WO2021187517A1 - フォトマスクブランクスおよびフォトマスク - Google Patents

フォトマスクブランクスおよびフォトマスク Download PDF

Info

Publication number
WO2021187517A1
WO2021187517A1 PCT/JP2021/010786 JP2021010786W WO2021187517A1 WO 2021187517 A1 WO2021187517 A1 WO 2021187517A1 JP 2021010786 W JP2021010786 W JP 2021010786W WO 2021187517 A1 WO2021187517 A1 WO 2021187517A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding
shielding film
photomask
low
Prior art date
Application number
PCT/JP2021/010786
Other languages
English (en)
French (fr)
Inventor
秀明 浴岡
建也 三好
冬木 今野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN202180019628.4A priority Critical patent/CN115280237A/zh
Priority to JP2022508404A priority patent/JPWO2021187517A1/ja
Publication of WO2021187517A1 publication Critical patent/WO2021187517A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/40Electrostatic discharge [ESD] related features, e.g. antistatic coatings or a conductive metal layer around the periphery of the mask substrate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Definitions

  • This disclosure relates to photomask blanks and photomasks.
  • Electrostatic fracture also referred to as discharge fracture
  • photomasks used in photolithography.
  • Patent Document 1 describes a light-transmitting substrate, an amorphous silicon film formed on the light-transmitting substrate, a conductive layer made of a metal silicide formed on the amorphous silicon film, and the conductivity.
  • a photomask blank comprising a light-shielding metal layer formed on the layer is disclosed.
  • Patent Document 2 in a photomask substrate having a glass substrate, an impurity-containing layer is formed on the glass substrate from a film-forming surface on which a light-shielding film is formed to a predetermined depth in the thickness direction of the glass substrate.
  • a photomask substrate is disclosed in which the impurity-containing layer contains an alkali metal and has conductivity.
  • Patent Document 3 describes a photomask in which a pattern portion is formed on one surface of a transparent substrate by a plurality of graphic patterns made of a light-shielding film having a light-shielding property against exposure light at the time of transfer.
  • a photomask has been proposed, which is composed of a halftone film and has a line width that is not substantially resolved during transfer and has a connecting line portion that electrically connects the two graphic patterns. In this method, electrostatic breakdown can be suppressed by reducing the potential difference between adjacent light-shielding patterns by the connecting wire portion.
  • Patent Documents 1 to 3 for example, when a conductive layer or a connecting wire portion is formed in a photomask, the manufacturing process of the photomask may become complicated and costly.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide photomask blanks and photomasks capable of suppressing electrostatic breakdown.
  • the present disclosure is a photomask blank having a transparent substrate and a light-shielding film arranged on one surface of the transparent substrate and containing a chromium-based material, and is a sheet of the light-shielding film.
  • resistance is 10 3 ⁇ / ⁇ or more 10 7 ⁇ / ⁇ or less, to provide a photomask blank.
  • the light-shielding film has a light-shielding layer and a low-reflection layer in this order from the transparent substrate side.
  • the thickness of the light-shielding layer is preferably 100 nm or more and 200 nm or less.
  • the light-shielding layer contains the chromium-based material containing oxygen.
  • the thickness of the light-shielding film is preferably 140 nm or more and 280 nm or less.
  • a transparent substrate is disposed on one surface of the transparent substrate, a photomask having a light-shielding pattern including a chromium base material, the sheet resistance of the light shielding pattern 10 3 Omega / ⁇ or 10 7 Omega / ⁇ or less than, to provide a photomask.
  • the light-shielding pattern has a light-shielding layer and a low-reflection layer in order from the transparent substrate side.
  • the thickness of the light-shielding layer is preferably 100 nm or more and 200 nm or less.
  • the light-shielding layer contains the chromium-based material containing oxygen.
  • the thickness of the light-shielding pattern is preferably 140 nm or more and 280 nm or less.
  • photomask blanks are photomask blanks having a transparent substrate and a light-shielding film arranged on one surface of the transparent substrate and containing a chromium-based material, and the sheet resistance of the light-shielding film. Is 10 3 ⁇ / ⁇ or more and 10 7 ⁇ / ⁇ or less.
  • FIG. 1 is a schematic cross-sectional view illustrating the photomask blanks of the present disclosure.
  • the photomask blank 1 has a transparent substrate 2 and a light-shielding film 3 arranged on one surface of the transparent substrate 2 and containing a chromium-based material.
  • the sheet resistance of the light-shielding film 3 is within a predetermined range.
  • the light-shielding film 3 has a light-shielding layer 3a and a low-reflection layer 3b in this order from the transparent substrate 2 side, but this is not the case.
  • the sheet resistance represents the electric resistance of the thin film.
  • the sheet resistance of the light-shielding film is high, it can be said that the electric resistance of the light-shielding film is high.
  • the sheet resistance of the light-shielding film is high so as to be within the above range, when a photomask having a light-shielding pattern on one surface of a transparent substrate is manufactured using the photomask blanks of the present disclosure, a photo When the static electricity charged in the mask is discharged, the current flowing through the light-shielding pattern can be reduced. Then, the heat generated by the discharge current can be reduced. As a result, it is possible to suppress electrostatic breakdown.
  • the sheet resistance of the light-shielding film can be adjusted by, for example, adjusting the composition of the light-shielding film containing a chromium-based material. It is possible to manufacture a photomask by a simple process without requiring the above.
  • the light-shielding film in the present disclosure is a member arranged on one surface of a transparent substrate and containing a chromium-based material, and has a sheet resistance within a predetermined range.
  • the sheet resistance of the light shielding film is at 10 3 ⁇ / ⁇ or more, preferably 10 5 ⁇ / ⁇ or more.
  • the sheet resistance of the light-shielding film is 10 7 ⁇ / ⁇ or less.
  • the sheet resistance of the light-shielding film is preferably 10 3 ⁇ / ⁇ or more and 10 7 ⁇ / ⁇ or less, and preferably 10 5 ⁇ / ⁇ or more and 10 7 ⁇ / ⁇ or less.
  • the light-shielding film has a low-reflection layer or region having a relatively high sheet resistance among the layers constituting the light-shielding film, such a low-reflection layer having a relatively high sheet resistance or The thicker the region, the higher the sheet resistance of the light-shielding film tends to be.
  • the thickness of the low-reflection layer or the region is too thick, the etching rate becomes slow and the plate-making property of the light-shielding film may deteriorate. be. Therefore, when the sheet resistance of the light-shielding film is not more than a predetermined value, good plate-making property can be obtained.
  • the sheet resistance is a value measured by the four-terminal four-deep needle method.
  • the resistivity meter for example, a low resistivity meter Lorester-GX MCP-T700 manufactured by Mitsubishi Chemical Corporation can be used, and as the four-probe probe, for example, an ASP probe manufactured by Mitsubishi Chemical Corporation can be used.
  • the sheet resistance is measured 10 times, and the average value is used as the value of the sheet resistance.
  • the sheet resistance of the light-shielding film As a means for keeping the sheet resistance of the light-shielding film within a predetermined range, for example, a method of including an element that can be a factor that hinders the movement of free electrons in the light-shielding film can be mentioned.
  • the element is preferably oxygen. That is, the light-shielding film preferably contains a chromium-based material containing oxygen.
  • the optical density of the light-shielding film with respect to the exposure light is preferably 3.0 or more.
  • the light-shielding film preferably has an optical density of 3.0 or more with respect to light rays having a wavelength of 200 nm or more and 450 nm or less. This is because the light-shielding film can have a desired light-shielding property when the optical density of the light-shielding film is within the above range.
  • the optical density can be measured using a spectrophotometer.
  • the thickness of the light-shielding film is not particularly limited as long as it can be a light-shielding film having the above-mentioned sheet resistance and optical density.
  • it can be 140 nm or more, and more than 150 nm. Is preferable, and it is particularly preferable that the thickness is 170 nm or more.
  • the thickness of the light-shielding film can be, for example, 280 nm or less, preferably 270 nm or less, and particularly preferably 240 nm or less.
  • the thickness of the light-shielding film can be, for example, 140 nm or more and 280 nm or less, particularly preferably more than 150 nm and 270 nm or less, and particularly preferably 170 nm or more and 240 nm or less. This is because the light-shielding film can have a desired light-shielding property as long as the thickness of the light-shielding film is within the above range. When the light-shielding film has a plurality of layers, the thickness is the thickness of the entire light-shielding film.
  • the light-shielding film may contain a chromium-based material and the sheet resistance may be within the above range.
  • it may have a plurality of layers or may be a film whose composition changes in the thickness direction.
  • first embodiment a case where the light-shielding film has a plurality of layers
  • second embodiment a case where the light-shielding film is a film whose composition changes in the thickness direction
  • the light-shielding film of this embodiment contains a chromium-based material, has a sheet resistance within a predetermined range, and has a plurality of layers.
  • the light-shielding film may contain a chromium-based material, have a sheet resistance within a predetermined range, and may have a plurality of layers.
  • the light-shielding film is a light-shielding layer and a low-reflection layer in order from the transparent substrate side. It is preferable to have.
  • the light-shielding film 3 has a light-shielding layer 3a and a low-reflection layer 3b in this order from the transparent substrate 2 side. Since the low reflection layer can prevent the reflection of the exposure light, a clearer pattern can be formed by using the photomask manufactured by using the photomask blanks in the present disclosure.
  • the low reflection layer can have an antireflection function by containing, for example, a chromium-based material containing oxygen, nitrogen or carbon, and particularly when the chromium-based material containing oxygen is contained, the antireflection function is enhanced. be able to.
  • the sheet resistance of the entire light-shielding film can be increased so as to be within the above-mentioned predetermined range, as described above.
  • the light-shielding film having the light-shielding layer and the low-reflection layer in this order from the transparent substrate side it is possible to increase the sheet resistance of the entire light-shielding film to be within a predetermined range.
  • the light-shielding film may further have a low-reflection layer between the transparent substrate and the light-shielding layer. That is, for example, as shown in FIG. 2, the light-shielding film 3 can have a second low-reflection layer 3c, a light-shielding layer 3a, and a first low-reflection layer 3b in order from the transparent substrate 2 side. Since the first low reflection layer and the second low reflection layer can prevent the reflection of the exposure light, a clearer pattern is formed by using the photomask manufactured by using the photomask blanks in the present disclosure. be able to.
  • the first low-reflection layer and the second low-reflection layer can have an antireflection function by containing, for example, a chromium-based material containing oxygen, nitrogen, or carbon, and particularly contain a chromium-based material containing oxygen. If so, the antireflection function can be enhanced.
  • the sheet resistance of the entire light-shielding film is increased so as to be within the above-mentioned predetermined range. can do.
  • the light-shielding film having the second low-reflection layer, the light-shielding layer, and the first low-reflection layer in order from the transparent substrate side, it is possible to increase the sheet resistance of the entire light-shielding film and keep it within a predetermined range. be.
  • the low-reflection layer arranged on the surface of the light-shielding layer opposite to the transparent substrate is referred to as the first low-reflection layer
  • the low-reflection layer arranged on the surface of the light-shielding layer on the transparent substrate side is referred to as the first low-reflection layer. It may be referred to as a second low-reflection layer.
  • the light-shielding layer constituting the light-shielding film of the present embodiment is a layer containing a chromium-based material.
  • the light-shielding layer can be a layer having the highest light-shielding property among the layers constituting the light-shielding film.
  • the chromium-based material contained in the light-shielding layer a chromium-based material used for general photomask blanks can be used, but among them, a chromium compound is preferable.
  • the sheet resistance of the entire light-shielding film can be increased by using a chromium-based material containing oxygen in the low-reflection layer, but the electrical resistance of the light-shielding layer is compared with the electrical resistance of the low-reflection layer. If it is extremely low, there is a concern that current will selectively flow through the light-shielding layer and electrostatic breakdown will occur.
  • the chromium-based material contained in the light-shielding layer is preferably a chromium compound rather than metallic chromium.
  • the chromium-based material include chromium-based materials containing at least one of oxygen, nitrogen, and carbon, such as chromium oxide, chromium oxide nitride, chromium oxide carbide, chromium oxide carbide, chromium nitride, and chromium carbide. ..
  • the chromium-based material contained in the light-shielding layer is preferably a chromium-based material containing oxygen. This is because the sheet resistance of the entire light-shielding film can be increased so as to be within a predetermined range by including oxygen in the light-shielding layer.
  • the chromium-based material containing oxygen include chromium oxide, chromium oxide nitride, chromium oxide carbide, chromium oxide and the like.
  • the content ratio of oxygen atoms in the light-shielding layer is not particularly limited as long as a light-shielding film having a desired sheet resistance and optical density can be obtained, but for example. It is preferably 5 atomic% or more, and more preferably 7 atomic% or more. Further, the content ratio of oxygen atoms in the light-shielding layer can be, for example, 20 atomic% or less. The content ratio of oxygen atoms in the light-shielding layer is, for example, preferably 5 atomic% or more and 20 atomic% or less, and more preferably 7 atomic% or more and 20 atomic% or less. When the content ratio of oxygen atoms in the light-shielding layer is within the above range, both high sheet resistance and high light-shielding property can be achieved in the entire light-shielding film.
  • the content ratio of oxygen atoms in the light-shielding layer can be measured by, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • ULVAC-PHI Quantum 2000 can be used as the X-ray photoelectron spectrometer. Specific measurement conditions are shown below.
  • -Incident X-ray Monochromated Al K ⁇ -ray-X-ray irradiation area (measurement area): 200 ⁇ m ⁇ ⁇ X-ray output: 30W ⁇ Photoelectron capture angle: 45 ° ⁇
  • Charge neutralization conditions Electron neutralization gun (0.02mA), low acceleration Ar + ion irradiation ⁇ Measurement peaks: Cr2p, Si2p, C1s, N1s, O1s -Quantitative: The background is obtained by the Shirley method, and the atomic number ratio is calculated from the obtained peak area by using the relative sensitivity coefficient method.
  • the thickness of the light-shielding layer is not particularly limited as long as a light-shielding film having the above sheet resistance and optical density can be obtained, but is preferably 100 nm or more and 200 nm or less, for example.
  • the film strength of the light-shielding layer can be improved, electrostatic breakdown is less likely to occur, and the resistance to heat generated by the discharge current is increased. Can be done.
  • the thickness is too thin, sufficient light-shielding property may not be obtained, and if the thickness is too thin, the light-shielding pattern is processed with high accuracy when manufacturing a photomask using the photomask blanks of the present disclosure. It can be difficult to do.
  • Examples of the method for forming the light-shielding layer include a sputtering method, a vacuum vapor deposition method, and an ion plating method. More specifically, a method in which a Cr target is mounted in a vacuum chamber, O 2 , N 2 , CO 2 gas or the like is introduced, and a film is formed by reactive sputtering in a vacuum environment can be mentioned. In this method, the content ratio of oxygen atoms in the light-shielding layer can be adjusted by adjusting the ratio of O 2 gas. Thereby, the sheet resistance and the optical density of the entire light-shielding film can be adjusted.
  • the first low reflection layer constituting the light-shielding film of the present embodiment is a layer that is arranged on the surface of the light-shielding layer opposite to the transparent substrate and contains a chromium-based material.
  • a chrome-based material used for general photomask blanks can be used.
  • the chromium-based material include chromium-based materials containing at least one of oxygen, nitrogen, and carbon, such as chromium oxide, chromium oxide nitride, chromium oxide carbide, chromium oxide carbide, chromium nitride, and chromium carbide. ..
  • the chromium-based material contained in the first low-reflection layer is preferably a chromium-based material containing oxygen. This is because the sheet resistance of the entire light-shielding film can be increased so as to be within a predetermined range by including oxygen in the first low-reflection layer.
  • the chromium-based material containing oxygen include chromium oxide, chromium oxide nitride, chromium oxide carbide, chromium oxide and the like.
  • the content ratio of oxygen atoms in the first low-reflection layer is higher than the content ratio of oxygen atoms in the light-shielding layer. It is preferable that there are many. This is because, as described above, the light-shielding layer preferably has the highest light-shielding property among the layers constituting the light-shielding film.
  • the content ratio of oxygen atoms in the first low-reflection layer is higher than the content ratio of oxygen atoms in the light-shielding layer, and is particularly limited as long as a light-shielding film having a desired sheet resistance and optical density can be obtained. However, it is appropriately adjusted according to the target sheet resistance, optical density, antireflection function, chemical resistance, adhesion to resist, and the like.
  • the content ratio of carbon atoms in the first low-reflection layer obtains a light-shielding film having a desired sheet resistance and optical density. If it can be done, it is not particularly limited, but for example, it is preferably 5 atomic% or less, more preferably 3 atomic% or less, and further preferably 2 atomic% or less. If the content ratio of carbon atoms in the first low-reflection layer is too large, the etching rate may be slowed down when the light-shielding film is patterned by wet etching, and the plate-making property of the first low-reflection layer may be deteriorated. ..
  • the content ratio of carbon atoms in the first low-reflection layer is relatively small so as to be in the above range.
  • the lower limit of the content ratio of carbon atoms in the first low reflection layer is not particularly limited.
  • the content ratio of nitrogen atoms in the first low-reflection layer obtains a light-shielding film having a desired sheet resistance and optical density. If it can be done, it is not particularly limited, but for example, it is preferably 10 atomic% or less, more preferably 9.5 atomic% or less, and further preferably 9.0 atomic% or less. When the content ratio of nitrogen atoms in the first low-reflection layer is within the above range, adhesion with the resist can be ensured.
  • the lower limit of the content ratio of nitrogen atoms in the first low-reflection layer is not particularly limited.
  • the first low-reflection layer contains a chromium-based material containing oxygen, nitrogen and carbon, the content ratio of oxygen atoms, the content ratio of nitrogen atoms, and the content of carbon atoms in the first low-reflection layer
  • the ratios are preferably in the above range.
  • the method for measuring the oxygen atom content, the carbon atom content, and the nitrogen atom content in the first low-reflection layer is the same as the method for measuring the oxygen atom content in the light-shielding layer. can do.
  • the thickness of the first low-reflection layer is not particularly limited as long as it can exhibit an antireflection function and can obtain a light-shielding film having a desired sheet resistance and optical density, and is, for example, 20 nm. As mentioned above, it can be 40 nm or less. If the thickness is too thin, the antireflection function may not be sufficiently obtained. Further, if the thickness is too large, it may be difficult to accurately process the light-shielding pattern when manufacturing a photomask using the photomask blanks of the present disclosure.
  • the first low-reflection layer is a layer having a relatively high sheet resistance among the layers constituting the light-shielding film, and the thicker the thickness of the first low-reflection layer, the higher the sheet resistance of the light-shielding film tends to be.
  • the thickness of the first low-reflection layer is too thick, the etching rate may be slowed down, and the plate-making property of the first low-reflection layer may be deteriorated.
  • the method for forming the low-reflection layer can be the same as the method for forming the light-shielding layer.
  • the second low-reflection layer constituting the light-shielding film of the present embodiment is a layer that is arranged on the surface of the light-shielding layer on the transparent substrate side and contains a chromium-based material.
  • the chromium-based material contained in the second low-reflection layer, the content ratio of oxygen atoms in the second low-reflection layer, the thickness of the second low-reflection layer, and the method for forming the second low-reflection layer include the above-mentioned first method. It can be similar to the low reflection layer.
  • the light-shielding film of this embodiment is a film containing a chromium-based material, having a sheet resistance within a predetermined range, and whose composition changes in the thickness direction.
  • the light-shielding film is a film whose composition changes in the thickness direction can be determined by, for example, X-ray photoelectron spectroscopy (XPS) combined with ion etching in the depth direction (thickness direction). It can be confirmed by performing elemental analysis in the direction (thickness direction).
  • XPS X-ray photoelectron spectroscopy
  • the X-ray photoelectron spectrometer and measurement conditions are as described above.
  • the chrome-based material contained in the light-shielding film As the chrome-based material contained in the light-shielding film, a chrome-based material used for general photomask blanks can be used. Above all, the chromium-based material contained in the light-shielding film is preferably a chromium-based material containing oxygen. This is because the sheet resistance of the light-shielding film can be increased so as to be within a predetermined range by including oxygen in the light-shielding film. Examples of the chromium-based material containing oxygen include chromium oxide, chromium oxide nitride, chromium oxide carbide, chromium oxide and the like.
  • the light-shielding film When the light-shielding film contains a chromium-based material containing oxygen, the light-shielding film preferably has a concentration gradient in which the content ratio of oxygen atoms changes in the thickness direction.
  • the light-shielding film may have a concentration gradient in which the content ratio of oxygen atoms increases from the surface on the transparent substrate side to the surface on the side opposite to the transparent substrate (hereinafter, the first aspect).
  • the light-shielding film has a concentration gradient in which the content ratio of oxygen atoms increases from the surface on the transparent substrate side to the surface on the side opposite to the transparent substrate. That is, the light-shielding film can have a concentration gradient such that the content ratio of oxygen atoms on the surface on the transparent substrate side is small and the content ratio of oxygen atoms on the surface opposite to the transparent substrate is large. In this case, the antireflection function can be imparted to the surface of the light-shielding film opposite to the transparent substrate. Further, since the light-shielding film has the above-mentioned concentration gradient, the sheet resistance of the entire light-shielding film can be increased to be within a predetermined range.
  • the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side may be smaller than the content ratio of oxygen atoms on the surface of the light-shielding film opposite to the transparent substrate, and the desired sheet resistance. It is not particularly limited as long as a light-shielding film having an optical density can be obtained, but for example, it is preferably 5 atomic% or more, and more preferably 7 atomic% or more. Further, the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side can be, for example, 20 atomic% or less.
  • the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side is, for example, preferably 5 atomic% or more and 20 atomic% or less, and more preferably 7 atomic% or more and 20 atomic% or less.
  • the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side is within the above range, it is possible to achieve both high sheet resistance and high light-shielding property in the entire light-shielding film.
  • the thickness of the region where the oxygen atom content ratio is 5 atomic% or more on the surface of the light-shielding film on the transparent substrate side is, for example, 100 nm or more and 200 nm or less. That is, it is preferable that the light-shielding film has a region having a predetermined thickness in which the oxygen atom content ratio is within a predetermined range in the thickness direction from the surface on the transparent substrate side.
  • the thickness of the region is within the above range, the film strength of the light-shielding film can be improved, electrostatic breakdown can be made less likely to occur, and the resistance to heat generated by the discharge current can be increased. ..
  • the thickness of the region is too thin, sufficient light-shielding property may not be obtained, and if the thickness of the region is too thin, a light-shielding pattern may be obtained when a photomask is manufactured using the photomask blanks of the present disclosure. May be difficult to process with high accuracy.
  • the content ratio of oxygen atoms on the surface of the light-shielding film opposite to the transparent substrate may be larger than the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side, which is desired.
  • the present invention is not particularly limited as long as a light-shielding film having sheet resistance and optical density can be obtained, and is appropriately adjusted according to the target sheet resistance and optical density.
  • the light-shielding film has an oxygen atom content increasing from the inside toward the surface on the transparent substrate side, and an oxygen atom content increasing from the inside toward the surface opposite to the transparent substrate.
  • the antireflection function can be imparted to the surface of the light-shielding film on the transparent substrate side and the surface of the light-shielding film on the side opposite to the transparent substrate.
  • the light-shielding film has the above-mentioned concentration gradient, the sheet resistance of the entire light-shielding film can be increased to be within a predetermined range.
  • the content ratio of oxygen atoms inside the light-shielding film is the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side and the content of oxygen atoms on the surface of the light-shielding film opposite to the transparent substrate. It may be less than the ratio, and is not particularly limited as long as a light-shielding film having a desired sheet resistance and optical density can be obtained, but for example, it is preferably 5 atomic% or more, and more preferably 7 atomic% or more. Further, the content ratio of oxygen atoms inside the light-shielding film can be, for example, 20 atomic% or less.
  • the content ratio of oxygen atoms inside the light-shielding film is, for example, preferably 5 atomic% or more and 20 atomic% or less, and more preferably 7 atomic% or more and 20 atomic% or less.
  • the content ratio of oxygen atoms inside the light-shielding film is within the above range, it is possible to achieve both high sheet resistance and high light-shielding property in the entire light-shielding film.
  • the thickness of the region in which the oxygen atom content ratio is 5 atomic% or more inside the light-shielding film is preferably 100 nm or more and 200 nm or less, for example. That is, it is preferable that the light-shielding film has a region having a predetermined thickness in which the content ratio of oxygen atoms is within a predetermined range.
  • the film strength of the light-shielding film can be improved, electrostatic breakdown can be made less likely to occur, and the resistance to heat generated by the discharge current can be increased. ..
  • the thickness of the region is too thin, sufficient light-shielding property may not be obtained, and if the thickness of the region is too thin, a light-shielding pattern may be obtained when a photomask is manufactured using the photomask blanks of the present disclosure. May be difficult to process with high accuracy.
  • the content ratio of oxygen atoms on the surface of the light-shielding film on the transparent substrate side and the content ratio of oxygen atoms on the surface of the light-shielding film opposite to the transparent substrate are the oxygen atoms inside the light-shielding film.
  • the content ratio is not particularly limited as long as a light-shielding film having a desired sheet resistance and optical density can be obtained, and is appropriately adjusted according to the target sheet resistance, optical density and the like.
  • the content ratio of oxygen atoms in the thickness direction of the light-shielding film can be determined in the depth direction (thickness) by, for example, X-ray photoelectron spectroscopy (XPS) and ion etching in the depth direction (thickness direction). It can be measured by performing elemental analysis (in the vertical direction).
  • XPS X-ray photoelectron spectroscopy
  • ion etching in the depth direction (thickness direction). It can be measured by performing elemental analysis (in the vertical direction).
  • the X-ray photoelectron spectrometer and measurement conditions are as described above.
  • the method for forming the light-shielding film is not particularly limited as long as the composition can be changed in the thickness direction, and examples thereof include a sputtering method. More specifically, a method in which a Cr target is mounted in a vacuum chamber, O 2 , N 2 , CO 2 gas or the like is introduced, and a film is formed by reactive sputtering in a vacuum environment can be mentioned. In this method, the content ratio of oxygen atoms in the light-shielding film can be adjusted by adjusting the ratio of O 2 gas. Thereby, the sheet resistance and the optical density of the entire light-shielding film can be adjusted.
  • the transparent substrate in the present disclosure is a member that supports the light-shielding film and has light transmittance.
  • a transparent substrate used for a general photomask can be used.
  • an optically polished transparent substrate can be used, and specific examples thereof include soda lime glass, aluminum borosilicate glass, borosilicate glass, synthetic quartz, fluorite, calcium fluoride and the like. Can be done. Of these, synthetic quartz is preferably used. This is because the coefficient of thermal expansion is small and it is easy to manufacture a photomask. Further, a resin substrate can also be used as the transparent substrate.
  • the light transmittance of the transparent substrate is not particularly limited as long as it is comparable to the transparent substrate used for a general photomask.
  • the thickness of the transparent substrate can be appropriately selected depending on the use of the photomask blanks of the present disclosure and the like.
  • the photomask blanks in the present disclosure are preferably large photomask blanks used for manufacturing a large photomask.
  • the size of the large photomask blanks can be, for example, a size such that the length of at least one side is 350 mm or more.
  • the photomask in the present disclosure is a photomask having a transparent substrate and a light-shielding pattern arranged on one surface of the transparent substrate and containing a chromium-based material, and the sheet resistance of the light-shielding pattern is predetermined. It is within the range.
  • FIG. 3 is a schematic cross-sectional view illustrating the photomask of the present disclosure.
  • the photomask 10 has a transparent substrate 12 and a light-shielding pattern 13 arranged on one surface of the transparent substrate 12 and containing a chromium-based material.
  • the sheet resistance of the light-shielding pattern 13 is within a predetermined range.
  • the light-shielding pattern 13 has the light-shielding layer 13a and the low-reflection layer 13b in this order from the transparent substrate 2 side, but the present invention is not limited to this.
  • the sheet resistance of the light-shielding pattern is as high as within the above range, the current flowing through the light-shielding pattern can be reduced when the static electricity charged in the photomask is discharged. Then, the heat generated by the discharge current can be reduced. As a result, it is possible to suppress electrostatic breakdown.
  • the sheet resistance of the light-shielding pattern can be adjusted by adjusting the composition of the light-shielding pattern containing, for example, a chromium-based material. It is possible to manufacture masks.
  • the light-shielding pattern in the present disclosure is a member arranged on one surface of a transparent substrate and containing a chromium-based material, and has a sheet resistance within a predetermined range.
  • the sheet resistance, optical density, thickness, etc. of the light-shielding pattern can be the same as those of the light-shielding film in the above-mentioned photomask blanks, so the description thereof is omitted here.
  • the width of the shading pattern is not particularly limited, but can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the shape of the light-shielding pattern, the distance between adjacent light-shielding patterns, and the like are appropriately adjusted according to the use of the photomask of the present disclosure.
  • the light-shielding pattern may include a chromium-based material and the sheet resistance may be within the above range.
  • it may have a plurality of layers or may be a film whose composition changes in the thickness direction.
  • first embodiment a case where the light-shielding pattern has a plurality of layers
  • second embodiment a case where the light-shielding pattern is a film whose composition changes in the thickness direction
  • the light-shielding pattern of this embodiment contains a chromium-based material, has a sheet resistance within a predetermined range, and has a plurality of layers.
  • the light-shielding pattern may include a chromium-based material, have a sheet resistance within a predetermined range, and may have a plurality of layers.
  • the light-shielding pattern includes a light-shielding layer and a low-reflection layer in order from the transparent substrate side. It is preferable to have.
  • the light-shielding pattern 13 has a light-shielding layer 13a and a low-reflection layer 13b in this order from the transparent substrate 12 side.
  • the preferred reason is the same as that of the light-shielding film of the first embodiment in the above-mentioned photomask blanks, and thus the description thereof is omitted here.
  • the light-shielding pattern may further have a low reflection layer between the transparent substrate and the light-shielding layer. That is, for example, as shown in FIG. 4, the light-shielding pattern 13 can have a second low-reflection layer 13c, a light-shielding layer 13a, and a first low-reflection layer 13b in order from the transparent substrate 12 side.
  • the low-reflection layer arranged on the surface opposite to the transparent substrate of the light-shielding pattern is referred to as the first low-reflection layer
  • the low-reflection layer arranged on the surface of the transparent substrate of the light-shielding pattern is referred to as the first low-reflection layer. It may be referred to as a second low-reflection layer.
  • Each layer constituting the light-shielding pattern of the first embodiment can be the same as the light-shielding film of the first embodiment in the above-mentioned photomask blanks, and thus the description thereof is omitted here.
  • the light-shielding pattern of this embodiment is a film containing a chromium-based material, having a sheet resistance within a predetermined range, and whose composition changes in the thickness direction.
  • the configuration of the light-shielding pattern of the second embodiment can be the same as that of the light-shielding film of the second embodiment in the above-mentioned photomask blanks, and thus the description thereof is omitted here.
  • the transparent substrate in the present disclosure is a member that supports the light-shielding pattern and has light transmission.
  • the transparent substrate can be the same as the transparent substrate in the above-mentioned photomask blanks.
  • the photomask manufacturing method in the present disclosure is not particularly limited as long as it can manufacture a photomask having the above-described configuration, and is the same as a general photomask manufacturing method. be able to.
  • a photomask is produced.
  • Photomask The photomask in the present disclosure is preferably a large photomask.
  • the size of the large photomask can be the same as the size of the large photomask blanks described above.
  • Example 1 First, a 6-inch square precision-polished synthetic quartz glass, a second low-reflection layer having a film thickness of 30 nm, a light-shielding layer having a film thickness of 150 nm, and a first low-reflection layer having a film thickness of 30 nm, which are arranged on the surface of the synthetic quartz glass. A mask blank having a light-shielding film having a laminated structure in which layers were laminated in this order was produced.
  • the light-shielding film was formed by forming a film on the surface of the synthetic quartz glass in the order of the second low-reflection layer, the light-shielding layer, and the first low-reflection layer by using a sputtering method.
  • the second low-reflection layer, the light-shielding layer, and the first low-reflection layer were individually formed by using a sputtering apparatus in which the gas was replaced.
  • a Cr target is mounted in a vacuum chamber, O 2 , N 2 , and CO 2 gases are introduced, and reactive sputtering is performed in a vacuum environment.
  • the film was formed by
  • the film forming condition of the light-shielding layer was a condition in which the ratio of O 2 gas was increased as compared with the film-forming condition of the light-shielding film of a general binary mask.
  • the film forming conditions of the first low-reflection layer and the second low-reflection layer were the same as the film formation conditions of the low-reflection film in the light-shielding pattern of a general binary mask.
  • a resist pattern was formed on the light-shielding film, and the light-shielding film was etched using the resist pattern as an etching mask to form a light-shielding pattern having the pattern shapes shown in FIGS. 5 (a) to 5 (b). As a result, a photomask was produced.
  • FIG. 5 (a) to 5 (b) are schematic plan views of the photomask
  • FIG. 5 (a) is an overall view of the 6-inch square photomask
  • FIG. 5 (b) is A of FIG. 5 (a). It is an enlarged view of a part.
  • the shading pattern 13' is a line pattern
  • the line width is 10 ⁇ m and 40 lines.
  • a photomask was prepared by changing the distance d between adjacent light-shielding patterns 13'between 2 ⁇ m and 15 ⁇ m.
  • Example 2 First, a 6-inch square precision-polished synthetic quartz glass, a second low-reflection layer having a film thickness of 30 nm, a light-shielding layer having a film thickness of 120 nm, and a first low-reflection layer having a film thickness of 30 nm, which are arranged on the surface of the synthetic quartz glass. A mask blank having a light-shielding layer having a laminated structure in which the layers were laminated in this order was produced. The method for producing the mask blanks was the same as in Example 1.
  • the light-shielding film was formed by forming a light-shielding layer and a low-reflection layer on the surface of synthetic quartz glass in this order using a sputtering method.
  • the film formation of the light-shielding layer and the low-reflection layer was individually performed using a sputtering apparatus in which the gas was replaced.
  • the low reflective layer, a Cr target was mounted in a vacuum chamber, introducing O 2, N 2, CO 2 gas, was formed by reactive sputtering in a vacuum environment.
  • the film formation conditions for the low-reflection layer were the same as the film formation conditions for the low-reflection film in the light-shielding pattern of a general binary mask.
  • the film forming conditions of the light-shielding layer were the same as the film-forming conditions of the chromium film in the light-shielding pattern of a general binary mask.
  • Example 3 Photomask blanks and photomasks were produced in the same manner as in Example 1 except that the size was changed. The size was 800 mm ⁇ 920 mm.
  • Comparative Example 2 A photomask was produced in the same manner as in Comparative Example 1 except that the size was changed. The size was 1220 mm ⁇ 1400 mm.
  • Example 4 First, a 6-inch square precision-polished synthetic quartz glass, a second low-reflection layer with a film thickness of 30 nm, a light-shielding layer with a film thickness of 140 nm, and a first low-reflection layer with a film thickness of 30 nm, which are arranged on the surface of the synthetic quartz glass. A mask blank having a light-shielding film having a laminated structure in which layers were laminated in this order was produced. The method for producing the mask blanks was the same as in Example 1.
  • composition of the light-shielding film was analyzed by XPS analysis on the 6-inch square photomask blanks of Examples 1 to 2 and 4 and Comparative Examples 1 and 3. Specifically, using Quantum2000 manufactured by ULVAC-PHI as an X-ray photoelectron spectrometer, the composition of the surface of the exposed light-shielding layer was analyzed by ion-etching the light-shielding film. The measurement conditions were as follows. The results are shown in Table 2.
  • -Incident X-ray Monochromated Al K ⁇ -ray-X-ray irradiation area (measurement area): 200 ⁇ m ⁇ ⁇ X-ray output: 30W ⁇ Photoelectron capture angle: 45 ° ⁇
  • Charge neutralization condition Electron neutralization gun (0.02mA), low acceleration Ar + ion irradiation ⁇ Measurement peak: Cr2p, Si2p, C1s, N1s, O1s -Quantification: The background was determined by the Shirley method, and the atomic number ratio was calculated from the obtained peak area using the relative sensitivity coefficient method.
  • the light-shielding layer of Example 1 was Cr: 88.6 atomic%, C: 2.4 atomic%, and O: 7.6 atomic%.
  • the light-shielding layer of Example 2 was Cr: 91.1 atomic%, C: 1.9 atomic%, and O: 5.8 atomic%.
  • the light-shielding layer of Comparative Example 1 was Cr: 92.4 atomic%, C: 1.2 atomic%, and O: 4.4 atomic%.
  • Photomask blanks 2 12 ... Transparent substrate 3 ... Light-shielding film 3a, 13a ... Light-shielding layer 3b, 13b ... Low-reflection layer (first low-reflection layer) 3c, 13c ... Second low-reflection layer 10 ... Photomask 13 ... Shading pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

本開示は、透明基板と、上記透明基板の一方の面に配置され、クロム系材料を含む遮光膜と、を有するフォトマスクブランクスであって、上記遮光膜のシート抵抗が10Ω/□以上10Ω/□以下である、フォトマスクブランクスを提供する。

Description

フォトマスクブランクスおよびフォトマスク
 本開示は、フォトマスクブランクスおよびフォトマスクに関する。
 フォトリソグラフィの技術は、半導体装置や表示装置等の製造において多用されている。フォトリソグラフィに使用されるフォトマスクにおいては、静電破壊(放電破壊とも称する。)が問題となっている。
 静電破壊の対策としては、例えば、透明基板上に遮光パターンを有するフォトマスクにおいて、透明基板と遮光パターンとの間に導電層を形成する方法が提案されている。この方法においては、導電層によって隣接する遮光パターン間の電位差を低減することで、静電破壊を抑制することができる。例えば、特許文献1には、光透光性基板と、上記光透光性基板上に形成されたアモルファスシリコン膜と、上記アモルファスシリコン膜上に形成された金属シリサイドからなる導電層と、上記導電層上に形成された遮光性金属層とからなる、フォトマスクブランクが開示されている。また、特許文献2には、ガラス基板を有するフォトマスク用基板において、上記ガラス基板に、遮光膜が形成される成膜面から上記ガラス基板の厚さ方向に所定の深さまで不純物含有層が形成され、上記不純物含有層がアルカリ金属を含み、導電性を持つ、フォトマスク用基板が開示されている。
 また、特許文献3には、透明基板の一面に、転写時の露光光に対して遮光性を有する遮光性膜からなる複数の図形パターンにより、絵柄部を形成しているフォトマスクであって、隣接する2つの図形パターンが近接している箇所に、該近接している箇所における放電による両図形パターンの放電破壊を防止するために、転写時の露光光に対して半透過性の第1のハーフトーン膜からなり、且つ、転写の際に実質的に解像されない線幅の、上記両図形パターンを電気的に接続する接続線部を配している、フォトマスクが提案されている。この方法においては、接続線部によって隣接する遮光パターン間の電位差を低減することで、静電破壊を抑制することができる。
特開昭61-11749号公報 特開2014-21431号公報 特開2009-122295号公報
 しかしながら、例えば特許文献1~3に記載されているように、フォトマスクにおいて導電層や接続線部を形成する場合、フォトマスクの製造工程が煩雑になり高コストになるおそれがある。
 本開示は、上記実情に鑑みてなされたものであり、静電破壊を抑制することが可能なフォトマスクブランクスおよびフォトマスクを提供することを主目的とする。
 上記課題を解決するために、本開示は、透明基板と、上記透明基板の一方の面に配置され、クロム系材料を含む遮光膜と、を有するフォトマスクブランクスであって、上記遮光膜のシート抵抗が10Ω/□以上10Ω/□以下である、フォトマスクブランクスを提供する。
 本開示におけるフォトマスクブランクスにおいては、上記遮光膜が、上記透明基板側から順に遮光層および低反射層を有することが好ましい。
 本開示におけるフォトマスクブランクスにおいては、上記遮光層の厚みが100nm以上200nm以下であることが好ましい。
 本開示におけるフォトマスクブランクスにおいては、上記遮光層が、酸素を含む上記クロム系材料を含むことが好ましい。
 本開示におけるフォトマスクブランクスにおいては、上記遮光膜の厚みが140nm以上280nm以下であることが好ましい。
 また、本開示においては、透明基板と、上記透明基板の一方の面に配置され、クロム系材料を含む遮光パターンと、を有するフォトマスクであって、上記遮光パターンのシート抵抗が10Ω/□以上10Ω/□以下である、フォトマスクを提供する。
 本開示におけるフォトマスクにおいては、上記遮光パターンが、上記透明基板側から順に遮光層および低反射層を有することが好ましい。
 本開示におけるフォトマスクにおいては、上記遮光層の厚みが100nm以上200nm以下であることが好ましい。
 本開示におけるフォトマスクにおいては、上記遮光層が、酸素を含む上記クロム系材料を含むことが好ましい。
 本開示におけるフォトマスクにおいては、上記遮光パターンの厚みが140nm以上280nm以下であることが好ましい。
 本開示においては、静電破壊を抑制することが可能なフォトマスクブランクスおよびフォトマスクを提供することができるという効果を奏する。
本開示のフォトマスクブランクスを例示する概略断面図である。 本開示のフォトマスクブランクスを例示する概略断面図である。 本開示のフォトマスクを例示する概略断面図である。 本開示のフォトマスクを例示する概略断面図である。 実施例および比較例のフォトマスクを示す概略平面図である。
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。
 以下、本開示におけるフォトマスクブランクスおよびフォトマスクについて詳細に説明する。
A.フォトマスクブランクス
 本開示におけるフォトマスクブランクスは、透明基板と、上記透明基板の一方の面に配置され、クロム系材料を含む遮光膜と、を有するフォトマスクブランクスであって、上記遮光膜のシート抵抗が10Ω/□以上10Ω/□以下である。
 図1は、本開示のフォトマスクブランクスを例示する概略断面図である。図1に示すように、フォトマスクブランクス1は、透明基板2と、透明基板2の一方の面に配置され、クロム系材料を含む遮光膜3と、を有する。この遮光膜3のシート抵抗は所定の範囲内である。図1に示す例においては、遮光膜3は、透明基板2側から順に遮光層3aおよび低反射層3bを有するが、この限りではない。
 ここで、シート抵抗は、薄膜の電気抵抗を表すものであり、例えば、遮光膜のシート抵抗が高ければ、遮光膜の電気抵抗が高いといえる。
 本開示によれば、遮光膜のシート抵抗が上記範囲内であるように高いため、本開示のフォトマスクブランクスを用いて透明基板の一方の面に遮光パターンを有するフォトマスクを製造した場合、フォトマスクにおいて帯電した静電気が放電したときに、遮光パターンを流れる電流を小さくすることができる。そして、放電電流によって生じる熱を低減することができる。その結果、静電破壊を抑制することが可能である。
 また、本開示によれば、例えばクロム系材料を含む遮光膜の組成を調整することで、遮光膜のシート抵抗を調整することができるため、本開示のフォトマスクブランクスを用いて、煩雑な工程を要することなく、簡易な工程でフォトマスクを製造することが可能である。
 以下、本開示におけるフォトマスクブランクスにおける各構成について説明する。
1.遮光膜
 本開示における遮光膜は、透明基板の一方の面に配置され、クロム系材料を含む部材であり、シート抵抗が所定の範囲内である。
 上記遮光膜のシート抵抗は、10Ω/□以上であり、好ましくは10Ω/□以上である。また、上記遮光膜のシート抵抗は、10Ω/□以下である。上記遮光膜のシート抵抗は、10Ω/□以上10Ω/□以下であり、10Ω/□以上10Ω/□以下であることが好ましい。上記遮光膜のシート抵抗が上記範囲内であることにより、静電破壊を抑制することができる。また、例えば、後述するように、遮光膜が、遮光膜を構成する層の中でシート抵抗が比較的高い低反射層や領域を有する場合、そのようなシート抵抗が比較的高い低反射層や領域の厚みが厚いほど、遮光膜のシート抵抗が高くなる傾向にあるが、上記の低反射層や領域の厚みが厚すぎると、エッチングレートが遅くなり、遮光膜の製版性が低下するおそれがある。そのため、上記遮光膜のシート抵抗が所定の値以下であることにより、良好な製版性を得ることができる。
 ここで、上記シート抵抗は、四端子四深針法により測定された値である。抵抗率計は、例えば、三菱化学社製の低抵抗率計 ロレスタ-GX MCP-T700を用いることができ、四探針プローブとしては、例えば、三菱化学社製のASPプローブを用いることができる。なお、シート抵抗を10回測定して、その平均値をシート抵抗の値とする。
 上記遮光膜のシート抵抗を所定の範囲内とする手段としては、例えば、上記遮光膜に、自由電子の動きを妨げる因子となり得る元素を含ませる方法が挙げられる。上記元素としては、酸素であることが好ましい。すなわち、上記遮光膜は、酸素を含むクロム系材料を含有することが好ましい。
 上記遮光膜の露光光に対する光学濃度は、3.0以上であることが好ましい。具体的には、上記遮光膜は、波長200nm以上450nm以下の光線に対する光学濃度が3.0以上であることが好ましい。上記遮光膜の光学濃度が上記範囲であれば、上記遮光膜が所望の遮光性を有することができるからである。なお、上記光学濃度は、分光光度計を用いて測定することができる。
 また、上記遮光膜の厚みとしては、上記のシート抵抗および光学濃度を有する遮光膜とすることができれば特に限定されるものではなく、例えば、140nm以上とすることができ、中でも150nm超であることが好ましく、特に170nm以上であることが好ましい。また、上記遮光膜の厚みは、例えば、280nm以下とすることができ、中でも270nm以下であることが好ましく、特に240nm以下であることが好ましい。上記遮光膜の厚みは、例えば、140nm以上280nm以下とすることができ、中でも150nm超270nm以下であることが好ましく、特に170nm以上240nm以下であることが好ましい。上記遮光膜の厚みが上記範囲内であれば、上記遮光膜が所望の遮光性を有することができるからである。なお、上記遮光膜が複数の層を有する場合、上記厚みは、遮光膜全体の厚みである。
 上記遮光膜は、クロム系材料を含み、シート抵抗が上記範囲内であればよく、例えば、複数の層を有していてもよく、厚み方向に組成が変化する膜であってもよい。以下、遮光膜が複数の層を有する場合(第1実施態様)と、遮光膜が厚み方向に組成が変化する膜である場合(第2実施態様)とに分けて説明する。
(1)遮光膜の第1実施態様
 本実施態様の遮光膜は、クロム系材料を含み、シート抵抗が所定の範囲内であり、複数の層を有する。
 上記遮光膜は、クロム系材料を含み、シート抵抗が所定の範囲内であり、複数の層を有していればよいが、中でも、遮光膜は、透明基板側から順に遮光層および低反射層を有することが好ましい。例えば図1において、遮光膜3は、透明基板2側から順に遮光層3aおよび低反射層3bを有する。低反射層により、露光光の反射を防止することができるので、本開示におけるフォトマスクブランクスを用いて製造したフォトマスクを用いることで、より鮮明なパターンを形成することができる。また、低反射層は、例えば酸素や窒素や炭素を含むクロム系材料を含有することにより、反射防止機能を有することができ、特に酸素を含むクロム系材料を含有する場合、反射防止機能を高めることができる。ここで、低反射層が酸素を含むクロム系材料を含有する場合には、上述したように、遮光膜全体のシート抵抗を上記所定の範囲内となるように高くすることができる。そのため、遮光膜が透明基板側から順に遮光層および低反射層を有することにより、遮光膜全体のシート抵抗を高くして所定の範囲内とすることも可能である。
 また、上記遮光膜は、透明基板と遮光層との間にさらに低反射層を有していてもよい。すなわち、例えば図2に示すように、遮光膜3は、透明基板2側から順に第2低反射層3cと遮光層3aと第1低反射層3bとを有することができる。第1低反射層および第2低反射層により、露光光の反射を防止することができるので、本開示におけるフォトマスクブランクスを用いて製造したフォトマスクを用いることで、より鮮明なパターンを形成することができる。また、第1低反射層および第2低反射層は、例えば酸素や窒素や炭素を含むクロム系材料を含有することにより、反射防止機能を有することができ、特に酸素を含むクロム系材料を含有する場合、反射防止機能を高めることができる。ここで、第1低反射層および第2低反射層が酸素を含むクロム系材料を含有する場合には、上述したように、遮光膜全体のシート抵抗を上記所定の範囲内となるように高くすることができる。そのため、遮光膜が透明基板側から順に第2低反射層と遮光層と第1低反射層とを有することにより、遮光膜全体のシート抵抗を高くして所定の範囲内とすることも可能である。
 なお、本明細書において、遮光層の透明基板とは反対側の面に配置された低反射層を第1低反射層と称し、遮光層の透明基板側の面に配置された低反射層を第2低反射層と称する場合がある。
 以下、本実施態様の遮光膜を構成する層について説明する。
(a)遮光層
 本実施態様の遮光膜を構成する遮光層は、クロム系材料を含む層である。遮光層は、上記遮光膜を構成する層の中で、最も高い遮光性を有する層とすることができる。
 上記遮光層に含まれるクロム系材料としては、一般的なフォトマスクブランクスに用いられるクロム系材料を使用することができるが、中でも、クロム化合物であることが好ましい。ここで、上述したように、低反射層に酸素を含むクロム系材料を用いることで遮光膜全体のシート抵抗を高くすることもできるが、遮光層の電気抵抗が低反射層の電気抵抗と比べて極端に低いと、遮光層を電流が選択的に流れてしまい静電破壊が発生することが懸念される。そのため、遮光層に含まれるクロム系材料は、金属クロムではなく、クロム化合物であることが好ましい。上記クロム系材料としては、例えば、酸化クロム、酸化窒化クロム、酸化炭化窒化クロム、酸化炭化クロム、窒化クロム、炭化クロム等の、酸素、窒素および炭素の少なくとも1つを含むクロム系材料が挙げられる。
 中でも、上記遮光層に含まれるクロム系材料は、酸素を含むクロム系材料であることが好ましい。遮光層に酸素を含ませることにより、遮光膜全体のシート抵抗を所定の範囲内となるように高くすることができるからである。酸素を含むクロム系材料としては、例えば、酸化クロム、酸化窒化クロム、酸化炭化窒化クロム、酸化炭化クロム等が挙げられる。
 上記遮光層が、酸素を含むクロム系材料を含有する場合、上記遮光層中の酸素原子の含有割合は、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されないが、例えば、5atomic%以上であることが好ましく、7atomic%以上であることがより好ましい。また、上記遮光層中の酸素原子の含有割合は、例えば、20atomic%以下とすることができる。上記遮光層中の酸素原子の含有割合は、例えば、5atomic%以上20atomic%以下であることが好ましく、7atomic%以上20atomic%以下であることがより好ましい。上記遮光層中の酸素原子の含有割合が上記範囲内であることにより、遮光膜全体で高いシート抵抗と高い遮光性とを両立することができる。
 ここで、上記遮光層中の酸素原子の含有割合は、例えば、X線光電子分光法(XPS)により測定することができる。X線光電子分光装置としては、例えば、アルバック・ファイ社 Quantum2000を用いることができる。具体的な測定条件を下記に示す。
・入射X線:Monochromated Al Kα線
・X線照射領域(測定面積):200μmφ
・X線出力:30W
・光電子取り込み角度:45°
・帯電中和条件:電子中和銃(0.02mA)、低加速Ar+イオン照射
・測定ピーク:Cr2p、Si2p、C1s、N1s、O1s
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて原子数比を算出する。
 上記遮光層の厚みとしては、上記のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されないが、例えば、100nm以上、200nm以下であることが好ましい。上記遮光層の厚みが上記範囲内であることにより、上記遮光層の膜強度を向上させることができ、静電破壊を起こりにくくすることができるとともに、放電電流によって生じる熱に対する耐性を高くすることができる。また、上記厚みが薄すぎると、十分な遮光性が得られない場合があり、上記厚みがすぎると、本開示のフォトマスクブランクスを用いてフォトマスクを製造する際に、遮光パターンを精度良く加工することが困難となる場合がある。
 上記遮光層の形成方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等が挙げられる。より具体的には、真空チャンバ内にCrターゲットを装着し、O、N、COガス等を導入し、真空環境下での反応性スパッタリングにより成膜する方法等が挙げられる。この方法では、Oガスの比率を調整することによって、上記遮光層中の酸素原子の含有割合を調整することができる。これにより、遮光膜全体のシート抵抗および光学濃度を調整することができる。
(b)第1低反射層
 本実施態様の遮光膜を構成する第1低反射層は、上記遮光層の透明基板とは反対側の面に配置され、クロム系材料を含む層である。
 上記第1低反射層に含まれるクロム系材料としては、一般的なフォトマスクブランクスに用いられるクロム系材料を使用することができる。上記クロム系材料としては、例えば、酸化クロム、酸化窒化クロム、酸化炭化窒化クロム、酸化炭化クロム、窒化クロム、炭化クロム等の、酸素、窒素および炭素の少なくとも1つを含むクロム系材料が挙げられる。
 中でも、上記第1低反射層に含まれるクロム系材料は、酸素を含むクロム系材料であることが好ましい。上記第1低反射層に酸素を含ませることにより、遮光膜全体のシート抵抗を所定の範囲内となるように高くすることができるからである。酸素を含むクロム系材料としては、例えば、酸化クロム、酸化窒化クロム、酸化炭化窒化クロム、酸化炭化クロム等が挙げられる。
 上記第1低反射層および上記遮光層が、酸素を含むクロム系材料を含有する場合、上記第1低反射層中の酸素原子の含有割合は、上記遮光層中の酸素原子の含有割合よりも多いことが好ましい。上述したように、上記遮光層は、上記遮光膜を構成する層の中で、最も高い遮光性を有することが好ましいからである。
 上記第1低反射層中の酸素原子の含有割合としては、上記遮光層中の酸素原子の含有割合よりも多く、また、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されるものではなく、目的のシート抵抗、光学濃度および反射防止機能や、耐薬品性、レジストとの密着性等に応じて適宜調整される。
 また、上記第1低反射層が、炭素を少なくとも含むクロム系材料を含有する場合、上記第1低反射層中の炭素原子の含有割合は、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されないが、例えば、5atomic%以下であることが好ましく、3atomic%以下であることがより好ましく、2atomic%以下であることがさらに好ましい。上記第1低反射層中の炭素原子の含有割合が多すぎると、遮光膜をウェットエッチングによりパターニングする場合には、エッチングレートが遅くなり、第1低反射層の製版性が低下するおそれがある。ここで、フォトマスクブランクスやフォトマスクでは、マザーガラスや表示装置の大型化に伴って大型化しており、大型フォトマスクブランクスや大型フォトマスクでは、遮光膜の厚みが厚くなる傾向にある。そのため、特に大型フォトマスクブランクスの場合には、製版性の観点から、上記第1低反射層中の炭素原子の含有割合が上記範囲であるように、比較的少ないことが好ましい。なお、上記第1低反射層中の炭素原子の含有割合の下限は特に限定されない。
 また、上記第1低反射層が、窒素を少なくとも含むクロム系材料を含有する場合、上記第1低反射層中の窒素原子の含有割合は、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されないが、例えば、10atomic%以下であることが好ましく、9.5atomic%以下であることがより好ましく、9.0atomic%以下であることがさらに好ましい。上記第1低反射層中の窒素原子の含有割合が上記範囲であることにより、レジストとの密着性を確保することができる。なお、上記第1低反射層中の窒素原子の含有割合の下限は特に限定されない。
 また、上記第1低反射層が、酸素、窒素および炭素を含むクロム系材料を含有する場合、上記第1低反射層中の酸素原子の含有割合、窒素原子の含有割合、および炭素原子の含有割合はそれぞれ、上述した範囲であることが好ましい。
 ここで、上記第1低反射層中の酸素原子の含有割合、炭素原子の含有割合、および窒素原子の含有割合の測定方法は、上記遮光層中の酸素原子の含有割合の測定方法と同様とすることができる。
 上記第1低反射層の厚みとしては、反射防止機能を発現することができ、かつ、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されるものではなく、例えば、20nm以上、40nm以下とすることができる。上記厚みが薄すぎると、反射防止機能が十分に得られない場合がある。また、上記厚みがすぎると、本開示のフォトマスクブランクスを用いてフォトマスクを製造する際に、遮光パターンを精度良く加工することが困難となる場合がある。また、第1低反射層は、遮光膜を構成する層の中でシート抵抗が比較的高い層であり、第1低反射層の厚みが厚いほど、遮光膜のシート抵抗が高くなる傾向にあるが、第1低反射層の厚みが厚すぎると、エッチングレートが遅くなり、第1低反射層の製版性が低下するおそれがある。
 上記低反射層の形成方法としては、上記遮光層の形成方法と同様とすることができる。
(c)第2低反射層
 本実施態様の遮光膜を構成する第2低反射層は、上記遮光層の透明基板側の面に配置され、クロム系材料を含む層である。
 なお、第2低反射層に含まれるクロム系材料、第2低反射層中の酸素原子の含有割合、第2低反射層の厚み、および第2低反射層の形成方法としては、上記第1低反射層と同様とすることができる。
(2)遮光膜の第2実施態様
 本実施態様の遮光膜は、クロム系材料を含み、シート抵抗が所定の範囲内であり、厚み方向に組成が変化する膜である。
 なお、上記遮光膜が厚み方向に組成が変化する膜であることは、例えば、X線光電子分光法(XPS)に、深さ方向(厚さ方向)のイオンエッチングを併用することにより、深さ方向(厚さ方向)の元素分析を行うことで確認することができる。X線光電子分光装置および測定条件については、上述した通りである。
 上記遮光膜に含まれるクロム系材料としては、一般的なフォトマスクブランクスに用いられるクロム系材料を使用することができる。中でも、上記遮光膜に含まれるクロム系材料は、酸素を含むクロム系材料であることが好ましい。遮光膜に酸素を含ませることにより、遮光膜のシート抵抗を所定の範囲内となるように高くすることができるからである。酸素を含むクロム系材料としては、例えば、酸化クロム、酸化窒化クロム、酸化炭化窒化クロム、酸化炭化クロム等が挙げられる。
 上記遮光膜が、酸素を含むクロム系材料を含有する場合、遮光膜は、厚み方向に酸素原子の含有割合が変化する濃度勾配を有することが好ましい。この場合、例えば、遮光膜は、透明基板側の面から透明基板とは反対側の面に向かって、酸素原子の含有割合が増加する濃度勾配を有していてもよく(以下、第1態様とする。)、あるいは、内部から透明基板側の面に向かって酸素原子の含有割合が増加し、かつ、内部から透明基板とは反対側の面に向かって酸素原子の含有割合が増加する濃度勾配を有していてもよい(以下、第2態様とする。)。
 第1態様では、遮光膜は、透明基板側の面から透明基板とは反対側の面に向かって、酸素原子の含有割合が増加する濃度勾配を有する。すなわち、遮光膜は、透明基板側の面における酸素原子の含有割合が少なく、透明基板とは反対側の面における酸素原子の含有割合が多くなるような濃度勾配を有することができる。この場合、遮光膜の透明基板とは反対側の面に反射防止機能を付与することができる。また、遮光膜が上記のような濃度勾配を有することにより、遮光膜全体のシート抵抗を高くして所定の範囲内とすることができる。
 上記第1態様の場合、遮光膜の透明基板側の面における酸素原子の含有割合は、遮光膜の透明基板とは反対側の面における酸素原子の含有割合よりも少なければよく、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されないが、例えば、5atomic%以上であることが好ましく、7atomic%以上であることがより好ましい。また、上記遮光膜の透明基板側の面における酸素原子の含有割合は、例えば、20atomic%以下とすることができる。上記遮光膜の透明基板側の面における酸素原子の含有割合は、例えば、5atomic%以上20atomic%以下であることが好ましく、7atomic%以上20atomic%以下であることがより好ましい。上記遮光膜の透明基板側の面における酸素原子の含有割合が上記範囲内であることにより、遮光膜全体で高いシート抵抗と高い遮光性とを両立することができる。
 また、上記第1態様の場合、遮光膜の透明基板側の面において酸素原子の含有割合が5atomic%以上である領域の厚みが、例えば、100nm以上、200nm以下であることが好ましい。すなわち、遮光膜は、透明基板側の面から厚み方向に、酸素原子の含有割合が所定の範囲内である領域を所定の厚みで有することが好ましい。上記領域の厚みが上記範囲内であることにより、遮光膜の膜強度を向上させることができ、静電破壊を起こりにくくすることができるとともに、放電電流によって生じる熱に対する耐性を高くすることができる。また、上記領域の厚みが薄すぎると、十分な遮光性が得られない場合があり、上記領域の厚みがすぎると、本開示のフォトマスクブランクスを用いてフォトマスクを製造する際に、遮光パターンを精度良く加工することが困難となる場合がある。
 また、上記第1態様の場合、遮光膜の透明基板とは反対側の面における酸素原子の含有割合は、遮光膜の透明基板側の面における酸素原子の含有割合よりも多ければよく、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されるものではなく、目的のシート抵抗および光学濃度等に応じて適宜調整される。
 第2態様では、遮光膜は、内部から透明基板側の面に向かって酸素原子の含有割合が増加し、かつ、内部から透明基板とは反対側の面に向かって酸素原子の含有割合が増加する濃度勾配を有する。すなわち、遮光膜は、内部における酸素原子の含有割合が少なく、透明基板側の面における酸素原子の含有割合ならびに透明基板とは反対側の面における酸素原子の含有割合が多くなるような濃度勾配を有することができる。この場合、遮光膜の透明基板側の面、および、遮光膜の透明基板とは反対側の面に、反射防止機能を付与することができる。また、遮光膜が上記のような濃度勾配を有することにより、遮光膜全体のシート抵抗を高くして所定の範囲内とすることができる。
 上記第2態様の場合、遮光膜の内部における酸素原子の含有割合は、遮光膜の透明基板側の面における酸素原子の含有割合および遮光膜の透明基板とは反対側の面における酸素原子の含有割合よりも少なければよく、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されないが、例えば、5atomic%以上であることが好ましく、7atomic%以上であることがより好ましい。また、上記遮光膜の内部における酸素原子の含有割合は、例えば、20atomic%以下とすることができる。上記遮光膜の内部における酸素原子の含有割合は、例えば、5atomic%以上20atomic%以下であることが好ましく、7atomic%以上20atomic%以下であることがより好ましい。上記遮光膜の内部における酸素原子の含有割合が上記範囲内であることにより、遮光膜全体で高いシート抵抗と高い遮光性とを両立することができる。
 また、上記第2態様の場合、遮光膜の内部において酸素原子の含有割合が5atomic%以上である領域の厚みが、例えば、100nm以上、200nm以下であることが好ましい。すなわち、遮光膜は、内部に、酸素原子の含有割合が所定の範囲内である領域を所定の厚みで有することが好ましい。上記領域の厚みが上記範囲内であることにより、遮光膜の膜強度を向上させることができ、静電破壊を起こりにくくすることができるとともに、放電電流によって生じる熱に対する耐性を高くすることができる。また、上記領域の厚みが薄すぎると、十分な遮光性が得られない場合があり、上記領域の厚みがすぎると、本開示のフォトマスクブランクスを用いてフォトマスクを製造する際に、遮光パターンを精度良く加工することが困難となる場合がある。
 また、上記第2態様の場合、遮光膜の透明基板側の面における酸素原子の含有割合および遮光膜の透明基板とは反対側の面における酸素原子の含有割合は、遮光膜の内部における酸素原子の含有割合よりも多ければよく、所望のシート抵抗および光学濃度を有する遮光膜を得ることができれば特に限定されるものではなく、目的のシート抵抗および光学濃度等に応じて適宜調整される。
 なお、上記遮光膜の厚み方向の酸素原子の含有割合は、例えば、X線光電子分光法(XPS)に、深さ方向(厚さ方向)のイオンエッチングを併用することにより、深さ方向(厚さ方向)の元素分析を行うことで測定することができる。X線光電子分光装置および測定条件については、上述した通りである。
 上記遮光膜の形成方法としては、厚み方向に組成を変化させることができる方法であれば特に限定されるものではなく、例えば、スパッタリング法等が挙げられる。より具体的には、真空チャンバ内にCrターゲットを装着し、O、N、COガス等を導入し、真空環境下での反応性スパッタリングにより成膜する方法等が挙げられる。この方法では、Oガスの比率を調整することによって、上記遮光膜中の酸素原子の含有割合を調整することができる。これにより、遮光膜全体のシート抵抗および光学濃度を調整することができる。
2.透明基板
 本開示における透明基板は、上記遮光膜を支持する部材であり、光透過性を有する。
 上記透明基板としては、一般的なフォトマスクに用いられる透明基板を使用することができる。上記透明基板としては、例えば、光学研磨された透明基板を用いることができ、具体的には、ソーダライムガラス、アルミノホウ珪酸ガラス、ホウ珪酸ガラス、合成石英、蛍石、フッ化カルシウム等を挙げることができる。中でも、合成石英が好適に用いられる。熱膨張率が小さく、フォトマスクを製造しやすいからである。また、上記透明基板として、樹脂基板を用いることもできる。
 上記透明基板の光透過性としては、一般的なフォトマスクに用いられる透明基板と同程度であれば特に限定されない。
 上記透明基板の厚みとしては、本開示のフォトマスクブランクスの用途等に応じて適宜選択することができる。
3.用途
 本開示におけるフォトマスクブランクスは、バイナリマスクの製造に好適に用いられる。
 また、本開示におけるフォトマスクブランクスは、大型フォトマスクの製造に用いられる大型フォトマスクブランクスであることが好ましい。大型フォトマスクブランクスの大きさは、例えば、少なくとも1辺の長さが350mm以上である大きさとすることができる。
B.フォトマスク
 本開示におけるフォトマスクは、透明基板と、上記透明基板の一方の面に配置され、クロム系材料を含む遮光パターンと、を有するフォトマスクであって、上記遮光パターンのシート抵抗が所定の範囲内である。
 図3は、本開示のフォトマスクを例示する概略断面図である。図3に示すように、フォトマスク10は、透明基板12と、透明基板12の一方の面に配置され、クロム系材料を含む遮光パターン13と、を有する。この遮光パターン13のシート抵抗は所定の範囲内である。図3に示す例においては、遮光パターン13は、透明基板2側から順に遮光層13aおよび低反射層13bを有するが、この限りではない。
 本開示によれば、遮光パターンのシート抵抗が上記範囲内であるように高いため、フォトマスクにおいて帯電した静電気が放電したときに、遮光パターンを流れる電流を小さくすることができる。そして、放電電流によって生じる熱を低減することができる。その結果、静電破壊を抑制することが可能である。
 また、本開示によれば、例えばクロム系材料を含む遮光パターンの組成を調整することで、遮光パターンのシート抵抗を調整することができるため、煩雑な工程を要することなく、簡易な工程でフォトマスクを製造することが可能である。
 以下、本開示におけるフォトマスクにおける各構成について説明する。
1.遮光パターン
 本開示における遮光パターンは、透明基板の一方の面に配置され、クロム系材料を含む部材であり、シート抵抗が所定の範囲内である。
 なお、遮光パターンのシート抵抗、光学濃度、厚み等については、上述のフォトマスクブランクスにおける遮光膜と同様とすることができるので、ここでの説明は省略する。
 遮光パターンの幅としては、特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
 上記遮光パターンの形状や隣接する遮光パターン間の距離等としては、本開示のフォトマスクの用途等に応じて適宜調整される。
 上記遮光パターンは、クロム系材料を含み、シート抵抗が上記範囲内であればよく、例えば、複数の層を有していてもよく、厚み方向に組成が変化する膜であってもよい。以下、遮光パターンが複数の層を有する場合(第1実施態様)と、遮光パターンが厚み方向に組成が変化する膜である場合(第2実施態様)とに分けて説明する。
(1)遮光パターンの第1実施態様
 本実施態様の遮光パターンは、クロム系材料を含み、シート抵抗が所定の範囲内であり、複数の層を有する。
 上記遮光パターンは、クロム系材料を含み、シート抵抗が所定の範囲内であり、複数の層を有していればよいが、中でも、遮光パターンは、透明基板側から順に遮光層および低反射層を有することが好ましい。例えば図3において、遮光パターン13は、透明基板12側から順に遮光層13aおよび低反射層13bを有する。好ましい理由については、上述のフォトマスクブランクスにおける第1実施態様の遮光膜と同様であるので、ここでの説明は省略する。
 また、上記遮光パターンは、透明基板と遮光層との間にさらに低反射層を有していてもよい。すなわち、例えば図4に示すように、遮光パターン13は、透明基板12側から順に第2低反射層13cと遮光層13aと第1低反射層13bとを有することができる。
 なお、本明細書において、遮光パターンの透明基板とは反対側の面に配置された低反射層を第1低反射層と称し、遮光パターンの透明基板側の面に配置された低反射層を第2低反射層と称する場合がある。
 第1実施態様の遮光パターンを構成する各層については、上述のフォトマスクブランクスにおける第1実施態様の遮光膜と同様とすることができるので、ここでの説明は省略する。
(2)遮光パターンの第2実施態様
 本実施態様の遮光パターンは、クロム系材料を含み、シート抵抗が所定の範囲内であり、厚み方向に組成が変化する膜である。
 なお、第2実施態様の遮光パターンの構成については、上述のフォトマスクブランクスにおける第2実施態様の遮光膜と同様とすることができるので、ここでの説明は省略する。
2.透明基板
 本開示における透明基板は、上記遮光パターンを支持する部材であり、光透過性を有する。なお、透明基板については、上述のフォトマスクブランクスにおける透明基板と同様とすることができる。
3.フォトマスクの製造方法
 本開示におけるフォトマスクの製造方法としては、上述した構成を有するフォトマスクを製造することができる方法であれば特に限定されず、一般的なフォトマスクの製造方法と同様とすることができる。
 例えば、まず、透明基板の一方の面に遮光膜を有するマスクブランクスを準備する。次に、遮光膜上に所望形状のレジストパターンを形成し、レジストパターンをマスクとして遮光膜をエッチングすることにより、遮光膜から遮光パターンを形成する。これにより、フォトマスクを作製する。
4.フォトマスク
 本開示におけるフォトマスクは、大型フォトマスクであることが好ましい。大型フォトマスクの大きさは、上述の大型フォトマスクブランクスの大きさと同様とすることができる。
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。
 以下に実施例および比較例を示し、本開示をさらに詳細に説明する。
[実施例1]
 まず、6インチ角の精密研磨された合成石英ガラスと、合成石英ガラスの表面に配置され、膜厚30nmの第2低反射層、膜厚150nmの遮光層、および膜厚30nmの第1低反射層がこの順に積層された積層構造を有する遮光膜と、を備えるマスクブランクスを作製した。
 マスクブランクスの作製において、遮光膜は、スパッタリング法を用いて、第2低反射層、遮光層、および第1低反射層の順番で合成石英ガラスの表面に成膜することにより形成した。この際、第2低反射層、遮光層、および第1低反射層の成膜は、それぞれ、ガスを入れ替えたスパッタリング装置を用いて個別に行った。また、第2低反射層、遮光層、および第1低反射層は、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより成膜した。遮光層の成膜条件は、一般的なバイナリマスクの遮光膜の成膜条件よりもOガスの比率を増加した条件とした。また、第1低反射層および第2低反射層の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件と同等の条件とした。
 次に、上記遮光膜上にレジストパターンを形成し、レジストパターンをエッチングマスクとして遮光膜をエッチング加工し、図5(a)~(b)に示すパターン形状を有する遮光パターンを形成した。これにより、フォトマスクを作製した。
 なお、図5(a)~(b)はフォトマスクの概略平面図であり、図5(a)は6インチ角のフォトマスクの全体図、図5(b)は図5(a)のA部分の拡大図である。また、図5(b)において、遮光パターン13’はラインパターンであり、線幅が10μm、40本とした。また、隣接する遮光パターン13’間の距離dを2μm~15μmの間で変化させて、フォトマスクを作製した。
[実施例2]
 まず、6インチ角の精密研磨された合成石英ガラスと、合成石英ガラスの表面に配置され、膜厚30nmの第2低反射層、膜厚120nmの遮光層、および膜厚30nmの第1低反射層がこの順に積層された積層構造を有する遮光層と、を備えるマスクブランクスを作製した。マスクブランクスの作製方法については、実施例1と同様とした。
 次に、実施例1と同様にして、フォトマスクを作製した。
[比較例1]
 まず、6インチ角の精密研磨された合成石英ガラスと、合成石英ガラスの表面に配置され、膜厚85nmの遮光層および膜厚30nmの低反射層がこの順に積層された積層構造を有する遮光膜と、を備えるマスクブランクスを作製した。
 マスクブランクスの作製において、遮光膜は、スパッタリング法を用いて、遮光層および低反射層の順番で合成石英ガラスの表面に成膜することにより形成した。この際、遮光層および低反射層の成膜は、それぞれ、ガスを入れ替えたスパッタリング装置を用いて個別に行った。また、低反射層は、真空チャンバ内にCrターゲットを装着し、O、N、COガスを導入し、真空環境下での反応性スパッタリングにより成膜した。低反射層の成膜条件は、一般的なバイナリマスクの遮光パターンにおける低反射膜の成膜条件と同等の条件とした。さらに、遮光層の成膜条件は、一般的なバイナリマスクの遮光パターンにおけるクロム膜の成膜条件と同等の条件とした。
 次に、実施例1と同様にして、フォトマスクを作製した。
[実施例3]
 サイズを変えたこと以外は、実施例1と同様にしてフォトマスクブランクスおよびフォトマスクを作製した。サイズは、800mm×920mmとした。
[比較例2]
 サイズを変えたこと以外は、比較例1と同様にしてフォトマスクを作製した。サイズは、1220mm×1400mmとした。
[実施例4]
 まず、6インチ角の精密研磨された合成石英ガラスと、合成石英ガラスの表面に配置され、膜厚30nmの第2低反射層、膜厚140nmの遮光層、および膜厚30nmの第1低反射層がこの順に積層された積層構造を有する遮光膜と、を備えるマスクブランクスを作製した。マスクブランクスの作製方法については、実施例1と同様とした。
 次に、実施例1と同様にして、フォトマスクを作製した。
[比較例3]
 まず、6インチ角の精密研磨された合成石英ガラスと、合成石英ガラスの表面に配置され、膜厚30nmの第2低反射層、膜厚140nmの遮光層、および膜厚30nmの第1低反射層がこの順に積層された積層構造を有する遮光膜と、を備えるマスクブランクスを作製した。マスクブランクスの作製方法については、実施例1と同様とした。
 次に、実施例1と同様にして、フォトマスクを作製した。
[比較例4]
 まず、6インチ角の精密研磨された合成石英ガラスと、合成石英ガラスの表面に配置され、膜厚30nmの第2低反射層、膜厚150nmの遮光層、および膜厚39nmの第1低反射層がこの順に積層された積層構造を有する遮光膜と、を備えるマスクブランクスを作製した。マスクブランクスの作製方法については、実施例1と同様とした。
 次に、実施例1と同様にして、フォトマスクを作製した。
(評価)
(1)シート抵抗
 実施例1~2、4および比較例1、3~4の6インチ角のフォトマスクブランクスについて、遮光膜のシート抵抗を測定した。シート抵抗の測定には、三菱化学社製の低抵抗率計 ロレスタ-GX MCP-T700を用い、また三菱化学社製のASPプローブを用いて、四端子四探針法にて行った。シート抵抗は10回測定し、平均値とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(2)組成分析
 実施例1~2、4および比較例1、3の6インチ角のフォトマスクブランクスについて、XPS分析により遮光膜の組成分析を行った。具体的には、X線光電子分光装置としてアルバック・ファイ社 Quantum2000を用い、遮光膜をイオンエッチングして露出した遮光層の表面の組成分析を行った。測定条件は下記の通りとした。結果を表2に示す。
・入射X線:Monochromated Al Kα線
・X線照射領域(測定面積):200μmφ
・X線出力:30W
・光電子取り込み角度:45°
・帯電中和条件:電子中和銃(0.02mA)、低加速Arイオン照射
・測定ピーク:Cr2p、Si2p、C1s、N1s、O1s
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて原子数比を算出した。
Figure JPOXMLDOC01-appb-T000002
 実施例1の遮光層は、Cr:88.6atomic%、C:2.4atomic%、O:7.6atomic%であった。実施例2の遮光層は、Cr:91.1atomic%、C:1.9atomic%、O:5.8atomic%であった。比較例1の遮光層は、Cr:92.4atomic%、C:1.2atomic%、O:4.4atomic%であった。
(3)静電気耐性
 実施例1~2、4および比較例1、3の6インチ角のフォトマスクについて、ノイズ研究所社製の静電気試験機 ESS-6008を用いて、静電気耐性を評価した。測定条件は、電圧500V、容量100pF±10%、抵抗1.5kΩ±1%とした。具体的には、静電気試験機にて、図5(b)中のXおよびYの部分に500Vをチャージした後、隣接する遮光パターン13’間を顕微鏡で観察し、静電破壊の発生状況を確認した。静電破壊が発生しなかったものを「〇」、静電破壊が発生したものを「×」と評価した。結果を表3に示す。なお、隣接する遮光パターン間の距離dが小さいほど静電破壊が発生しやすくなる。
Figure JPOXMLDOC01-appb-T000003
 また、実施例3および比較例2のフォトマスクについても、上記と同様に静電気耐性を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3~4より、実施例1~4のフォトマスクは静電気耐性に優れていた。
(4)製版性
 比較例4は、実施例1と比べて、第1低反射層の膜厚が厚いため、第1低反射層がエッチングされる時間が遮光層および第2低反射層がエッチングされる時間と比較して長くなり、遮光膜の上層と下層とで断面形状の差が出やすかった。フォトマスクにおいては垂直な断面形状が求められるが、比較例4では、特に細線において断面形状の維持が困難であり、製版性が悪かった。
 1 … フォトマスクブランクス
 2、12 … 透明基板
 3 … 遮光膜
 3a、13a … 遮光層
 3b、13b … 低反射層(第1低反射層)
 3c、13c … 第2低反射層
 10 … フォトマスク
 13 … 遮光パターン

Claims (10)

  1.  透明基板と、前記透明基板の一方の面に配置され、クロム系材料を含む遮光膜と、を有するフォトマスクブランクスであって、
     前記遮光膜のシート抵抗が10Ω/□以上10Ω/□以下である、フォトマスクブランクス。
  2.  前記遮光膜が、前記透明基板側から順に遮光層および低反射層を有する、請求項1に記載のフォトマスクブランクス。
  3.  前記遮光層の厚みが100nm以上200nm以下である、請求項2に記載のフォトマスクブランクス。
  4.  前記遮光層が、酸素を含む前記クロム系材料を含む、請求項2または請求項3に記載のフォトマスクブランクス。
  5.  前記遮光膜の厚みが140nm以上280nm以下である、請求項1から請求項4までのいずれかの請求項に記載のフォトマスクブランクス。
  6.  透明基板と、前記透明基板の一方の面に配置され、クロム系材料を含む遮光パターンと、を有するフォトマスクであって、
     前記遮光パターンのシート抵抗が10Ω/□以上10Ω/□以下である、フォトマスク。
  7.  前記遮光パターンが、前記透明基板側から順に遮光層および低反射層を有する、請求項6に記載のフォトマスク。
  8.  前記遮光層の厚みが100nm以上200nm以下である、請求項7に記載のフォトマスク。
  9.  前記遮光層が、酸素を含む前記クロム系材料を含む、請求項7または請求項8に記載のフォトマスク。
  10.  前記遮光パターンの厚みが140nm以上280nm以下である、請求項6から請求項9までのいずれかの請求項に記載のフォトマスク。
PCT/JP2021/010786 2020-03-17 2021-03-17 フォトマスクブランクスおよびフォトマスク WO2021187517A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180019628.4A CN115280237A (zh) 2020-03-17 2021-03-17 光掩模坯料和光掩模
JP2022508404A JPWO2021187517A1 (ja) 2020-03-17 2021-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020046434 2020-03-17
JP2020-046434 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021187517A1 true WO2021187517A1 (ja) 2021-09-23

Family

ID=77768345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010786 WO2021187517A1 (ja) 2020-03-17 2021-03-17 フォトマスクブランクスおよびフォトマスク

Country Status (3)

Country Link
JP (1) JPWO2021187517A1 (ja)
CN (1) CN115280237A (ja)
WO (1) WO2021187517A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244219A (ja) * 1997-02-14 1997-09-19 Hoya Corp 位相シフトマスクブランクおよび位相シフトマスク
JP2014074902A (ja) * 2012-09-13 2014-04-24 Hoya Corp マスクブランクの製造方法及び転写用マスクの製造方法
KR20170049898A (ko) * 2015-10-29 2017-05-11 주식회사 에스앤에스텍 블랭크마스크 및 이를 이용한 포토마스크
JP2018173621A (ja) * 2017-02-09 2018-11-08 信越化学工業株式会社 フォトマスクブランクの製造方法、フォトマスクブランク、フォトマスクの製造方法、フォトマスク及びクロム金属ターゲット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244219A (ja) * 1997-02-14 1997-09-19 Hoya Corp 位相シフトマスクブランクおよび位相シフトマスク
JP2014074902A (ja) * 2012-09-13 2014-04-24 Hoya Corp マスクブランクの製造方法及び転写用マスクの製造方法
KR20170049898A (ko) * 2015-10-29 2017-05-11 주식회사 에스앤에스텍 블랭크마스크 및 이를 이용한 포토마스크
JP2018173621A (ja) * 2017-02-09 2018-11-08 信越化学工業株式会社 フォトマスクブランクの製造方法、フォトマスクブランク、フォトマスクの製造方法、フォトマスク及びクロム金属ターゲット

Also Published As

Publication number Publication date
JPWO2021187517A1 (ja) 2021-09-23
CN115280237A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US8003282B2 (en) Reflective mask blank for EUV lithography, and substrate with functional film for the mask blank
US20190384157A1 (en) Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
EP1973147B1 (en) Reflective mask blanc for euv lithography
US7718324B2 (en) Reflective mask blank for EUV lithography
TWI444757B (zh) 用於極紫外光(euv)微影術之反射性空白光罩
KR101409642B1 (ko) Euv 리소그래피용 반사형 마스크 블랭크
US20190369483A1 (en) Substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask and method for manufacturing semiconductor device
US9097976B2 (en) Reflective mask blank for EUV lithography
US20240045319A1 (en) Reflective mask blank for euv lithography, mask blank for euv lithography, and manufacturing methods thereof
KR20150122066A (ko) Euv 리소그래피용 반사형 마스크 블랭크, 그 마스크 블랭크용 기능막이 형성된 기판 및 그들의 제조 방법
TW200829710A (en) Sputtering target used for production of reflective mask blank for EUV lithography
KR101935448B1 (ko) 위상 시프트 마스크 블랭크 및 이것을 사용한 위상 시프트 마스크의 제조 방법, 및 표시 장치의 제조 방법
JP7061715B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体デバイスの製造方法
US20210103209A1 (en) Substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2024023584A (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
WO2021187517A1 (ja) フォトマスクブランクスおよびフォトマスク
CN106406022B (zh) 光掩模坯和制备光掩模的方法
TW201832921A (zh) 相位偏移光罩基底及使用其之相位偏移光罩之製造方法、與顯示裝置之製造方法
KR102561571B1 (ko) 레지스트층을 구비한 마스크 블랭크, 레지스트층을 구비한 마스크 블랭크의 제조 방법 및 전사용 마스크의 제조 방법
US20220397817A1 (en) Reflective photomask blank and reflective photomask
JP5560776B2 (ja) Euvリソグラフィ用反射型マスクブランクスの製造方法
US20220128898A1 (en) Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
JP6999460B2 (ja) 位相シフトマスクブランク、位相シフトマスク中間体及びこれらを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法
CN111752085A (zh) 带多层反射膜的基板、反射型掩模坯料及反射型掩模、以及半导体装置的制造方法
JP6621947B2 (ja) レジスト膜付きマスクブランクおよびその製造方法ならびに転写用マスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772062

Country of ref document: EP

Kind code of ref document: A1