility even at a low temperature.
  • the second network structure (B) has a crosslink formed by a polyfunctional unsaturated monomer (b2) having a polyalkylene glycol structure. That is, the second network structure (B) of the high-strength gel according to the first aspect of the present invention is a network structure formed by using a polyfunctional unsaturated monomer (b2) as a cross-linking agent.
  • the polyfunctional unsaturated monomer (b2) is not particularly limited as long as it has two or more polymerizable functional groups in one molecule.
  • the polyfunctional unsaturated monomer (b2) those exemplified as the above-mentioned polyfunctional unsaturated monomer (a2) can be used, but it is preferable to use a bifunctional unsaturated monomer having two polymerizable functional groups. , It is more preferable to use a bifunctional unsaturated monomer having a polyalkylene glycol structure as shown in the following formula (2).
  • R 3 and R 4 are independently hydrogen atoms or methyl groups, and m is an integer.
  • R 3 and R 4 may be the same as or different from R 1 of the second monomer (b1) represented by the formula (1).
  • m in the formula (2) may be the same as or different from n in the formula (1).
  • m is preferably 1 to 100, more preferably 2 to 50, and even more preferably 4 to 20. When m is in this range, the viscosity does not become too large and it is easy to handle, and the reaction of the second unsaturated group is easy to proceed.
  • bifunctional monomer having a polyalkylene glycol structure examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, and ethoxylated polypropylene glycol di (meth) acrylate.
  • examples thereof include ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate, and ethoxylated propoxylated bisphenol A di (meth) acrylate.
  • polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and ethoxylated polypropylene glycol di (meth) acrylate are preferable, and polyethylene glycol di (meth) acrylate is preferable because the obtained gel becomes more flexible.
  • Polyethylene glycol di (meth) acrylate ethoxylated is more preferable, and polyethylene glycol di (meth) acrylate is even more preferable.
  • the polyfunctional unsaturated monomer (b2) one type may be used alone, or two or more types may be used in combination.
  • the degree of cross-linking of the second network structure (B) is smaller than the degree of cross-linking of the first network structure (A). If the degree of cross-linking of the second network structure (B) is smaller than the degree of cross-linking of the first network structure (A), the mechanical properties of the gel, particularly the elongation, are less likely to be impaired.
  • the degree of cross-linking in the first network structure (A) means the amount of the polyfunctional unsaturated monomer (a2) added to 100 mol% of the first monomer (a1).
  • the degree of cross-linking in the second network structure (B) is the degree of cross-linking with respect to 100 mol% of the second monomer (b1) when the cross-linking with the polyfunctional unsaturated monomer (a2) is carried out at the same time as the polymerization of the second monomer (b1). It means the amount of the polyfunctional unsaturated monomer (b2) added.
  • the cross-linking point connects the ratio of the monomer units contributing to the cross-linking to the monomer units derived from the second monomer (b1).
  • the degree of cross-linking can be determined by dividing by the number of polymer chains.
  • the number of polymer chains to which the cross-linking points are linked is, for example, 2 when two kinds of monomers are reacted to form a cross-linking point. It is 3 in the case of ionic bonding with trivalently charged boric acid.
  • Examples of the method for producing a high-strength gel according to the first aspect of the present invention include the following production methods.
  • (X) A step of forming the first network structure (A) by polymerizing and cross-linking the first monomer (a1), and
  • (Y) In the first network structure (A), a second monomer (b1) is introduced into the first network structure (A), and the second monomer (b1) is polymerized and crosslinked to form the first network structure (A).
  • a method for producing a gel having an interpenetrating network structure which comprises a step of forming a second network structure (B).
  • the first network structure (A) is formed by using the above-mentioned first monomer (a1). If there is, the present invention is not particularly limited, but here, the one formed by the above-mentioned first monomer (a1) and the polyfunctional unsaturated monomer (a2) will be described as an example. First, the first monomer (a1), the polyfunctional unsaturated monomer (a2), the polymerization initiator and the like are dissolved in a solvent to prepare the first monomer solution.
  • the first monomer (a1) is polymerized and crosslinked to form a first network structure (three-dimensional crosslinked polymer). A) is formed.
  • Examples of the polymerization method include a radical polymerization method using a thermal polymerization initiator and a photopolymerization method using a photopolymerization initiator.
  • Examples of the thermal polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate, peroxides such as benzoyl peroxide, and azo-based initiators.
  • Examples of the photopolymerization initiator include general photopolymerization initiators such as alkylphenone-based initiators and acylphosphine oxide-based initiators.
  • Examples of the alkylphenone-based initiator include 2-hydroxy-2-methyl-1-phenylpropane-1-one (manufactured by BASF, Omnirad 1173) and the like.
  • the first network structure (A) can be formed only by a method using a polyfunctional unsaturated monomer (a2), but a method using a polyfunctional unsaturated monomer (a2) and a step ( In y), cross-linking by epoxy ring-opening, ion cross-linking, etc., which will be described later, may be used in combination.
  • Step (y) In the step (y), the second monomer (b1), the polyfunctional unsaturated monomer (b2), and the like are introduced into the first network structure (A) into the first network structure (A).
  • the second monomer (b1), the polyfunctional unsaturated monomer (b2), and the like are uniformly diffused in the contained solvent.
  • the second monomer (b1) is polymerized to obtain a polymer.
  • the cross-linking of the polymer may be carried out at the same time as the polymerization of the second monomer (b1), or may be carried out after the polymer is obtained.
  • the first method is to put the second monomer (b1), the polymerization initiator and the like into the second monomer solution.
  • the first network structure (A) absorbs the solvent and swells, the second monomer (b1) is transferred to the first network structure (A).
  • the polyfunctional unsaturated monomer (a2) for forming the first network structure (A) the introduction of the second monomer (b1) into the first network structure (A) can be achieved. This facilitates the preparation of high-strength gels.
  • the same method as the polymerization method in step (x) can be used.
  • a radical polymerization method using a thermal polymerization initiator is preferable.
  • a photopolymerization method using a photopolymerization initiator may be preferable.
  • the polymerization method of the first monomer (a1) and the polymerization method of the second monomer (b1) may be the same or different.
  • Examples of the cross-linking method in the step (y) include a cross-linking method using a chemical bond, a cross-linking method using an ionic bond, and a physical cross-linking method.
  • the following cross-linking method can be mentioned (the case of the second network structure (B) is described, but in the case of the first network structure (A), the polyfunctional unsaturated monomer (a2) is used. , It is also possible to use the same method as these methods together).
  • Method ( ⁇ ) is preferable because it does not require special equipment, the manufacturing process is not complicated, the operation is simple, and the network structure is easy to control, but it is also possible to use these in combination.
  • ( ⁇ ) A method in which a polyfunctional unsaturated monomer (b2) having two or more carbon-carbon unsaturated double bonds in one molecule is used together with a second monomer (b1) and crosslinked at the same time as polymerization.
  • ( ⁇ ) A method in which radicals are generated and crosslinked in a polymer formed by the second monomer (b1) by irradiation.
  • ( ⁇ ) A method of directly reacting the functional groups of the side chains of the unit derived from the second monomer (b1) constituting the polymer.
  • ( ⁇ ) A method of cross-linking the functional groups of the side chains of the unit derived from the second monomer (b1) constituting the polymer with a bridging agent.
  • ( ⁇ ) A method of cross-linking by an ionic bond or a coordination bond using a polyvalent metal ion (copper ion, zinc ion, calcium ion, etc.).
  • the first monomer (a1) since the first monomer (a1) has an anionic unsaturated monomer and / or a cationic unsaturated monomer, it is immersed in a solution having a second monomer (b1). At that time, it becomes possible to take in a larger amount of the second monomer (b1), and the strength is increased. Further, when the molecular weight of the second monomer (b1) exceeds 300, the present invention has an interpenetrating network structure having a polyalkylene glycol structure having excellent compatibility with a solvent such as water and a relatively low melting point. It becomes a gel. It is considered that the gel of the present invention having such a structure exhibits the effects of high strength and excellent low temperature characteristics and transparency.
  • the high-strength gel according to the second aspect of the present invention is a semi composed of a first network structure (A) and a second polymer (B') formed in the first network structure (A). It has a mutual intrusion network structure.
  • the details and the preferred embodiment of the first network structure (A) are the same as those described for the first network structure (A) in the high-strength gel according to the first aspect. The content.
  • the second polymer (B') has a linear structure and is derived from at least the second monomer (b1).
  • the second polymer (B') is preferably the first by introducing a second monomer (b1) into the first network structure (A) and polymerizing the second monomer (b1). It is a linear polymer having no cross-linking point formed in the network structure (A) of the above.
  • the second polymer (B') is formed from a component containing the second monomer (b1).
  • the content of the second monomer (b1) can be the same as that described for the second monomer (b1) in the high-strength gel according to the first aspect.
  • the second monomer (b1) may be used alone or in combination of two or more.
  • the type and content of the second monomer (b1) can be the same as those described for the second monomer (b1) in the high-strength gel according to the first aspect.
  • Examples of the method for producing a high-strength gel according to the second aspect of the present invention include the following production methods.
  • a method for producing a gel having a semi-interpenetrating network structure which comprises a step of forming a second polymer (B').
  • Step (x) In the method for producing a high-strength gel according to the second aspect of the present invention, the step (x) is the same as the step (x) in the method for producing a high-strength gel according to the first aspect.
  • Step (y') The method (II) for producing a gel (ii) having a high-strength semi-interpenetrating network structure according to a second aspect of the present invention has a step (y').
  • the second monomer (b1) By introducing the second monomer (b1), the polymerization initiator, etc. into the first network structure (A), the second monomer (b1) can be added to the solvent contained in the first network structure (A). , The polymerization initiator, etc. are uniformly diffused.
  • the second monomer (b1) is polymerized to form a second polymer (B'). do.
  • the second polymer (B') By forming the second polymer (B') in the first network structure (A) as described above, a gel having a semi-interpenetrating network structure and having an arbitrary shape can be obtained.
  • the introduction method and polymerization method of the second monomer (b1) are the same as the introduction method and polymerization method in the step (y).
  • the high-strength gel of the present invention may contain additives such as known colorants, plasticizers, stabilizers, strengthening agents, inorganic fillers, impact resistance modifiers, and flame retardants. ..
  • the second mode of the present invention since the first monomer (a1) has an anionic unsaturated monomer and / or a cationic unsaturated monomer, the second monomer ( When immersed in a solution having b1), it becomes possible to take in a larger amount of the second monomer (b1), and the strength is increased. Further, the present invention has a semi-interpenetrating network structure having a polyalkylene glycol structure having an excellent compatibility with a solvent such as water and a relatively low melting point when the molecular weight of the second monomer (b1) exceeds 300. Becomes a gel. It is considered that the gel of the present invention having such a structure exhibits the effects of high strength and excellent low temperature characteristics and transparency.
  • the high-strength gel of the present invention described above has a mutual invasion network structure or a semi-interpenetrating network structure, and therefore has high strength.
  • a component in which the second network structure (B) or the second polymer (B') constituting the interpenetrating network structure or the semi-interpenetrating network structure contains a second monomer (b1) having a molecular weight of more than 300. Is formed from. Therefore, the solvent inside is hard to freeze even at a low temperature, and the flexibility can be maintained.
  • Example 1 (Formation of the first network structure (A)) A polyfunctional unsaturated monomer with respect to 100 mol% of the first monomer (a1) in a 25 mass% aqueous solution of the first monomer (a1), sodium 2-acrylamide-2-methylpropanesulfonate (NaAMPS). 4 mol% of N, N'-methylenebisacrylamide (MBAAm) which is (a2) and a photopolymerization initiator (Omnirad 1173, 2-hydroxy-2-methyl-1-phenylpropan-1-one, manufactured by BASF). 0.1 mol% of the above was dissolved to prepare a first monomer solution.
  • NAMPS sodium 2-acrylamide-2-methylpropanesulfonate
  • MBAAm N'-methylenebisacrylamide
  • Omnirad 1173 2-hydroxy-2-methyl-1-phenylpropan-1-one
  • the obtained first monomer solution was poured into a mold in which a frame-shaped silicone rubber sheet (thickness 1 mm) was placed on a polyethylene terephthalate (PET) film, covered with another PET film, and further up and down. was sandwiched between glass plates to prepare a sample.
  • a sample By irradiating this sample with ultraviolet rays using an optical belt type ultraviolet irradiation device, the first monomer solution in the sample was gelled to obtain a hydrogel precursor having a first network structure (A).
  • the second monomer solution By immersing the hydrogel precursor having the first network structure (A) in the prepared second monomer solution and leaving it in this state for 12 hours or more, the second monomer solution is made to have the first network structure (A). It was sufficiently absorbed by A).
  • a hydrogel precursor having a first network structure (A) sufficiently swollen with a second monomer solution is sandwiched between PET films, and the upper and lower parts are further sandwiched between glass plates, and the hydrogel precursor is subjected to an optical belt method.
  • Ultraviolet rays were irradiated using an ultraviolet irradiation device to carry out polymerization to obtain a hydrogel having an interpenetrating network structure in which a second network structure (B) was formed in the first network structure (A).
  • a hydrogel was obtained in the same manner as in Example 1 except that the monomer solution of No. 1 was prepared.
  • the first network structure is the same as in Example 1 except that acrylamide (AAm) is used instead of the first monomer (a1), sodium 2-acrylamide-2-methylpropanesulfonate (NaAMPS).
  • a hydrogel precursor having the above was obtained.
  • Example 2 A second monomer solution was prepared in the same manner as in Example 1. Using the prepared second monomer solution and the obtained hydrogel precursor having a first network structure, a hydrogel was obtained in the same manner as in Example 1.
  • Moisture content (mass of hydrogel before drying (g) -mass of gel after drying (g)) / mass of hydrogel before drying (g) x 100
  • the mass of the gel after drying was measured using a heat-drying moisture meter MS-70 (manufactured by A & D Co., Ltd.). Specifically, after heating about 1 g of hydrogel to 200 ° C. and holding it for 3 minutes, the temperature is lowered to 150 ° C.
  • the hydrogel obtained in Comparative Example 1 did not pass the flexibility at low temperature.
  • acrylamide used in Comparative Example 1 is a monomer that is generally often used as a raw material for hydrogels, but is known to be highly toxic to living organisms.
  • the second monomer (b1) as used in the present invention has low irritation to a living body. Therefore, the high-strength gel of the present invention can be said to be a material suitable for applications such as contact with the human body.
  • the hydrogel of Comparative Example 2 obtained by using acrylamide instead of the first monomer (a1) under the same conditions as in Example 1 had higher strength than the hydrogel of Example 1, but had a water content. And the flexibility at low temperature was lower than that of the hydrogel of Example 1.
  • Example 3 (Formation of the first network structure (A)) Add 467 g of cyclohexane, 10.6 g of sorbitan monooleate (Kao, Leodor AO-10), and 2.61 g of polyoxyethylene lauryl ether (Kao, Emargen 130K) to a 2000 mL four-necked flask, and stir and mix. bottom. Next, a 50 mass% aqueous solution of the first monomer (a1), sodium 2-acrylamide-2-methylpropanesulfonate (NaAMPS), is polyfunctional with respect to 100 mol% of the first monomer (a1).
  • a1 sodium 2-acrylamide-2-methylpropanesulfonate
  • APS ammonium persulfate, manufactured by Wako Pure Chemical Industries, Ltd.
  • water was added so that the total concentration of 2-acrylamide-2-methylpropanesulfonate sodium, N, N'-methylenebisacrylamide, and the thermal polymerization initiator was 25% by mass, and the mixture was stirred and mixed.
  • a first monomer solution was prepared.
  • the mixture was mixed and dispersed at room temperature at a stirring rate of 500 rpm, and nitrogen gas was bubbled therein at a flow rate of 500 mL / min for 2 hours.
  • the water bath was heated to raise the temperature of the flask contents to 60 ° C., and polymerization was started. After reaching 60 ° C., it was polymerized as it was for 2 hours. Then, the flask was taken out from the water bath, the supernatant was removed, 1000 mL of acetone was added with stirring, and the mixture was continuously stirred for 1 hour.
  • the polyfunctional unsaturated monomer (b2) is based on 100 mol% of the methoxypolyethylene glycol acrylate (MeO9A, average molecular weight 483) which is the second monomer (b1) and 100 mol% of the second monomer (b1).
  • MeO9A methoxypolyethylene glycol acrylate
  • O9DA average molecular weight 522
  • photopolymerization initiator Omnirad TPO, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide manufactured by BASF.
  • % was dissolved in 60 parts by mass of pure water so that the solid content of these components combined became 40% by mass to prepare a second monomer solution.
  • the polymer fine particles having the first network structure (A) are added to the second monomer solution so as to be 2% by weight, stirred and mixed, and left in this state for 12 hours or more to obtain the second monomer.
  • the solution was sufficiently absorbed by the first network structure (A) to prepare a fine particle-containing hydrogel solution.
  • a hydrogel was obtained in the same manner as in Example 1 except that the monomer solution of No. 1 was prepared.
  • the first network structure is the same as in Example 3 except that acrylamide (AAm) is used instead of the first monomer (a1), sodium 2-acrylamide-2-methylpropanesulfonate (NaAMPS).
  • AAm acrylamide
  • NaAMPS sodium 2-acrylamide-2-methylpropanesulfonate
  • a hydrogel was obtained in the same manner as in Example 3 except that the obtained first network structure was used.
  • the hydrogel of Comparative Example 7 using an electrically neutral monomer as the first monomer did not have sufficient strength to measure the total light transmittance and the HAZE value.
  • the high-strength gel of the present invention has high strength and high transparency, it can be used for various purposes such as packing, lenses, membranes, cushioning materials, shock absorbers, cushions, and design sheets. be. Further, since the gel is composed of a plurality of meshes, the degree of freedom in imparting functionality and the degree of freedom in designing strength and flexibility are higher than those of other high-strength gels, which is very useful. Further, since the high-strength gel of the present invention is neutral and has a small load on the human body and the environment, precision parts such as robot members, sensor materials, 3D printer shaped objects, bearings and interlayer films that come into contact with metal, and human bodies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Graft Or Block Polymers (AREA)
  • Cosmetics (AREA)

Abstract

第一の網目構造(A)と、第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有するゲルにおいて、第一の網目構造(A)は、少なくとも第一のモノマー(a1)に由来するものであり、第二の網目構造(B)は、少なくとも第二のモノマー(b1)に由来するものであり、第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、第二のモノマー(b1)の分子量が300超であり、第二の網目構造(B)が、第二のモノマー(b1)及び架橋剤(b2)を含む成分から形成されている、高強度であり、低温下でも内部の溶媒が凍結しにくく、柔軟性を維持できるゲル材料が提供される。

Description

高強度ゲル
 本発明は、高強度ゲルに関する。
 本願は、2020年3月19日に、日本に出願された特願2020-050027号に基づき優先権を主張し、その内容をここに援用する。
 ゲル材料は、自重の数百乃至数千倍の溶媒を保持することができる材料として、従来から高吸水性樹脂、紙おむつや生理用品、ソフトコンタクトレンズ、屋内緑化用含水シート等に利用されている。また、ゲル材料は、薬物の徐放性も有し、ドラッグデリバリーシステムや創傷被覆材等の医療材料にも応用されている。また、ゲル材料は、衝撃吸収材料、制振材料、防音材料等にも利用されており、その用途は多岐に渡る。
 しかしながら、ゲル材料は一般的に強度が低く、微小な応力で構造が破壊されてしまうため、強度が必要とされる用途には不向きであった。
 そこで、近年、従来のゲル材料から強度を大幅に向上させた様々な新規ゲル材料が提案されている。
 強度を向上させたゲル材料としては、下記の(1)~(3)が提案されている。
(1)架橋点が主鎖に沿って動くトポロジカルゲル(特許文献1)。
(2)架橋点として親水性のクレイを用いたナノコンポジットゲル(特許文献2)。
(3)2種類の網目構造が相互に絡み合った構造を有するダブルネットワークゲル(特許文献3)。
日本国特許第3475252号公報 日本国特許第3914489号公報 日本国特許第4381297号公報
 上述した(1)~(3)のゲルは、従来のゲルに比べて伸び及び強度の点で共に優れており、様々な応用、産業的利用が期待されている。
 特に、(3)のダブルネットワークゲルは、第一のモノマー(a1)を重合し架橋することにより形成された第一の網目構造(A)と、第一の網目構造(A)中に第二のモノマー(b1)を導入し、第二のモノマー(b1)を重合等することにより第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有する。この相互侵入網目構造を有するダブルネットワークゲルに関しては、伸び及び強度のバランスを設計することが自在であり、透明性が高い等の点でも優れている。また、架橋剤の添加量を調整することで、より高弾性、高強度のゲルを得ることができる。
 ところが上記の(1)~(3)のゲル等の従来のゲル材料においては、ゲルが例えば水等の溶媒を網目構造の内部に保持する場合には、零度以下の低温でゲル内部の水が凍ってしまい、ゲルの優れた特性の一つである柔軟性が損なわれてしまうという問題がある。ゲル材料の産業上の利用を考えると、強度を高めるだけでなく、溶媒が凍結するような低温下でもゲルが凍結せずに柔軟性を維持できることが望まれる。
 本発明は、高強度であり、低温下でも内部の溶媒が凍結しにくく、柔軟性を維持できるゲル材料を提供することを目的とする。
 本発明者らは、鋭意検討の結果、ダブルネットワークゲルにおいて、側鎖にポリアルキレングリコールを有するモノマーであり、特定のモノマーを第一のモノマーとして用い、ある特定の分子量範囲のモノマーを第二のモノマーとして用いた場合に、高い強度を維持したまま、低温下でも内部の溶媒が凍結せずに柔軟性、透明性が維持されたゲル材料が得られることを見出し、本発明を完成させた。
 本発明は下記の態様を有する。
 [1] 第一の網目構造(A)と、前記第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有するゲルにおいて、
 前記第一の網目構造(A)は、少なくとも第一のモノマー(a1)に由来するものであり、
 前記第二の網目構造(B)は、少なくとも第二のモノマー(b1)に由来するものであり、
 前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
 前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
 前記第二のモノマー(b1)の分子量が300超であり、
 前記第二の網目構造(B)が、前記第二のモノマー(b1)及び架橋剤(b2)を含む成分から形成されている、高強度ゲル。
Figure JPOXMLDOC01-appb-C000006
 ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
 [2] 第一のモノマー(a1)を重合し架橋することにより形成された第一の網目構造(A)と、前記第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合し架橋することにより前記第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有するゲルにおいて、
 前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
 前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
 前記第二のモノマー(b1)の分子量が300超であり、
 前記第二の網目構造(B)が、前記第二のモノマー(b1)及び架橋剤(b2)を含む成分から形成されている、高強度ゲル。
Figure JPOXMLDOC01-appb-C000007
 ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
 [3] 前記第一のモノマー(a1)が、少なくともアニオン性不飽和モノマーを含む、[1]又は[2]に記載の高強度ゲル。
 [4] 前記架橋剤(b2)が、下式(2)に示すポリアルキレングリコール構造を有する二官能不飽和モノマーである、[1]~[3]のいずれか一項に記載の高強度ゲル。
Figure JPOXMLDOC01-appb-C000008
 ただし、式(2)中、R及びRはそれぞれ独立に水素原子又はメチル基であり、mは整数である。
 [5] 網目構造(A)と、前記網目構造(A)中に形成された直鎖構造の第二のポリマー(B’)とからなるセミ相互侵入網目構造を有するゲルにおいて、
 前記網目構造(A)は、少なくとも第一のモノマー(a1)に由来するものであり、
 前記第二のポリマー(B’)は、少なくとも第二のモノマー(b1)に由来するものであり、
 前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
 前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
 前記第二のモノマー(b1)の分子量が300超であり、
 前記第二のポリマー(B’)が、前記第二のモノマー(b1)を含む成分から形成されている、高強度ゲル。
Figure JPOXMLDOC01-appb-C000009
 ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
 [6] 第一のモノマー(a1)を重合し架橋することにより形成された第一の網目構造(A)と、前記第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合することにより第一の網目構造(A)中に絡み合うように形成された第二のポリマー(B’)とからなるセミ相互侵入網目構造を有するゲルにおいて、
 前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
 前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
 前記第二のモノマー(b1)の分子量が300超であり、
 前記第二のポリマー(B’)が、前記第二のモノマー(b1)を含む成分から形成されている、高強度ゲル。
Figure JPOXMLDOC01-appb-C000010
 ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
 [7] 前記第一のモノマー(a1)が、少なくともアニオン性不飽和モノマーを含む、[5]又は[6]に記載の高強度ゲル。
 [8] 前記第二のモノマー(b1)の分子量が2000以下である、[1]~[7]のいずれか一項に記載の高強度ゲル。
 [9] [1]~[8]のいずれか一項に記載の高強度ゲルを含むモデル臓器。
 [10] [1]~[8]のいずれか一項に記載の高強度ゲルを含むロボット用部材。
 [11] [1]~[8]のいずれか一項に記載の高強度ゲルを含むセンサー材料。
 [12] [1]~[8]のいずれか一項に記載の高強度ゲルを含むインプラント用材料。
 [13] [1]~[8]のいずれか一項に記載の高強度ゲルを含む再生医療用足場材料。
 [14] [1]~[8]のいずれか一項に記載の高強度ゲルを含む土壌改質剤。
 [15] [1]~[8]のいずれか一項に記載の高強度ゲルを含む3Dプリンタ造形物。
 本発明によれば、高強度であり、低温下でも内部の溶媒が凍結しにくく、柔軟性を維持できるゲル材料を提供できる。
図1は、本発明の相互侵入網目構造を有するゲルの模式図である。 図2は、本発明のセミ相互侵入網目構造を有するゲルの模式図である。
 本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 「単官能不飽和モノマー」とは、1分子中に1個の炭素-炭素不飽和二重結合を有するモノマーを意味する。
 「多官能不飽和モノマー」とは、重合性官能基を2個以上有する不飽和モノマーを意味する。
 「重合性官能基」とは、重合中に反応し得る官能基であり、多官能不飽和モノマー中の重合性官能基が2個以上反応することで、架橋点を形成し網目構造が形成される。
 「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称である。
 「網目構造」とは、不飽和モノマーを重合することにより形成されたポリマー同士を架橋することにより、三次元に張り巡らされた網の目のような構造を意味する。前記構造は、直鎖状のポリマーとは異なり、網目内に溶媒を保持することができる。
 「ハイドロゲル」とは、ポリマーで構成された網目構造中に水が溶媒として取り込まれているゲルを意味する。
[高強度ゲル]
 本発明の高強度ゲルとしては、下記の(i)、(ii)の2種類のゲルが挙げられる。
(i)第一の網目構造(A)と、前記第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有するゲル(第一の態様)。
(ii)第一の網目構造(A)と、前記第一の網目構造(A)中に形成された直鎖構造の第二のポリマー(B’)とからなるセミ相互侵入網目構造を有するゲル(第二の態様)。
 相互侵入網目構造とは、第一の網目構造(A)及び第二の網目構造(B)の2つの網目構造が重なり合い、相互に絡み合っている構造を意味する。
 セミ相互侵入網目構造とは、第一の網目構造(A)と、架橋点を有さない直鎖状の第二のポリマー(B’)とが別々に存在するのではなく、相互に絡み合っている構造を意味する。
 以下、これらをまとめて「(セミ)相互侵入網目構造」ということがある。
 より詳しく説明すると、「相互侵入網目構造ハイドロゲル」とは、ベースとなる網目構造に、他の網目構造が、ゲル全体において均一に絡みついており、結果としてゲル内に複数の網目構造を形成しているようなゲルを指す。例えば、この種のゲルは、図1に示すように、複数の架橋点1を有する第一の網目構造(A)と、複数の架橋点2を有する第二の網目構造(B)とから構成され、これら第一の網目構造(A)と第二の網目構造(B)が、互いに網目を介して物理的に絡まり合っている。
 「セミ相互侵入網目構造ハイドロゲル」とは、ベースとなる網目構造に、直鎖状のポリマーが、ゲル全体において均一に絡みついており、結果としてゲル内に複数の網目構造を形成しているようなゲルを指す。例えば、この種のゲルは、図2に示すように、複数の架橋点3を有する第一の網目構造(A)と、直鎖状の第二のポリマー(B’)とから構成され、これら第一の網目構造(A)と直鎖状の第二のポリマー(B’)が、互いに網目を介して物理的に絡まり合っている。
<第一の態様>
 本発明の第一の態様に係る高強度ゲルは、第一の網目構造(A)と、第二の網目構造(B)とからなる相互侵入網目構造を有する。
(第一の網目構造(A))
 第一の網目構造(A)は、少なくとも第一のモノマー(a1)に由来するものである。
 第一の網目構造(A)は、好ましくは第一のモノマー(a1)を重合し架橋することにより形成された網目構造である。
 前記第一のモノマー(a1)は、単官能不飽和モノマーである。前記第一のモノマー(a1)としては、アニオン性不飽和モノマー(a1-1)及び/又はカチオン性不飽和モノマー(a1-2)を用いる。
 アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーを使用することにより、ゲルの強度が高くなる。
 アニオン性不飽和モノマーとは、単官能不飽和モノマーのうち、水中において負に帯電するモノマーを意味する。
 第一の網目構造(A)を第二のモノマー(b1)の溶液(以下、「第二のモノマー溶液」という。)に浸漬した際、第一の網目構造(A)においてアニオン性不飽和モノマー(a1-1)に由来する単位の酸性基が解離することで、アニオン同士が反発して第一の網目構造(A)が膨潤挙動を発現し、第二のモノマー(b1)を第一の網目構造(A)内に導入することが容易になる。
 アニオン性不飽和モノマー(a1-1)としては、例えば、スルホン酸基を有する不飽和モノマー(2-アクリルアミド-2-メチルプロパンスルホン酸、p-スチレンスルホン酸、ビニルスルホン酸等);カルボン酸基を有する不飽和モノマー(アクリル酸、メタクリル酸、マレイン酸、コハク酸、イタコン酸等);リン酸基を有する不飽和モノマー(メタクリルオキシエチルトリメリック酸等);これらの塩等が挙げられる。これらの中でも、酸性度が高く、水中で酸性基がより解離しやすいことから、スルホン酸基を有する不飽和モノマー、カルボン酸基を有する不飽和モノマーが好ましく、スルホン酸基を有する不飽和モノマーがより好ましい。
 これらアニオン性不飽和モノマー(a1-1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 第一のモノマー(a1)中のアニオン性不飽和モノマー(a1-1)の含有量の下限値は、特に限定されないが、第一のモノマー(a1)100モル%のうち、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上がさらに好ましい。
 第一のモノマー(a1)中のアニオン性不飽和モノマー(a1-1)の含有量の上限値は、特に限定されないが、第一のモノマー(a1)100モル%のうち、通常、100モル%以下である。
 アニオン性不飽和モノマー(a1-1)の含有量が前記下限値以上であれば、第一の網目構造(A)の膨潤挙動が発現しやすく、充分な機械強度を有するゲルを得ることが容易になる。
 カチオン性不飽和モノマーとは、単官能不飽和モノマーのうち、水中において正に帯電するモノマーを意味する。
 カチオン性不飽和モノマー(a1-2)としては、例えば、メタクリルアミドプロピルトリメチルアンモニウムクロリドに代表されるような不飽和4級アンモニウム塩等が挙げられる。
 カチオン性不飽和モノマー(a1-2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 アニオン性不飽和モノマー(a1-1)とカチオン性不飽和モノマー(a1-2)とを併用してもよい。
 アニオン性不飽和モノマーの方が、カチオン性不飽和モノマーより、第一の網目構造(A)の膨潤挙動の発現しやすさの観点から好ましい。
 また、第一の網目構造(A)は、必ずしも第一のモノマー(a1)からなる成分から形成されている必要はなく、第一のモノマー(a1)に加えて、他の不飽和モノマーを含む成分から形成されてもよい。前記他の不飽和モノマーとしては、例えば、ノニオン性不飽和モノマーが挙げられる。
 ノニオン性不飽和モノマーとは、単官能不飽和モノマーのうち、水中において正負のいずれにも帯電しない、また帯電しても極めて微弱であるモノマーを意味する。
 ノニオン性不飽和モノマーの種類は、溶媒に可溶であれば特に限定されない。
 ノニオン性不飽和モノマーとしては、公知のモノマーが挙げられる。
 ノニオン性不飽和モノマーとしては、例えば、アクリルアミド誘導体(アクリルアミド、ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N-メチロールアクリルアミド、アクリロイルモルホリン等)、メタクリルアミド誘導体(メタクリルアミド、ジメチルメタクリルアミド、N-イソプロピルメタクリルアミド、N-メチロールメタクリルアミド、メタクリロイルモルホリン等)、アクリレート(ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ジメチルアミノエチルアクリレート、ジメチルアミノプロピルアクリレート等)、メタクリレート(ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルメタクリレート等)、アクリロニトリル、2-ビニルピリジン、4-ビニルピリジン、N-ビニルピロリドン、酢酸ビニル等の水溶性のものや、アルキル(メタ)アクリレート(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシルアクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、反応性官能基を有する(メタ)アクリレート(2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等)等の水溶性に乏しいノニオン性不飽和モノマーが挙げられる。
 これらノニオン性不飽和モノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 第一の網目構造(A)は、架橋剤として多官能不飽和モノマー(a2)を用いて形成した網目構造である。第一のモノマー(a1)の重合中に、多官能不飽和モノマー(a2)中の重合性官能基が2個以上反応することで架橋点が形成され、第一の網目構造(A)となる。
 多官能不飽和モノマー(a2)としては、公知の多官能不飽和モノマーが挙げられる。
 2官能不飽和モノマーとして、例えば、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスアクリルアミド、モノエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、モノプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等が挙げられる。
 3官能不飽和モノマーとして、例えば、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等が挙げられる。
 4官能不飽和モノマーとして、例えば、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジトリメチロールプロパンテトラ(メタ)アクリレート、プロポキシ化ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。
 これらの中でも、第一の網目構造が膨潤しやすくなることから、2官能不飽和モノマー、3官能不飽和モノマーが好ましく、2官能不飽和モノマーがより好ましい。
 これら多官能不飽和モノマー(a2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 多官能不飽和モノマー(a2)の添加量は、第一のモノマー(a1)の100モル%に対して、0.5~20モル%が好ましく、1~15モル%がより好ましく、2~12モル%がさらに好ましい。
 多官能不飽和モノマー(a2)の添加量が前記下限値以上であれば、第一の網目構造(A)を有するゲルの形状を保ちやすく、第二のモノマー(b1)を導入する際の第一の網目構造(A)の取り扱いが容易になる。また、
 多官能不飽和モノマー(a2)の添加量が前記上限値以下であれば、第一の網目構造(A)が充分に膨潤しやすく、第一の網目構造(A)に第二のモノマー(b1)を充分に吸収させることが容易になる。
(第二の網目構造(B))
 第二の網目構造(B)は、少なくとも第二のモノマー(b1)に由来するものである。
 第二の網目構造(B)は、好ましくは第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合し架橋することにより第一の網目構造(A)中に形成された網目構造である。そして、第二の網目構造(B)は、第二のモノマー(b1)及び架橋剤(b2)を含む成分から形成されている。
 第二のモノマー(b1)は、電気的に中性な単官能不飽和モノマーである。
 第二のモノマー(b1)としては、例えば、ノニオン性単官能不飽和モノマーが挙げられる。
 ノニオン性単官能不飽和モノマーとは、水中において正負いずれにも帯電しない、また帯電しても極めて微弱である、単官能不飽和モノマーである。
 第二のモノマー(b1)は、下式(1)で表されるモノマーである。
Figure JPOXMLDOC01-appb-C000011
 ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。nは4~43が好ましく、4~30がより好ましく、4~15がさらに好ましい。nがこの範囲であれば、第二のモノマー(b1)の分子量が300超かつ2000以下となりやすい。
 第二のモノマー(b1)の分子量は300超であり、400以上が好ましく、450以上がより好ましい。第二のモノマー(b1)の分子量が前記下限値超であれば、低温下でも凍結しにくく、柔軟性を維持したゲルが得られる。
 第二のモノマー(b1)の分子量は、上限値については特に限定されないが、例えば、2000以下が好ましく、1500以下がより好ましく、1000以下がさらに好ましい。第二のモノマー(b1)の分子量が前記上限値以下であれば、第一の網目構造(A)を第二のモノマー溶液に浸漬した際、第二のモノマーが第一の網目に侵入しやすくなるため、透明で高強度なゲルを得ることが容易となる。
 前記式(1)で表されるモノマーとしては、例えば、ポリエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。
 これらの中でも、ポリエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート又はエトキシポリエチレングリコールモノ(メタ)アクリレートが好ましく、ポリエチレングリコールモノ(メタ)アクリレート又はメトキシポリエチレングリコールモノ(メタ)アクリレートがより好ましく、ポリエチレングリコールモノ(メタ)アクリレートがさらに好ましい。
 これら前記式(1)で表されるモノマーの中で、分子量が300超2000以下であるモノマーとしては、例えば、商品名「AM-30G」(n=3)、「AM-90G」(n=9)、「AM-230G」(n=23)(以上、新中村化学工業社製);商品名「ブレンマーAE400」(n=10)(日本油脂社製)等が挙げられる。分子量が300超である前記式(1)で表されるモノマーとしては、商品名「AM-90G」、「AM-230G」、「ブレンマーAE400」等が挙げられる。
 第二のモノマー(b1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 第二の網目構造(B)は、必ずしも第二のモノマー(b1)及び架橋剤(b2)のみからなる成分から形成されている必要はなく、第二のモノマー(b1)及び架橋剤(b2)に加えて、他の不飽和モノマーをさらに含む成分から形成されてもよい。
 一般に、前記式(1)で表されるような、分子量の大きな側鎖を有するモノマーは、運動性が低下するため重合反応の進行が遅い。そのため、重合反応の進行を促進するために、他の不飽和モノマーを含んでいてもよい。他の不飽和モノマーとしては、例えば、前記ノニオン性不飽和モノマーとして例示したモノマーが挙げられる。
 第二のモノマー(b1)の含有量は、第二の網目構造(B)の形成に用いる全モノマー100質量%のうち、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。
 第二のモノマー(b1)の含有量が前記下限値以上であれば、低温下でも柔軟性を維持したハイドロゲルが得られやすい。
 第二の網目構造(B)は、ポリアルキレングリコール構造を有する多官能不飽和モノマー(b2)により形成された架橋を有している。すなわち、本発明の第一の態様に係る高強度ゲルの第二の網目構造(B)は、架橋剤として多官能不飽和モノマー(b2)を用いて形成した網目構造である。
 多官能不飽和モノマー(b2)は、1分子中に重合性官能基を2個以上有していれば、特に限定されない。多官能不飽和モノマー(b2)としては、上述の多官能不飽和モノマー(a2)として例示したものを用いることができるが、重合性官能基を2個有する二官能不飽和モノマーを用いることが好ましく、下式(2)に示すような、ポリアルキレングリコール構造を有する二官能不飽和モノマーを用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 ただし、式(2)中、R及びRはそれぞれ独立に水素原子又はメチル基であり、mは整数である。
 ここで、R及びRは、式(1)で示す第二のモノマー(b1)のRと同一でもよく異なってもよい。また、式(2)におけるmは、式(1)におけるnと同一でもよく、異なってもよい。また、mは1~100が好ましく、2~50がより好ましく、4~20がさらに好ましい。mがこの範囲であれば、粘度が大きくなりすぎずに取り扱いがしやすく、また2つ目の不飽和基の反応が進みやすくなる。
 ポリアルキレングリコール構造を有する二官能モノマーとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAジ(メタ)アクリレート等が挙げられる。
 これらの中でも、得られるゲルがより柔軟になることから、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレートが好ましく、ポリエチレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレートがより好ましく、ポリエチレングリコールジ(メタ)アクリレートがさらに好ましい。
 多官能不飽和モノマー(b2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 一般的に、架橋剤として多官能不飽和モノマーを用いる場合、架橋密度を高くする観点から、モノマー分子中の重合性官能基間の距離が短いほど良いとされている。一方で、多官能不飽和モノマー中の重合性官能基の1つが重合反応に寄与した後は、残った重合性官能基の反応性が低下することが知られている。
 本発明の第一の態様においては、ポリアルキレングリコール構造を有する多官能不飽和モノマー(b2)を用いるため、1つの重合性官能基が重合した後も、残りの重合性官能基の運動が束縛されずに重合反応に寄与しやすくなる。これにより、網目構造の形成に寄与しないポリマー鎖が減り、最終的に得られる(セミ)相互侵入網目構造を有するゲルが高強度なものとなる。
 本発明においては、第二の網目構造(B)の架橋度を第一の網目構造(A)の架橋度よりも小さくすることが好ましい。第二の網目構造(B)の架橋度が第一の網目構造(A)の架橋度より小さいと、ゲルの機械特性、特に伸びが損なわれにくくなる。
 第一の網目構造(A)における架橋度とは、第一のモノマー(a1)100モル%に対する多官能不飽和モノマー(a2)の添加量を意味する。
 第二の網目構造(B)における架橋度とは、多官能不飽和モノマー(a2)による架橋を第二のモノマー(b1)の重合と同時に行う場合、第二のモノマー(b1)100モル%に対する多官能不飽和モノマー(b2)の添加量を意味する。第二の網目構造(B)の架橋をその他の方法で行う場合は、第二のモノマー(b1)に由来するモノマー単位のうち、架橋に寄与しているモノマー単位の割合を、架橋点が結び付けているポリマー鎖の数で割った値で架橋度を求めることができる。架橋点が結び付けているポリマー鎖の数とは、例えば、2種のモノマーを反応させて架橋点とする場合には2である。3価に帯電したホウ酸でイオン結合させる場合には3である。
<第一の態様に係る高強度ゲルの製造方法>
 本発明の第一の態様に係る高強度ゲルの製造方法としては、下記の製造方法が挙げられる。
(x)第一のモノマー(a1)を重合し架橋することにより第一の網目構造(A)を形成する工程と、
(y)前記第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合し架橋することにより前記第一の網目構造(A)中に第二の網目構造(B)を形成する工程と
を有する、相互侵入網目構造を有するゲルの製造方法。
(工程(x))
 本発明の第一の態様に係る高強度ゲルの製造方法は、工程(x)において、第一の網目構造(A)が、前述の第一のモノマー(a1)を用いて形成されるものであれば、特に限定されないが、ここでは前述の第一のモノマー(a1)と、多官能不飽和モノマー(a2)により形成されるものを例として記載する。
 まず、第一のモノマー(a1)、多官能不飽和モノマー(a2)、重合開始剤等を、溶媒に溶かして第一のモノマー溶液を調製する。ついで、第一のモノマー溶液を容器や枠へ流し込み、前記溶液に熱又は光を当てることにより、第一のモノマー(a1)が重合、架橋されて三次元架橋ポリマーである第一の網目構造(A)が形成される。
 重合方法としては、熱重合開始剤によるラジカル重合法や、光重合開始剤による光重合法が挙げられる。
 熱重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、ベンゾイルパーオキシド等の過酸化物、アゾ系開始剤等が挙げられる。
 光重合開始剤としては、アルキルフェノン系開始剤、アシルフォスフィンオキサイド系開始剤等の一般的な光重合開始剤が挙げられる。アルキルフェノン系開始剤としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(BASF社製、Omnirad1173)等が挙げられる。
 架橋方法としては、多官能不飽和モノマー(a2)を利用する方法のみで第一の網目構造(A)を形成することもできるが、多官能不飽和モノマー(a2)を用いる方法と、工程(y)において後述するエポキシ開環による架橋やイオン架橋等を併用してもよい。
(工程(y))
 工程(y)では、第一の網目構造(A)中に、第二のモノマー(b1)、多官能不飽和モノマー(b2)等を導入することによって、第一の網目構造(A)中に含まれる溶媒に第二のモノマー(b1)、多官能不飽和モノマー(b2)等を均一に拡散させる。
 ついで、第二のモノマー(b1)が導入された第一の網目構造(A)に熱又は光を当てることにより、第二のモノマー(b1)を重合させ、ポリマーとする。
 前記ポリマーの架橋は、第二のモノマー(b1)の重合と同時に行ってもよく、ポリマーを得た後に行ってもよい。
 以上のようにして、第一の網目構造(A)中に第二の網目構造(B)を形成することにより、相互侵入網目構造を有する、任意の形状のゲルが得られる。
 第一の網目構造(A)中に第二のモノマー(b1)を導入する方法としては、第二のモノマー(b1)、重合開始剤等を溶解した第二のモノマー溶液中に、第一の網目構造(A)を有するゲル前駆体を浸漬し、第一の網目構造(A)が溶媒を吸収し、膨潤していく過程で、第二のモノマー(b1)を第一の網目構造(A)内に取り込ませる方法が簡便である。この際、第一の網目構造(A)の形成に多官能不飽和モノマー(a2)を用いていることで、第一の網目構造(A)中への第二のモノマー(b1)の導入が容易となり、高強度ゲルを調製することが可能となる。
 重合方法は、工程(x)における重合方法と同じ方法を用いることができる。
 なお、第一の網目構造(A)が不透明で充分に光を透過しない場合には、熱重合開始剤によるラジカル重合法が好ましい。また、温度によって挙動の変わる不飽和モノマーを用いる場合には、光重合開始剤による光重合法が好ましい場合もある。
 第一のモノマー(a1)の重合方法と、第二のモノマー(b1)の重合方法は、同じであってもよく、異なっていてもよい。
 工程(y)における架橋方法としては、化学結合による架橋方法、イオン結合による架橋方法、物理的架橋方法等が挙げられる。具体的には、下記の架橋方法が挙げられる(第二の網目構造(B)の場合を記載しているが、第一の網目構造(A)の場合、多官能不飽和モノマー(a2)と、これらの方法と同様の方法を併用することも可能である)。特殊な設備を必要としない、製造工程が複雑にならない、操作が簡便である、網目構造を制御しやすい点から、方法(α)が好ましいが、これらを併用することも可能である。
 (α)1分子中に2個以上の炭素-炭素不飽和二重結合を有する多官能不飽和モノマー(b2)を第二のモノマー(b1)とともに用いて、重合と同時に架橋する方法。
 (β)放射線照射によって、第二のモノマー(b1)により形成されたポリマー中にラジカルを発生させて架橋する方法。
 (γ)ポリマーを構成する第二のモノマー(b1)に由来する単位の側鎖の官能基同士を直接反応させる方法。
 (δ)ポリマーを構成する第二のモノマー(b1)に由来する単位の側鎖の官能基同士を橋架け剤で架橋する方法。
 (ε)多価金属イオン(銅イオン、亜鉛イオン、カルシウムイオン等)を用いて、イオン結合又は配位結合によって架橋する方法。
 本発明における第一の様態では、第一のモノマー(a1)がアニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーを有していることから、第二のモノマー(b1)を有する溶液に浸漬した際、第二のモノマー(b1)をより多く取り込むことが可能となり、強度が上がる。さらに、第二のモノマー(b1)の分子量が300を超えることで、水などの溶媒との相溶性に優れ、かつ比較的融点の低いポリアルキレングリコール構造を有する相互侵入網目構造を有する本発明のゲルとなる。このような構成である本発明のゲルは、高強度であるとともに低温特性や透明性にも優れた効果を発現したものと考えられる。
<第二の態様>
 本発明の第二の態様に係る高強度ゲルは、第一の網目構造(A)と、前記第一の網目構造(A)中に形成された第二のポリマー(B’)とからなるセミ相互侵入網目構造を有する。
 第二の態様に係る高強度ゲルにおいて、第一の網目構造(A)の詳細及び好ましい態様は、第一の態様に係る高強度ゲルにおいて第一の網目構造(A)について説明した内容と同内容である。
(第二のポリマー(B’))
 第二のポリマー(B’)は、直鎖構造であり、少なくとも第二のモノマー(b1)に由来するものである。
 第二のポリマー(B’)は、好ましくは、第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合することにより前記第一の網目構造(A)中に形成された架橋点を有さない直鎖状のポリマーである。そして、第二のポリマー(B’)は、第二のモノマー(b1)を含む成分から形成されている。
 第二のモノマー(b1)は、第一の態様に係る高強度ゲルにおいて第二のモノマー(b1)について説明した内容と同内容とすることができる。例えば、第二の態様においても、第二のモノマー(b1)は、1種を単独で用いてもよく、2種以上を併用してもよい。また、第二のモノマー(b1)の種類、含有量も、第一の態様に係る高強度ゲルにおいて第二のモノマー(b1)について説明した内容と同内容とすることができる。
<第二の態様に係る高強度ゲルの製造方法>
 本発明の第二の態様に係る高強度ゲルの製造方法としては、下記の製造方法が挙げられる。
(x)第一のモノマー(a1)を重合し架橋することにより第一の網目構造(A)を形成する工程と、
(y’)前記第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合することにより前記第一の網目構造(A)中に第二のポリマー(B’)を形成する工程と
を有する、セミ相互侵入網目構造を有するゲルの製造方法。
(工程(x))
 本発明の第二の態様に係る高強度ゲルの製造方法において、工程(x)は第一の態様に係る高強度ゲルの製造方法における工程(x)と同様である。
(工程(y’))
 本発明の第二の態様に係る高強度セミ相互侵入網目構造を有するゲル(ii)の製造方法(II)は、工程(y’)を有する。
 第一の網目構造(A)中に、第二のモノマー(b1)、重合開始剤等を導入することによって、第一の網目構造(A)中に含まれる溶媒に第二のモノマー(b1)、重合開始剤等を均一に拡散させる。
 ついで、第二のモノマー(b1)が導入された第一の網目構造(A)に熱又は光を当てることにより、第二のモノマー(b1)を重合させ、第二のポリマー(B’)とする。
 以上のようにして、第一の網目構造(A)中に第二のポリマー(B’)を形成することにより、セミ相互侵入網目構造を有する、任意の形状のゲルが得られる。
 第二のモノマー(b1)の導入方法及び重合方法は、工程(y)における導入方法及び重合方法と同様である。
 本発明の高強度ゲルには、必要に応じて、公知の着色剤、可塑剤、安定剤、強化剤、無機フィラー、耐衝撃性改質剤、難燃剤等の添加材を配合してもよい。
 本発明における第二の様態でも、第一の様態と同様、第一のモノマー(a1)がアニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーを有していることから、第二のモノマー(b1)を有する溶液に浸漬した際、第二のモノマー(b1)をより多く取り込むことが可能となり、強度が上がる。さらに、第二のモノマー(b1)の分子量が300を超えることで、水などの溶媒との相溶性に優れ、かつ比較的融点の低いポリアルキレングリコール構造を有するセミ相互侵入網目構造を有する本発明のゲルとなる。このような構成である本発明のゲルは、高強度であるとともに低温特性や透明性にも優れた効果を発現したものと考えられる。
<作用効果>
 以上説明した本発明の高強度ゲルは、相互侵入網目構造又はセミ相互侵入網目構造を有するため、高強度である。
 加えて、相互侵入網目構造又はセミ相互侵入網目構造を構成する第二の網目構造(B)又は第二のポリマー(B’)が、分子量が300超の第二のモノマー(b1)を含む成分から形成されている。そのため、低温下でも内部の溶媒が凍結しにくく、柔軟性を維持できる。
 以下、実施例及び比較例を示して本発明をさらに詳細に説明するが、以下の実施例は本発明の範囲を限定するものではない。
<実施例1>
(第一の網目構造(A)の形成)
 第一のモノマー(a1)である2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(NaAMPS)の25質量%水溶液に、第一のモノマー(a1)の100モル%に対して、多官能不飽和モノマー(a2)であるN,N’-メチレンビスアクリルアミド(MBAAm)の4モル%と、光重合開始剤(BASF社製、Omnirad1173、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン)の0.1モル%とを溶かし、第一のモノマー溶液を調製した。
 次いで、得られた第一のモノマー溶液を、ポリエチレンテレフタレート(PET)フィルム上に枠状のシリコーンゴムシート(厚さ1mm)を置いた型に流し込み、その上を別のPETフィルムで覆い、さらに上下をガラス板で挟んでサンプルを作製した。このサンプルに、光ベルト方式の紫外線照射装置を用いて紫外線を照射することにより、サンプル内の第一のモノマー溶液をゲル化し、第一の網目構造(A)を有するハイドロゲル前駆体とした。
(ハイドロゲルの作製)
 第二のモノマー(b1)であるメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の100モル%と、前記第二のモノマー(b1)の100モル%に対して、多官能不飽和モノマー(b2)であるポリエチレングリコールジアクリレート(O9DA、式(2)中のm=9)の0.1モル%と、光重合開始剤(BASF社製、Omnirad1173、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン)の0.005モル%とを、これらの成分を合わせた固形分が40質量%になるように、150質量部の純水に溶解し、第二のモノマー溶液を調製した。
 調製した第二のモノマー溶液に、第一の網目構造(A)を有するハイドロゲル前駆体を浸漬し、この状態で12時間以上放置することで、第二のモノマー溶液を第一の網目構造(A)に充分に吸収させた。
 第二のモノマー溶液で十分に膨潤した第一の網目構造(A)を有するハイドロゲル前駆体を、PETフィルムで挟み込み、さらに上下をガラス板で挟み込んで、前記ハイドロゲル前駆体に光ベルト方式の紫外線照射装置を用いて紫外線を照射して、重合を行い、第一の網目構造(A)中に第二の網目構造(B)が形成された相互侵入網目構造を有するハイドロゲルを得た。
<実施例2>
 第二のモノマー(b1)としてメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにメトキシポリエチレングリコールアクリレート(MeO13A、式(1)中のn=13)を用いて第二のモノマー溶液を調製したことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例1>
 第二のモノマー(b1)であるメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにアクリルアミド(AAm、分子量71)を用い、多官能不飽和モノマー(b2)としてポリエチレングリコールジアクリレート(O9DA、式(2)中のm=9)の代わりにN,N’-メチレンビスアクリルアミド(MBAAm)を用い、溶媒として150質量部の純水に代えて300質量部の純水を用いて第二のモノマー溶液を調製したことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例2>
 第二のモノマー(b1)であるメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにアクリルアミド(AAm)を用い、多官能不飽和モノマー(b2)としてポリエチレングリコールジアクリレート(O9DA、式(2)中のm=9)の代わりにN,N’-メチレンビスアクリルアミド(MBAAm)を用いたことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例3>
 第二のモノマー(b1)であるメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにアクリル酸2-[2-(2-メトキシエトキシ)エトキシ]エチル(MeO3A)を用いたことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例4>
(第一の網目構造の形成)
 第一のモノマー(a1)である2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(NaAMPS)の代わりにアクリルアミド(AAm)を用いたことを除いて、実施例1と同様にして第一の網目構造を有するハイドロゲル前駆体を得た。
(ハイドロゲルの作製)
 実施例1と同様にして第二のモノマー溶液を調製した。
 調製した第二のモノマー溶液と、得られた第一の網目構造を有するハイドロゲル前駆体とを用いて、実施例1と同様にしてハイドロゲルを得た。
<評価>
 実施例1、2、及び比較例1~4で得られたハイドロゲルについて、下記の(1)~(3)の測定及び評価を行った。その結果を表1に示す。
(1)含水率:
 含水率は、以下の式から算出した。
 含水率=(乾燥前のハイドロゲルの質量(g)-乾燥後のゲルの質量(g))/乾燥前のハイドロゲルの質量(g)×100
 ここで、乾燥後のゲルの質量は、加熱乾燥式水分計MS-70(エー・アンド・デイ製)を用いて測定した。具体的には、ハイドロゲル約1gを200℃に加熱して3分間保持した後に、150℃に温度を下げてその温度を維持し、含水率の時間変化が0.50%/min以内となった時点を乾燥後の状態として測定した。
(2)引張破断応力、引張破断伸度:
 得られたゲルをJIS K 6251の3号形ダンベル片に打ち抜き、前記ダンベル片を用いて引張試験を実施した。引張試験もJIS K 6251に準拠し、試験片が破断した際の応力と伸度を測定した。チャック間の距離は50mm、引張速度は500mm/minとした。
 引張破断応力及び引張破断伸度を測定できなかった場合、測定値に代えてデータなしを示す「n.d.」を用いた。
(3)低温性能評価:
 得られたゲルを-18℃の冷凍庫に12時間以上置いたものについて、目視と手で触った触感により下記の基準で評価した。
 A(良好):冷却前の柔軟性を維持していたもの。
 D(不良):全体が凍結して固化したもの。
Figure JPOXMLDOC01-appb-T000013
 表1中の略号の意味は、下記の通りである。
〈第一のモノマー(a1)〉
《アニオン性不飽和モノマー(a1-1)》
 NaAMPS:2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(分子量:229)
〈多官能不飽和モノマー(a2)/多官能不飽和モノマー(b2)〉
 MBAAm:N,N’-メチレンビスアクリルアミド(分子量:154)
〈第二のモノマー(b1)〉
《式(1)で表されるモノマー》
 MeO9A:メトキシポリエチレングリコールモノアクリレート(式(1)中のnは9である。平均分子量:483)
 MeO13A:メトキシポリエチレングリコールモノアクリレート(式(1)中のnは13である。平均分子量:658)
〈多官能不飽和モノマー(b2)〉
《式(2)で表されるモノマー》
 O9DA:ポリエチレングリコールジアクリレート(式(2)中のmは9である。平均分子量:522)
〈他のモノマー〉
 AAm:アクリルアミド(分子量:71)
 MeO3A:アクリル酸2-[2-(2-メトキシエトキシ)エトキシ]エチル(分子量:218)
〈光重合開始剤〉
 Omnirad1173:2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(分子量:164)
 なお、「-」はその成分を配合していないことを示す。
 表1に示す結果から明らかなように、実施例1及び2で得られたハイドロゲルでは、引張破断応力、引張破断伸度が、比較例1のハイドロゲルと同等であり、高強度であった。また、実施例1及び2のハイドロゲルでは、柔軟性に関する低温性能評価ついても良好な結果であった。
 比較例1で得られたハイドロゲルは低温下での柔軟性が不合格であった。加えて、比較例1で用いたアクリルアミドは、一般にハイドロゲルの原料としてよく用いられるモノマーであるが、生体への毒性が高いことが知られている。しかしながら、本発明で用いるような第二のモノマー(b1)は生体への刺激性が低いことが知られている。そのため、本発明の高強度ゲルは、人体と接触するような用途にも好適な材料といえる。
 第一のモノマー(a1)の代わりにアクリルアミドを用いて実施例1と同様の条件で得られた比較例2のハイドロゲルでは、実施例1のハイドロゲルより強度が向上しているものの、含水率及び低温下での柔軟性については実施例1のハイドロゲルよりも低下していた。
 第二のモノマー(b1)の代わりに分子量が300以下であるアクリル酸2-[2-(2-メトキシエトキシ)エトキシ]エチル(MeO3A、分子量218)を用いた比較例3のハイドロゲルでは、引張破断応力が実施例1のハイドロゲルより高かったが、低温下での柔軟性については実施例1のハイドロゲルより低下していた。
 電気的に中性なモノマーを第一のモノマーとして用いた比較例4のハイドロゲルでは、引張試験を実施するに足る強度とならなかった。
<実施例3>
(第一の網目構造(A)の形成)
 シクロヘキサン467g、ソルビタンモノオレエート(花王社製、レオドールAO-10)10.6g、ポリオキシエチレンラウリルエーテル(花王社製、エマルゲン130K)2.61gを2000mLの四つ口フラスコに加えて撹拌・混合した。
 次に、第一のモノマー(a1)である2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(NaAMPS)の50質量%水溶液に、第一のモノマー(a1)の100モル%に対して、多官能不飽和モノマー(a2)であるN,N’-メチレンビスアクリルアミド(MBAAm)の4モル%と、熱重合開始剤(和光純薬社製、APS、過硫酸アンモニウム)の1モル%を500mlのガラスビーカーに加えた。さらに、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウムと、N,N’-メチレンビスアクリルアミドと、熱重合開始剤の合計の濃度が25質量%となるように水を加え、撹拌・混合し、第一のモノマー溶液を調製した。
 この第一のモノマー溶液を前記のフラスコ中に投入した後、室温下、撹拌数500rpmで混合分散し、ここに窒素ガスを500mL/minの流速で2時間バブリングした。
 ウォーターバスを加熱してフラスコ内容液を60℃に昇温し、重合を開始した。60℃に達した後、そのまま2時間重合させた。
 その後、フラスコをウォーターバスから取り出し、上澄み液を除去し、撹拌しながらアセトンを1000mL加え、そのまま1時間撹拌し続けた。
 撹拌後、重合物が沈殿するまで静置し、上澄み液を除去し、撹拌しながらアセトンを1000mL加え、そのまま1時間撹拌し続けた。
 その後、重合物が沈殿するまで静置し、上澄み液を除去し、布でろ過した後、80℃で8時間乾燥して、第一の網目構造(A)を有するポリマー粒子を52.6g得た。
(ハイドロゲルの作製)
 第二のモノマー(b1)であるメトキシポリエチレングリコールアクリレート(MeO9A、平均分子量483)の100モル%と、前記第二のモノマー(b1)の100モル%に対して、多官能不飽和モノマー(b2)であるポリエチレングリコールジアクリレート(O9DA、平均分子量522)の0.5モル%と、光重合開始剤(BASF社製、OmniradTPO、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド)の0.1モル%とを、これらの成分を合わせた固形分が40質量%になるように、60質量部の純水に溶解し、第二のモノマー溶液を調製した。
 第二のモノマー溶液に、第一の網目構造(A)を有するポリマー微粒子を、2重量%となるように加え、撹拌・混合し、この状態で12時間以上放置することで、第二のモノマー溶液を第一の網目構造(A)に充分に吸収させ、微粒子含有ハイドロゲル溶液を調整した。
 第二のモノマー溶液で十分に膨潤した第一の網目構造(A)を有する微粒子含有ハイドロゲル溶液を、ポリエチレンテレフタレート(PET)フィルム上に枠状のシリコーンゴムシート(厚さ2mm)を置いた型に流し込み、その上を別のPETフィルムで覆い、さらに上下をガラス板で挟み込んで、前記微粒子含有ハイドロゲル溶液に光ベルト方式の紫外線照射装置を用いて紫外線を照射して、重合を行い、第一の網目構造(A)中に第二の網目構造(B)が形成された相互侵入網目構造を有するハイドロゲルを得た。
<実施例4>
 第二のモノマー(b1)としてメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにメトキシポリエチレングリコールアクリレート(MeO13A、式(1)中のn=13)を用いて第二のモノマー溶液を調製したことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例5>
 第二のモノマー(b1)であるメトキシポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにアクリル酸2-[2-(2-メトキシエトキシ)エトキシ]エチル(MeO3A)を用いて第二のモノマー溶液を調製したことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例6>
 第二のモノマー(b1)であるポリエチレングリコールアクリレート(MeO9A、式(1)中のn=9)の代わりにN,N-ジメチルアクリルアミド(DMAAm)を用いて第二のモノマー溶液を調製したことを除いて、実施例1と同様にしてハイドロゲルを得た。
<比較例7>
(第一の網目構造の形成)
 第一のモノマー(a1)である2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(NaAMPS)の代わりにアクリルアミド(AAm)を用いたことを除いて、実施例3と同様にして第一の網目構造を得た。
(ハイドロゲルの作製)
 得られた第一の網目構造を用いたことを除いて、実施例3と同様にしてハイドロゲルを得た。
<評価>
 実施例3、4及び比較例5~7で得られたハイドロゲルについて、全光線透過率及びHAZEの測定、評価を行った、
 具体的には、得られたゲルを、Haze Mater NDH4000(日本電色社製)を用いて測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 表2中の略号の意味は、下記の通りである。
〈第一のモノマー(a1)〉
《アニオン性不飽和モノマー(a1-1)》
 NaAMPS:2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(分子量:229)
〈第二のモノマー(b1)〉
《式(1)で表されるモノマー》
 MeO9A:メトキシポリエチレングリコールアクリレート(式(1)中のnは9である。平均分子量:483)
 MeO13A:メトキシポリエチレングリコールアクリレート(式(1)中のnは13である。平均分子量:658)
〈多官能不飽和モノマー(b2)〉
《式(2)で表されるモノマー》
 O9DA:ポリエチレングリコールジアクリレート(式(2)中のmは9である。平均分子量:522)
〈他のモノマー〉
 AAm:アクリルアミド(分子量:71)
 DMAAm:N,N-ジメチルアクリルアミド(分子量:99)
 MeO3A:アクリル酸2-[2-(2-メトキシエトキシ)エトキシ]エチル(分子量:218)
〈熱重合開始剤〉
 APS:過硫酸アンモニウム(分子量:228)
〈光重合開始剤〉
 TPO:2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド(分子量:348)
 なお、「-」はその成分を配合していないことを示す。
 また、表2に示す結果から明らかなように、実施例3及び4で得られたハイドロゲルでは、全光線透過率及びHAZEの値が良好であった。
 比較例5、6で得られたハイドロゲルは、全光線透過率及びHAZEの値が実施例3、4のハイドロゲルよりも低下していた。
 電気的に中性なモノマーを第一のモノマーとして用いた比較例7のハイドロゲルでは、全光線透過率及びHAZEの値を測定出来るに足る強度とならなかった。
 以上示す結果から、本発明によれば、高強度であり、低温下でも内部の溶媒が凍結しにくく、柔軟性を維持できるゲル材料を提供できることを確認した。
 本発明の高強度ゲルは、高強度であり、かつ透明性が高いことから、パッキン、レンズ、膜、緩衝材、衝撃吸収剤、クッション、意匠性シート等の様々な用途への利用が可能である。また、ゲルが複数の網目により構成されるため、機能性付与の自由度や、強度と柔軟性の設計自由度が他の高強度ゲルよりも高く、大変有用である。また、本発明の高強度ゲルは中性であり、人体及び環境への負荷が小さいため、ロボット用部材等の精密部品、センサー材料、3Dプリンタ造形物、金属と接触するベアリングや中間膜、人体と接触するシップやパック、保冷剤、保湿剤、屋外又は屋内で使用される土壌改質剤、苗床、肥料、また、医療用途としてモデル臓器、インプラント用材料、再生医療用足場材料、人工皮膚、人工関節、人工筋肉、人工血管、人工軟骨、人工内臓、義手・義足、細胞培養シート等としての利用可能性があり、工業的、産業的に極めて有用である。
 1,2,3 架橋点
 A 第一の網目構造
 B 第二の網目構造
 B’ 第二のポリマー

Claims (15)

  1.  第一の網目構造(A)と、前記第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有するゲルにおいて、
     前記第一の網目構造(A)は、少なくとも第一のモノマー(a1)に由来するものであり、
     前記第二の網目構造(B)は、少なくとも第二のモノマー(b1)に由来するものであり、
     前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
     前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
     前記第二のモノマー(b1)の分子量が300超であり、
     前記第二の網目構造(B)が、前記第二のモノマー(b1)及び架橋剤(b2)を含む成分から形成されている、高強度ゲル。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
  2.  第一のモノマー(a1)を重合し架橋することにより形成された第一の網目構造(A)と、前記第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合し架橋することにより前記第一の網目構造(A)中に形成された第二の網目構造(B)とからなる相互侵入網目構造を有するゲルにおいて、
     前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
     前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
     前記第二のモノマー(b1)の分子量が300超であり、
     前記第二の網目構造(B)が、前記第二のモノマー(b1)及び架橋剤(b2)を含む成分から形成されている、高強度ゲル。
    Figure JPOXMLDOC01-appb-C000002
     ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
  3.  前記第一のモノマー(a1)が、少なくともアニオン性不飽和モノマーを含む、請求項1又は2に記載の高強度ゲル。
  4.  前記架橋剤(b2)が、下式(2)に示すポリアルキレングリコール構造を有する二官能不飽和モノマーである、請求項1~3のいずれか一項に記載の高強度ゲル。
    Figure JPOXMLDOC01-appb-C000003
     ただし、式(2)中、R及びRはそれぞれ独立に水素原子又はメチル基であり、mは整数である。
  5.  網目構造(A)と、前記網目構造(A)中に形成された直鎖構造の第二のポリマー(B’)とからなるセミ相互侵入網目構造を有するゲルにおいて、
     前記網目構造(A)は、少なくとも第一のモノマー(a1)に由来するものであり、
     前記第二のポリマー(B’)は、少なくとも第二のモノマー(b1)に由来するものであり、
     前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
     前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
     前記第二のモノマー(b1)の分子量が300超であり、
     前記第二のポリマー(B’)が、前記第二のモノマー(b1)を含む成分から形成されている、高強度ゲル。
    Figure JPOXMLDOC01-appb-C000004
     ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
  6.  第一のモノマー(a1)を重合し架橋することにより形成された第一の網目構造(A)と、前記第一の網目構造(A)中に第二のモノマー(b1)を導入し、前記第二のモノマー(b1)を重合することにより第一の網目構造(A)中に絡み合うように形成された第二のポリマー(B’)とからなるセミ相互侵入網目構造を有するゲルにおいて、
     前記第一のモノマー(a1)が、アニオン性不飽和モノマー及び/又はカチオン性不飽和モノマーであり、
     前記第二のモノマー(b1)が、下式(1)に示すポリアルキレングリコール構造を有する、電気的に中性な単官能不飽和モノマーであり、
     前記第二のモノマー(b1)の分子量が300超であり、
     前記第二のポリマー(B’)が、前記第二のモノマー(b1)を含む成分から形成されている、高強度ゲル。
    Figure JPOXMLDOC01-appb-C000005
     ただし、式(1)中、Rは水素原子又はメチル基であり、Rは炭素数1~6のアルキル基又はフェニル基であり、nは整数である。
  7.  前記第一のモノマー(a1)が、少なくともアニオン性不飽和モノマーを含む、請求項5又は6に記載の高強度ゲル。
  8.  前記第二のモノマー(b1)の分子量が2000以下である、請求項1~7のいずれか一項に記載の高強度ゲル。
  9.  請求項1~8のいずれか一項に記載の高強度ゲルを含むモデル臓器。
  10.  請求項1~8のいずれか一項に記載の高強度ゲルを含むロボット用部材。
  11.  請求項1~8のいずれか一項に記載の高強度ゲルを含むセンサー材料。
  12.  請求項1~8のいずれか一項に記載の高強度ゲルを含むインプラント用材料。
  13.  請求項1~8のいずれか一項に記載の高強度ゲルを含む再生医療用足場材料。
  14.  請求項1~8のいずれか一項に記載の高強度ゲルを含む土壌改質剤。
  15.  請求項1~8のいずれか一項に記載の高強度ゲルを含む3Dプリンタ造形物。
PCT/JP2021/010840 2020-03-19 2021-03-17 高強度ゲル WO2021187530A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508413A JP7435738B2 (ja) 2020-03-19 2021-03-17 高強度ゲル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020050027 2020-03-19
JP2020-050027 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187530A1 true WO2021187530A1 (ja) 2021-09-23

Family

ID=77772105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010840 WO2021187530A1 (ja) 2020-03-19 2021-03-17 高強度ゲル

Country Status (2)

Country Link
JP (1) JP7435738B2 (ja)
WO (1) WO2021187530A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093337A1 (fr) * 2002-05-01 2003-11-13 Hokkaido Technology Licensing Office Co., Ltd. Hydrogel a structure de reseau a semi-interpenetration et procede de production associe
JP2010174063A (ja) * 2009-01-27 2010-08-12 Mitsubishi Rayon Co Ltd ゲルおよびその製造方法
JP2011132491A (ja) * 2009-11-30 2011-07-07 Mitsubishi Rayon Co Ltd ゲル、ゲル乾燥体およびそれらの製造方法
JP2012001596A (ja) * 2010-06-15 2012-01-05 Mitsubishi Rayon Co Ltd ゲルおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093337A1 (fr) * 2002-05-01 2003-11-13 Hokkaido Technology Licensing Office Co., Ltd. Hydrogel a structure de reseau a semi-interpenetration et procede de production associe
JP2010174063A (ja) * 2009-01-27 2010-08-12 Mitsubishi Rayon Co Ltd ゲルおよびその製造方法
JP2011132491A (ja) * 2009-11-30 2011-07-07 Mitsubishi Rayon Co Ltd ゲル、ゲル乾燥体およびそれらの製造方法
JP2012001596A (ja) * 2010-06-15 2012-01-05 Mitsubishi Rayon Co Ltd ゲルおよびその製造方法

Also Published As

Publication number Publication date
JPWO2021187530A1 (ja) 2021-09-23
JP7435738B2 (ja) 2024-02-21

Similar Documents

Publication Publication Date Title
Wang et al. Thermoresponsive supramolecular hydrogels with high fracture toughness
JP5556174B2 (ja) ハイドロゲルおよびその製造方法
JP2003504503A (ja) 熱成形可能な眼用レンズ
JPH07502547A (ja) ぬれ性のシリコーンヒドロゲル組成物および方法
JP4861681B2 (ja) 高分子ゲル積層体及びその製造方法
JP3914501B2 (ja) 高分子ゲル複合材及びその製造法
Shung et al. Crosslinking characteristics of and cell adhesion to an injectable poly (propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system
Kemal et al. Phosphate based 2-hydroxyethyl methacrylate hydrogels for biomedical applications
JP2019035043A (ja) 刺激硬化性ゲル
JP2009270032A (ja) ハイドロゲルおよびその製造方法
JP5556406B2 (ja) ゲルおよびその製造方法
WO2021187530A1 (ja) 高強度ゲル
JP2016210912A (ja) 水性ゲルおよびその製造方法
WO2002057368A1 (fr) Hydrogel a faible frottement presentant un polymere a chaine droite et son procede de preparation
JP5704382B2 (ja) ゲル、ゲル乾燥体およびそれらの製造方法
JP2007117275A (ja) 創傷被覆材
JP2019085521A (ja) ポリビニルアルコール系相互貫入型ゲル
JP5133209B2 (ja) オルガノゲルおよびその製造方法
JP5456344B2 (ja) 有機無機複合ヒドロゲル及びその製造方法
JP5644036B2 (ja) ハイドロゲルおよびその製造方法
JP5544719B2 (ja) ゲルおよびその製造方法
JP2005000182A (ja) 血液適合性材料
JP2009256629A (ja) 有機無機複合ヒドロゲル及びその製造方法
JP6163287B2 (ja) ゲルの製造方法
JP6107417B2 (ja) 双性イオン含有高分子ゲル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770797

Country of ref document: EP

Kind code of ref document: A1